EP2514211B1 - Deflection system for a projection device, projection device for projecting an image and method for actuating a deflection system for a projection device - Google Patents
Deflection system for a projection device, projection device for projecting an image and method for actuating a deflection system for a projection device Download PDFInfo
- Publication number
- EP2514211B1 EP2514211B1 EP10809269.3A EP10809269A EP2514211B1 EP 2514211 B1 EP2514211 B1 EP 2514211B1 EP 10809269 A EP10809269 A EP 10809269A EP 2514211 B1 EP2514211 B1 EP 2514211B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- deflection
- control
- frequencies
- accordance
- deflection unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 23
- 230000010355 oscillation Effects 0.000 claims description 32
- 230000005855 radiation Effects 0.000 claims description 26
- 230000008859 change Effects 0.000 claims description 23
- 230000033228 biological regulation Effects 0.000 claims description 11
- 230000003287 optical effect Effects 0.000 claims description 9
- 230000001419 dependent effect Effects 0.000 claims description 5
- 230000001276 controlling effect Effects 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000007620 mathematical function Methods 0.000 claims description 2
- 230000005670 electromagnetic radiation Effects 0.000 claims 1
- 238000012545 processing Methods 0.000 description 9
- 230000004044 response Effects 0.000 description 6
- 230000002349 favourable effect Effects 0.000 description 5
- 230000006641 stabilisation Effects 0.000 description 5
- 238000011105 stabilization Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000028016 temperature homeostasis Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004621 scanning probe microscopy Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001331 thermoregulatory effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/101—Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3129—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/02—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/02—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
- G09G3/025—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen with scanning or deflecting the beams in two directions or dimensions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3129—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
- H04N9/3132—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen using one-dimensional electronic spatial light modulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3129—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
- H04N9/3135—Driving therefor
Definitions
- the invention relates to a deflection device for a projection device, to a projection device for projecting an image onto an image field and to a method for controlling a deflection device.
- Lissajous projectors are known in which mirrors are used which oscillate in two axes resonant or nearly resonant and thus sinusoidal. Due to the principle, these mirrors, also known as resonant scanners, are able to achieve much larger amplitudes than non-resonant scanners. larger Amplitudes are related to a scanning laser projection, equivalent to a higher optical resolution. For this reason, the Lissajous projection is of great interest for compact laser projectors, even if it has inhomogeneous illumination in both axes.
- a projection device in which the two scanning or driving frequencies of the two deflection or scanning axes differ by less than an order of magnitude, that is, f1 / f2 ⁇ 10.
- the deflection or scanning system used for this purpose comprises means for fixing the scan frequencies in each axis to the frequencies f1 and f2, respectively.
- This ensures that there is a closed, stationary Lissajous figure, which repeats periodically.
- This prior art proposes fixed frequencies for realizing the image projection.
- the DE 10 2008 008 565 discloses a Lissajous projection method with two fixed frequencies whose largest common divisor forms the repetition rate of the Lissajous figure.
- the patent US Pat. No. 7,580,007 B2 also proposes a Lissajous projection method with fixed frequencies f1 and f2, in which the Lissajous trajectory repeats after an integer number of horizontal oscillations.
- WO 2006/063577 A1 describes another Lissajous projection method with a high-quality deflection unit and DE 10 2007 032801 A1 a projection method that adjusts the resonant frequency of the deflection unit by a second radiation source.
- the quality factor Q is defined as the ratio of resonance frequency to bandwidth, and the bandwidth is defined as the width of the resonance peak at the point where the attenuation reaches 3.01 dB.
- the projection devices described in the prior art are used only in conjunction with such strongly damped deflection units, in which the resonance curve is so flat that when changing the resonance frequency, for example due to temperature changes or the like, only a very small change in amplitude and phase change occurs, which may Increase the drive energy can be compensated quickly enough.
- the known deflection units that have a low Quality factor, have good amplitude stability, good phase stability and also a wide frequency tunability.
- these known deflection units also have very crucial disadvantages.
- the high attenuation basically requires a much higher energy consumption, which is particularly disadvantageous for mobile use, such as in the mobile phone.
- the achievable amplitudes are limited with the usual forces available in microtechnology.
- theta-D product is defined by the product of the diameter D of the deflecting element, e.g. a mirror plate, and one-sided mechanical scan or deflection amplitude theta or mechanical half-angle.
- the invention has for its object to provide a deflection device which allows a high scan or deflection frequency and also provides a high theta-D product available.
- Fig. 1 is also the amplitude response of a little damped scanner or a little damped deflection and the associated phase response 4 is shown, it being recognized that the amplitude characteristic curve 3 has a strong resonance increase and the phase characteristic 4 has a large decrease, ie a large slope.
- the following are some numerical examples for the curves according to Fig. 1 with the deflector with curves 3 and 4 being a wafer level vacuum-encapsulated biaxial gimbal-mounted micromirror scanner with mutually orthogonal axes having a figure of merit of Q 76,000.
- a quality factor of Q 76,000 Phase shift of 154 degrees, when externally a frequency shift of ⁇ 0.5 Hz is induced.
- the invention is based on the object, a method for driving a deflection device for a projection apparatus for projecting Lissajous figures, which allows operation of the deflector to resonate even if the resonant frequency of the deflector changes by external influence.
- a deflection device which has a quality factor of greater than 3,000 and whose drive device has a control circuit which is designed to regulate the first and / or the second drive frequency of the drive signals as a function of the measured phase position of the oscillations of the deflection unit. that the steep phase drop and / or the maximum amplitude of the oscillations of the deflection unit are kept in their resonance range, ie Phase and / or amplitude are kept substantially constant.
- the method for controlling a deflection device it is selected such that it has a quality factor of> 3,000 and that the phase position of the oscillations of the deflection unit is measured around at least one deflection axis and the first and / or second activation frequency depend on the measured phase position is controlled, that the phase position and the maximum amplitude of the vibrations of the deflection are kept in the resonance range.
- phase position By measuring the phase position and controlling the phase or the driving frequencies such that a constant amplitude in the resonance range is ensured, high quality scanners can be used, which have a large Intelablenkwinkel.
- the drive or control frequencies and thus at the same time the resonator oscillation frequencies provide the necessary Freedoms to keep the phases and the amplitudes preferably both deflection axes constant even under changing conditions of use or ambient conditions and thus to operate the deflection unit stable in resonance or near the resonance.
- the obtained Lissajous trajectory does not repeat periodically, i. a projection with non-stationary Lissajous trajectory is used in which the driving frequencies or resonant frequencies are not fixed and therefore do not have to be in an integer relationship to one another.
- the drive frequencies are variable according to the control device for phase and amplitude stabilization.
- the specifications for the permissible change range of the amplitude are determined by the properties of the deflection element and by the resolution of the observation field. For example, the range of change is specified as the reciprocal of the minimum resolution in an axis.
- the amplitude should preferably change by less than a "pixel width". For example, in the case of a minimum resolution of 480 x 640 pixels, the amplitude of the deflector should change by less than 1/480 (0.00283) and 1/640 (0.00146).
- the amplitude should change by less than 1%, more preferably by less than 0.5%, even better by less than 0.3%.
- the phase-locked loop is followed by a line density control loop which influences the resonance frequency of one or both drive axes as a function of a current line density of the Lissajous trajectory given by the drive frequencies and possibly calculable such that the line density does not leave a predefinable tolerance range.
- the activation phase ie the starting point or beginning of the oscillation, must also be taken into account.
- the usually electrostatically driven micromirror or the deflection unit can be selectively influenced with respect to the resonance frequency in different ways, namely by targeted temperature change, by targeted increase or decrease of the drive voltage of the deflection axes and / or by actively changing the spring stiffness.
- the temperature influence can be made inter alia by IR laser irradiation, as will be described below.
- An increase in the drive voltage of the deflection axes leads to a lowering of the resonance frequency, since the increased driving forces act as a softening of the spring suspension.
- the increase or decrease of the drive voltages can be made by superimposed on a DC voltage applied in addition to the drive potentials, wherein the strength of the resonance frequency shift can be influenced by the height of the amplitude of the DC voltage socket.
- the targeted change in spring stiffness can be achieved with additional actuators attached directly to the spring, e.g. Fit the torsion spring and either compress or stretch it laterally.
- an amplitude control loop can be provided in addition to the phase-locked loop.
- the phase-locked loop has the highest priority and is permanently fast-reacting, while the line-density control loop and optionally the amplitude-locked loop are arranged downstream and react more slowly.
- the line density control loop can perform its control using various information. For example, a list of discreetly stored unfavorable repetition rates, i. Drive frequency ratios (f1 / p, f2 / q) to be stored. However, such a list is not practicable in all cases, as it can be extensive if necessary and since an unfavorable tax claim would have to be allowed before it can be identified. Therefore, for example, it makes sense in another possibility to track the distance between the instantaneous repetition rate of the Lissajous figures and the next adjacent unfavorable repetition rate and to carry out a corresponding counter-regulation before the unfavorable case occurs.
- a PID controller can monitor the distance measure.
- the deflection unit has a quality factor of> 20,000, preferably> 100,000.
- the required large optical scan angles of greater than 60 degrees, for example with electrostatic deflection elements can be achieved even at low drive voltages between 5 and 90 volts.
- the deflection unit is vacuum-encapsulated, preferably at the wafer level.
- the quality factor can be selectively influenced by production technology by a targeted deterioration of the vacuum by means of a gas backfilling process. That is, first, minimal pressure is achieved by heating a getter (e.g., titanium) trapped in the mirror cavity and chemically bonding gas molecules. If the vacuum is too good (the pressure too low, or the quality factor undesirably high), then an inert gas filling can be carried out on the next wafer even before the final encapsulation and heating.
- a getter e.g., titanium
- the drive device has a measuring device for capacitive, optical, piezoresistive or piezoelectric measurement of the phase position.
- the phase position is determined from the amplitude information of the sinusoidal oscillations of the deflection, wherein preferably the zero crossing of the oscillation is used.
- a radiation source for temperature stabilization is provided, wherein the drive device is designed, the radiation source for irradiating the deflection unit to turn on when the change of the first and / or second drive frequency occurring to control the phase position and the amplitude is greater than a predetermined value. This can be compensated for temperature changes.
- the line density control circuit comprises at least one radiation source directed onto the deflection unit, preferably an IR laser diode for influencing the temperature, and the control device or this control circuit is designed to control the power input produced by the radiation source, depending on the given value, the density of the Lissajous.
- the regulation can also be carried out by means of a PID controller. Without the option of trimming the frequency ratios, i.
- the temperature treatment would have a wealth of mirror chips are sorted out, because they have unfavorable resonance frequencies and Lissajous trajectories with consistently low line density.
- the aim of the temperature treatment is to ensure that parallel to the amplitude stability, which by the phase control is ensured, at the same time the line density of the Lissajous trajectory based on the period of a field (typically 1/60 second) is optimal.
- the phase control keeps the mirror in resonance and stabilizes the amplitude.
- this regulation can lead to unfavorable line densities being set. Without the additional influence of the line density control loop, eg by the ThermoRegulation, there is no other way to change the line density.
- the temperature influence on the deflection unit by irradiation of the deflection unit does not have to be permanently in use, but supplements the permanently existing phase regulation, ie the phase regulation must always be active, while the temperature influence need not always be active.
- the temperature influence could therefore have the character of a targeted disorder. But it can also be interpreted as a permanent scheme. That depends on the situation.
- Predictable fluctuations in the resonance frequency which are caused, for example, by the changing image content, can be permanently compensated by infrared laser bombardment, for example by means of a look-up table. Even when writing or reading out the image memory, the energy input to be expected in the mirror can be calculated in advance and compensated in a corresponding manner by IR source.
- the counter tax information can be taken from a look-up table.
- Superimposed events such as shock or vibration or externally induced unpredictable temperature changes must be compensated by additional thermoregulation depending on the elimination of the driving frequencies (and thus the line density) become.
- a disturbance must first occur so that it can be regulated by the control loop, unlike the predictable influence of the image content.
- the deflection unit has at least one micromirror, wherein the total optical scanning angle indicative of the deflection of the mirror is> 30 degrees, preferably> 40 degrees and more preferably> 60 degrees.
- the micromirror may be a biaxial, gimbal-like micromirror suspended from torsion springs, but uniaxial mirrors arranged one behind the other may also be used.
- the mirror used in the deflection device will oscillate about two mutually orthogonal axes. However, angles deviating from 90 degrees between the scanning or deflection axes can also be included.
- the inventive method or the deflection device according to the invention is not necessarily limited to two axes.
- a scanner with, for example, three or more torsional and / or spiral spring suspensions can also be used to realize a complex, densely packed Lissajous trajectory.
- the embodiments according to the invention are also not limited to a specific design of the MEMS scanner, for example, a cardan suspension of the mirror or a special type of drive, such as those with electrode combs.
- the prerequisite is always that the intended projection surface is scanned in sufficient speed and density by the projection beam. This could also be achieved by a MEMS actuator, which achieves the beam deflection not by reflection on a mirror, but by a refractive or diffractive element.
- the inventive deflection device is used for a projection device for projecting an image onto an image field, but the application bandwidth is not limited to such a projection device, but also includes scanning, sensory image detection tasks, such as in endoscopy or in scanning microscopy.
- a modulation unit for modulating the intensity of the light beam depending on the image to be projected and the location of the light beam on the image field is additionally provided in addition to the deflection device.
- the radiation source for generating the light beam to be deflected comprises multi-color emitting laser diodes.
- image information can in principle be transmitted at any time, ie pixels can be transmitted at all locations of the Lissajous trajectory.
- the images are thus preferably transmitted bidirectionally in each of the preferably two orthogonal scan axes.
- the modulation unit is preferably controlled by a control unit which reads the image data belonging to each mirror position, for example in the form of RGB pixel intensities in a fixed time clock, which is specified in a digital component, eg an FPGA or an ASIC, from an assigned image memory become.
- the modulation unit accordingly controls the readable intensity value for the modulatable RGB laser source.
- the projection device according to the invention is not limited to a fixed pixel projection rate, so it would also be possible to have a variable pixel projection rate which, for example, takes into account different scanning speeds and generates an equidistant pixel projection related to the scanning angle.
- one or more radiation sources are preferably associated with the deflection unit, which irradiates the deflection unit as a function of the intensity of the light beam determined by the image to be projected. In this way, the temperature fluctuations in the deflection unit caused by the intensities of the light beam can be compensated
- Fig. 1 Amplitude and phase responses of highly damped 1, 2 micromirrors and of high-quality 3, 4 micromirrors for resonant frequencies between 17.15 kHz and 17.17 kHz shown.
- a resonant shift is shown in dashed lines with the curve 3 'and the curve 4', ie the frequency has shifted by a slight value to lower frequencies.
- the frequency of the drive signals remains at the previous value, ie the drive signals or the drive signals can act on the mirror in a decelerating manner, ie it no longer oscillates at the resonant frequency. Therefore, according to the invention, a phase control according to Fig. 2 proposed.
- Fig. 2 is schematic with a deflection unit illustrated, which comprises a biaxial, gimballed micromirror 31 as the deflection element 31.
- the deflection unit or the micromirror 31, whose drive is not shown in detail, is driven by a drive signal supplied by a drive device 32 for each axis with the frequencies f1 and f2 as drive frequencies. These drive frequencies f1, f2 should correspond to resonance frequencies of the mirror 31. So that the mirror 31 can be tracked even when its resonance frequency changes, the drive device 32 has a phase-locked loop 34 which adjusts the phase and thus the drive frequency of the drive signals so that the mirror operates essentially at resonance.
- a measuring device 33 For detecting the phase position, a measuring device 33 is provided which measures the sinusoidal deflection of the micromirror 31.
- a line density control loop is provided at 29, which corrects an unfavorable line density of the Lissajous trajectories which possibly arises as a result of the phase control and keeps within a predetermined tolerance range. This is done based on a deliberate detuning of either or both of the resonant frequencies.
- the instantaneous mirror position can not always be measured discretely at any given time with sufficient precision and resolution.
