WO2020022721A1 - Variable structured light generating device and 3d imaging system - Google Patents

Variable structured light generating device and 3d imaging system Download PDF

Info

Publication number
WO2020022721A1
WO2020022721A1 PCT/KR2019/009009 KR2019009009W WO2020022721A1 WO 2020022721 A1 WO2020022721 A1 WO 2020022721A1 KR 2019009009 W KR2019009009 W KR 2019009009W WO 2020022721 A1 WO2020022721 A1 WO 2020022721A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
mirror
structured light
light
driving
Prior art date
Application number
PCT/KR2019/009009
Other languages
French (fr)
Korean (ko)
Inventor
정기훈
서영현
김현우
양성표
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180086182A external-priority patent/KR102059438B1/en
Priority claimed from KR1020190009085A external-priority patent/KR102139040B1/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2020022721A1 publication Critical patent/WO2020022721A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects

Definitions

  • the present invention relates to a variable structured light generating device and a three-dimensional imaging system. More specifically, the structured light generating apparatus generates a structured light having a variable number of patterns, a pattern shape and a field of view, and generates a structured light having a variable number of patterns, a pattern shape and a field of view, and acquires three-dimensional information of a subject.
  • a dimensional imaging system generates a structured light having a variable number of patterns, a pattern shape and a field of view.
  • the basic principle of the stereoscopic method is to separate and input images arranged to be orthogonal to each other in the left eye and the right eye of a person, and to generate stereoscopic images by combining the images input to the left eye and the right eye in the human brain.
  • the images arranged to be orthogonal to each other become a left view image and a right view image, respectively.
  • a 3D camera is configured to capture a left eye image and a right eye image together in one device.
  • a stereo method using two identical cameras is often used. In the stereo system, two cameras are arranged at a baseline to acquire left and right images using two completely separate cameras (two lenses, two sensors, and two ISPs).
  • the stereo type 3D camera has a problem in that a quality problem due to an assembly error between two cameras degrades the 3D quality, resulting in a high precision assembly process and a low yield.
  • the 3D depth measurement range is determined by a baseline, which is a distance between two fixed cameras.
  • the 3D zoom lens even if the alignment between the two cameras is well aligned at the beginning, an error occurs between the two cameras while zooming, causing a problem in that the image is degraded, causing viewer fatigue.
  • the time of flight (TOF) method obtains depth information of an object by directly irradiating light to the object and calculating a time of reflected light that is reflected and returned. This method has a problem of limited use due to the size and high power consumption of the TOF-only sensor.
  • the structured light method acquires depth information of an object by irradiating a laser beam having a specific pattern coded to the object and calculating a pattern shift amount of the reflected light.
  • This method typically uses fixed-focus lenses and passive coding elements.
  • the structured light used in the conventional structured light 3D stereoscopic image providing system has to be divided into a large area, the light intensity must be large, and the number of patterns and the field of view can be changed according to various environments, and thus the image cannot be acquired. There is.
  • the present invention adjusts the modulation frequency, initial phase and duty cycle of the modulation signal of the laser light, and adjusts the driving frequency, initial phase and amplitude of the drive signal on both axes of the mirror for Lissajous scanning, so that the number of patterns, pattern shape and field of view can be adjusted.
  • An object of the present invention is to provide a variable structured light generating device that generates structured light that changes.
  • the present invention provides a three-dimensional imaging system for generating a three-dimensional information of the subject by generating a structured light in which the number of patterns, pattern shape and the field of view is changed, and processing the image of the subject to which the structured light is irradiated It aims to do it.
  • a variable structured light generating apparatus including a light source unit for outputting modulated laser light, a mirror for reflecting the laser light, and driving signals of two axes orthogonal to each other being input as sinusoids to perform Lissajoe scanning; Information input unit for inputting the desired number of patterns, pattern shape and field of view of the structured light, the memory unit pre-stored values for the drive frequency, initial phase and amplitude of the biaxial drive signal of the mirror corresponding to the information And a controller configured to receive the information to generate structured light corresponding to the information, communicate with the memory unit, and generate and transmit a control signal of the mirror and a modulation signal of the light source unit.
  • the controller may include: an information receiver configured to receive information about the pattern number, pattern shape, and field of view of the structured light input through the information input unit, corresponding to the information; Extracts values for driving frequency, initial phase, and amplitude of the two-axis driving signal of the mirror in communication with the memory unit, and calculates a LCM of the driving frequency of the extracted two-axis driving signal of the mirror as the laser modulation frequency of the light source unit; A signal generator for generating a sine wave control signal formed with values for a driving frequency, an initial phase, and an amplitude of the biaxial drive signal of the extracted mirror; and a square wave modulated signal formed with the calculated laser modulation frequency of the light source unit; Signal transmission for transmitting the control signal to the mirror and the modulation signal to the light source unit It may contain.
  • the mirror may be a MEMS mirror.
  • the MEMS mirror is rotated and oscillated with respect to two axes orthogonal to each other, and a Q-factor for the rotational vibration of the first axis is determined by the second axis. It can be designed lower than the quality factor for rotational vibration.
  • the number of patterns of the structured light may be determined by the maximum common factor having a negative correlation with the greatest common factor of the driving frequencies of the driving signal.
  • the number of patterns of the structured light may vary according to an initial phase of the driving signal.
  • the number of patterns of the structured light may vary according to a duty cycle of the modulated signal.
  • the number of patterns of the structured light may vary according to an initial phase of the modulated signal.
  • the pattern shape of the structured light may include a driving frequency of the driving signal, an initial phase of the driving signal, a waveform of the modulation signal, and a duty of the modulation signal. It may be changed according to at least one of a cycle and an initial phase of the modulated signal.
  • the field of view of the structured light may have a positive correlation with the amplitude of the biaxial drive signal of the drive signal and may be determined by the amplitude.
  • the laser light output from the light source unit may be modulated by an ON / OFF square wave.
  • the frequency of the modulated signal may be a multiple of a minimum common multiple of a drive frequency of the biaxial drive signal of the mirror.
  • the light source unit further comprises a light modulator on one side of the laser to the mirror to modulate the laser light, ON / ON the light modulator
  • a modulated signal that is an OFF type square wave is applied, and the modulated frequency of the square wave may be a minimum common multiple or a multiple of the minimum common multiple of a driving frequency of the biaxial drive signal of the mirror.
  • the three-dimensional imaging system is a variable structure lighting device for generating a structured light with a variable number of patterns, pattern shape and field of view, a camera module for photographing the image of the subject irradiated with the structured light; And an image processing module for restoring a three-dimensional shape of the subject by processing the image photographed by the camera module, wherein the variable structure lighting apparatus includes a light source for outputting laser light modulated by a modulation signal and the laser light. And a scanner for reflecting and orthogonally driving signals of two axes perpendicular to each other to perform Lissajous scanning, wherein the frequency of the modulated signal is a multiple of a least common multiple of the drive frequencies of the drive signal. It features.
  • the number of patterns of the structured light may be changed according to the driving frequencies with a negative correlation with the greatest common factor of the driving frequencies of the driving signal.
  • the number of patterns of the structured light may be changed according to the initial phase of the driving signal.
  • the number of patterns of the structured light may vary according to the duty cycle of the modulated signal.
  • the number of patterns of the structured light may be changed according to the initial phase of the modulated signal.
  • the pattern shape of the structured light the driving frequency of the drive signal, the initial phase of the drive signal, the waveform of the modulation signal, the duty cycle of the modulation signal And an initial phase of the modulated signal.
  • the field of view of the structured light may be changed according to the amplitude with a positive correlation with the amplitude of the driving signal.
  • variable structure lighting device the laser light output from the light source is disposed on the path toward the scanner, and the laser light (a collimated beam ( It may further include a collimator to make a collimated beam.
  • variable structured lighting device the housing for receiving the optical fiber and the one end of the optical fiber, the collimator and the scanner to combine the laser light output from the light source It may further include a hole in which one end of the optical fiber can be inserted in one end of the housing, the inner surface of the other end of the housing may be provided with a scanner mount, the upper surface of the other end of the housing In the openings may be formed.
  • the scanner mount may be tiltable.
  • the scanner may include a mirror and a driving unit for driving the mirror to Lissajou scanning.
  • the mirror may be a MEMS mirror.
  • variable structured light generating apparatus of the present invention controls the modulation frequency, initial phase and duty cycle of the laser light, and the driving frequency, initial phase and amplitude of the biaxial drive signal of the Lissajous scan of the mirror to control the pattern number, pattern shape and field of view of the structured light. Can be adjusted.
  • the device of the present invention can be miniaturized.
  • variable structured light generating apparatus of the present invention is capable of generating structured light having a wide field of view with a laser of low power as compared to the structured light generating apparatus using a conventional vertical cavity surface emitting laser (VCSEL).
  • VCSEL vertical cavity surface emitting laser
  • the three-dimensional imaging system of the present invention adjusts the frequency, initial phase and duty cycle of the laser light modulation signal, the driving frequency, the initial phase, and the amplitude of the biaxial drive signal of the scanner for scanning the LISA scan. Since the structured light whose pattern density is adjusted can be irradiated to the subject by changing the, high resolution 3D images can be obtained.