- the phase position, in particular the zero crossing of the sinusoidal oscillations can be determined very precisely from continuously measured amplitude information. This can be detected by means of optical or capacitive, piezoresistive or piezoelectric sensors.
- the position and phase angle of a resonant mirror can be detected in a time-resolved manner via a monitor laser beam and a position-sensitive 2D photodiode (PSD).
- PSD position-sensitive 2D photodiode
- different photocurrents are tapped off at the four deflection electrodes of the PSD and converted into a time-resolved XY position signal by current-voltage converter and subsequent difference formation, summation and finally quotient formation (difference divided by sum).
- the mechanically induced stress in the torsion springs which is generated during the torsional oscillation and which depends on the deflection angle, causes a change in the resistance of the sensor structures. This is usually evaluated by a Wheatstone bridge and provides an output signal proportional to the torsion angle.
- the twist of the torsion spring produces a lattice change that causes a charge shift.
- the spatial charge change can be measured as a voltage proportional to the tilt angle.
- capacitive evaluation methods In capacitive evaluation methods, one evaluates the time-varying capacitance between static and movable sensor electrode fingers which depends on the tilt angle. From the literature, a whole series of different evaluation methods is known. Frequently, so-called carrier frequency methods are used. For this purpose, a high-frequency modulated voltage is applied to the sensor comb structures. The movement of finger-shaped capacities generates a capacitive current whose waveform represents an amplitude modulation of the carrier signal. The amplitude modulation contains the information about the mirror movement and can be extracted by multiplication (mixing) and filtering.
- phase locked loop 34 is shown as it can be used in the drive device 32.
- a lock-in amplifier with a multiplier 35 and a low-pass filter 36 is used in the phase locked loop 34 in order to determine a precise phase difference signal.
- the control circuit 34 has a voltage-controlled (VCO) or numerically controlled oscillator (NCO) 37, which is connected downstream of the low-pass filter 36 and is connected to the multiplier 35.
- VCO voltage-controlled
- NCO numerically controlled oscillator
- phase shifter between the output of the oscillator, which specifies the reference signal for the control loop, and the multiplier 35 must be provided, was omitted for the sake of clarity.
- the phase shifter becomes the reference oscillator signal (here the VCO signal before multiplication) so delayed that even a non-zero setpoint for the phase difference can be preset.
- this phase controller could be adjusted so that, taking into account all occurring delays in signal processing, a phase difference of, for example, 90 degrees between the drive signal and the mirror oscillation results.
- the difference between mirror phase angle and phase angle of the drive signal can be determined with sufficient accuracy by means of the lock-in amplifier, by first multiplying the drive signal (reference oscillator) with the capacitive feedback signal, for example, and then low-pass filtering. At the output a DC signal is obtained according to trigonometric relationships, which has a phase difference (mirror phase to reference oscillator) proportional amplitude. If this output signal of the lock-in amplifier via an amplifier, not shown, (Gain) supplied to the input of the oscillator 37, a PLL control circuit (phase-locked loop) is obtained. With the help of this PLL, a constant phase difference between mirror and drive signal can be realized. In other words, the PLL can ensure that the mirror is always in resonance or defined near resonance, i. the drive frequencies f1, f2 coincide with the resonance frequencies of the mirror 31.
- the frequencies f1, f2 of the drive signals are not permanently constant, but may change in favor of the phase and amplitude stabilization.
- the resonance frequencies have of horizontal and vertical beam deflection no fixed integer ratio.
- the Lissajous trajectory is not stationary and there is generally no fixed repetition rate of the Lissajous trajectory. In the case of an image projection apparatus, this would mean that there is no fixed, predictable sequence of the image memory readout process since the scanning of the projection surface is not constant.
- the temporal variation of the Lissajous trajectory results in the favorable circumstance that the unwanted speckle patterns that occur in laser projections are perceptibly reduced because the same but different scattering centers are not always hit on the projection surface. This has the consequence that the speckle patterns also vary and are averaged in the eye by overlaying and temporal integration. This is an advantage over all laser projection methods with fixed trajectories.
- phase-locked loop 34 is only schematically indicated for both axes, it can be provided for each oscillation axis, a phase-locked loop. Even if phase locked loops exist in each oscillation axis for stabilizing a phase difference between the excitation signal and the corresponding resonator oscillation, the oscillations of the two axes never form a stable phase relationship with each other because of the variable oscillation (oscillator) frequency.
- Fig. 3 is a biaxial, gimballed micromirror 5, as in Fig. 3 can be used. They are electrostatic away from the axis Comb drives 7 and near-axis comb drives 8 are shown, which can also be used as sensor electrodes.
- the mirror plate 5 is suspended via torsion springs 6 in a movable frame 9, which in turn is suspended by torsion springs 10 in a fixed chip frame 11.
- the frame 9 can be set in resonance by means of electrostatic comb drives 12, wherein the axis 9 has been omitted for reasons of driving or sensor purposes of the movable frame 9 for reasons of clarity.
- Fig. 6 an arrangement of a Lissajous laser projection device according to the invention is shown.
- This projection device has a deflection device according to Fig. 2 , where the vacuum encapsulated biaxial MEMS mirror scanner is designated by the reference numeral 22 here.
- red, green and blue laser sources 18 are provided, whose light or radiation is parallelized by collimators 20 and formed by a beam combination system 21 to form a coaxial beam 15.
- This beam 15 is directed through the oblique glass cover 23 of the MEMS mirror scanner 22, onto the mirror.
- the deflected laser beam 16 biaxially illuminates a projection surface 24.
- Digital image data is supplied via an input 25 to a digital signal processing and control unit 13, in which control pulses corresponding to the image data are transferred to an analogue control unit 17 with the aid of which the emission of the laser sources 18 is controlled.
- the measuring device 33 for measuring the deflection of the mirror of the deflection unit 23 is indicated, which is connected to the signal processing and control unit 13.
- the latter also drives an analog voltage amplifier 14.
- the signal processing and control unit 13 in turn includes two control circuits 34 according to Fig. 7 ,
- a fourth laser source 19 is provided, which is preferably a near-infrared laser source, e.g. a wavelength tuned to the absorption maximum of silicon laser diode, which can be used to keep the image data conditional fluctuations of the incident laser power on the mirror constant.
- the laser source 19 radiates onto the non-mirrored rear side of the MEMS mirror scanner 22. In this way, the frequency of one of the two scanner axes or both axes can be influenced simultaneously with very low laser power.
- the dependent on the mirror movement access to the image data in the memory of the signal processing and control unit 13 and the subsequent control of the laser sources 18 can proceed according to the following scheme.
- Using the optically, piezoresistively, piezoelectrically or capacitively obtained feedback signal precise phase information can be obtained.
- this feedback signal as already related to Figure 7 described, generally have certain interference components and distortions, this feedback signal is further processed, preferably in the aforementioned lock-in amplifier, this further processing is included in the signal processing and control unit 13.
- a signal is thus obtained which is proportional to the phase difference between reference oscillator 37 (VCO see Fig. 7 ) and the feedback signal.
- the waveform of the mirror is synthetically reproduced in terms of frequency and phase.
- pixel coordinates for both axes can now be determined based on a fixed clock cycle (pixel clock), for example, and associated memory contents can be read out. All digital processes and components are part of the signal processing and control unit 13. After reading the memory contents (intensity values), the laser source drivers 17 can be correspondingly controlled on the basis of these contents and 18 pixels can be transmitted via the control of the laser sources.
- the pixel projection does not provide a fixed, unchangeable fixed pixel raster, but a projection deviating from this raster, which should not mean that the image is distorted, but theoretically interpolated image pixels can also be set at the locations between two raster points , When a pixel is set is thus dependent on the pixel clock and not on the current location.
- the location determines only the pixel intensity to be transmitted from the image memory.
- for projecting a pixel not only an image memory cell, but all immediately adjacent pixels of the current location position is read out and interpolated in a focus-oriented manner. There is no time interval during which the pixel clock can not trigger image data projection.
- Fig. 4 and Fig. 5 are excerpts of an unclosed, ie non-stationary, Lissajous trajectory 27 shown.
- the variable sampling frequencies or scan frequencies corresponding to the resonance frequencies of the mirror form a ratio that is smaller than the resolution of the pixel grid. Due to the non-integer ratio of these scan frequencies and because of the variable scan frequencies, the trajectory 28 no longer travels the same path as the trajectory 27 before. A stable image projection is possible even if slightly different (interlace) trajectories are produced during each scan become. It is important that the line density reached after 1/60 seconds sufficiently covers the image line resolution.
- Fig. 5 is a corresponding non-closed Lissajous trajectory 27, as in Fig. 4 shown where the ratio of the variable scanning frequencies is approximately identical to the resolution of a pixel grid 26. Again, the same trajectory is not covered in the second pass as previously in the trajectory 27th
- the phase control implies, as mentioned above, that the projection method is based on non-stationary Lissajous trajectories, wherein the drive or oscillation frequencies f1 and f2 of the two mirror axes are designed to be variable.
- “variable” is understood to be variable within an interval determined by the possible shift of the resonant frequency of the deflection unit, e.g. due to temperature fluctuations, is given.
- the regulation can cause unfavorable line densities of the Lissajous figures, which are influenced by the current frequencies f1 and f2. So it is quite possible that an adjustment of one of the two frequencies at just 0.01Hz decides whether the projected image consists of 10 lines or a few hundred lines.
- favorable and unfavorable frequency intervals and frequency ratios can be defined. If the two frequencies f1 and f2 are close together, e.g. 24000Hz and 24057Hz, then there are relatively large favorable frequency intervals. However, if the frequencies f1 and f2 are far apart, about 500 Hz and 24000 Hz, then the intervals of favorable frequencies are narrower. In any case, such favorable and unfavorable ranges can be defined in advance depending on the desired resolution and derived therefrom limit values for the frequencies.
- the goal is to have F as small as possible. For a given f 2 , this means that q should be as large an integer as possible. With regard to the choice of the frequency ratio f 1 / f 2 , one is therefore interested in a rational number p / q with the largest possible denominator. As small as possible F means that F should be smaller than the desired refresh rate f B.
- q gives (approximately) the number of nodes of the Lissajous figure in the x-direction or the y-direction. For q knots you need 2q lines that intersect. The number of pixels that can be resolved is thus q or 2q, depending on whether you count lines or nodes.
- the unfavorable Frequency relationships to avoid can be avoided by the line density control circuit 29, in the further embodiment by thermoregulatory counter control or regulation, ie the deflection unit can be irradiated, for example, by the NIR laser source 19 so that the frequency f1 and / or f2 is changed.
- the deflection unit can be irradiated, for example, by the NIR laser source 19 so that the frequency f1 and / or f2 is changed.
- one or more further radiation sources can be provided.
- the control device or the line density control loop then monitors the frequency relationships or the instantaneous line density parallel to the image or Lissajous projection and, if unfavorable conditions occur due to the phase control, switches the radiation source on or off.
- a certain amount of infrared laser power can be applied as base amount from the beginning, whereby the influence can be carried out in both directions, namely once by reducing the IR laser power and once by increasing the IR laser power.
- the NIR laser source 19 can also be used to detect changes in the resonator frequencies, i. compensate the vibration frequencies of the MEMS mirror scanner 22 by, for example, changing the ambient temperatures.
- a predefined frequency range for the drive frequencies can be specified.
- another location of the scanner 22 may also be selected to achieve a dominant effect on either the mirror resonant frequency or the resonant frequency of the outer moveable frame, or both.
- Fig. 8 is again more accurate after the deflection device Fig. 2 with the phase locked loop 34 of the Fig. 7 some of the new reference numerals are selected for clarity, although partially identical components are used as in these figures.
- 40 denotes the already described vacuum encapsulated 2D scanner or the deflection unit.
- a measurement signal 41, 42 is applied as a capacitive feedback to a current-voltage converter 43, 44 respectively, which are connected to A / D converters 45, 46, which convert the analog signals into digital feedback signals.
- the A / D converters 45, 46, the phase locked loops 47, 48 are connected downstream, each of the digital multipliers 49, 50, the digital low-pass filters 51, 52 and the oscillators (NCO) 53, 54 exist. Via D / A converters 55, 56 and analog voltage amplifiers 57, 58, the phase signals are supplied as drive signals to the drives of the deflection unit 40.
- the respective output signals of the oscillators 53, 54 which correspond to the drive signals with the frequencies f1 and f2, are supplied to a unit 59 for the digital monitoring of the frequency ratio f1 / f2 and for the digital control of an IR laser source 60.
- the unit 59 for example, the frequency ratios unfavorable to the density of the Lissajous lines are stored. If such an adverse frequency ratio would occur due to the phase control, the unit 59 drives the laser source 60 to irradiate the mirror 62 via an analog IR laser source driver 61.
- the necessary power input e.g. is determined over the time of the driving of the laser source 60, depending on the frequency shift stored in the unit 59 or stored as a functional relationship.
- the unfavorable frequency ratio can be countered from the outset.
- control device 63 forming the control unit as FPGA or ASIC.
- a particularly advantageous embodiment of the deflection device uses a two-axis MEMS mirror scanner whose resonant frequencies of the two orthogonal scan axes are above 16 kHz, differing only by less than 10% from one another by design execution.
- the advantages of such an arrangement are particularly suitable for the automotive sector, where it comes to realize a particularly shock and vibration-resistant projection system with very high resolution, such as for dashboard displays, dashboard displays or passenger entertainment.
- the shock resistance is achieved by the two very high and close to each other resonant frequencies.
- prior art Lissajous scanners with a very high frequency ratio of fast to slow axis in the present invention there are typically no parasitic modes between the two payloads. Because of the relatively high two resonant frequencies, which differ only slightly, it is possible to simultaneously realize a wide frequency space by allowing the two scan frequencies to change without the possibility of low-density Lissajous trajectories.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Mounting And Adjusting Of Optical Elements (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Transforming Electric Information Into Light Information (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Description
Die Erfindung betrifft eine Ablenkeinrichtung für eine Projektionsvorrichtung, eine Projektionsvorrichtung zum Projizieren eines Bildes auf ein Bildfeld und ein Verfahren zum Ansteuern einer Ablenkeinrichtung.The invention relates to a deflection device for a projection device, to a projection device for projecting an image onto an image field and to a method for controlling a deflection device.
Im Stand der Technik sind so genannte Lissajous-Projektoren bekannt, bei denen Spiegel verwendet werden, welche in zwei Achsen resonant oder nahezu resonant und damit sinusförmig schwingen. Prinzipbedingt sind diese auch als Resonanzscanner bezeichneten Spiegel in der Lage, sehr viel größere Amplituden zu erzielen, als nicht resonant betriebene Scanner. Größere Amplituden sind auf eine scannende Laserprojektion bezogen, gleichbedeutend mit einer höheren optischen Auflösung. Aus diesem Grund ist die Lissajous-Projektion für kompakte Laserprojektoren von großem Interesse, auch wenn sie eine inhomogene Ausleuchtung in beiden Achsen aufweist.In the prior art so-called Lissajous projectors are known in which mirrors are used which oscillate in two axes resonant or nearly resonant and thus sinusoidal. Due to the principle, these mirrors, also known as resonant scanners, are able to achieve much larger amplitudes than non-resonant scanners. larger Amplitudes are related to a scanning laser projection, equivalent to a higher optical resolution. For this reason, the Lissajous projection is of great interest for compact laser projectors, even if it has inhomogeneous illumination in both axes.
Aus der
Auch die
Die Patentschrift
Bei den beschriebenen Lissajous-Projektionsverfahren bzw. Projektionsvorrichtungen, die darauf basieren, dass die beiden Scan-Frequenzen f1 und f2 der in Resonanz oder nahe der Resonanz betriebenen Achsen der Ablenkeinheit bzw. des MEMS-Scanners zeitlich konstant sind, tritt das Problem auf, dass die Schwingungs-Amplitude zeitlich auch dann konstant gehalten werden muss, wenn sich die Resonanzfrequenz des oder der resonanten mechanischen Schwingungssysteme, auch mechanische Oszillatoren genannt, sich durch äußere Einflüsse, wie etwa plötzliche Temperaturänderung, z.B. durch veränderte Laserleistung hervorgerufen, ändert. Damit die mit der Änderung der Resonanzfrequenz einhergehende Amplituden-Änderung gering bleibt, ist eine breite Resonanzkurve, gleichbedeutend mit einem niedrigen Gütefaktor, Voraussetzung.In the described Lissajous projection methods or projection apparatuses, which are based on the fact that the two scanning frequencies f1 and f2 of the resonance or resonance-operated axes of the deflection unit or the MEMS scanner are constant over time, the problem arises that the oscillation amplitude must be kept constant in time even if the resonant frequency of the resonant or the mechanical vibration systems, also called mechanical oscillators, by external influences, such as sudden temperature change, eg caused by changed laser power, changes. In order for the amplitude change associated with the change in the resonant frequency to remain low, a broad resonance curve, equivalent to a low quality factor, is required.
In
Für die Projektion sehr hoch aufgelöster Bilder, wie beispielsweise bei einer HDTV-Auflösung werden nicht nur extrem schnelle Ablenkeinheiten oder Resonatoren mit Ablenkfrequenzen >32 kHz benötigt, sondern auch sehr große optische Ablenkwinkel. Als Größe wird das so genannte Theta-D-Produkt angegeben, das definiert ist aus dem Produkt des Durchmessers D des Ablenkelements, z.B. einer Spiegelplatte, und einseitiger mechanischer Scan- oder Auslenkamplitude Theta bzw. mechanischer Halbwinkel. Für eine HDTV-Auflösung muss das erforderliche Theta-D-Produkt größer als 24 Grad * mm sein, z.B. bei D = 1,5 mm und Theta >16 Grad, wobei dies einem optischen Gesamtscan- oder Ablenkwinkel von >64 Grad entspricht. Diese Vorgaben sind mit den im Stand der Technik bekannten stark gedämpften MEMS-Ablenkeinheiten bislang nicht erzielbar.For the projection of very high-resolution images, such as in an HDTV resolution, not only extremely fast deflection units or resonators with deflection frequencies> 32 kHz are required, but also very large optical deflection angles. The term given is the so-called theta-D product, which is defined by the product of the diameter D of the deflecting element, e.g. a mirror plate, and one-sided mechanical scan or deflection amplitude theta or mechanical half-angle. For HDTV resolution, the required theta D product must be greater than 24 degrees * mm, e.g. at D = 1.5 mm and theta> 16 degrees, which corresponds to a total optical scan or deflection angle of> 64 degrees. These specifications can not be achieved with the strongly attenuated MEMS deflection units known in the prior art.
Der Erfindung liegt die Aufgabe zugrunde, eine Ablenkeinrichtung zu schaffen, die eine hohe Scan- bzw. Ablenkfrequenz ermöglicht und gleichfalls ein hohes Theta-D-Produkt zur Verfügung stellt.The invention has for its object to provide a deflection device which allows a high scan or deflection frequency and also provides a high theta-D product available.
Diese Aufgabe wird, allerdings nur teilweise (wird im Folgenden erläutert), von einer Ablenkeinrichtung gelöst, die eine hochgütige Ablenkeinheit aufweist.This task is, but only partially (will be explained below), solved by a deflection, which has a high-quality deflection unit.
In der
Im Folgenden werden einige Zahlenbeispiele für die Kurven gemäß
Unter Berücksichtigung der oben genannten Ausführungen liegt somit der Erfindung zusätzlich die Aufgabe zugrunde, eine Ablenkeinrichtung für eine Projektionsvorrichtung zum Projizieren von Lissajous-Figuren auf ein Beobachtungsfeld zu schaffen, die eine geringe Dämpfung aufweist und die für einen großen Temperaturbereich im Resonanzbetrieb der Ablenkeinheit verwendet werden kann, wobei der Energieverbrauch geringer ist als bei Ablenkreinrichtungen im Stand der Technik. Weiterhin liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zum Ansteuern einer Ablenkeinrichtung für eine Projektionsvorrichtung zum Projizieren von Lissajous-Figuren zu schaffen, die einen Betrieb der Ablenkeinrichtung in Resonanz gestattet, auch wenn die Resonanzfrequenz der Ablenkeinheit sich durch äußeren Einfluss ändert.Thus, taking into account the above-mentioned embodiments, it is an additional object of the invention to provide a deflection apparatus for a projection apparatus for projecting Lissajous figures on an observation field which has a low attenuation and which can be used for a wide temperature range in resonance operation of the deflection unit , wherein the power consumption is lower than in the prior art deflection devices. Furthermore, the invention is based on the object, a method for driving a deflection device for a projection apparatus for projecting Lissajous figures, which allows operation of the deflector to resonate even if the resonant frequency of the deflector changes by external influence.
Diese Aufgabe wird durch eine Ablenkeinrichtung gelöst, die einen Gütefaktor von größer als 3.000 aufweist und deren Ansteuervorrichtung einen Regelkreis aufweist, der ausgebildet ist, abhängig von der gemessenen Phasenlage der Schwingungen der Ablenkeinheit die erste und/oder die zweite Ansteuerfrequenz der Ansteuersignale so zu regeln, dass der steile Phasenabfall und/oder die maximale Amplitude der Schwingungen der Ablenkeinheit in deren Resonanzbereich gehalten werden, d.h. Phase und/oder Amplitude werden im Wesentlichen konstant gehalten.This object is achieved by a deflection device which has a quality factor of greater than 3,000 and whose drive device has a control circuit which is designed to regulate the first and / or the second drive frequency of the drive signals as a function of the measured phase position of the oscillations of the deflection unit. that the steep phase drop and / or the maximum amplitude of the oscillations of the deflection unit are kept in their resonance range, ie Phase and / or amplitude are kept substantially constant.
In entsprechender Weise wird bei dem Verfahren zum Ansteuern einer Ablenkreinrichtung diese so gewählt, dass sie einen Gütefaktor >3.000 aufweist und dass die Phasenlage der Schwingungen der Ablenkeinheit um mindestens eine Ablenkachse gemessen wird und die erste und/oder zweite Ansteuerfrequenz abhängig von der gemessenen Phasenlage so geregelt wird, dass die Phasenlage und die maximale Amplitude der Schwingungen der Ablenkeinheit im Resonanzbereich gehalten werden.In a corresponding manner, in the method for controlling a deflection device, it is selected such that it has a quality factor of> 3,000 and that the phase position of the oscillations of the deflection unit is measured around at least one deflection axis and the first and / or second activation frequency depend on the measured phase position is controlled, that the phase position and the maximum amplitude of the vibrations of the deflection are kept in the resonance range.
Durch Messen der Phasenlage und Regeln der Phase bzw. der Ansteuerfrequenzen derart, dass eine gleich bleibende Amplitude im Resonanzbereich gewährleistet wird, können hochgütige Scanner verwendet werden, die einen großen Gesamtablenkwinkel aufweisen. Die Antriebs- bzw. Ansteuerfrequenzen und damit zugleich die Resonator-Schwingungsfrequenzen stellen die notwendigen Freiheiten dar, um die Phasen und die Amplituden vorzugsweise beider Ablenkachsen auch bei sich ändernden Einsatz- oder Umgebungsbedingungen konstant zu halten und damit die Ablenkeinheit stabil in Resonanz oder nahe der Resonanz zu betreiben.By measuring the phase position and controlling the phase or the driving frequencies such that a constant amplitude in the resonance range is ensured, high quality scanners can be used, which have a large Gesamtablenkwinkel. The drive or control frequencies and thus at the same time the resonator oscillation frequencies provide the necessary Freedoms to keep the phases and the amplitudes preferably both deflection axes constant even under changing conditions of use or ambient conditions and thus to operate the deflection unit stable in resonance or near the resonance.
Daraus resultiert zugleich, dass die erzielte Lissajous-Trajektorie sich nicht periodisch wiederholt, d.h. es wird eine Projektion mit nicht ortsfester Lissajous-Trajektorie verwendet, bei der die Ansteuerfrequenzen bzw. Resonanzfrequenzen nicht fest sind und daher auch nicht in einem ganzzahligen Verhältnis zueinander stehen müssen. Die Ansteuerfrequenzen sind entsprechend der Regeleinrichtung zur Phasen- und Amplitudenstabilisierung veränderbar.As a result, at the same time, the obtained Lissajous trajectory does not repeat periodically, i. a projection with non-stationary Lissajous trajectory is used in which the driving frequencies or resonant frequencies are not fixed and therefore do not have to be in an integer relationship to one another. The drive frequencies are variable according to the control device for phase and amplitude stabilization.
Durch die in den Unteransprüchen angegebenen Merkmale sind vorteilhafte Weiterbildungen und Verbesserungen möglich.The features specified in the dependent claims advantageous refinements and improvements are possible.
Die Vorgaben für den zulässigen Änderungsbereich der Amplitude sind von den Eigenschaften des Ablenkelements und von der Auflösung des Beobachtungsfeldes bestimmt. Beispielsweise ist der Änderungsbereich als Kehrwert der Minimalauflösung in einer Achse vorgegeben. Bei einer Definition unter Verwendung von Pixeln sollte sich die Amplitude vorzugsweise um weniger als eine "Pixelbreite" ändern. Beispielsweise sollte sich die Amplitude des Ablenkelements im Falle einer Minimalauflösung von 480 x 640 Pixeln um weniger als 1/480 (0,00283) und 1/640 (0,00146) ändern. Vorzugsweise sollte die Amplitude sich um weniger als 1% ändern, noch bevorzugter um weniger als 0,5%, noch besser um weniger als 0,3% ändern.The specifications for the permissible change range of the amplitude are determined by the properties of the deflection element and by the resolution of the observation field. For example, the range of change is specified as the reciprocal of the minimum resolution in an axis. In a definition using pixels, the amplitude should preferably change by less than a "pixel width". For example, in the case of a minimum resolution of 480 x 640 pixels, the amplitude of the deflector should change by less than 1/480 (0.00283) and 1/640 (0.00146). Preferably, the amplitude should change by less than 1%, more preferably by less than 0.5%, even better by less than 0.3%.
In einem besonders bevorzugten Ausführungsbeispiel ist dem Phasenregelkreis ein Liniendichte-Regelkreis nachgeschaltet, der abhängig von einer maßgeblich durch die Ansteuerfrequenzen vorgegebenen und gegebenenfalls errechenbaren momentanen Liniendichte der Lissajous-Trajektorie die Resonanzfrequenz einer oder beider Antriebsachsen so beeinflusst, dass die Liniendichte einen vorgebbaren Toleranzbereich nicht verlässt. Für die Bestimmung der momentanen Liniendichte ist auch die Ansteuerphase, d.h. der Startpunkt oder Beginn der Oszillation zu berücksichtigen. Dabei ist der üblicherweise elektrostatisch angetriebene Mikrospiegel bzw. die Ablenkeinheit hinsichtlich der Resonanzfrequenz auf verschiedene Weise gezielt beeinflussbar, nämlich durch gezielte TemperaturÄnderung, durch gezielte Erhöhung oder Erniedrigung der Antriebsspannung der Ablenkachsen und/oder durch aktive Veränderung der Federsteifigkeit. Die Temperaturbeeinflussung kann unter anderem durch IR-Laserbestrahlung vorgenommen werden, wie weiter unten beschreiben wird. eine Erhöhung der Antriebsspannung der Ablenkachsen führt zu einer Erniedrigung der Resonanzfrequenz, da sich die erhöhten Antriebskräfte wie eine Aufweichung der Federaufhängung auswirken. Die Erhöhung oder Erniedrigung der Antriebsspannungen kann durch zusätzlich zu den Antriebpotentialen aufgebrachte Überlagerung einer Gleichspannung vorgenommen werden, wobei die Stärke der Resonanzfrequenzverschiebung durch die Höhe der Amplitude des Gleichspannungssockels beeinflusst werden kann.In a particularly preferred embodiment the phase-locked loop is followed by a line density control loop which influences the resonance frequency of one or both drive axes as a function of a current line density of the Lissajous trajectory given by the drive frequencies and possibly calculable such that the line density does not leave a predefinable tolerance range. For the determination of the instantaneous line density, the activation phase, ie the starting point or beginning of the oscillation, must also be taken into account. In this case, the usually electrostatically driven micromirror or the deflection unit can be selectively influenced with respect to the resonance frequency in different ways, namely by targeted temperature change, by targeted increase or decrease of the drive voltage of the deflection axes and / or by actively changing the spring stiffness. The temperature influence can be made inter alia by IR laser irradiation, as will be described below. An increase in the drive voltage of the deflection axes leads to a lowering of the resonance frequency, since the increased driving forces act as a softening of the spring suspension. The increase or decrease of the drive voltages can be made by superimposed on a DC voltage applied in addition to the drive potentials, wherein the strength of the resonance frequency shift can be influenced by the height of the amplitude of the DC voltage socket.
Die gezielte Veränderung der Federsteifigkeit kann mit zusätzlichen Aktuatoren erlangt werden, die direkt an der Feder, z.B. Torsionsfeder ansetzen und diese entweder lateral stauchen oder dehnen.The targeted change in spring stiffness can be achieved with additional actuators attached directly to the spring, e.g. Fit the torsion spring and either compress or stretch it laterally.
Da gegebenenfalls mit der Liniendichteregelung gleichzeitig auch die Amplitude der Schwingung etwas verändern kann, kann neben dem Phasenregelkreis auch noch ein Amplitudenregelkreis vorgesehen werden. Dabei hat der Phasenregelkreis die höchste Priorität und ist permanent schnell reagierend, während der Liniendichteregelkreis und gegebenenfalls der Amplitudenregelkreis nachgeordnet sind und langsamer reagieren.Where appropriate with the line density control At the same time, the amplitude of the oscillation can also change, an amplitude control loop can be provided in addition to the phase-locked loop. In this case, the phase-locked loop has the highest priority and is permanently fast-reacting, while the line-density control loop and optionally the amplitude-locked loop are arranged downstream and react more slowly.
Der Liniendichte-Regelkreis kann unter Heranziehung verschiedener Informationen seine Regelung bzw. Steuerung durchführen. Beispielsweise kann eine Liste mit diskret abgespeicherten ungünstigen Wiederholrate, d.h. Ansteuerfrequenzverhältnissen (f1/p, f2/q) gespeichert sein. Allerdings ist eine solche Liste nicht in allen Fällen praktikabel, da sie gegebenenfalls umfangreich sein kann und da erst ein ungünstiger Ansteuerfall zugelassen werden müsste, bevor er identifiziert werden kann. Daher ist es beispielsweise in einer anderen Möglichkeit sinnvoll, den Abstand zwischen momentaner Wiederholrate der Lissajous-Figuren und nächst benachbarter ungünstiger Wiederholrate zu verfolgen und eine entsprechende Gegenregelung vorzunehmen bevor der ungünstige Fall eintritt. Ein PID-Regler kann dabei das Abstandsmaß überwachen.The line density control loop can perform its control using various information. For example, a list of discreetly stored unfavorable repetition rates, i. Drive frequency ratios (f1 / p, f2 / q) to be stored. However, such a list is not practicable in all cases, as it can be extensive if necessary and since an unfavorable tax claim would have to be allowed before it can be identified. Therefore, for example, it makes sense in another possibility to track the distance between the instantaneous repetition rate of the Lissajous figures and the next adjacent unfavorable repetition rate and to carry out a corresponding counter-regulation before the unfavorable case occurs. A PID controller can monitor the distance measure.
Vorzuziehen ist, dass die Ablenkeinheit einen Gütefaktor >20.000, vorzugsweise >100.000 aufweist. Durch die Verwendung solcher hochgütiger Resonator-Ablenkeinheiten können die erforderlichen großen optischen Scanwinkel von größer als 60 Grad, beispielsweise mit elektrostatischen Ablenkelementen auch bei niedrigen Antriebsspannungen zwischen 5 und 90 Volt erzielt werden.It is preferable that the deflection unit has a quality factor of> 20,000, preferably> 100,000. By using such high-quality resonator deflection units, the required large optical scan angles of greater than 60 degrees, for example with electrostatic deflection elements, can be achieved even at low drive voltages between 5 and 90 volts.