  • the size of the mirror used in the three-dimensional imaging system of the present invention is approximately 1 mm x 1 mm, the three-dimensional imaging system itself can be miniaturized.
  • the three-dimensional imaging system of the present invention is capable of generating structured light having a wide field of view with a low power laser.
  • FIG. 1 is a schematic diagram illustrating a variable structured light generating apparatus according to an exemplary embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a control unit of a variable structured light generating device according to an exemplary embodiment of the present invention.
  • FIG. 3 is a perspective view illustrating a MEMS mirror used in the variable structured light generating apparatus according to the embodiment of the present invention.
  • FIG. 4 is an enlarged view illustrating a portion A of FIG. 3.
  • 5A through 5D are exemplary diagrams illustrating that the number of patterns of structured light changes according to a driving frequency of a driving signal of a mirror.
  • 6A to 6E are exemplary views illustrating that the number of patterns of structured light changes according to an initial phase of a driving signal of a mirror.
  • 7A to 7E are exemplary views illustrating that the number of patterns of structured light changes according to a duty cycle of a modulated signal of laser light.
  • FIG. 8 is a flowchart illustrating a method for generating variable structured light according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram illustrating a three-dimensional imaging system according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a variable structure lighting apparatus used in a three-dimensional imaging system according to an embodiment of the present invention.
  • FIG. 11 is a perspective view of a variable structured lighting device used in a three-dimensional imaging system according to an embodiment of the present invention.
  • variable structure lighting apparatus 12 is a cross-sectional view of the variable structure lighting apparatus used in the three-dimensional imaging system according to an embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of a three-dimensional imaging method according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram illustrating a variable structured light generating apparatus 1000 according to an exemplary embodiment of the present invention.
  • the variable structured light generating apparatus 1000 may include a light source unit 100, a mirror 200, an information input unit 300, a memory unit 400, and a controller 500. Include.
  • the variable structured light generating apparatus 1000 according to the present invention irradiates structured light to a target object, captures the reflected light reflected from the target object with an image capturing means such as a camera, and analyzes the acquired image. It is used in the system to obtain 3D stereoscopic information.
  • each pattern When the number of patterns irradiated by the structured light generating device is small, each pattern may be easily distinguished, but the accuracy of distance measurement of the target object may be lowered. On the other hand, if the number of patterns to be irradiated increases the calculation time and error for distinguishing each pattern, but the accuracy of the distance measurement with the target object can be improved. In addition, as the size of the pattern increases, the pattern may be easily distinguished, but the resolution of the stereoscopic image may be lowered. On the other hand, if the size of the pattern to be irradiated is difficult to distinguish the pattern, the resolution of the stereoscopic image may be increased. Therefore, it is necessary to determine and apply in real time the number and shape of the pattern of the irradiation light having the pattern of the desired condition.
  • the information input unit 300 is configured to input information on a pattern number, pattern shape, and field of view (FOV) of a desired irradiation light according to a condition for obtaining a 3D stereoscopic image.
  • Information input to the information input unit 300 is received by the control unit 500, the control unit 500 is a drive signal of both axes of the mirror 200 corresponding to the input information to generate the structured light corresponding to the input information Information on the memory unit 400, the modulation frequency of the light source unit 100 is calculated based on the driving frequency of the driving signal of the mirror 200 received from the memory unit 400, and driving of both axes of the mirror 200.
  • FOV field of view
  • the signal is transmitted to the mirror 200 and the light source unit 100, respectively.
  • the laser light modulated by the light source unit 100 is output according to the transmitted signal, and the mirror 200 reflects the laser light and performs Lissajou scanning to have a desired number of patterns, pattern shapes, and fields of view on the target object.
  • the light is irradiated.
  • the light source unit 200 of the variable structured light generating apparatus 1000 includes a laser 110, and the laser light is modulated by a square wave of an ON / OFF method and the mirror 200. Is irradiated on the surface of the.
  • the modulated signal is transmitted from the control unit and is a least common multiple (LCM) or a multiple of the least common multiple of both axis driving frequencies f x and f y of the mirror 200.
  • the wavelength band of the laser light may be a visible light or an infrared ray band.
  • the light source unit 100 of the variable structured light generating apparatus 1000 further includes a light modulator 120 on one side of the laser headed to the mirror 200 to modulate the laser 110 light. can do.
  • the light modulator 120 may be formed of a Kerr cell made by using an electro-optic Kerr effect that modulates light or is used in a shutter of a high speed camera.
  • the ON / OFF square wave signal is applied to the optical modulation element 120 and the frequency of the square wave is a multiple of the least common multiple or the least common multiple of the driving frequencies f x and f y of the biaxial drive signals of the mirror 200. .
  • FIG. 2 is a block diagram illustrating a controller of the variable structured light generating apparatus 1000 according to an exemplary embodiment.
  • the controller 500 includes an information receiver 510, a signal generator 520, and a signal transmitter 530.
  • the controller 500 receives information on the pattern number, pattern shape, and field of view of the structured light inputted to the information input unit 300 to generate structured light corresponding to the information input to the information input unit 300.
  • a signal for the biaxial driving signal of the mirror 200 is received, and a signal for controlling the light source unit 100 and the mirror 200 is generated and transmitted.
  • the information receiver 510 receives information about the pattern number, pattern shape, and field of view of the structured light input through the information input unit 300.
  • the signal generator 520 is a drive frequency (f x , f y ) and initial phase of the biaxial drive signal of the mirror 200 corresponding to the information on the pattern number, pattern shape, and field of view of the structured light received by the information receiver 510.
  • the signal generator 520 calculates the least common multiple of the driving frequencies f x and f y of the extracted two-axis driving signals of the mirror 200 or the multiple of the minimum common multiple as the laser modulation frequency of the light source unit, and calculates the calculated modulation frequency. Generates a modulated signal of square waves formed by The signal transmitter 530 transmits the control signal generated by the signal generator to the mirror 200 and the modulation signal generated by the signal generator to the light source unit.
  • a MEMS mirror may be used as the mirror 200 of the variable structured light generating apparatus 1000 according to an exemplary embodiment of the present invention.
  • FIG. 3 is a perspective view illustrating a MEMS mirror used in the variable structured light generating apparatus 1000 according to an exemplary embodiment
  • FIG. 4 is an enlarged view illustrating portion A of FIG. 3.
  • the MEMS mirror includes a mirror plate 210, a first fixing end 221, a second fixing end 222, a first torsion bar 231, a second torsion bar 232, Frame 240.
  • the first fixing end 221 is formed on both sides of the mirror plate, respectively, so that there is no displacement of the center of the mirror plate while the mirror plate is rotating and oscillating with a straight line connecting the first fixing end as an axis (here, X axis). It serves to fix it.
  • the frame 240 is configured to surround the circumference of the mirror plate and the first fixed end, and the second fixed end 222 is formed on both sides of the frame, respectively, and is positioned on a line perpendicular to the straight line connecting the first fixed end. Therefore, the frame and the mirror plate serve to fix the center plate of the mirror plate during the rotational oscillation with the axis (here, the Y axis) as a straight line connecting the second fixing end.
  • the first torsion bar 231 elastically supports the mirror plate 210 to connect the mirror plate and the first fixing end.
  • the second torsion bar 232 elastically supports the frame 240 to connect the frame and the second fixed end.
  • FIG. 3 illustrates a MEMS mirror that uses an electrostatic driving method, wherein the MEMS mirror has a comb-shaped comb shown in the enlarged view of FIG. 4, and the electric repulsive force of adjacent combs generated by applying a driving signal. Or the attraction force causes the mirror plate to rotate.
  • variable structured light generating apparatus 1000 In order for the variable structured light generating apparatus 1000 according to an embodiment of the present invention to implement variable light having a variable number of patterns, it is necessary to variously select a driving frequency of a mirror that determines the number of patterns.
  • the width of the resonance bandwidth should be wide. In other words, a wide resonance bandwidth means a low Q-factor of the vibration mode.
  • the quality factor of MEMS mirrors is determined by the relationship between the moment of rotational inertia of the mirror plate and frame and the elastic restoring force of the torsion bar. Therefore, the MEMS mirror is manufactured by changing the thickness of the first or second torsion bar in order to control the quality factor of the MEMS mirror vibration. That is, in the process of drawing a mask corresponding to the blueprint before the semiconductor process of manufacturing the MEMS mirror, the thickness of the torsion bar is adjusted to determine the quality factor for the vibration of both axes of the MEMS mirror.
  • the MEMS mirrors are based on both axes perpendicular to each other. It is preferable to design at least one of the quality factor for the rotational vibration of the first axis or the quality factor for the rotational vibration of the second axis, or to design one of the two quality factors lower, and the lower quality factor being 100 or less. More preferred.