Besonders vorteilhaft ist, dass die Ablenkeinheit vakuumgekapselt ist, vorzugsweise auf Waferebene. Durch diese Maßnahme, d.h. durch den Betrieb bei reduziertem Umgebungsdruck (p < 1 mbar) wird die Dämpfung der Schwingungen der Ablenkeinheit verringert. Dabei kann der Gütefaktor fertigungstechnisch gezielt beeinflusst werden durch eine gezielte Verschlechterung des Vakuums mittels eines Gas-Rückfüll-Prozesses. Das heißt: Zunächst wird ein Minimaldruck dadurch realisier, dass ein in der Spiegel-Kavität eingeschlossener Getter (z.B. Titan) aufgeheizt wird und Gasmoleküle chemisch verbindet. Ist das Vakuum zu gut (der Druck zu niedrig, bzw, der Gütefaktor unerwünscht hoch), dann kann beim nächsten Wafer bereits vor dem endgültigen Verkapseln und Aufheizen eine Inertgas-Befüllung durchgeführt werden. Diese Gasmoleküle können chemisch nicht durch den Getter gebunden werden und tragen daher weiterhin zur Dämpfung und damit zur Gütefaktor-Reduktion bei. Eine gezielte Vakuum-Verbesserung bzw. Gütefaktor-Erhöhung kann nur durch Verwendung eines Getters mit einer höheren Getter-Kapazität (besseres Getter-Material und größere Getter-Oberfläche) erzielt werden.It is particularly advantageous that the deflection unit is vacuum-encapsulated, preferably at the wafer level. By this measure, i. operating at reduced ambient pressure (p <1 mbar) reduces the damping of the deflector vibrations. In this case, the quality factor can be selectively influenced by production technology by a targeted deterioration of the vacuum by means of a gas backfilling process. That is, first, minimal pressure is achieved by heating a getter (e.g., titanium) trapped in the mirror cavity and chemically bonding gas molecules. If the vacuum is too good (the pressure too low, or the quality factor undesirably high), then an inert gas filling can be carried out on the next wafer even before the final encapsulation and heating. These gas molecules can not be chemically bound by the getter and thus contribute further to the damping and thus to the quality factor reduction. A targeted vacuum improvement or increase in quality factor can only be achieved by using a getter with a higher getter capacity (better getter material and larger getter surface).
Vorzugsweise weist die Ansteuervorrichtung eine Messvorrichtung zur kapazitiven, optischen, piezoresistiven oder piezoelektrischen Messung der Phasenlage auf. Die Phasenlage wird dabei aus der Amplitudeninformation der sinusförmigen Schwingungen des Ablenkelements ermittelt, wobei vorzugsweise der Nulldurchgang der Schwingung herangezogen wird.Preferably, the drive device has a measuring device for capacitive, optical, piezoresistive or piezoelectric measurement of the phase position. The phase position is determined from the amplitude information of the sinusoidal oscillations of the deflection, wherein preferably the zero crossing of the oscillation is used.
In einem bevorzugten Ausführungsbeispiel ist eine Strahlungsquelle zur Temperaturstabilisierung vorgesehen, wobei die Ansteuervorrichtung ausgebildet ist, die Strahlungsquelle zum Bestrahlen der Ablenkeinheit einzuschalten, wenn die zur Regelung der Phasenlage und der Amplitude auftretende Änderung der ersten und/oder zweiten Ansteuerfrequenz größer ist als ein vorgegebener Wert. Damit können Temperaturänderungen kompensiert werden.In a preferred embodiment, a radiation source for temperature stabilization is provided, wherein the drive device is designed, the radiation source for irradiating the deflection unit to turn on when the change of the first and / or second drive frequency occurring to control the phase position and the amplitude is greater than a predetermined value. This can be compensated for temperature changes.
Vorteilhaft ist, dass der Liniendichte-Regelkreis mindestens eine auf die Ablenkeinheit gerichtete Strahlungsquelle, vorzugsweise eine IR Laserdiode zur Temperaturbeeinflussung umfasst, und die Ansteuervorrichtung bzw. dieser Regelkreis ausgebildet ist, den von der Strahlungsquelle hervorgerufenen Leistungseintrag, abhängig von vorgegebenen, die Dichte der Lissajous-Figuren bestimmenden Verhältnissen der Ansteuerfrequenzen, die durch die Phasenregelung veränderbar sind, zu regeln. Dabei können die die Verhältnisse bestimmenden Frequenzverschiebungen vorgegebenen und gespeicherten Leistungseinträgen zugeordnet sein, vorzugsweise in Form einer Kurve oder einer Tabelle oder eines einprogrammierten funktionalen Zusammenhanges bzw. einer mathematischen Funktion, die im einfachsten Falle nur die Ansteuerfrequenzen f1 und f2 gegebenenfalls aber auch eine Reihe von Parametern auswertet, z.B. f = fIR-Laserleistung (f1, f2, momentane Projektions-Laserleistung, momentane IR-Laserleistung, MEMS-Temperatur, ...). Die Regelung kann auch mittels eines PID-Reglers vorgenommen werden. Ohne die Option des Trimmens der Frequenzverhältnisse, d.h. der Temperaturbehandlung müsste eine Fülle von Spiegel-Chips aussortiert werden, weil diese ungünstige Resonanzfrequenzen besitzen und Lissajous-Trajektorien mit stets nur geringer Liniendichte liefern.It is advantageous that the line density control circuit comprises at least one radiation source directed onto the deflection unit, preferably an IR laser diode for influencing the temperature, and the control device or this control circuit is designed to control the power input produced by the radiation source, depending on the given value, the density of the Lissajous. Figures determining ratios of Ansteuerfrequenzen that are variable by the phase control to regulate. In this case, the ratios determining frequency shifts can be assigned predetermined and stored power entries, preferably in the form of a curve or a table or a programmed functional relationship or a mathematical function, in the simplest case, only the drive frequencies f1 and f2 but possibly also a number of parameters evaluates, eg f = fIR laser power (f1, f2, instantaneous projection laser power, instantaneous IR laser power, MEMS temperature, ...). The regulation can also be carried out by means of a PID controller. Without the option of trimming the frequency ratios, i. The temperature treatment would have a wealth of mirror chips are sorted out, because they have unfavorable resonance frequencies and Lissajous trajectories with consistently low line density.
Ziel der Temperaturbehandlung ist, sicher zu stellen, dass parallel zur Amplitudenstabilität, welche durch die Phasenregelung gewährleistet ist, gleichzeitig auch die Liniendichte der Lissajous-Trajektorie bezogen auf den Zeitraum eines Teilbildes (typisch 1/60 Sekunde) optimal ist. Mit anderen Worten: Die Phasenregelung hält den Spiegel in Resonanz und stabilisiert die Amplitude. Doch diese Regelung kann dazu führen, dass ungünstige Liniendichten eingestellt werden. Ohne die zusätzliche Beeinflussung durch den Liniendichte-Regelkreis z.B. durch die ThermoRegulation gibt es sonst keine Möglichkeit, die Liniendichte zu verändern.The aim of the temperature treatment is to ensure that parallel to the amplitude stability, which by the phase control is ensured, at the same time the line density of the Lissajous trajectory based on the period of a field (typically 1/60 second) is optimal. In other words, the phase control keeps the mirror in resonance and stabilizes the amplitude. However, this regulation can lead to unfavorable line densities being set. Without the additional influence of the line density control loop, eg by the ThermoRegulation, there is no other way to change the line density.
Die Temperaturbeeinflussung in Bezug auf die Ablenkeinheit durch Bestrahlen der Ablenkeinheit muss nicht dauerhaft im Einsatz sein, sondern ergänzt die ständig vorhandene Phasenregelung, d.h. die Phasenregelung muss immer aktiv sein, während die TemperaturBeeinflussung nicht immer aktiv sein muss. Die Temperatur-Beeinflussung könnte daher den Charakter einer gezielten Störung besitzen. Sie kann aber auch wie eine dauerhafte Regelung ausgelegt werden. Das hängt von der Situation ab. Vorhersagbare Schwankungen der Resonanzfrequenz, die beispielsweise durch den wechselnden Bildinhalt bedingt sind, können permanent durch Infrarot-Laser-Beschuß kompensiert werden, z.B. mittels einer Look-up-Table. Schon beim Beschreiben bzw. Auslesen des Bildspeichers kann der zu erwartende Energie-Eintrag in den Spiegel vorausberechnet werden und in entsprechender Weise per IR-Quelle kompensierend gegen gesteuert werden. Die Gegensteuer-Informationen können einer Look-up Table entnommen werden. Überlagerte Ereignisse, wie Schock oder Vibrationen oder von extern induzierten unvorhersagbare Temperatur-Änderungen müssen durch zusätzliche Thermoregulation abhängig vom Weglaufen der Ansteuerfrequenzen (und damit der Liniendichte) kompensiert werden. Es muss also erst eine Störung auftreten, damit vom Regelkreis gegen geregelt werden kann, anders als bei der vorhersagbaren Beeinflussung durch den Bildinhalt.The temperature influence on the deflection unit by irradiation of the deflection unit does not have to be permanently in use, but supplements the permanently existing phase regulation, ie the phase regulation must always be active, while the temperature influence need not always be active. The temperature influence could therefore have the character of a targeted disorder. But it can also be interpreted as a permanent scheme. That depends on the situation. Predictable fluctuations in the resonance frequency, which are caused, for example, by the changing image content, can be permanently compensated by infrared laser bombardment, for example by means of a look-up table. Even when writing or reading out the image memory, the energy input to be expected in the mirror can be calculated in advance and compensated in a corresponding manner by IR source. The counter tax information can be taken from a look-up table. Superimposed events, such as shock or vibration or externally induced unpredictable temperature changes must be compensated by additional thermoregulation depending on the elimination of the driving frequencies (and thus the line density) become. Thus, a disturbance must first occur so that it can be regulated by the control loop, unlike the predictable influence of the image content.
In einem bevorzugten Ausführungsbeispiel weist die Ablenkeinheit mindestens einen Mikrospiegel auf, wobei der die Auslenkung des Spiegels angebende optische Gesamtscanwinkel >30 Grad, vorzugsweise >40 Grad und noch bevorzugter >60 Grad ist. Dabei kann der Mikrospiegel ein zweiachsiger, kardanisch an Torsionsfedern aufgehängter Mikrospiegel sein, es können aber auch hintereinander angeordnete einachsige Spiegel verwendet werden. Üblicherweise wird der in der Ablenkvorrichtung verwendete Spiegel um zwei zueinander orthogonal angeordnete Achsen schwingen. Es können aber auch von 90 Grad abweichende Winkel zwischen den Scan- oder Ablenkachsen eingeschlossen werden. Auch ist das erfindungsgemäße Verfahren bzw. die erfindungsgemäße Ablenkeinrichtung nicht notwendigerweise auf zwei Achsen beschränkt. So kann auch ein Scanner mit beispielsweise drei oder mehr Torsions- und/oder Biegefederaufhängungen verwendet werden, um eine komplexe, dicht gepackte Lissajous-Trajektorie zu realisieren. Die erfindungsgemäßen Ausführungen sind auch nicht auf eine spezifische Bauweise des MEMS-Scanners beschränkt, z.B. auf eine kardanische Aufhängung des Spiegels oder auf eine spezielle Antriebsart, wie die mit Elektrodenkämmen. Voraussetzung ist stets, dass die vorgesehene Projektionsfläche in ausreichender Geschwindigkeit und Dichte durch den Projektionsstrahl abgetastet wird. Dieses könnte auch durch einen MEMS-Aktuator, der die Strahlablenkung nicht durch Reflexion an einem Spiegel, sondern durch ein brechendes oder beugendes Element erzielt, erreicht werden.In a preferred embodiment, the deflection unit has at least one micromirror, wherein the total optical scanning angle indicative of the deflection of the mirror is> 30 degrees, preferably> 40 degrees and more preferably> 60 degrees. In this case, the micromirror may be a biaxial, gimbal-like micromirror suspended from torsion springs, but uniaxial mirrors arranged one behind the other may also be used. Usually, the mirror used in the deflection device will oscillate about two mutually orthogonal axes. However, angles deviating from 90 degrees between the scanning or deflection axes can also be included. Also, the inventive method or the deflection device according to the invention is not necessarily limited to two axes. Thus, a scanner with, for example, three or more torsional and / or spiral spring suspensions can also be used to realize a complex, densely packed Lissajous trajectory. The embodiments according to the invention are also not limited to a specific design of the MEMS scanner, for example, a cardan suspension of the mirror or a special type of drive, such as those with electrode combs. The prerequisite is always that the intended projection surface is scanned in sufficient speed and density by the projection beam. This could also be achieved by a MEMS actuator, which achieves the beam deflection not by reflection on a mirror, but by a refractive or diffractive element.
Vorzugsweise wird die erfindungsgemäße Ablenkeinrichtung für eine Projektionsvorrichtung zum Projizieren eines Bildes auf ein Bildfeld verwendet, die Anwendungsbandbreite ist jedoch nicht auf eine solche Projektionsvorrichtung beschränkt, sondern beinhaltet auch scannende, sensorische Bilddetektionsaufgaben, wie in der Endoskopie oder in der scannenden Mikroskopie. Bei der Projektionsvorrichtung zum Projizieren eines Bildes auf ein Bildfeld ist neben der Ablenkeinrichtung zusätzlich eine Modulationseinheit zum Modulieren der Intensität des Lichtstrahls abhängig von dem zu projizierenden Bild und dem Ort des Lichtstrahls auf dem Bildfeld vorgesehen. In einem bevorzugten Ausführungsbeispiel umfasst die Strahlungsquelle zur Erzeugung des abzulenkenden Lichtstrahls mehrfarbig abstrahlende Laserdioden.Preferably, the inventive deflection device is used for a projection device for projecting an image onto an image field, but the application bandwidth is not limited to such a projection device, but also includes scanning, sensory image detection tasks, such as in endoscopy or in scanning microscopy. In the projection device for projecting an image onto an image field, a modulation unit for modulating the intensity of the light beam depending on the image to be projected and the location of the light beam on the image field is additionally provided in addition to the deflection device. In a preferred embodiment, the radiation source for generating the light beam to be deflected comprises multi-color emitting laser diodes.
Bei der erfindungsgemäßen Projektionsvorrichtung kann grundsätzlich zu jedem Zeitpunkt Bildinformation übertragen werden, d.h. an allen Orten der Lissajous-Trajektorie können Bildpunkte übertragen werden. Die Bilder werden somit vorzugsweise bidirektional übertragen in jeder der vorzugsweise zwei orthogonalen Scanachsen. Die Modulationseinheit wird vorzugsweise von einer Steuereinheit angesteuert, die die zu jeder Spiegelstellung gehörenden Bilddaten, z.B. in Form von RGB-Bildpunkt-Intensitäten in einem festen Zeittakt, der in einem Digitalbaustein, z.B. einem FPGA oder einem ASIC vorgegeben wird, aus einem zugeordneten Bildspeicher ausgelesen werden. Entsprechend steuert die Modulationseinheit zum ausgelesenen Intensitätswert die modulierbar RGB-Laserquelle an. Die erfindungsgemäße Projektionsvorrichtung ist nicht auf eine feste Bildpunkt-Projektions-Rate begrenzt, so wäre es ebenso gut möglich, eine variable Bildpunkt-Projektions-Rate zu realisieren, welche beispielsweise unterschiedlichen Scangeschwindigkeiten Rechnung trägt und eine auf den Scanwinkel bezogene äquidistante Bildpunkt-Projektion erzeugt.In the projection apparatus according to the invention, image information can in principle be transmitted at any time, ie pixels can be transmitted at all locations of the Lissajous trajectory. The images are thus preferably transmitted bidirectionally in each of the preferably two orthogonal scan axes. The modulation unit is preferably controlled by a control unit which reads the image data belonging to each mirror position, for example in the form of RGB pixel intensities in a fixed time clock, which is specified in a digital component, eg an FPGA or an ASIC, from an assigned image memory become. The modulation unit accordingly controls the readable intensity value for the modulatable RGB laser source. The projection device according to the invention is not limited to a fixed pixel projection rate, so it would also be possible to have a variable pixel projection rate which, for example, takes into account different scanning speeds and generates an equidistant pixel projection related to the scanning angle.
Vorzugsweise sind bei der Projektionsvorrichtung zur Temperaturstabilisierung eine oder mehrere Strahlungsquellen der Ablenkeinheit zugeordnet, die abhängig von der vom zu projizierenden Bild bestimmten Intensität des Lichtstrahls die Ablenkeinheit bestrahlt. Auf diese Weise können die von den Intensitäten des Lichtstrahls hervorgerufenen Temperaturschwankungen in der Ablenkeinheit kompensiert werdenIn the case of the projection device for temperature stabilization, one or more radiation sources are preferably associated with the deflection unit, which irradiates the deflection unit as a function of the intensity of the light beam determined by the image to be projected. In this way, the temperature fluctuations in the deflection unit caused by the intensities of the light beam can be compensated
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
- Fig. 1
- die Amplituden- und Phasengänge eines hochgedämpften Resonanz-Scanners niedriger Güte nach dem Stand der Technik und die Amplituden- und Phasengänge für einen bauähnlichen Scanner, sprich einer Ablenkeinheit auf MEMS-Basis hoher Güte,
- Fig. 2
- eine schematische Darstellung einer erfindungsgemäßen Ablenkeinrichtung mit einem Regelkreis,
- Fig. 3
- eine Aufsicht auf einen zweiachsigen, kardanisch aufgehängten Mikrospiegel mit Kammantrieben,
- Fig. 4
- einen Ausschnitt einer nicht geschlossenen Lissajous-Trajektorie, bei der das Verhältnis der Schwingungsfrequenzen in den zwei Achsen kleiner als die Auflösung des Pixelrasters ist,
- Fig. 5
- eine Darstellung entsprechend der
Fig. 4 , bei der das Verhältnis der Schwingungsfrequenzen näherungsweise identisch mit der Auflösung des Pixelrasters ist, - Fig. 6
- einen schematischen Aufbau einer erfindungsgemäßen Projektionsvorrichtung mit erfindungsgemäßer Ablenkeinrichtung,
- Fig. 7
- ein Blockschaltbild eines Phasenregelkreises und
- Fig. 8
- ein detaillierteres Schaltbild der Ansteuervorrichtung für die Ablenkeinheit.
- Fig. 1
- the amplitude and phase responses of a high-fidelity low-Q resonant scanner of the prior art and the amplitude and phase responses of a simplex scanner, that is, a high-quality MEMS-based deflector;
- Fig. 2
- a schematic representation of a deflection device according to the invention with a control loop,
- Fig. 3
- a view of a biaxial, gimbal-mounted micromirror with comb drives,
- Fig. 4
- a section of a non-closed Lissajous trajectory, in which the ratio of the vibration frequencies in the two Axes smaller than the resolution of the pixel grid,
- Fig. 5
- a representation according to the
Fig. 4 in which the ratio of the oscillation frequencies is approximately identical to the resolution of the pixel raster, - Fig. 6
- a schematic structure of a projection device according to the invention with inventive deflection device,
- Fig. 7
- a block diagram of a phase locked loop and
- Fig. 8
- a more detailed circuit diagram of the drive device for the deflection.
Wie schon ausgeführt, sind in der
In
Bedingt durch die hohen Ablenk- oder Scangeschwindigkeiten kann die momentane Spiegelposition nicht in jedem Fall zu jedem beliebigen Zeitpunkt diskret mit ausreichender Präzision und Auflösung gemessen werden. Jedoch kann aus kontinuierlich gemessenen Amplitudeninformationen sehr präzise die Phasenlage, insbesondere der Nulldurchgang der sinusförmigen Schwingungen ermittelt werden. Dies kann mit Hilfe von optischen oder kapazitiven, piezoresistiven oder piezoelektrischen Sensoren erfasst werden.Due to the high deflection or scanning speeds, the instantaneous mirror position can not always be measured discretely at any given time with sufficient precision and resolution. However, the phase position, in particular the zero crossing of the sinusoidal oscillations can be determined very precisely from continuously measured amplitude information. This can be detected by means of optical or capacitive, piezoresistive or piezoelectric sensors.
Optisch läßt sich die Position und Phasenlage eines resonanten Spiegels über einen Monitor-Laserstrahl und eine positionssempfindliche 2D-Photodiode (PSD) zeitaufgelöst erfassen. Je nach Auftreffort des am Spiegel abgelenkten Laserstrahls werden an den vier Ableitelektroden des PSDs unterschiedliche Photoströme abgegriffen und per Strom-Spannungswandler und anschließende Differenzbildung, Summenbildung und schließlich Quotientbildung (Differenz geteilt durch Summe) in ein zeitaufgelöstes XY-Positionssignal gewandelt.Optically, the position and phase angle of a resonant mirror can be detected in a time-resolved manner via a monitor laser beam and a position-sensitive 2D photodiode (PSD). Depending on the location of impact of the laser beam deflected at the mirror, different photocurrents are tapped off at the four deflection electrodes of the PSD and converted into a time-resolved XY position signal by current-voltage converter and subsequent difference formation, summation and finally quotient formation (difference divided by sum).
Bei der piezoresistiven Messmethode bewirkt der während der Torsionsschwingung erzeugte, vom Auslenkwinkel abhängige, mechanisch induzierte Stress in den Torsionsfedern eine Widerstandsänderung in den Sensor-Strukturen. Diese wird in der Regel durch eine Wheatstone-Brücke ausgewertet und liefert ein dem Torsionswinkel proportionales Ausgangssignal.In the case of the piezoresistive measuring method, the mechanically induced stress in the torsion springs, which is generated during the torsional oscillation and which depends on the deflection angle, causes a change in the resistance of the sensor structures. This is usually evaluated by a Wheatstone bridge and provides an output signal proportional to the torsion angle.
Bei piezoelektrischen Sensoren basierend z.B. auf Aluminiumnitrid- oder Bleizirkontitanat-Schichten erzeugt die Verdrillung der Torsionsfeder eine Gitterveränderung, die eine Ladungsverschiebung verursacht. Die räumliche Ladungsänderung kann als eine dem Verkippwinkel proportionale Spannung gemessen werden.In piezoelectric sensors based e.g. on aluminum nitride or lead zirconium titanate layers, the twist of the torsion spring produces a lattice change that causes a charge shift. The spatial charge change can be measured as a voltage proportional to the tilt angle.
Bei kapazitiven Auswerteverfahren wertet man die vom Verkippwinkel abhängige zeitlich veränderliche Kapazität zwischen statischen und beweglichen Sensor-Elektrodenfingern aus. Aus der Literatur ist eine ganze Reihe unterschiedlicher Auswerte-Methoden bekannt. Häufig werden sogenannte Trägerfrequenz-Verfahren verwendet. Dazu wird eine hochfrequent modulierte Spannung an die Sensorkammstrukturen angelegt. Die Bewegung der fingerförmigen Kapazitäten erzeugt einen kapazitiven Strom, dessen Signalform eine Amplitudenmodulation des Trägersignals darstellt. In der Amplitudenmodulation ist die Information über die Spiegelbewegung enthalten und kann durch Multiplikation (Mischen) und Filterung extrahiert werden.In capacitive evaluation methods, one evaluates the time-varying capacitance between static and movable sensor electrode fingers which depends on the tilt angle. From the literature, a whole series of different evaluation methods is known. Frequently, so-called carrier frequency methods are used. For this purpose, a high-frequency modulated voltage is applied to the sensor comb structures. The movement of finger-shaped capacities generates a capacitive current whose waveform represents an amplitude modulation of the carrier signal. The amplitude modulation contains the information about the mirror movement and can be extracted by multiplication (mixing) and filtering.
In
In der Regel sind alle die oben beschriebenen Messverfahren mehr oder weniger stark mit Rauschen und Störungen behaftet, was eine direkte instantane Verwertung zur Projektions-Ort-Bestimmung und Pixel-Adressierung entsprechend der für die Bildprojektion (wird weiter in Zusammenhang mit
Um nicht auf eine Phasendifferenz Null, sondern auf einen beliebig einstellbaren Wert zu regeln, muss ein Phasenschieber zwischen dem Ausgang des Oszillators, der das Referenzsignal für den Regelkreis vorgibt, und dem Multiplizierer 35 vorgesehen sein, auf den der Übersicht wegen verzichtet wurde. Mit Hilfe des Phasenschiebers wird das Referenz-Oszillator-Signal (hier das VCO-Signal vor der Multiplikation) so verzögert, dass auch ein von Null verschiedener Sollwert für die Phasendifferenz voreingestellt werden kann. Um den Spiegel in Resonanz zu halten ließe sich dieser Phasenregler so einstellen, dass unter Berücksichtigung aller auftretenden Verzögerungen der Signalverarbeitung sich eine Phasendifferenz von beispielsweise 90 Grad zwischen Ansteuersignal und Spiegel-Oszillation ergibt.In order not to control a phase difference zero, but to an arbitrarily adjustable value, a phase shifter between the output of the oscillator, which specifies the reference signal for the control loop, and the
Die Differenz zwischen Spiegel-Phasenwinkel und Phasenwinkel des Ansteuersignals kann ausreichend präzise ermittelt werden mit Hilfe des Lock-In-Verstärkers, indem man das Ansteuersignal (Referenz-Oszillator) zunächst multipliziert mit dem zum Beispiel kapazitiv gewonnenen Feedback-Signal und anschließend tiefpassfiltert. Am Ausgang wird entsprechend trigonometrischer Zusammenhänge ein DC-Signal erhalten, welches eine der Phasendifferenz (Spiegel-Phase zu Referenz-Oszillator) proportionale Amplitude besitzt. Wird dieses Ausgangssignal des Lock-In-Verstärkers über einen nicht dargestellten Verstärker (Gain) dem Eingang des Oszillators 37 zugeführt, so wird ein PLL Regelkreis (Phase-Locked-Loop) erhalten. Mit Hilfe dieses PLLs läßt sich eine konstante Phasendifferenz zwischen Spiegel und Ansteuersignal realisieren. Mit anderen Worten, der PLL kann dafür Sorge tragen, dass der Spiegel sich stets in Resonanz oder definiert nahe der Resonanz befindet, d.h. die Ansteuerfrequenzen f1, f2 stimmen mit den Resonanzfrequenzen des Spiegels 31 überein.The difference between mirror phase angle and phase angle of the drive signal can be determined with sufficient accuracy by means of the lock-in amplifier, by first multiplying the drive signal (reference oscillator) with the capacitive feedback signal, for example, and then low-pass filtering. At the output a DC signal is obtained according to trigonometric relationships, which has a phase difference (mirror phase to reference oscillator) proportional amplitude. If this output signal of the lock-in amplifier via an amplifier, not shown, (Gain) supplied to the input of the
Dies bedeutet, dass die Frequenzen f1, f2 der Ansteuersignale nicht dauerhaft konstant sind, sondern sich zugunsten der Phasen- und Amplitudenstabilisierung ändern können. Weiterhin besitzen die Resonanzfrequenzen von horizontaler und vertikaler Strahlablenkung kein festes ganzzahliges Verhältnis. Dadurch ist die Lissajous-Trajektorie nicht ortsfest und es gibt im Allgemeinen keine feste Wiederholrate der Lissajous-Trajektorie. Dies würde bei einer Bildprojektionsvorrichtung bedeuten, dass es keine feste vorhersehbare Reihenfolge des Bildspeicher-Auslese-Vorgangs gibt, da die Abtastung der Projektionsfläche nicht konstant ist.This means that the frequencies f1, f2 of the drive signals are not permanently constant, but may change in favor of the phase and amplitude stabilization. Furthermore, the resonance frequencies have of horizontal and vertical beam deflection no fixed integer ratio. As a result, the Lissajous trajectory is not stationary and there is generally no fixed repetition rate of the Lissajous trajectory. In the case of an image projection apparatus, this would mean that there is no fixed, predictable sequence of the image memory readout process since the scanning of the projection surface is not constant.
Die zeitliche Variation der Lissajous-Trajektorie hat den günstigen Umstand zur Folge, dass die unerwünschten Speckle-Muster, die bei Laserprojektionen auftreten, wahrnehmbar verringert werden, weil auf der Projektionsfläche nicht stets die gleichen, sondern verschiedene Streuzentren getroffen werden. Dies aber hat zur Folge, dass auch die Speckle-Muster variieren und im Auge durch Überlagerung und zeitliche Integration gemittelt werden. Dies ist ein Vorteil gegenüber allen Laser-Projektionsverfahren mit ortsfesten Trajektorien.The temporal variation of the Lissajous trajectory results in the favorable circumstance that the unwanted speckle patterns that occur in laser projections are perceptibly reduced because the same but different scattering centers are not always hit on the projection surface. This has the consequence that the speckle patterns also vary and are averaged in the eye by overlaying and temporal integration. This is an advantage over all laser projection methods with fixed trajectories.
Der in
In
In
Weiterhin ist eine vierte Laserquelle 19 vorgesehen, die vorzugsweise eine Nah-Infrarot-Laserquelle ist, z.B. eine von der Wellenlänge her auf das Absorptionsmaximum von Silizium abgestimmte Laserdiode, die dazu eingesetzt werden kann, die Bilddaten bedingten Schwankungen der auf den Spiegel auftreffenden Laserleistung konstant zu halten. In der dargestellten Anordnung strahlt die Laserquelle 19 auf die unverspiegelte Rückseite des MEMS-Spiegel-Scanners 22. Hierdurch kann mit sehr geringer Laserleistung effizient die Frequenz einer der beiden Scanner-Achsen oder auch beider Achsen gleichzeitig beeinflusst werden.Furthermore, a
Der von der Spiegelbewegung abhängige Zugriff auf die Bilddaten im Speicher der Signalverarbeitungs- und Steuereinheit 13 und die daraufhin folgende Ansteuerung der Laserquellen 18 kann nach dem folgenden Schema ablaufen. Mit Hilfe des optisch, piezoresistiv, piezoelektrisch oder kapazitiv gewonnenen Feedback-Signals lässt sich eine präzise Phaseninformation erhalten. Da dieses Feedback-Signal, wie schon in Zusammenhang mit
Die Bildpunkt-Projektion sieht kein festes, unveränderliches ortsfestes Bildpunkt-Raster, sondern eine von diesem Raster abweichende Projektion vor, was nicht bedeuten soll, dass das Bild verzerrt wird, sondern dass theoretisch auch an den Stellen zwischen zwei Raster Punkten interpolierte Bildpixel gesetzt werden können. Wann ein Bildpunkt gesetzt wird, ist damit von der Pixelclock abhängig und nicht vom momentanen Aufenthaltsort. Der Aufenthaltsort bestimmt nur die zu übertragende aus dem Bildspeicher ausgelesene Pixelintensität. Vorzugsweise wird daher für das Projizieren eines Bildpunktes nicht nur eine Bildspeicher-Zelle, sondern alle unmittelbar benachbarten Pixel der momentanen Aufenthalts-Position ausgelesen und schwerpunktorientiert interpoliert. Es gibt kein Zeitintervall, während dem die Pixelclock keine Bilddaten-Projektion auslösen kann.The pixel projection does not provide a fixed, unchangeable fixed pixel raster, but a projection deviating from this raster, which should not mean that the image is distorted, but theoretically interpolated image pixels can also be set at the locations between two raster points , When a pixel is set is thus dependent on the pixel clock and not on the current location. The location determines only the pixel intensity to be transmitted from the image memory. Preferably, therefore, for projecting a pixel, not only an image memory cell, but all immediately adjacent pixels of the current location position is read out and interpolated in a focus-oriented manner. There is no time interval during which the pixel clock can not trigger image data projection.