  • a structured light generating apparatus 1000 according to an embodiment of the present invention, and a structured lighting device used in a 3D imaging system according to an embodiment of the present invention to be introduced later ( Note that the same applies to 1000 ' ).
  • FIGS. 6A to 6E illustrate the number of patterns of structured light varying according to the initial phase of the drive signal of the mirror.
  • 7A to 7E are exemplary views illustrating a change in the number of patterns of structured light according to a duty cycle of a modulation signal of laser light.
  • Table 1 below shows the number of patterns according to the driving frequency of the mirror.
  • FIGS. 5A to 5D show that the greatest common divisor decreases from FIG. 5A to FIG. 5E.
  • 5A shows the greatest common divisor (GCD) of the driving frequencies of the two axes of the mirror, 1684
  • FIG. 5B shows the greatest common divisor of the driving frequencies of the two axes of the mirror
  • FIG. 5D shows a maximum common divisor of the driving frequencies of both axes of the mirror. That is, FIGS. 5A to 5D show that the number of patterns is changed according to the driving frequency of the driving signals on both axes of the mirror. In addition, it can be seen that the number of patterns has a negative correlation with the greatest common factor of the driving frequencies of the driving signals on both axes of the mirror.
  • 6A to 6E are exemplary views illustrating that the number of patterns of structured light changes according to an initial phase of a driving signal of a mirror.
  • the driving frequencies of the mirrors are 5269 Hz and 6706 Hz, respectively, and the maximum common factor of the driving frequencies is 479
  • the number of patterns of structured light is changed according to the initial phase of the drive signal of the mirror.
  • the pattern shape of the structured light also changes in accordance with the initial phase of the drive signal of the mirror.
  • 7A to 7E are exemplary views illustrating that the number of patterns of structured light changes according to a duty cycle of a modulated signal of laser light.
  • 7A to 7E when the driving frequencies of the mirrors are 5269 Hz and 6706 Hz, respectively, and the maximum common factor of the driving frequency is 479, the change in the structured light is shown when the duty cycle of the modulation signal of the laser light is changed.
  • the duty cycle refers to the ratio of time that is ON for one cycle T in the ON / OFF square wave signal.
  • FIG. 7A shows a duty cycle of 10%
  • FIG. 7B shows a duty cycle of 30%
  • FIG. 7C shows a duty cycle of 50%
  • FIG. 7D shows a duty cycle of 70%
  • FIG. 7E shows a duty cycle of 90%.
  • the number of patterns of the structured light is changed in accordance with the duty cycle of the modulation signal of the laser light, and the pattern shape of the structured light is also changed in accordance with the duty cycle of the modulation signal of the laser light.
  • the number of patterns of the structured light varies depending on the initial phase of the modulated signal.
  • the pattern shape of the structured light includes a drive frequency f x , f y of the drive signal of the mirror, an initial phase ⁇ x , ⁇ y of the drive signal, a waveform of a modulated signal of laser light, The at least one of the duty cycle of the modulated signal and the initial phase of the modulated signal is varied.
  • the field of view (FOV) of the structured light becomes wider as the angles of rotation of both axes of the mirror become larger, and the angle of rotation is determined by the amplitude (A x , A y ) of the drive signal of the mirror. It has a positive correlation with the amplitude of the drive signal of and changes according to the amplitude (A x , A y ) of the drive signal of the mirror.
  • the pattern number, pattern shape, and field of view of the structured light may vary depending on the driving frequency, initial phase and amplitude of the drive signal of both mirrors, and the duty cycle and initial phase of the modulated signal.
  • the memory unit 400 may drive the drive frequency value, the initial phase value, and the amplitude value of the drive signals on both axes of the mirror corresponding to the specific number of patterns, the specific pattern shape, the specific field of view, and a combination thereof.
  • FIG. 8 is a flowchart illustrating a method for generating variable structured light according to an embodiment of the present invention.
  • a method for generating variable structured light using the variable structured light generating apparatus 1000 may include a pattern number and pattern shape of desired structured light from a user. And receiving information about a field of view (S10), driving frequencies f x and f y , initial phases ⁇ x , ⁇ y , and amplitudes A x , of the biaxial drive signal of the mirror corresponding to the received information.
  • S10 field of view
  • driving frequencies f x and f y initial phases ⁇ x , ⁇ y
  • amplitudes A x of the biaxial drive signal of the mirror corresponding to the received information.
  • a y is extracted in communication with the memory unit, and the least common multiple of the driving frequency (f x , f y ) or the multiple of the minimum common multiple of the extracted biaxial drive signals of the mirror is calculated as the laser modulation frequency of the light source unit.
  • a sine wave control signal formed as a value for driving frequencies f x , f y , initial phases ⁇ x , ⁇ y , and amplitudes A x , A y of the biaxial drive signals of the extracted mirrors, and A sphere formed at the calculated laser modulation frequency of the light source unit
  • variable structured light generating method A detailed description of each step of the variable structured light generating method according to an embodiment of the present invention may be replaced with the description of the variable structured light generating apparatus 1000 according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram illustrating a three-dimensional imaging system according to an embodiment of the present invention.
  • a 3D imaging system includes a variable structure lighting device 1000 ′ , a camera module 2000, and an image processing module 3000.
  • the variable structure lighting apparatus 1000 ′ generates structured light having a variable number of patterns, a pattern shape, and a field of view, and irradiates the object 10.
  • the camera module 2000 captures an image of the subject to which the structured light is irradiated, and the image processing module 3000 processes the image captured by the camera module 2000 and generates a depth image of the surface of the subject 10. Restore the three-dimensional shape.
  • the camera module 2000 may be a general camera including lenses that collect light reflected from a subject and an image sensor that converts an optical signal into an electrical signal, and captures an image of the subject including a pattern of structured light irradiated to the subject.
  • the image data is transferred to the image processing module 3000.
  • the image processing module 3000 receives an image captured from the camera module 2000, generates coordinates in the image, and shifts the amount of shift of the pattern reflected on the subject 10 with respect to the reference pattern at each coordinate. By calculating the depth information on the surface of the subject and to restore the three-dimensional shape of the subject.
  • the image processing module 3000 may be configured to perform the above-described image processing function in a device such as a computer.
  • variable structure lighting device 1000 ′ , the camera module 2000 and the image processing module 3000 may be individually configured in separate PC environments, or the variable structure lighting device 1000 ′ , the camera module (in an embedded form). 2000 and the image processing module 3000 may be configured to be driven by one board, or as shown in FIG. 9, only the variable structure lighting apparatus 1000 ′ and the camera module 2000 may be configured in an embedded form.
  • FIG. 10 is a schematic diagram illustrating a variable structure lighting apparatus 1000 ′ used in a 3D imaging system according to an exemplary embodiment of the present invention.
  • the variable structure lighting apparatus 1000 ′ is modulated.
  • a light source 1100 for outputting laser light modulated by a signal, and a scanner 1200 for reflecting the laser light, and driving signals of both axes orthogonal to each other are inputted as sine waves to perform Lissajous scanning. And generate structured light having an arbitrary pattern and irradiate the subject.
  • the scanner 1200 includes a mirror 1210 and a driver 1220 for driving the mirror 1210 to Lissajou scanning.
  • the mirror 1210 may be a micro-electro mechanical system (MEMS) mirror, and may include a mirror that reflects light, and if the scanner is capable of applying a sine wave to both axes orthogonal to each other on a mirror plane to enable Lissajou scanning, the MEMS It is not limited to the mirror and may be used for the variable structure lighting device 1000 ′ .
  • the scanner 1200 may be a galvano mirror scanner or the like.
  • V x (t) A x sin (2 ⁇ f x t + ⁇ x )
  • V y (t) A y sin (2 ⁇ f y ⁇ t + ⁇ y )
  • the light source 1100 outputs laser light modulated so that the light reflected from the scanner 1200 is structured light having an arbitrary pattern.
  • the light source 1100 includes a laser diode and outputs modulated laser light in a waveform of a modulation signal applied to the laser diode.
  • the modulated signal may be a spherical pile of the ON / OFF method, as shown in Figure 10, it is not limited to this may have a variety of forms, such as sine wave, sawtooth wave.
  • the frequency of the modulated signal is a multiple of the least common multiple of the biaxial driving frequencies f x and f y of the scanner 1200.
  • the wavelength band of the laser light corresponds to the visible or infrared ray band, and the wavelength of the laser light is determined by the type of the subject.
  • the variable structure lighting apparatus 1000 ′ used in the 3D imaging system includes a light source 1100 and a scanner 1200, and the two axes of which the modulated laser light output from the light source is orthogonal to each other.
  • the light is incident on the mirror 1210 of the vibrating scanner 1200, and the scanner 1200 reflects the laser light to generate structured light having a pattern.
  • the generated structured light is irradiated onto the subject to obtain three-dimensional depth information of the subject.
  • variable structure lighting apparatus 1000 ′ used in the 3D imaging system is a dual axis of the mirror 1210 in the scanner 1200 that scans the frequency and duty cycle of the modulated signal of the laser light and the Lissajous.