In
In
Während gemäß
Die Phasenregelung bringt, wie oben erwähnt, mit sich, dass das Projektions-Verfahren auf nicht ortsfesten Lissajous-Trajektorien basiert, wobei die Ansteuer- bzw. Schwingungsfrequenzen f1 und f2 der beiden Spiegelachsen variabel ausgelegt sind. Dabei ist unter "variabel" zu verstehen, dass sie innerhalb eines Intervalls veränderlich sind, welches durch die mögliche Verschiebung der Resonanzfrequenz der Ablenkeinheit, z.B. infolge von Temperaturschwankungen, gegeben ist. Durch die Regelung kann hervorgerufen werden, dass sich ungünstige Liniendichten der Lissajous-Figuren einstellen, die durch die aktuellen Frequenzen f1 und f2 beeinflusst werden. So ist es durchaus möglich, dass eine Verstellung einer der beiden Frequenzen um nur 0,01Hz darüber entscheidet, ob das projizierte Bild aus 10 Linien oder aus einigen Hundert Linien besteht. Es lassen sich somit günstige und ungünstige Frequenz-Intervalle und Frequenz-Verhältnisse definieren. Liegen die beiden Frequenzen f1 und f2 dicht beieinander z.B. 24000Hz und 24057Hz, dann gibt es relativ große günstige Frequenz-Intervalle. Liegen die Frequenzen f1 und f2 jedoch weit voneinander entfernt, etwa 500Hz und 24000Hz, dann sind die Intervalle günstiger Frequenzen schmaler. In jedem Fall lassen sich solche günstigen und ungünstigen Bereiche im Vorfeld abhängig von der gewünschten Auflösung definieren und daraus Grenzwerte für die Frequenzen ableiten.The phase control implies, as mentioned above, that the projection method is based on non-stationary Lissajous trajectories, wherein the drive or oscillation frequencies f1 and f2 of the two mirror axes are designed to be variable. As used herein, "variable" is understood to be variable within an interval determined by the possible shift of the resonant frequency of the deflection unit, e.g. due to temperature fluctuations, is given. The regulation can cause unfavorable line densities of the Lissajous figures, which are influenced by the current frequencies f1 and f2. So it is quite possible that an adjustment of one of the two frequencies at just 0.01Hz decides whether the projected image consists of 10 lines or a few hundred lines. Thus, favorable and unfavorable frequency intervals and frequency ratios can be defined. If the two frequencies f1 and f2 are close together, e.g. 24000Hz and 24057Hz, then there are relatively large favorable frequency intervals. However, if the frequencies f1 and f2 are far apart, about 500 Hz and 24000 Hz, then the intervals of favorable frequencies are narrower. In any case, such favorable and unfavorable ranges can be defined in advance depending on the desired resolution and derived therefrom limit values for the frequencies.
Die Lissajous-Kurve ist bekanntlich genau dann periodisch, wenn f1/f2 = p/q eine rationale Zahl ist, wobei p und q ganzzahlig sind und keinen gemeinsamen Teiler besitzen. Die Wiederholfrequenz F der Lissajous-Kurve ist also:
Um eine gleichmäßige Ausleuchtung (hohe Liniendichte) zu erhalten, ist es das Ziel, F möglichst klein zu haben. Bei vorgegebenem f2 heißt das, dass q eine möglichst große ganze Zahl sein sollte. In Bezug auf die Wahl des Frequenzverhältnisses f1/f2 ist man also an einer rationalen Zahl p/q mit möglichst großem Nenner interessiert. Möglichst kleines F heißt, dass F kleiner als die gewünschte Bildwiederholrate fB sein sollte.In order to obtain a uniform illumination (high line density), the goal is to have F as small as possible. For a given f 2 , this means that q should be as large an integer as possible. With regard to the choice of the frequency ratio f 1 / f 2 , one is therefore interested in a rational number p / q with the largest possible denominator. As small as possible F means that F should be smaller than the desired refresh rate f B.
Im vorhergehenden Absatz wurden ortsfeste Lissajous-Trajektorien betrachtet. Bedingt durch die in der Erfindung vorgeschlagene Phasenregelung hat man es nicht mit festen Frequenzen f1 und f2 zu tun. Die vorangegangenen Überlegungen sind trotzdem relevant für die Auslegung der Frequenzen f1 und f2 des zweiachsig resonanten Scan-Spiegels.In the previous paragraph, stationary Lissajous trajectories were considered. Due to the phase control proposed in the invention, one does not have to deal with fixed frequencies f 1 and f 2 . Nevertheless, the preceding considerations are relevant for the design of the frequencies f 1 and f 2 of the biaxial resonant scan mirror.
Wenn f1/f2 = p/q rational ist, gibt q (ungefähr) die Anzahl der Knoten der Lissajous Figur in x-Richtung oder y-Richtung an. Für q Knoten braucht man 2q Linien, die sich schneiden. Die Anzahl der Pixel, die aufgelöst werden können, ist also q oder 2q, je nachdem ob man Linien oder Knoten zählt.If f 1 / f 2 = p / q is rational, q gives (approximately) the number of nodes of the Lissajous figure in the x-direction or the y-direction. For q knots you need 2q lines that intersect. The number of pixels that can be resolved is thus q or 2q, depending on whether you count lines or nodes.
Wenn die Frequenzen und damit ihr Quotient um 1% =1/100 schwanken, gibt es in jedem Schwankungs-Intervall eine ungünstigste rationale Zahl mit kleinem Nenner q, q ist bestenfalls 100, meistens deutlich schlechter, typischerweise zwischen 10 und 20.If the frequencies and thus their quotient fluctuate around 1% = 1/100, there is one worst-case rational number with a small denominator q, q is at best 100, usually much worse, typically between 10 and 20.
Daher ist es Teil dieser Erfindung, die ungünstigen Frequenzverhältnisse zu vermeiden. Die ungünstigen Frequenzverhältnisse können durch den Liniendichte-Regelkreis 29, im weiteren Ausführungsbeispiel durch thermoregulatorische Gegensteuerung bzw. -regelung vermieden werden, d.h. die Ablenkeinheit kann beispielsweise durch die NIR-Laserquelle 19 so bestrahlt werden, dass die Frequenz f1 und/oder f2 verändert wird. Selbstverständlich kann auch eine oder mehrere weitere Strahlungsquellen vorgesehen werden.Therefore, it is part of this invention, the unfavorable Frequency relationships to avoid. The unfavorable frequency relationships can be avoided by the line
Um die Thermosteuerung bzw. -regelung gezielt durchführen zu können, muß für jede Ablenkeinheit nach ihrer Herstellung festgestellt werden, welche Verhältnisse der Ansteuerfrequenzen zu einer nicht annehmbaren Liniendichte führt und zu vermeiden sind. Dazu sind diese Frequenzverhältnisse in einem Speicher der Ansteuervorrichtung gespeichert. Außerdem sind in Form von Kurven oder Look-up-Tabellen die Frequenzabweichungen oder - verschiebungen in Abhängigkeit von der Ausgangsleistung des oder der Strahlungsquellen gespeichert.In order to be able to carry out the thermal control or regulation in a targeted manner, it must be determined for each deflection unit after its production which ratios of the control frequencies lead to an unacceptable line density and must be avoided. For this purpose, these frequency ratios are stored in a memory of the drive device. In addition, the frequency deviations or shifts are stored in the form of curves or look-up tables as a function of the output power of the radiation source (s).
Die Ansteuervorrichtung bzw. der Liniendichte-Regelkreis überwacht dann parallel zur Bild- oder Lissajous-Projektion die Frequenzverhältnisse bzw. die momentane Liniendichte und schaltet, wenn ungünstige Verhältnisse durch die Phasenregelung auftreten, die Strahlungsquelle ein oder aus.The control device or the line density control loop then monitors the frequency relationships or the instantaneous line density parallel to the image or Lissajous projection and, if unfavorable conditions occur due to the phase control, switches the radiation source on or off.
Wenn z.B. die NIR-Laserquelle 19 oder eine entsprechende gewählt wird, kann eine gewisse Infrarot-Laserleistung als Sockelbetrag von Beginn an appliziert werden, wodurch sich die Beeinflussung in beide Richtungen durchführen läßt, nämlich einmal durch Reduktion der IR-Laserleistung und einmal durch Erhöhung der IR-Laserleistung.If, for example, the
Die NIR-Laserquelle 19 kann auch dazu verwendet werden, Änderungen der Resonatorfrequenzen, d.h. der Schwingungsfrequenzen des MEMS-Spiegelscanners 22 durch beispielsweise Änderung der Umgebungs-Temperaturen auszugleichen. Dazu kann ein vordefinierter Frequenzbereich für die Ansteuerfrequenzen vorgegeben werden.The
In
In
Die jeweiligen Ausgangssignale der Oszillatoren 53, 54, die den Ansteuersignalen mit den Frequenzen f1 und f2 entsprechen, werden einer Einheit 59 zur digitalen Überwachung des Frequenzverhältnisses f1/f2 und zur digitalen Ansteuerung einer IR-Laserquelle 60 zugeführt. In dieser Einheit 59 sind z.B die für die Dichte der Lissajous-Linien nachteiligen Frequenzverhältnisse gespeichert. Falls ein solches nachteiliges Frequenzverhältnis aufgrund der Phasenregelung auftreten würde, steuert die Einheit 59 über einen analogen IR-Laserquellentreiber 61 die Laserquelle 60 zum Bestrahlen des Spiegels 62 an. Dabei ist der notwendige Leistungseintrag, der z.B. über die Zeit des Ansteuern der Laserquelle 60 bestimmt wird, abhängig von der Frequenzverschiebung in der Einheit 59 gespeichert bzw. als funktioneller Zusammenhang abgelegt. Somit kann dem ungünstigen Frequenzverhältnis von vornherein entgegengelenkt werden.The respective output signals of the
Die beschriebenen wesentlichen Bauteile sind zu einer die Ansteuervorrichtung bildenden Steuereinheit 63 als FPGA oder ASIC zusammengefasst.The described essential components are combined to form a
Wie schon oben erläutert wurde, verwendet eine besonders vorteilhafte Ausgestaltung der Ablenkeinrichtung einen Zweiachsen-MEMS-Spiegel-Scanner, dessen Resonanzfrequenzen der beiden orthogonalen Scanachsen oberhalb 16 kHz liegen, wobei sie sich durch Ausführung des Designs nur um weniger als 10% voneinander unterscheiden. Die Vorteile einer solchen Anordnung liegen in der besonderen Eignung für den Automobilbereich, bei dem es darum geht, ein besonders schock- und vibrationsunempfindliches Projektionssystem mit gleichzeitig sehr hoher Auflösung zu realisieren, etwa für Armaturendisplays, Armaturenbrett-Displays oder Beifahrer-Unterhaltung. Die Schockunempfindlichkeit wird durch die beiden sehr hohen und nahe beieinander liegenden Resonanzfrequenzen erzielt. Anders als bei Lissajous-Scannern nach dem Stand der Technik mit sehr großem Frequenz-Verhältnis von schneller zu langsamer Achse liegen bei der vorliegenden Erfindung in der Regel keine parasitären Moden zwischen den beiden Nutzmoden. Wegen der relativ hoch liegenden beiden Resonanzfrequenzen, die sich nur geringfügig unterscheiden, ist es möglich, gleichzeitig einen breiten Frequenz-Raum zu realisieren, indem sich die beiden Scanfrequenzen verändern dürfen, ohne dass sich Lissajous-Trajektorien mit geringer Liniendichte ergeben können.As already explained above, a particularly advantageous embodiment of the deflection device uses a two-axis MEMS mirror scanner whose resonant frequencies of the two orthogonal scan axes are above 16 kHz, differing only by less than 10% from one another by design execution. The advantages of such an arrangement are particularly suitable for the automotive sector, where it comes to realize a particularly shock and vibration-resistant projection system with very high resolution, such as for dashboard displays, dashboard displays or passenger entertainment. The shock resistance is achieved by the two very high and close to each other resonant frequencies. Unlike prior art Lissajous scanners with a very high frequency ratio of fast to slow axis, in the present invention there are typically no parasitic modes between the two payloads. Because of the relatively high two resonant frequencies, which differ only slightly, it is possible to simultaneously realize a wide frequency space by allowing the two scan frequencies to change without the possibility of low-density Lissajous trajectories.
Claims (19)
- A deflection device for a projection apparatus for projecting Lissajous figures onto an observation field, which is configured to deflect a light beam about at least one first and one second deflection axis for generating Lissajous figures, comprising a deflection unit (30) for producing oscillations about the deflection axes and a control device (32) for producing control signals for the deflection unit (30), the control signals having a first and second control frequencies which substantially correspond to the resonant frequencies of the deflection unit, characterized in that
the deflection unit (30) has a quality factor of > 3,000 and in that the control device (32) includes a first feedback loop (34) which is configured to regulate the first and/or second control frequencies in dependence on a measured phasing of the oscillations of the deflection unit so that the maximum amplitude of the oscillations remains in the resonant range of the deflection unit (30), whereby the control frequencies do not have a fixed integer number ratio, the control device (32) comprising a second feed back loop (29) which is configured to influence the resonance frequency of the first and/or second deflection axis dependent on a line density of the Lissajous figures given by the control frequencies in such a way that the line density is within a given tolerance range. - A deflection device in accordance with claim 1, characterized in that the first feedback loop is made to regulate the control frequencies so that the amplitude of the oscillations of the respective deflection axis changes by less than 1 divided by a minimal resolution of the observation field.
- A deflection device in accordance with either of claims 1 or 2, characterized in that the second feedback loop (29) is configured to influence the resonance frequency of the first and/or the second deflection axis by varying of a given control voltage, by detuning the spring constant and/or by temperature influencing the deflection unit.
- A deflection device in accordance with one of claims 1 to 3, characterized in that the first feedback loop (34) is made to regulate the control frequencies so that the amplitude of the oscillations of the respective deflection axis changes by less than 1%, preferably less than 0.5%, even more preferably less than 0.3%.
- A deflection device in accordance with one of the claims 1 to 4, characterized in that the deflection unit (30) has a quality factor >20,000, preferably > 100,000.
- A deflection device in accordance with one of the claims 1 to 5, characterized in that the deflection unit (30) is vacuum encapsulated, preferably on a wafer plane.
- A deflection device in accordance with one of the claims 1 to 4, characterized in that the control device (32) has a measuring apparatus (33) for the capacitive, optical, piezoresistive or piezoelectric measurement of the phasing.
- A deflection device in accordance with one of the claims 1 to 7, characterized in that at least one radiation source (19, 60) directed to the deflection unit (30) is provided for temperature compensation and the control device (32) is made to control the radiation source (19, 60) in an intensity modulated manner when the change of the first and/or second control frequency taking place for the regulation of the phasing and the amplitude is larger than a preset value.
- A deflection device in accordance with one of the claims 1 to 8, characterized in that the second feed back loop (29) comprises at least one radiation source (19, 60) directed to the deflection unit (30) is provided for temperature influencing and the control device (32) is configured to control the power input caused by the radiation source (19, 60) in dependence on the present relationships of the control frequencies which determine the density of the Lissajous figures and which are changeably by the phase regulation.
- A deflection device in accordance with claim 9, characterized in that the control device (32) or the second feedback loop (29) has a memory (59) in which an association table between the frequency shift and the temperature influencing is stored; or in that the control device (32) or the second feedback loop (29) is adapted in a technical programming manner so that the power input is controlled using a mathematical function.
- A deflection device in accordance with one of the claims 1 to 10, characterized in that the deflection unit (30) has at least one micromirror (31), with the total optical deflection angle of the mirror being > 30 degrees, preferably > 40 degrees, even more preferably > 60 degrees.
- A projection apparatus for projecting an image onto an image field having a deflection device in accordance with one of the claims 1 to 11 having projection radiation source (18) and a modulation unit (17) for modulating the intensity of the light beam of the projection radiation source (18) in dependence on the image to be projected and on the location of the light beam on the image field.
- A projection apparatus in accordance with claim 12, characterized in that the projection radiation source for producing the light beam to be deflected includes at least one laser diode with multicolor emission, preferably a plurality of radiating laser diodes (18) with multicolor emission.
- A projection apparatus in accordance with either of claims 12 or 13, characterized in that at least one radiation source (19) which can be intensity modulated for irradiating the deflection unit (30) is comprised and the control device (32) is made to control the radiation intensity of the radiation source (19) in dependence on the instantaneous radiation intensity of the projection radiation source (18).
- A method for controlling a deflection unit for a projection apparatus for projecting Lissajous figures onto an observation field, wherein the deflection device having a deflection unit deflects a light beam about at least one first and one second deflection axis for producing the Lissajous figures and the deflection unit for producing oscillations about the deflection axes is controlled by a first and a second control frequency which are selected so that the deflection unit works in resonance, characterized in that the deflection unit of the deflection device is made so that it has a quality factor of > 3,000; and in that the phasing of the oscillations of the deflection unit is measured about at least one deflection axis and is regulated by changing the first and/or second control frequencies so that the amplitude of the oscillations is kept in the resonant range of the deflection unit, whereby the control frequencies for generating time varying Lissajoustrajectories do not have a substantially fixed integer number ratio and the resonance frequency of the first and/or second deflection axis is regulated dependent on a line density given by the control frequencies in such a way that the line density is within a given tolerance range.
- A method in accordance with claim 15, characterized in that the control frequencies are regulated so that the amplitude of the oscillations of the respective deflection axis changes by less than the reciprocal value of a minimal resolution of the image of the Lissajous figures; and/or in that the amplitude of the oscillations of the respective deflection axis changes by less than 1%, preferably less than 0.5%, even more preferably by less than 0.3%.
- A method in accordance with either of claims 15 or 16, characterized in that the deflection unit (30) is irradiated with electromagnetic radiation by a radiation source (19, 60), with the power input initiated by the radiation source being controlled in dependence on a frequency shift of at least one of the control frequencies occurring due to the phase regulation.
- A method in accordance with claim 17, characterized in that the power input is controlled in dependence on preset relationships of the control frequencies determining the density of the Lissajous figures, with the frequency shifts determining the relationships being associated with preset power inputs, preferably in the form of a curve or of a table or mathematical.
- A method in accordance with either of claims 17 or 18, characterized in that the power input is carried out when the change in the first and/or second control frequencies caused due to the phase regulation exceeds a preset value.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200910058762 DE102009058762A1 (en) | 2009-12-14 | 2009-12-14 | A deflection apparatus for a projection apparatus, a projection apparatus for projecting an image and a method for controlling a deflection apparatus for a projection apparatus |
PCT/EP2010/007684 WO2011082789A1 (en) | 2009-12-14 | 2010-12-13 | Deflection system for a projection device, projection device for projecting an image and method for actuating a deflection system for a projection device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2514211A1 EP2514211A1 (en) | 2012-10-24 |
EP2514211B1 true EP2514211B1 (en) | 2014-03-26 |
Family
ID=43992959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10809269.3A Active EP2514211B1 (en) | 2009-12-14 | 2010-12-13 | Deflection system for a projection device, projection device for projecting an image and method for actuating a deflection system for a projection device |
Country Status (5)
Country | Link |
---|---|
US (1) | US9151949B2 (en) |
EP (1) | EP2514211B1 (en) |
JP (1) | JP5689477B2 (en) |
DE (1) | DE102009058762A1 (en) |
WO (1) | WO2011082789A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017200691A1 (en) | 2017-01-17 | 2018-07-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Projection apparatus and method for scanning a solid angle area with a laser beam |
DE102017117697A1 (en) | 2017-08-04 | 2019-02-07 | Valeo Schalter Und Sensoren Gmbh | Method for operating a deflection device of an optical sensor device of a motor vehicle, deflection device, optical sensor device and motor vehicle |
DE102018114388A1 (en) | 2018-06-15 | 2019-12-19 | Valeo Schalter Und Sensoren Gmbh | Method for controlling a drive device of a micro-oscillating mirror, control device and deflecting mirror device |
DE102018123260A1 (en) * | 2018-09-21 | 2020-03-26 | Valeo Schalter Und Sensoren Gmbh | Method for determining an oscillation of a micromirror element by means of a sound detection device, electronic computing device, micromirror arrangement and optoelectronic sensor |
DE102019207073A1 (en) * | 2019-05-15 | 2020-11-19 | OQmented GmbH | Image generation device for a scanning projection method with Bessel-like beams |
DE102021116151B3 (en) | 2021-06-22 | 2022-06-02 | OQmented GmbH | PROJECTION SYSTEM FOR PROJECTING LISSAJOUS FIGURES AND MICROSCANNER WITH COUPLED OSCILLATORS |
DE102021116121B3 (en) | 2021-06-22 | 2022-10-20 | OQmented GmbH | MICROSCANNER WITH MEANANDER SPRING-BASED MIRROR MOUNTING |
DE102021116165B3 (en) | 2021-06-22 | 2022-10-20 | OQmented GmbH | LISSAJOUS MICROSCANNER WITH MIRROR CENTRAL SUSPENSION AND METHOD FOR ITS MANUFACTURE |
DE102022108801B3 (en) | 2022-04-11 | 2023-04-27 | OQmented GmbH | MICROSCANNER WITH DIFFERENT PIEZO ELEMENTS AND PROCESS FOR ITS MANUFACTURE |
DE102022111185B3 (en) | 2022-05-05 | 2023-06-29 | OQmented GmbH | MICROSCANNER WITH A DEFLECTION ELEMENT AND SPRING ELEMENTS CURVED TOWARDS THE DEFLECTION ELEMENT FOR VIBRATING SUSPENSION OF THE DEFLECTION ELEMENT |
DE102022005022A1 (en) | 2022-05-05 | 2023-11-09 | OQmented GmbH | MICROSCANNER WITH A DEFLECTION ELEMENT AND SPRING ELEMENTS CURVED TOWARDS THIS FOR VIBRATING SUSPENSION OF THE DEFLECTION ELEMENT |
DE102022119946B3 (en) | 2022-08-08 | 2024-02-01 | OQmented GmbH | METHOD, CONTROL DEVICE and COMPUTER PROGRAM FOR TRAJECTORY CONTROL OF A LISSAJOUS MICROSCANNER AND BEAM DEFLECTION SYSTEM WITH THE CONTROL DEVICE |
DE102022119915B3 (en) | 2022-08-08 | 2024-02-01 | OQmented GmbH | MULTI-AXIS MICROSCANNER SYSTEM AND METHOD AND DEVICE FOR CONTROLLING ITS DRIVE |
DE102022129371B3 (en) | 2022-11-07 | 2024-03-21 | OQmented GmbH | CIRCUIT WITH UP CONVERTER FOR CONTROLLING AN ACTUATOR FOR DRIVING VIBRATIONAL MOTION IN A MEMS |
DE102022129340B3 (en) | 2022-11-07 | 2024-03-21 | OQmented GmbH | CIRCUIT WITH AN OSCILLATING CIRCUIT FOR CONTROLLING AN ACTUATOR FOR DRIVING AN VIBRATIONAL MOVEMENT IN A MEMS |
DE102022133117A1 (en) | 2022-12-13 | 2024-06-13 | OQmented GmbH | METHOD AND DEVICE FOR CONTROLLING A DRIVE OF A MULTI-AXIS MICROSCANNER SYSTEM AND MICROSCANNER SYSTEM |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013030842A1 (en) * | 2011-09-04 | 2013-03-07 | Maradin Technologies Ltd. | Apparatus and methods for locking resonating frequency of a miniature system |
US8960913B2 (en) | 2012-01-25 | 2015-02-24 | International Busniess Machines Corporation | Three dimensional image projector with two color imaging |
US8985785B2 (en) | 2012-01-25 | 2015-03-24 | International Business Machines Corporation | Three dimensional laser image projector |
US9004700B2 (en) | 2012-01-25 | 2015-04-14 | International Business Machines Corporation | Three dimensional image projector stabilization circuit |
US9104048B2 (en) | 2012-01-25 | 2015-08-11 | International Business Machines Corporation | Three dimensional image projector with single modulator |
US8992024B2 (en) | 2012-01-25 | 2015-03-31 | International Business Machines Corporation | Three dimensional image projector with circular light polarization |
US9325977B2 (en) | 2012-01-25 | 2016-04-26 | International Business Machines Corporation | Three dimensional LCD monitor display |
US20130188149A1 (en) | 2012-01-25 | 2013-07-25 | International Business Machines Corporation | Three dimensional image projector |
US9715107B2 (en) | 2012-03-22 | 2017-07-25 | Apple Inc. | Coupling schemes for gimbaled scanning mirror arrays |
CN104221058B (en) | 2012-03-22 | 2017-03-08 | 苹果公司 | Scanning lens array equipped with universal joint |
WO2015136830A1 (en) * | 2014-03-13 | 2015-09-17 | パナソニックIpマネジメント株式会社 | Optical device and manufacturing method therefor |
US9778549B2 (en) | 2012-05-07 | 2017-10-03 | Panasonic Intellectual Property Management Co., Ltd. | Optical element |
DE102012219666B4 (en) * | 2012-10-26 | 2023-06-22 | Robert Bosch Gmbh | Projection device and method for operating a projection device |
DE102012219627A1 (en) * | 2012-10-26 | 2014-04-30 | Robert Bosch Gmbh | Method and arrangement for adjusting a line frequency of a digital signal of a projector device |
DE102012222988B4 (en) * | 2012-12-12 | 2021-09-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Micromechanical resonator arrangement |
CN104570556B (en) * | 2013-10-21 | 2016-08-17 | 光宝科技股份有限公司 | Micro-projection arrangement and its control method |
JP6467347B2 (en) * | 2013-11-07 | 2019-02-13 | 住友精密工業株式会社 | Semiconductor device |
DE102013223933B4 (en) * | 2013-11-22 | 2021-12-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Resonance micromirror assembly |
CN104748669A (en) * | 2013-12-30 | 2015-07-01 | 光宝科技股份有限公司 | Angle detection circuit of static micro-scanning mirror |
DE102014201095B4 (en) * | 2014-01-22 | 2023-05-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device with a micromechanical component |
DE102014220115B4 (en) | 2014-10-02 | 2020-10-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for controlling a deflection device for a projection device, deflection device for a projection device and projection device |
JP6364312B2 (en) * | 2014-10-23 | 2018-07-25 | スタンレー電気株式会社 | Video projection device |
US9784838B1 (en) | 2014-11-26 | 2017-10-10 | Apple Inc. | Compact scanner with gimbaled optics |
US9835853B1 (en) | 2014-11-26 | 2017-12-05 | Apple Inc. | MEMS scanner with mirrors of different sizes |
US9798135B2 (en) | 2015-02-16 | 2017-10-24 | Apple Inc. | Hybrid MEMS scanning module |
DE102015204874A1 (en) * | 2015-03-18 | 2016-09-22 | Carl Zeiss Smt Gmbh | Device for pivoting a mirror element with two pivoting degrees of freedom |
AT516848B1 (en) * | 2015-04-27 | 2016-09-15 | Zizala Lichtsysteme Gmbh | Method for driving a light scanner in a headlight for vehicles and headlights |
US9556019B2 (en) | 2015-05-06 | 2017-01-31 | Invensense, Inc. | Cavity pressure modification using local heating with a laser |
DE102015213708A1 (en) | 2015-07-21 | 2017-01-26 | Osram Gmbh | Method and deflection device for a projection device for projecting at least one light beam onto a projection surface |
US9897801B2 (en) | 2015-09-30 | 2018-02-20 | Apple Inc. | Multi-hinge mirror assembly |
US9703096B2 (en) | 2015-09-30 | 2017-07-11 | Apple Inc. | Asymmetric MEMS mirror assembly |
CN106125479A (en) * | 2016-08-08 | 2016-11-16 | 常州创微电子机械科技有限公司 | Many laser scanning projections system |
US10488652B2 (en) | 2016-09-21 | 2019-11-26 | Apple Inc. | Prism-based scanner |
DE102016220934A1 (en) | 2016-10-25 | 2018-04-26 | Carl Zeiss Microscopy Gmbh | The invention relates to a resonant excitable component, a resonance scanner with such a component and a method for operating a resonant excitable component |
JP6875118B2 (en) * | 2016-12-20 | 2021-05-19 | 株式会社日立エルジーデータストレージ | Laser projection display device |
DE102017209645B4 (en) * | 2017-06-08 | 2022-11-17 | Robert Bosch Gmbh | Micromechanical light deflection device, method for deflecting light using a micromechanical light deflection device and light transmission device |
DE102017220813A1 (en) | 2017-11-22 | 2019-05-23 | Robert Bosch Gmbh | Laser projection device |
DE102018113739A1 (en) | 2018-06-08 | 2019-12-12 | Blickfeld GmbH | Coaxial optical system of a friction-free scanning system for light detection and distance measurement, LIDAR, measurements |
KR102139040B1 (en) * | 2019-01-24 | 2020-07-29 | 한국과학기술원 | Three-dimensional imaging system using variable structured illumination apparatus |
KR102059438B1 (en) * | 2018-07-24 | 2019-12-27 | 한국과학기술원 | Apparatus for generating variable structured-light and method for the same |
WO2020022721A1 (en) * | 2018-07-24 | 2020-01-30 | 한국과학기술원 | Variable structured light generating device and 3d imaging system |
DE102018124964A1 (en) | 2018-10-10 | 2020-04-16 | Valeo Schalter Und Sensoren Gmbh | Method for controlling a drive device of a micro oscillating mirror, control device and deflecting mirror device |
DE102018124960A1 (en) * | 2018-10-10 | 2020-04-16 | Valeo Schalter Und Sensoren Gmbh | Method for controlling a drive device of a micro oscillating mirror, control device and deflecting mirror device |
DE102018126522A1 (en) | 2018-10-24 | 2020-04-30 | Blickfeld GmbH | Runtime-based distance measurement using modulated pulse trains of laser pulses |
US10939080B2 (en) * | 2019-03-29 | 2021-03-02 | Facebook Technologies, Llc | Trajectory estimation for a MEMS reflector |
US11639989B2 (en) * | 2019-05-13 | 2023-05-02 | Analog Devices International Unlimited Company | Time of flight transmitter with self-stabilized optical output phase |
KR102705224B1 (en) | 2019-08-18 | 2024-09-11 | 애플 인크. | Device and method for scanning beams of light |
DE102019125720A1 (en) * | 2019-09-25 | 2021-03-25 | Blickfeld GmbH | CONTROL WITH CLOSED CONTROL CIRCUIT FOR LIGHT SCANNERS |
CN111227802B (en) * | 2020-02-13 | 2021-02-09 | 北京理工大学 | Combined type scanning control method based on micro-miniature reflector |
US11614518B2 (en) * | 2020-06-23 | 2023-03-28 | Beijing Voyager Technology Co., Ltd. | Optical sensing in MEMS package for LiDAR system |
US20220317439A1 (en) * | 2021-04-01 | 2022-10-06 | Infineon Technologies Ag | Driving signal parameter variation for driving mems mirrors for synchronization control and tuning lissajous scanning |
JP2022184514A (en) | 2021-06-01 | 2022-12-13 | 富士フイルム株式会社 | Optical scanning device, method for driving optical scanning device, and image drawing system |
JP7328292B2 (en) * | 2021-09-24 | 2023-08-16 | キヤノン株式会社 | Holding device, exposure device, and article manufacturing method |
CN116343688A (en) * | 2021-12-25 | 2023-06-27 | 武汉万集光电技术有限公司 | MEMS micromirror, driving method, device and storage medium thereof |
US20230234836A1 (en) * | 2022-01-25 | 2023-07-27 | Stmicroelectronics S.R.L. | Method to estimate phase and amplitude for control of a resonant mems mirror |
DE102022001991B3 (en) | 2022-06-08 | 2023-07-27 | Mercedes-Benz Group AG | Light pattern generator, lighting device, vehicle and method for driving such a lighting device |
CN115655153B (en) * | 2022-11-09 | 2023-10-10 | 四川大学 | Light source modulation method, MEMS scanning 3D imaging system and imaging method thereof |