  • By changing the driving frequency, initial phase and amplitude of the driving signal it is possible to change the number of patterns, pattern shape, and field of view of the structured light.
  • variable structured light generating principle of the variable structured lighting device 1000 ′ used in the 3D imaging system according to the exemplary embodiment of the present invention is the variable structured light generating apparatus according to the embodiment of the present invention as described above. 1000).
  • the mirror 200 of the variable structured light generating apparatus 1000 may include the mirror 1210 of the variable structured lighting apparatus 1000 ′ used in the 3D imaging system according to the exemplary embodiment.
  • the same configuration can be.
  • FIG. 11 illustrates a perspective view of a variable structure lighting apparatus 1000 ′ used in a 3D imaging system according to an embodiment of the present invention
  • FIG. 12 illustrates a variable used in a 3D imaging system according to an embodiment of the present invention.
  • a cross-sectional view of the structural lighting device 1000 ′ is shown.
  • variable structure lighting apparatus 1000 ′ used in the 3D imaging system may include a collimator 1260, an optical fiber 1270, a scanner mount 1280, and a housing. 1290 may be further included.
  • the collimator 1260 is disposed on a path where the laser light output from the light source 1100 is directed to the mirror 1210 of the scanner 1200 to make the laser light a collimated beam.
  • a collimated beam refers to a parallel beam with very little dispersion or concentration in the laser.
  • the collimator 1260 may be a set of lenses.
  • the optical fiber 1270 is positioned between the light source 1100 and the collimator 1260, and combines with the laser light output from the light source 1100 to transmit the laser light to the collimator 1260 or the scanner 1200.
  • the housing 1290 accommodates one end of the optical fiber 1270, the collimator 1260, and the scanner 1200, and a life preserver capable of inserting one end of the optical fiber is formed at one end thereof, and a scanner mount 1280 is formed at the inner bottom of the other end thereof. Is provided, and an opening is formed in the upper surface of the other end part.
  • the housing 1290 accommodates one end of the optical fiber 1270, the collimator 1260, and the scanner 1200 at fixed positions, so that the laser light output from the light source 1100 is accurately reflected by the scanner 1200 so that the object ( 10) to ensure that it is irradiated with structured light.
  • the housing 1290 may further include a driver 1220 of the scanner.
  • the driver 1220 of the scanner is electrically connected to the mirror 1210 of the scanner and applies a driving signal to the mirror 1210 of the scanner so that the scanner executes Lissajous scanning, and the light reflected from the scanner results in the number of patterns.
  • a sinusoidal wave having various frequencies, initial phases, and amplitudes may be applied to both orthogonal axes in the mirror surface of the scanner, as shown in FIG. It may be formed of a flexible printed circuit board and accommodated in the housing 1290.
  • the driver 1220 of the scanner may be electrically connected to the light source 1100 to provide information for determining the frequency of the modulated signal.
  • the scanner 1220 may be electrically connected to the camera module 2000 to perform irradiation of structured light and to capture an image.
  • the operation may be synchronized, and may be electrically connected to the image processing module 3000 to provide the reference pattern to the image processing module.
  • the reference pattern may be electrically connected to the user interface to have a desired number of patterns, pattern shapes, and views. Information about structured light can be received.
  • the housing 1290 may further accommodate a tilt unit (not shown) that enables tilting the scanner mount 1280.
  • the tilt unit is mounted on the scanner mount 1280 to adjust the tilt of the scanner mount 1280.
  • the tilt unit irradiates the structured light to the subject without moving the subject and the variable structure lighting device. can do.
  • the tilt unit may be configured with an actuator or the like.
  • the apparatus can be miniaturized and embedded in the terminal. 3 It can also be used for medical devices such as endoscopes and the like which require dimensional shape information.
  • variable structure lighting apparatus 1000 ′ used in the 3D imaging system includes a scanner, and the scanner includes a mirror 1210 and a driver 1220. May be a MEMS mirror.
  • variable structure lighting apparatus 1000 ′ used in the 3D imaging system according to the exemplary embodiment of the present invention also has a variable structure variable light having a variable number of patterns like the variable structure lighting apparatus 1000 according to the exemplary embodiment of the present invention.
  • the driving frequency of the mirror which determines the number of patterns, should be variously selected, and the resonance bandwidth, which is the choice, should be wide. In other words, a wide resonance bandwidth means a low Q-factor of the vibration mode.
  • MEMS mirrors are rotated about two axes perpendicular to each other and are designed to have at least one of a quality factor for rotational vibration of the first axis or a quality factor for rotational vibration of the second axis, or one of the two quality factors lower. It is preferred that the lower quality factor is less than or equal to 100.
  • Figure 13 shows a schematic flowchart of a three-dimensional imaging method according to an embodiment of the present invention.
  • the method may include: irradiating structure light generated by the variable structure lighting apparatus to a subject (S100) and photographing an image of the subject to which the structure light is irradiated. And reconstructing the three-dimensional shape of the subject by processing the captured image (S200).
  • a detailed description of each step of the three-dimensional imaging method may be replaced with a description of the three-dimensional imaging system according to an embodiment of the present invention.
  • variable structured light generating device 1000: variable structured light generating device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

The present invention relates to a variable structured light device and a 3D imaging system. Specifically, the present invention can provide a variable structured light generating device which adjusts the modulation frequency, initial phase, and duty cycle of a modulation signal of laser light, and adjusts the drive frequency, initial phase, and amplitude of drive signals of both axes of a mirror for conducting Lissajous scanning to thereby generate a structured light in which the number of patterns, pattern shape, and the field of view have been changed. In addition, the present invention can provide a 3D imaging system for generating structured light in which the number of patterns, pattern shape, and the field of view have been changed, and for processing an image of a subject to which the structured light is irradiated thereby obtaining 3D information of the subject.

Description

가변 구조광 생성 장치 및 3차원 이미징 시스템Variable Structured Light Generation Device and 3D Imaging System
본 발명은 가변 구조광 생성 장치 및 3차원 이미징 시스템에 관한 것이다. 보다 구체적으로는 패턴 개수, 패턴 모양 및 시야가 가변되는 구조광을 생성하는 구조광 생성 장치와, 패턴 개수, 패턴 모양 및 시야가 가변되는 구조광을 생성하여 피사체의 3차원 정보를 획득하는, 3차원 이미징 시스템에 관한 것이다.The present invention relates to a variable structured light generating device and a three-dimensional imaging system. More specifically, the structured light generating apparatus generates a structured light having a variable number of patterns, a pattern shape and a field of view, and generates a structured light having a variable number of patterns, a pattern shape and a field of view, and acquires three-dimensional information of a subject. A dimensional imaging system.
최근 3차원 입체 영상 서비스에 대한 관심이 점점 증대되면서 입체 영상을 제공하는 장치들이 계속 개발되고 있다. 이러한 입체영상을 구현하는 방식 중에 스테레오 스코픽(stereoscopic) 방식, 시간 측정(TOF: time of flight) 방식, 구조광(structured-light) 방식 등이 있다. Recently, with increasing interest in 3D stereoscopic image services, devices for providing stereoscopic images have been continuously developed. Among the methods of implementing such stereoscopic images, there are a stereoscopic method, a time of flight (TOF) method, a structured-light method, and the like.
스테레오 스코픽 방식의 기본 원리는, 사람의 좌안과 우안에 서로 직교하도록 배열된 영상을 분리하여 입력하고, 사람의 두뇌에서 좌안과 우안에 각각 입력된 영상이 결합되어 입체 영상이 생성되는 방식이다. 이때, 서로 직교하도록 배열된 영상이 각각 좌안 영상(reft view image) 및 우안 영상(right view image)이 된다. 최근의 3D 카메라는 하나의 장치에서 좌안 영상과 우안 영상을 함께 촬영하도록 구성되고 있다. 예를 들어, 2개의 동일한 카메라를 사용하는 스트레오 방식이 많이 이용된다. 스트레오 방식의 경우에는, 두 카메라를 일정간격(baseline)으로 배치하여 좌우 영상을 별도의 2개의 완전히 독립된 카메라(2개의 렌즈, 2개의 센서, 2개의 ISP)를 사용하여 획득한다.The basic principle of the stereoscopic method is to separate and input images arranged to be orthogonal to each other in the left eye and the right eye of a person, and to generate stereoscopic images by combining the images input to the left eye and the right eye in the human brain. In this case, the images arranged to be orthogonal to each other become a left view image and a right view image, respectively. Recently, a 3D camera is configured to capture a left eye image and a right eye image together in one device. For example, a stereo method using two identical cameras is often used. In the stereo system, two cameras are arranged at a baseline to acquire left and right images using two completely separate cameras (two lenses, two sensors, and two ISPs).