DE102022134415B3 (en) | 2022-12-21 | 2024-06-06 | OQmented GmbH | Device for generating and displaying an image on an observation field using a grating for light beam collimation and augmented reality glasses containing this device |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7098871B1 (en) * | 1998-08-05 | 2006-08-29 | Microvision, Inc. | Optical scanning system with correction |
US7516896B2 (en) * | 1999-08-05 | 2009-04-14 | Microvision, Inc. | Frequency tunable resonant scanner with auxiliary arms |
US6245590B1 (en) * | 1999-08-05 | 2001-06-12 | Microvision Inc. | Frequency tunable resonant scanner and method of making |
US6795221B1 (en) * | 1999-08-05 | 2004-09-21 | Microvision, Inc. | Scanned display with switched feeds and distortion correction |
US6445362B1 (en) * | 1999-08-05 | 2002-09-03 | Microvision, Inc. | Scanned display with variation compensation |
US6256131B1 (en) * | 1999-08-05 | 2001-07-03 | Microvision Inc. | Active tuning of a torsional resonant structure |
US6384406B1 (en) * | 1999-08-05 | 2002-05-07 | Microvision, Inc. | Active tuning of a torsional resonant structure |
US6515781B2 (en) * | 1999-08-05 | 2003-02-04 | Microvision, Inc. | Scanned imaging apparatus with switched feeds |
US6924476B2 (en) * | 2002-11-25 | 2005-08-02 | Microvision, Inc. | Resonant beam scanner with raster pinch compensation |
US6285489B1 (en) * | 1999-08-05 | 2001-09-04 | Microvision Inc. | Frequency tunable resonant scanner with auxiliary arms |
US6525310B2 (en) * | 1999-08-05 | 2003-02-25 | Microvision, Inc. | Frequency tunable resonant scanner |
US6331909B1 (en) * | 1999-08-05 | 2001-12-18 | Microvision, Inc. | Frequency tunable resonant scanner |
US6653621B2 (en) * | 2001-03-23 | 2003-11-25 | Microvision, Inc. | Frequency tunable resonant scanner and method of making |
US6661393B2 (en) * | 1999-08-05 | 2003-12-09 | Microvision, Inc. | Scanned display with variation compensation |
EP1419411B1 (en) | 2001-10-05 | 2005-01-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Projection device |
US6879428B2 (en) * | 2001-12-26 | 2005-04-12 | Intermec Ip Corp. | Frame grabbing with laser scanner with sweeping by silicon planar electrostatics actuator |
US20060145945A1 (en) * | 2002-01-07 | 2006-07-06 | Lewis John R | Scanned beam system with distortion compensation |
KR100939017B1 (en) | 2002-05-17 | 2010-01-26 | 마이크로비젼, 인코퍼레이티드 | Apparatus and method for sweeping an image beam in one dimension and bidirectionally sweeping an image beam in a second dimension |
JP4316274B2 (en) * | 2003-03-31 | 2009-08-19 | 日本信号株式会社 | Actuator drive controller |
US7107848B2 (en) | 2004-12-03 | 2006-09-19 | Texas Instruments Incorporated | Active scan velocity control for torsional hinged MEMS scanner |
DE102004060576B4 (en) * | 2004-12-16 | 2017-12-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method and projector for image projection |
JP4952298B2 (en) * | 2007-02-28 | 2012-06-13 | 株式会社デンソー | Two-dimensional optical scanning device |
US8212884B2 (en) * | 2007-05-22 | 2012-07-03 | University Of Washington | Scanning beam device having different image acquisition modes |
DE102007032801A1 (en) * | 2007-07-10 | 2009-01-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for projecting electromagnetic radiation |
JP5095311B2 (en) * | 2007-08-30 | 2012-12-12 | 株式会社日立製作所 | Image display apparatus and method for adjusting vibration state of reflecting mirror in image display apparatus |
JP2009086590A (en) * | 2007-10-03 | 2009-04-23 | Canon Inc | Rocking member apparatus, method of reducing pressure in casing of rocking member apparatus, optical deflector and image forming apparatus |
US7522813B1 (en) * | 2007-10-04 | 2009-04-21 | University Of Washington | Reducing distortion in scanning fiber devices |
TWI355511B (en) * | 2007-10-08 | 2012-01-01 | Opus Microsystems Corp | Laser pointer with the pattern and size of project |
US8427727B2 (en) * | 2008-01-22 | 2013-04-23 | Alcatel Lucent | Oscillating mirror for image projection |
JP5221965B2 (en) * | 2008-01-29 | 2013-06-26 | キヤノン株式会社 | Two-dimensional scanning device and projection-type image display device |
DE102008008565B4 (en) | 2008-02-08 | 2022-02-03 | Robert Bosch Gmbh | Projection method and control device for a projection device |
JP5098759B2 (en) * | 2008-03-31 | 2012-12-12 | ブラザー工業株式会社 | Image projection device |
US8757812B2 (en) * | 2008-05-19 | 2014-06-24 | University of Washington UW TechTransfer—Invention Licensing | Scanning laser projection display devices and methods for projecting one or more images onto a surface with a light-scanning optical fiber |
-
2009
- 2009-12-14 DE DE200910058762 patent/DE102009058762A1/en not_active Withdrawn
-
2010
- 2010-12-13 JP JP2012543522A patent/JP5689477B2/en active Active
- 2010-12-13 US US13/515,850 patent/US9151949B2/en active Active
- 2010-12-13 WO PCT/EP2010/007684 patent/WO2011082789A1/en active Application Filing
- 2010-12-13 EP EP10809269.3A patent/EP2514211B1/en active Active
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017200691B4 (en) | 2017-01-17 | 2019-01-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Projection apparatus and method for scanning a solid angle area with a laser beam |
DE102017200691A1 (en) | 2017-01-17 | 2018-07-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Projection apparatus and method for scanning a solid angle area with a laser beam |
DE102017117697A1 (en) | 2017-08-04 | 2019-02-07 | Valeo Schalter Und Sensoren Gmbh | Method for operating a deflection device of an optical sensor device of a motor vehicle, deflection device, optical sensor device and motor vehicle |
US11988826B2 (en) | 2018-06-15 | 2024-05-21 | Valeo Schalter Und Sensoren Gmbh | Method for controlling a drive apparatus of a micro-oscillation mirror, control device and deflector mirror apparatus |
DE102018114388A1 (en) | 2018-06-15 | 2019-12-19 | Valeo Schalter Und Sensoren Gmbh | Method for controlling a drive device of a micro-oscillating mirror, control device and deflecting mirror device |
DE102018123260A1 (en) * | 2018-09-21 | 2020-03-26 | Valeo Schalter Und Sensoren Gmbh | Method for determining an oscillation of a micromirror element by means of a sound detection device, electronic computing device, micromirror arrangement and optoelectronic sensor |
WO2020228907A1 (en) | 2019-05-15 | 2020-11-19 | OQmented GmbH | Image generating device for a scanning projection method with bessel-like beams |
DE102019207073B4 (en) * | 2019-05-15 | 2021-02-18 | OQmented GmbH | Image generation device for a scanning projection method with Bessel-like beams |
DE102019207073A1 (en) * | 2019-05-15 | 2020-11-19 | OQmented GmbH | Image generation device for a scanning projection method with Bessel-like beams |
DE102021116151B3 (en) | 2021-06-22 | 2022-06-02 | OQmented GmbH | PROJECTION SYSTEM FOR PROJECTING LISSAJOUS FIGURES AND MICROSCANNER WITH COUPLED OSCILLATORS |
DE102021116121B3 (en) | 2021-06-22 | 2022-10-20 | OQmented GmbH | MICROSCANNER WITH MEANANDER SPRING-BASED MIRROR MOUNTING |
DE102021116165B3 (en) | 2021-06-22 | 2022-10-20 | OQmented GmbH | LISSAJOUS MICROSCANNER WITH MIRROR CENTRAL SUSPENSION AND METHOD FOR ITS MANUFACTURE |
WO2022268818A1 (en) | 2021-06-22 | 2022-12-29 | OQmented GmbH | Microscanner with meander spring-based mirror mount |
WO2022268778A1 (en) | 2021-06-22 | 2022-12-29 | OQmented GmbH | Lissajous microscanner having central mirror mount and method for production thereof |
WO2022268392A1 (en) | 2021-06-22 | 2022-12-29 | OQmented GmbH | Projection system for projecting lissajous figures and microscanner with coupled oscillators |
DE102022108801B3 (en) | 2022-04-11 | 2023-04-27 | OQmented GmbH | MICROSCANNER WITH DIFFERENT PIEZO ELEMENTS AND PROCESS FOR ITS MANUFACTURE |
WO2023198340A1 (en) | 2022-04-11 | 2023-10-19 | OQmented GmbH | Microscanner having heterogeneous piezo elements, and method for producing same |
WO2023213618A1 (en) | 2022-05-05 | 2023-11-09 | OQmented GmbH | Microscanner having a deflecting element and having spring elements curved towards same for suspension of the deflecting element in a manner capable of oscillation |
DE102022005022A1 (en) | 2022-05-05 | 2023-11-09 | OQmented GmbH | MICROSCANNER WITH A DEFLECTION ELEMENT AND SPRING ELEMENTS CURVED TOWARDS THIS FOR VIBRATING SUSPENSION OF THE DEFLECTION ELEMENT |
DE102022111185B3 (en) | 2022-05-05 | 2023-06-29 | OQmented GmbH | MICROSCANNER WITH A DEFLECTION ELEMENT AND SPRING ELEMENTS CURVED TOWARDS THE DEFLECTION ELEMENT FOR VIBRATING SUSPENSION OF THE DEFLECTION ELEMENT |
WO2024033094A1 (en) | 2022-08-08 | 2024-02-15 | OQmented GmbH | Multi-axis microscanner system, and method and apparatus for controlling the drive thereof |
WO2024033087A1 (en) | 2022-08-08 | 2024-02-15 | OQmented GmbH | Method and control apparatus for regulating the trajectory of a lissajous microscanner |
DE102022119915B3 (en) | 2022-08-08 | 2024-02-01 | OQmented GmbH | MULTI-AXIS MICROSCANNER SYSTEM AND METHOD AND DEVICE FOR CONTROLLING ITS DRIVE |
DE102022119946B3 (en) | 2022-08-08 | 2024-02-01 | OQmented GmbH | METHOD, CONTROL DEVICE and COMPUTER PROGRAM FOR TRAJECTORY CONTROL OF A LISSAJOUS MICROSCANNER AND BEAM DEFLECTION SYSTEM WITH THE CONTROL DEVICE |
DE102022129371B3 (en) | 2022-11-07 | 2024-03-21 | OQmented GmbH | CIRCUIT WITH UP CONVERTER FOR CONTROLLING AN ACTUATOR FOR DRIVING VIBRATIONAL MOTION IN A MEMS |
DE102022129340B3 (en) | 2022-11-07 | 2024-03-21 | OQmented GmbH | CIRCUIT WITH AN OSCILLATING CIRCUIT FOR CONTROLLING AN ACTUATOR FOR DRIVING AN VIBRATIONAL MOVEMENT IN A MEMS |
WO2024099980A1 (en) | 2022-11-07 | 2024-05-16 | OQmented GmbH | Circuit comprising a step-up converter for controlling an actuator for driving an oscillating movement in an mems |
WO2024100071A1 (en) | 2022-11-07 | 2024-05-16 | OQmented GmbH | Switching arrangement with oscillating circuit for controlling an actuator for driving an oscillating movement in an mems |
DE102022133117A1 (en) | 2022-12-13 | 2024-06-13 | OQmented GmbH | METHOD AND DEVICE FOR CONTROLLING A DRIVE OF A MULTI-AXIS MICROSCANNER SYSTEM AND MICROSCANNER SYSTEM |
WO2024126234A1 (en) | 2022-12-13 | 2024-06-20 | OQmented GmbH | Method and apparatus for controlling a drive of a multi-axis microscanner system, and microscanner system |
Also Published As
Publication number | Publication date |
---|---|
JP5689477B2 (en) | 2015-03-25 |
EP2514211A1 (en) | 2012-10-24 |
WO2011082789A1 (en) | 2011-07-14 |
US20120307211A1 (en) | 2012-12-06 |
JP2013513828A (en) | 2013-04-22 |
US9151949B2 (en) | 2015-10-06 |
DE102009058762A1 (en) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2514211B1 (en) | Deflection system for a projection device, projection device for projecting an image and method for actuating a deflection system for a projection device | |
DE102011104556B4 (en) | Deflection device for a scanner with Lissajous scanning | |
DE102014220115B4 (en) | Method for controlling a deflection device for a projection device, deflection device for a projection device and projection device | |
DE102021116151B3 (en) | PROJECTION SYSTEM FOR PROJECTING LISSAJOUS FIGURES AND MICROSCANNER WITH COUPLED OSCILLATORS | |
DE102018220000B4 (en) | SCANNING REFLECTOR SYSTEM | |
DE102009015538A1 (en) | A method of driving a MEMS mirror scanner, a method of driving a MEMS actuator scanner, and methods of controlling the rotation angle of a MEMS actuator | |
DE19702752A1 (en) | Control system for scanner drive esp. for laser scanning microscope | |
DE102021100872A1 (en) | CONTROL STRUCTURE FOR OSCILLATORS WITH NON-LINEAR FREQUENCY RESPONSE | |
DE102016214565A1 (en) | Interferometer and method of operating the same | |
DE102012219660B4 (en) | Mechanical component | |
DE112017002098T5 (en) | Mirror device, mirror operation method, light irradiation device and image detection device | |
DE10033269B4 (en) | Device for coupling light of at least one wavelength of a laser light source into a confocal scanning microscope | |
DE102008049477A1 (en) | Method and device for projecting at least one light beam | |
DE102015113355B4 (en) | Optical scanning | |
WO2003067509A1 (en) | Arrangement and method for measurement on a resonant oscillator, control thereof and setting of a pixel width | |
EP3262727A1 (en) | Stabilising optical frequency combs | |
WO2003013150A1 (en) | Raster projection of an image with light beam guidance thereto and therefrom | |
DE112021006656T5 (en) | PHASE SYNCHRONIZATION CIRCUIT AND CONTROL SYSTEM | |
DE102007008009B3 (en) | Driving scanning microscope with beam deflector involves controlling acquisition of image data in acquisition step using prepared measurement signal and/or associating acquired image data with position on specimen | |
EP3227604B1 (en) | Method for operating a lighting device of a motor vehicle and motor vehicle, lighting device | |
EP3602189B1 (en) | Method and signal generator for controlling an acousto-optic element | |
DE102021204345A1 (en) | OPTICAL SCANNING DEVICE AND ADJUSTMENT PROCEDURE FOR OPTICAL SCANNING DEVICE | |
DE102022119915B3 (en) | MULTI-AXIS MICROSCANNER SYSTEM AND METHOD AND DEVICE FOR CONTROLLING ITS DRIVE | |
WO2015114000A1 (en) | Method for reducing mechanical vibrations in electro-optical modulators, and arrangement comprising an electro-optical modulator | |
DE102021116121B3 (en) | MICROSCANNER WITH MEANANDER SPRING-BASED MIRROR MOUNTING |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120614 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502010006508 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H04N0009310000 Ipc: G02B0026100000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04N 9/31 20060101ALI20131106BHEP Ipc: G02B 26/10 20060101AFI20131106BHEP |
|
INTG | Intention to grant announced |
Effective date: 20131125 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 659267 Country of ref document: AT Kind code of ref document: T Effective date: 20140415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010006508 Country of ref document: DE Effective date: 20140508 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140626 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140726 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140626 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140728 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010006508 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150106 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010006508 Country of ref document: DE Effective date: 20150106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141213 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141213 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502010006508 Country of ref document: DE Representative=s name: PFENNING, MEINIG & PARTNER MBB PATENTANWAELTE, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101213 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 659267 Country of ref document: AT Kind code of ref document: T Effective date: 20151213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151213 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231220 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231219 Year of fee payment: 14 Ref country code: NL Payment date: 20231219 Year of fee payment: 14 Ref country code: FR Payment date: 20231219 Year of fee payment: 14 Ref country code: DE Payment date: 20231214 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231229 Year of fee payment: 14 |