그러나, 스트레오 방식의 3D 카메라에는 2개의 카메라간의 조립오차에 따른 품질문제가 3D 품질을 저하시켜 고정밀 조립 공정 및 수율저하라는 문제점이 있었다. 또한, 3D depth 측정 범위가 고정된 2개의 카메라간의 간격인 baseline에 의하여 결정되는 문제점이 있었다. 또한 3D 줌렌즈의 경우 초기에 2개의 카메라간의 얼라인(align)이 잘 되어 있어도 줌잉을 하면서 2개의 카메라 간의 오차가 발생하면서 영상이 저하되어 시청자 피로감을 유발시키는 문제점 있었다.However, the stereo type 3D camera has a problem in that a quality problem due to an assembly error between two cameras degrades the 3D quality, resulting in a high precision assembly process and a low yield. In addition, there is a problem that the 3D depth measurement range is determined by a baseline, which is a distance between two fixed cameras. In addition, in the case of the 3D zoom lens, even if the alignment between the two cameras is well aligned at the beginning, an error occurs between the two cameras while zooming, causing a problem in that the image is degraded, causing viewer fatigue.
또한, 시간측정(TOF: time of flight) 방식은 물체에 직접적으로 빛을 조사하고, 반사되어 되돌아오는 반사광의 시간을 계산함으로써 물체의 깊이 정보를 획득한다. 이 방식은 TOF 전용 센서의 크기와 높은 파워 소비로 제한적으로 사용되는 문제가 있다.In addition, the time of flight (TOF) method obtains depth information of an object by directly irradiating light to the object and calculating a time of reflected light that is reflected and returned. This method has a problem of limited use due to the size and high power consumption of the TOF-only sensor.
또한, 구조광(structured light) 방식은 특정 패턴이 코딩된 레이저광을 물체에 조사하고, 반사광의 패턴 shift량을 계산함으로써 물체의 깊이 정보를 획득한다. 이 방식은 일반적으로 고정초점 렌즈와 passive 코딩 소자를 사용한다. In addition, the structured light method acquires depth information of an object by irradiating a laser beam having a specific pattern coded to the object and calculating a pattern shift amount of the reflected light. This method typically uses fixed-focus lenses and passive coding elements.
따라서 기존의 구조광 방식의 3차원 입체 영상 제공 시스템에서 사용되는 구조광은 넓은 면적에 나누어 주어야하기 때문에 광의 세기가 커야하며 다양한 환경에 따라 패턴 개수 및 시야를 변화시켜가며 이미지를 획득할 수 없는 문제가 있다.Therefore, because the structured light used in the conventional structured light 3D stereoscopic image providing system has to be divided into a large area, the light intensity must be large, and the number of patterns and the field of view can be changed according to various environments, and thus the image cannot be acquired. There is.
본 발명은 레이저 광의 변조 신호의 변조 주파수, 초기 위상 및 듀티사이클을 조절하고, 리사쥬 스캐닝하는 미러의 양축의 구동 신호의 구동 주파수, 초기 위상 및 진폭을 조절하여, 패턴 개수, 패턴 모양 및 시야가 변화되는 구조광을 생성하는, 가변 구조광 생성 장치를 제공하는 것을 목적으로 한다.The present invention adjusts the modulation frequency, initial phase and duty cycle of the modulation signal of the laser light, and adjusts the driving frequency, initial phase and amplitude of the drive signal on both axes of the mirror for Lissajous scanning, so that the number of patterns, pattern shape and field of view can be adjusted. An object of the present invention is to provide a variable structured light generating device that generates structured light that changes.
또한, 본 발명은 패턴 개수, 패턴 모양 및 시야가 변화되는 구조광을 생성하고, 상기 구조광이 조사된 피사체를 촬영한 영상을 처리하여 피사체의 3차원 정보를 획득하는, 3차원 이미징 시스템을 제공하는 것을 목적으로 한다.In addition, the present invention provides a three-dimensional imaging system for generating a three-dimensional information of the subject by generating a structured light in which the number of patterns, pattern shape and the field of view is changed, and processing the image of the subject to which the structured light is irradiated It aims to do it.
본 발명의 일 실시예에 따른 가변 구조광 생성 장치는 변조된 레이저 광을 출력하는 광원부, 상기 레이저 광을 반사하고 서로 직교하는 양축의 구동 신호가 각각 정현파로 입력되어 리사쥬 스캐닝을 실행하는 미러, 사용자가 원하는 구조광의 패턴 개수, 패턴 모양 및 시야의 정보를 입력할 수 있는 정보입력부, 상기 정보에 상응하는 미러의 양축 구동 신호의 구동 주파수, 초기 위상 및 진폭에 대한 값이 기저장되어 있는 메모리부 및 상기 정보에 상응하는 구조광을 생성하기 위해 상기 정보를 수신하고 상기 메모리부와 통신하여 상기 미러의 제어 신호 및 상기 광원부의 변조 신호를 생성하여 송신하는 제어부를 포함할 수 있다.According to an aspect of the present invention, there is provided a variable structured light generating apparatus including a light source unit for outputting modulated laser light, a mirror for reflecting the laser light, and driving signals of two axes orthogonal to each other being input as sinusoids to perform Lissajoe scanning; Information input unit for inputting the desired number of patterns, pattern shape and field of view of the structured light, the memory unit pre-stored values for the drive frequency, initial phase and amplitude of the biaxial drive signal of the mirror corresponding to the information And a controller configured to receive the information to generate structured light corresponding to the information, communicate with the memory unit, and generate and transmit a control signal of the mirror and a modulation signal of the light source unit.
본 발명의 일 실시예에 따른 가변 구조광 생성 장치에 있어서, 상기 제어부는, 상기 정보입력부를 통해 입력되는 구조광의 패턴 개수, 패턴 모양 및 시야에 대한 정보를 수신하는 정보수신부, 상기 정보에 상응하는 미러의 양축 구동 신호의 구동 주파수, 초기 위상 및 진폭에 대한 값을 상기 메모리부와 통신하여 추출하고, 상기 추출된 미러의 양축 구동 신호의 구동 주파수의 최소공배수를 상기 광원부의 레이저 변조 주파수로 계산하고, 상기 추출된 미러의 양축 구동 신호의 구동 주파수, 초기 위상 및 진폭에 대한 값으로 형성되는 정현파의 제어 신호 및 상기 계산된 광원부의 레이저 변조 주파수로 형성되는 구형파의 변조 신호를 생성하는 신호생성부 및 상기 제어 신호를 상기 미러에 송신하고 상기 변조 신호를 상기 광원부에 송신하는 신호송신부를 포함할 수 있다.In the apparatus for generating variable structured light according to an embodiment of the present invention, the controller may include: an information receiver configured to receive information about the pattern number, pattern shape, and field of view of the structured light input through the information input unit, corresponding to the information; Extracts values for driving frequency, initial phase, and amplitude of the two-axis driving signal of the mirror in communication with the memory unit, and calculates a LCM of the driving frequency of the extracted two-axis driving signal of the mirror as the laser modulation frequency of the light source unit; A signal generator for generating a sine wave control signal formed with values for a driving frequency, an initial phase, and an amplitude of the biaxial drive signal of the extracted mirror; and a square wave modulated signal formed with the calculated laser modulation frequency of the light source unit; Signal transmission for transmitting the control signal to the mirror and the modulation signal to the light source unit It may contain.
또한, 본 발명의 일 실시예에 따른 가변 구조광 생성 장치에 있어서, 상기 미러는 멤스 미러일 수 있다.In the variable structured light generating apparatus according to an embodiment of the present invention, the mirror may be a MEMS mirror.
또한, 본 발명의 일 실시예에 따른 가변 구조광 생성 장치에 있어서, 상기 멤스 미러는 서로 직교하는 양축을 기준으로 회전 진동하고 제1축의 회전 진동에 대한 품질인자(Q-factor)가 제2축의 회전 진동에 대한 품질인자보다 더 낮게 설계될 수 있다.In addition, in the variable structured light generating apparatus according to an embodiment of the present invention, the MEMS mirror is rotated and oscillated with respect to two axes orthogonal to each other, and a Q-factor for the rotational vibration of the first axis is determined by the second axis. It can be designed lower than the quality factor for rotational vibration.
또한, 본 발명의 일 실시예에 따른 가변 구조광 생성 장치에 있어서, 상기 구조광의 패턴 개수는, 상기 구동 신호의 구동 주파수들의 최대공약수와 음의 상관관계를 가지고 상기 최대공약수에 의해 결정될 수 있다.Further, in the variable structured light generating apparatus according to an embodiment of the present invention, the number of patterns of the structured light may be determined by the maximum common factor having a negative correlation with the greatest common factor of the driving frequencies of the driving signal.
또한, 본 발명의 일 실시예에 따른 가변 구조광 생성 장치에 있어서, 상기 구조광의 패턴 개수는, 상기 구동 신호의 초기 위상에 따라 변화될 수 있다.In addition, in the variable structured light generating apparatus according to an embodiment of the present invention, the number of patterns of the structured light may vary according to an initial phase of the driving signal.
또한, 본 발명의 일 실시예에 따른 가변 구조광 생성 장치에 있어서, 상기 구조광의 패턴 개수는, 상기 변조 신호의 듀티사이클(duty cycle)에 따라 변화될 수 있다.In addition, in the apparatus for generating variable structured light according to an embodiment of the present invention, the number of patterns of the structured light may vary according to a duty cycle of the modulated signal.
또한, 본 발명의 일 실시예에 따른 가변 구조광 생성 장치에 있어서, 상기 구조광의 패턴 개수는, 상기 변조 신호의 초기 위상에 따라 변화될 수 있다.In addition, in the apparatus for generating variable structured light according to an embodiment of the present invention, the number of patterns of the structured light may vary according to an initial phase of the modulated signal.
또한, 본 발명의 일 실시예에 따른 가변 구조광 생성 장치에 있어서, 상기 구조광의 패턴 모양은, 상기 구동 신호의 구동 주파수, 상기 구동 신호의 초기 위상, 상기 변조 신호의 파형, 상기 변조 신호의 듀티사이클 및 상기 변조 신호의 초기 위상 중에서 적어도 어느 하나에 따라 변화될 수 있다.In the variable structured light generating apparatus according to an embodiment of the present invention, the pattern shape of the structured light may include a driving frequency of the driving signal, an initial phase of the driving signal, a waveform of the modulation signal, and a duty of the modulation signal. It may be changed according to at least one of a cycle and an initial phase of the modulated signal.
또한, 본 발명의 일 실시예에 따른 가변 구조광 생성 장치에 있어서, 상기 구조광의 시야는, 상기 구동 신호의 양축 구동 신호의 진폭과 양의 상관관계를 갖고 상기 진폭에 의해 결정될 수 있다.In addition, in the variable structured light generating apparatus according to an embodiment of the present invention, the field of view of the structured light may have a positive correlation with the amplitude of the biaxial drive signal of the drive signal and may be determined by the amplitude.
또한, 본 발명의 일 실시예에 따른 가변 구조광 생성 장치에 있어서, 상기 광원부에서 출력되는 레이저 광이 ON/OFF 방식의 구형파에 의해 변조될 수 있다.In addition, in the variable structured light generating apparatus according to an embodiment of the present invention, the laser light output from the light source unit may be modulated by an ON / OFF square wave.
또한, 본 발명의 일 실시예에 따른 가변 구조광 생성 장치에 있어서, 상기 변조 신호의 주파수는 상기 미러의 양축 구동 신호의 구동 주파수의 최소공배수의 배수일 수 있다.In the variable structured light generating apparatus according to an embodiment of the present invention, the frequency of the modulated signal may be a multiple of a minimum common multiple of a drive frequency of the biaxial drive signal of the mirror.
또한, 본 발명의 일 실시예에 따른 가변 구조광 생성 장치에 있어서, 상기 광원부는 레이저 광을 변조시키기 위해 상기 미러로 향하는 레이저의 일측에 광변조 소자를 더 포함하고, 상기 광변조 소자에 ON/OFF 방식의 구형파인 변조 신호가 가해지고, 상기 구형파의 변조 주파수는 상기 미러의 양축 구동 신호의 구동 주파수의 최소공배수 또는 상기 최소공배수의 배수일 수 있다.In addition, in the variable structured light generating apparatus according to an embodiment of the present invention, the light source unit further comprises a light modulator on one side of the laser to the mirror to modulate the laser light, ON / ON the light modulator A modulated signal that is an OFF type square wave is applied, and the modulated frequency of the square wave may be a minimum common multiple or a multiple of the minimum common multiple of a driving frequency of the biaxial drive signal of the mirror.
또한, 본 발명의 일 실시예에 따른 3차원 이미징 시스템은 패턴 개수, 패턴 모양 및 시야가 가변되는 구조광을 생성하는 가변 구조조명 장치, 상기 구조광이 조사된 피사체의 영상을 촬영하는 카메라 모듈 및 상기 카메라 모듈이 촬영한 영상을 처리하여 상기 피사체의 3차원 형상을 복원하는 영상 처리 모듈을 포함하고, 상기 가변 구조조명 장치는, 변조 신호에 의해 변조된 레이저 광을 출력하는 광원 및 상기 레이저 광을 반사하고, 서로 직교하는 양축의 구동 신호가 각각 정현파로 입력되어 리사쥬 스캐닝(Lissajous scanning)을 실행하는 스캐너를 포함하고, 상기 변조 신호의 주파수는 상기 구동 신호의 구동 주파수들의 최소공배수의 배수인 것을 특징으로 한다.In addition, the three-dimensional imaging system according to an embodiment of the present invention is a variable structure lighting device for generating a structured light with a variable number of patterns, pattern shape and field of view, a camera module for photographing the image of the subject irradiated with the structured light; And an image processing module for restoring a three-dimensional shape of the subject by processing the image photographed by the camera module, wherein the variable structure lighting apparatus includes a light source for outputting laser light modulated by a modulation signal and the laser light. And a scanner for reflecting and orthogonally driving signals of two axes perpendicular to each other to perform Lissajous scanning, wherein the frequency of the modulated signal is a multiple of a least common multiple of the drive frequencies of the drive signal. It features.
또한, 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 있어서, 상기 구조광의 패턴 개수는, 상기 구동 신호의 구동 주파수들의 최대공약수와 음의 상관관계를 가지고 상기 구동 주파수들에 따라 변화될 수 있다.In addition, in the 3D imaging system according to an embodiment of the present invention, the number of patterns of the structured light may be changed according to the driving frequencies with a negative correlation with the greatest common factor of the driving frequencies of the driving signal. .
또한, 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 있어서, 상기 구조광의 패턴 개수는, 상기 구동 신호의 초기 위상에 따라 변화될 수 있다.In addition, in the three-dimensional imaging system according to an embodiment of the present invention, the number of patterns of the structured light may be changed according to the initial phase of the driving signal.
또한, 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 있어서, 상기 구조광의 패턴 개수는, 상기 변조 신호의 듀티사이클(duty cycle)에 따라 변화될 수 있다.In addition, in the three-dimensional imaging system according to an embodiment of the present invention, the number of patterns of the structured light may vary according to the duty cycle of the modulated signal.
또한, 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 있어서, 상기 구조광의 패턴 개수는, 상기 변조 신호의 초기 위상에 따라 변화될 수 있다.In addition, in the three-dimensional imaging system according to an embodiment of the present invention, the number of patterns of the structured light may be changed according to the initial phase of the modulated signal.
또한, 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 있어서, 상기 구조광의 패턴 모양은, 상기 구동 신호의 구동 주파수, 상기 구동 신호의 초기 위상, 상기 변조 신호의 파형, 상기 변조 신호의 듀티사이클 및 상기 변조 신호의 초기 위상 중에서 적어도 어느 하나에 따라 변화될 수 있다.Further, in the three-dimensional imaging system according to an embodiment of the present invention, the pattern shape of the structured light, the driving frequency of the drive signal, the initial phase of the drive signal, the waveform of the modulation signal, the duty cycle of the modulation signal And an initial phase of the modulated signal.
또한, 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 있어서, 상기 구조광의 시야는, 상기 구동 신호의 진폭과 양의 상관관계를 가지고 상기 진폭에 따라 변화될 수 있다.In addition, in the 3D imaging system according to an embodiment of the present invention, the field of view of the structured light may be changed according to the amplitude with a positive correlation with the amplitude of the driving signal.
또한, 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 있어서, 상기 가변 구조조명 장치는, 상기 광원에서 출력된 레이저 광이 상기 스캐너로 향하는 경로 상에 배치되어, 상기 레이저 광을 콜리메이트 빔(collimated beam)으로 만드는 콜리메이터를 더 포함할 수 있다.In addition, in the three-dimensional imaging system according to an embodiment of the present invention, the variable structure lighting device, the laser light output from the light source is disposed on the path toward the scanner, and the laser light (a collimated beam ( It may further include a collimator to make a collimated beam.
또한, 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 있어서, 상기 가변 구조조명 장치는, 상기 광원에서 출력되는 레이저 광을 결합하는 광섬유 및 상기 광섬유의 일단, 상기 콜리메이터 및 상기 스캐너를 수용하는 하우징을 더 포함할 수 있고 상기 하우징의 일단부에 상기 광섬유의 일단이 삽입 가능한 구멍이 형성될 수 있고, 상기 하우징의 타단부의 내부 하면에는 스캐너 마운트가 구비될 수 있으며, 상기 하우징의 타단부의 상면에서는 개구가 형성될 수 있다.In addition, in the three-dimensional imaging system according to an embodiment of the present invention, the variable structured lighting device, the housing for receiving the optical fiber and the one end of the optical fiber, the collimator and the scanner to combine the laser light output from the light source It may further include a hole in which one end of the optical fiber can be inserted in one end of the housing, the inner surface of the other end of the housing may be provided with a scanner mount, the upper surface of the other end of the housing In the openings may be formed.
또한, 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 있어서, 상기 스캐너 마운트는 틸팅 가능할 수 있다.In addition, in the 3D imaging system according to an embodiment of the present invention, the scanner mount may be tiltable.
또한, 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 있어서, 상기 스캐너는 미러 및 상기 미러가 리사쥬 스캐닝하도록 구동시키는 구동부를 포함할 수 있다.In addition, in the three-dimensional imaging system according to an embodiment of the present invention, the scanner may include a mirror and a driving unit for driving the mirror to Lissajou scanning.
또한, 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 있어서, 상기 미러는 멤스 미러일 수 있다.In the three-dimensional imaging system according to an embodiment of the present invention, the mirror may be a MEMS mirror.
본 발명의 가변 구조광 생성 장치는 레이저 광의 변조 주파수, 초기위상 및 듀티사이클과, 미러의 리사쥬 스캔의 양축 구동 신호의 구동 주파수, 초기 위상 및 진폭을 제어하여 구조광의 패턴 개수, 패턴 모양 및 시야의 조절이 가능하다. The variable structured light generating apparatus of the present invention controls the modulation frequency, initial phase and duty cycle of the laser light, and the driving frequency, initial phase and amplitude of the biaxial drive signal of the Lissajous scan of the mirror to control the pattern number, pattern shape and field of view of the structured light. Can be adjusted.
또한, 본 발명의 가변 구조광 생성 장치에 사용되는 미러의 크기는 대략 1mm×1mm이므로, 본 발명의 장치의 소형화가 가능하다In addition, since the size of the mirror used in the variable structured light generating device of the present invention is approximately 1 mm x 1 mm, the device of the present invention can be miniaturized.
또한, 본 발명의 가변 구조광 생성 장치는 기존의 VCSEL(vertical cavity surface emitting laser)을 사용하는 구조광 생성 장치에 비하여 낮은 출력의 레이저로 넓은 시야를 갖는 구조광의 생성이 가능하다.In addition, the variable structured light generating apparatus of the present invention is capable of generating structured light having a wide field of view with a laser of low power as compared to the structured light generating apparatus using a conventional vertical cavity surface emitting laser (VCSEL).
본 발명의 3차원 이미징 시스템은 레이저 광의 변조 신호의 주파수, 초기위상 및 듀티사이클과 리사쥬 스캐닝하는 스캐너의 양축 구동 신호의 구동 주파수, 초기 위상 및 진폭을 조절하여 구조광의 패턴 개수, 패턴 모양 및 시야를 변화시킴으로써 패턴 밀도가 조절된 구조광을 피사체에 조사할 수 있기 때문에 해상도가 높은 3차원 영상을 얻을 수 있다. The three-dimensional imaging system of the present invention adjusts the frequency, initial phase and duty cycle of the laser light modulation signal, the driving frequency, the initial phase, and the amplitude of the biaxial drive signal of the scanner for scanning the LISA scan. Since the structured light whose pattern density is adjusted can be irradiated to the subject by changing the, high resolution 3D images can be obtained.
또한, 본 발명의 3차원 이미징 시스템에 사용되는 미러의 크기는 대략 1mm×1mm이므로, 3차원 이미징 시스템 자체의 소형화가 가능하다.Further, since the size of the mirror used in the three-dimensional imaging system of the present invention is approximately 1 mm x 1 mm, the three-dimensional imaging system itself can be miniaturized.
또한, 본 발명의 3차원 이미징 시스템은 낮은 출력의 레이저로 넓은 시야를 갖는 구조광의 생성이 가능하다.In addition, the three-dimensional imaging system of the present invention is capable of generating structured light having a wide field of view with a low power laser.
도 1은 본 발명의 일 실시예에 따른 가변 구조광 생성 장치를 도시한 개략도이다.1 is a schematic diagram illustrating a variable structured light generating apparatus according to an exemplary embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 가변 구조광 생성 장치의 제어부를 보여주는 블록 구성도이다.2 is a block diagram illustrating a control unit of a variable structured light generating device according to an exemplary embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 가변 구조광 생성 장치에 사용되는 멤스 미러를 보여주는 사시도이다.3 is a perspective view illustrating a MEMS mirror used in the variable structured light generating apparatus according to the embodiment of the present invention.
도 4는 도 3의 A 부분을 보여주는 확대도이다.4 is an enlarged view illustrating a portion A of FIG. 3.
도 5a 내지 5d는 미러의 구동 신호의 구동 주파수에 따라 구조광의 패턴 개수가 변화되는 것을 나타내는 예시적인 도면이다.5A through 5D are exemplary diagrams illustrating that the number of patterns of structured light changes according to a driving frequency of a driving signal of a mirror.
도 6a 내지 6e는 미러의 구동 신호의 초기 위상에 따라 구조광의 패턴 개수가 변화되는 것을 나타내는 예시적인 도면이다.6A to 6E are exemplary views illustrating that the number of patterns of structured light changes according to an initial phase of a driving signal of a mirror.
도 7a 내지 7e는 레이저 광의 변조 신호의 듀티사이클에 따라 구조광의 패턴 개수가 변화되는 것을 나타내는 예시적인 도면이다.7A to 7E are exemplary views illustrating that the number of patterns of structured light changes according to a duty cycle of a modulated signal of laser light.
도 8은 본 발명의 일 실시예에 따른 가변 구조광 생성 방법을 보여주는 순서도이다.8 is a flowchart illustrating a method for generating variable structured light according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 3차원 이미징 시스템을 도시한 개략도이다.9 is a schematic diagram illustrating a three-dimensional imaging system according to an embodiment of the present invention.
도 10는 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 있어서, 이용되는 가변 구조조명 장치를 도시한 개략도이다.10 is a schematic diagram showing a variable structure lighting apparatus used in a three-dimensional imaging system according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 있어서, 이용되는 가변 구조조명 장치의 사시도이다.11 is a perspective view of a variable structured lighting device used in a three-dimensional imaging system according to an embodiment of the present invention.
도 12은 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 있어서, 이용되는 가변 구조조명 장치의 단면도이다.12 is a cross-sectional view of the variable structure lighting apparatus used in the three-dimensional imaging system according to an embodiment of the present invention.
도 13는 본 발명의 일 실시예에 따른 3차원 이미징 방법의 개략적인 순서도이다.13 is a schematic flowchart of a three-dimensional imaging method according to an embodiment of the present invention.
이하, 상기한 바와 같은 구성을 가지는 본 발명의 실시예들을 첨부된 도면을 참고하여 상세하게 설명한다.Hereinafter, embodiments of the present invention having the configuration as described above will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 가변 구조광 생성 장치(1000)를 도시한 개략도이다.1 is a schematic diagram illustrating a variable structured light generating apparatus 1000 according to an exemplary embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 가변 구조광 생성 장치(1000)는 광원부(100), 미러(200), 정보입력부(300), 메모리부(400) 및 제어부(500)를 포함한다. 본 발명의 가변 구조광 생성 장치(1000)는 일반적으로 대상 물체에 구조광을 조사하고 대상 물체에서 반사되는 반사광을 카메라 등과 같은 영상 촬영 수단으로 영상을 촬영하고 이를 통해 획득한 영상을 분석하여 대상 물체의 3차원 입체 정보를 얻는 시스템에서 사용된다. Referring to FIG. 1, the variable structured light generating apparatus 1000 according to an exemplary embodiment may include a light source unit 100, a mirror 200, an information input unit 300, a memory unit 400, and a controller 500. Include. In general, the variable structured light generating apparatus 1000 according to the present invention irradiates structured light to a target object, captures the reflected light reflected from the target object with an image capturing means such as a camera, and analyzes the acquired image. It is used in the system to obtain 3D stereoscopic information.
구조광 생성 장치에 의해 조사되는 패턴은 그 개수가 적으면 각각의 패턴이 용이하게 구분될 수 있으나, 대상 물체의 거리 측정의 정밀도가 낮아질 수 있다. 반면, 조사되는 패턴의 개수가 많아지면 각각의 패턴을 구분하기 위한 계산 시간과 오차가 증가할 수 있으나, 대상 물체와의 거리 측정의 정밀도가 향상될 수 있다. 또한, 패턴의 크기가 커질수록 패턴이 용이하게 구분될 수 있으나, 입체 영상의 해상도가 낮아질 수 있다. 반면, 조사되는 패턴의 크기가 작아지면 패턴의 구분이 어려우나 입체 영상의 해상도가 높아질 수 있다. 따라서 원하는 조건의 패턴을 가지는 조사광의 패턴의 개수 및 모양을 실시간으로 결정하여 적용할 필요가 있다.When the number of patterns irradiated by the structured light generating device is small, each pattern may be easily distinguished, but the accuracy of distance measurement of the target object may be lowered. On the other hand, if the number of patterns to be irradiated increases the calculation time and error for distinguishing each pattern, but the accuracy of the distance measurement with the target object can be improved. In addition, as the size of the pattern increases, the pattern may be easily distinguished, but the resolution of the stereoscopic image may be lowered. On the other hand, if the size of the pattern to be irradiated is difficult to distinguish the pattern, the resolution of the stereoscopic image may be increased. Therefore, it is necessary to determine and apply in real time the number and shape of the pattern of the irradiation light having the pattern of the desired condition.
상기 정보입력부(300)는 3차원 입체 영상을 얻고자하는 조건에 따라 사용자가 원하는 조사광의 패턴 개수, 패턴 모양 및 시야(FOV:field of view)에 대한 정보를 입력할 수 있도록 구성된다. 정보입력부(300)에 입력된 정보는 제어부(500)가 수신하며, 제어부(500)는 입력된 정보에 상응하는 구조광을 생성하기 위해 입력된 정보에 상응하는 미러(200)의 양축의 구동 신호에 대한 정보를 메모리부(400)로부터 받고, 메모리부(400)로부터 받은 미러(200)의 구동 신호의 구동 주파수를 통해 광원부(100)의 변조 주파수를 계산하고, 미러(200)의 양축의 구동 신호의 제어 신호 (V x(t)=A xsin(2πf x·t+φ x) 및 V y(t)=A ysin(2πf y·t+φ y))와 광원부(100)의 변조 신호를 각각 미러(200)와 광원부(100)에 송신한다. 송신된 신호에 따라 광원부(100)에서 변조된 레이저 광이 출력되고 미러(200)는 레이저 광을 반사하고 리사쥬 스캐닝을 실행하여, 대상 물체에 사용자가 원하는 패턴 개수, 패턴 모양 및 시야를 갖는 구조광을 조사하게 된다.The information input unit 300 is configured to input information on a pattern number, pattern shape, and field of view (FOV) of a desired irradiation light according to a condition for obtaining a 3D stereoscopic image. Information input to the information input unit 300 is received by the control unit 500, the control unit 500 is a drive signal of both axes of the mirror 200 corresponding to the input information to generate the structured light corresponding to the input information Information on the memory unit 400, the modulation frequency of the light source unit 100 is calculated based on the driving frequency of the driving signal of the mirror 200 received from the memory unit 400, and driving of both axes of the mirror 200. Control signal (V x (t) = A x sin (2πf x t + φ x ) and V y (t) = A y sin (2πf y t + φ y )) and modulation of the light source unit 100 The signal is transmitted to the mirror 200 and the light source unit 100, respectively. The laser light modulated by the light source unit 100 is output according to the transmitted signal, and the mirror 200 reflects the laser light and performs Lissajou scanning to have a desired number of patterns, pattern shapes, and fields of view on the target object. The light is irradiated.
본 발명의 일 실시예에 따른 가변 구조광 생성 장치(1000)의 광원부(200)는 레이저(110)를 포함하며, 레이저 광은 ON/OFF 방식의 구형파에 의해 변조(modulation)되고 미러(200)의 표면에 조사된다. 이때, 변조 신호는 제어부에서 송신되며 미러(200)의 양축 구동 주파수(f x,f y)의 최소공배수(LCM:Least Common Multiple) 또는 상기 최소공배수의 배수이다. 레이저 광의 파장 대역은 가시광선 또는 적외선 계열의 대역도 무방하다. The light source unit 200 of the variable structured light generating apparatus 1000 according to an exemplary embodiment of the present invention includes a laser 110, and the laser light is modulated by a square wave of an ON / OFF method and the mirror 200. Is irradiated on the surface of the. In this case, the modulated signal is transmitted from the control unit and is a least common multiple (LCM) or a multiple of the least common multiple of both axis driving frequencies f x and f y of the mirror 200. The wavelength band of the laser light may be a visible light or an infrared ray band.
본 발명의 일 실시예에 따른 가변 구조광 생성 장치(1000)의 광원부(100)는 레이저(110) 광을 변조시키기 위해 미러(200)로 향하는 레이저의 일측에 광변조 소자(120)를 더 포함할 수 있다. 광변조 소자(120)는 광을 변조하거나 고속 카메라의 셔터 등에 이용되는 전기 광학적 커 효과(Kerr effect)를 이용해 만들어진 커 셀(Kerr cell)로 이루어질 수 있다. 또한, 광변조 소자(120)에 ON/OFF 방식의 구형파 신호가 가해지고 구형파의 주파수는 미러(200)의 양축 구동 신호의 구동 주파수(f x,f y)의 최소공배수 또는 최소공배수의 배수이다. The light source unit 100 of the variable structured light generating apparatus 1000 according to the exemplary embodiment of the present invention further includes a light modulator 120 on one side of the laser headed to the mirror 200 to modulate the laser 110 light. can do. The light modulator 120 may be formed of a Kerr cell made by using an electro-optic Kerr effect that modulates light or is used in a shutter of a high speed camera. In addition, the ON / OFF square wave signal is applied to the optical modulation element 120 and the frequency of the square wave is a multiple of the least common multiple or the least common multiple of the driving frequencies f x and f y of the biaxial drive signals of the mirror 200. .
도 2는 본 발명의 일 실시예에 따른 가변 구조광 생성 장치(1000)의 제어부를 보여주는 블록 구성도이다.2 is a block diagram illustrating a controller of the variable structured light generating apparatus 1000 according to an exemplary embodiment.
도 2를 참조하면, 제어부(500)는 정보수신부(510), 신호생성부(520) 및 신호 송신부(530)를 포함한다. 제어부(500)는 정보입력부(300)에 입력된 정보에 상응하는 구조광을 생성하기 위해 상기 정보입력부(300)에 입력된 구조광의 패턴 개수, 패턴 모양 및 시야의 정보를 수신하고 상기 메모리부(400)와 통신하여 미러(200)의 양축 구동 신호에 대한 값을 받고 광원부(100) 및 미러(200)를 제어하는 신호를 생성하여 송신한다.Referring to FIG. 2, the controller 500 includes an information receiver 510, a signal generator 520, and a signal transmitter 530. The controller 500 receives information on the pattern number, pattern shape, and field of view of the structured light inputted to the information input unit 300 to generate structured light corresponding to the information input to the information input unit 300. In communication with 400, a signal for the biaxial driving signal of the mirror 200 is received, and a signal for controlling the light source unit 100 and the mirror 200 is generated and transmitted.
정보수신부(510)는 정보입력부(300)를 통해 입력되는 구조광의 패턴 개수, 패턴 모양 및 시야에 대한 정보를 수신한다. 신호생성부(520)는 정보수신부(510)가 받은 구조광의 패턴 개수, 패턴 모양 및 시야에 대한 정보에 상응하는 미러(200)의 양축 구동 신호의 구동 주파수(f x,f y),초기 위상(φ x, φ y) 및 진폭(A x,A y)에 대한 값을 메모리부(400)에 문의하고 상응하는 값들이 있는 경우 메모리(400)로부터 상응하는 값들을 추출하여 미러(200)를 제어하는 신호를 생성한다. 또한 신호 생성부(520)는 추출된 미러(200)의 양축 구동 신호의 구동 주파수(f x,f y)의 최소공배수 또는 상기 최소공배수의 배수를 광원부의 레이저 변조 주파수로 계산하고 계산된 변조 주파수로 형성되는 구형파의 변조 신호를 생성한다. 신호송신부(530)는 신호 생성부에서 생성한 제어 신호를 미러(200)에 송신하고 신호 생성부에서 생성한 변조 신호를 광원부에 송신한다.The information receiver 510 receives information about the pattern number, pattern shape, and field of view of the structured light input through the information input unit 300. The signal generator 520 is a drive frequency (f x , f y ) and initial phase of the biaxial drive signal of the mirror 200 corresponding to the information on the pattern number, pattern shape, and field of view of the structured light received by the information receiver 510. Contact the memory unit 400 for the values of (φ x , φ y ) and amplitude (A x , A y ), and extract the corresponding values from the memory 400 if there are corresponding values. Generate a signal to control. In addition, the signal generator 520 calculates the least common multiple of the driving frequencies f x and f y of the extracted two-axis driving signals of the mirror 200 or the multiple of the minimum common multiple as the laser modulation frequency of the light source unit, and calculates the calculated modulation frequency. Generates a modulated signal of square waves formed by The signal transmitter 530 transmits the control signal generated by the signal generator to the mirror 200 and the modulation signal generated by the signal generator to the light source unit.
본 발명의 일 실시예에 따른 가변 구조광 생성 장치(1000)의 미러(200)로는 멤스(MEMS:micro-electro mechanical system) 미러가 사용될 수 있다.A MEMS mirror may be used as the mirror 200 of the variable structured light generating apparatus 1000 according to an exemplary embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 가변 구조광 생성 장치(1000)에 사용되는 멤스 미러를 보여주는 사시도이고, 도 4는 도 3의 A 부분을 보여주는 확대도를 나타낸다.3 is a perspective view illustrating a MEMS mirror used in the variable structured light generating apparatus 1000 according to an exemplary embodiment, and FIG. 4 is an enlarged view illustrating portion A of FIG. 3.
도 3 및 도 4를 참조하면, 멤스 미러는 미러 플레이트(210), 제1 고정단(221), 제2 고정단(222), 제1 토션바(231), 제2 토션바(232), 프레임(240)을 포함한다. 상기 미러 플레이트(210)는 광을 반사하며, 회전 가능하고, 양축의 구동 신호가 각각, V x(t)=A xsin(2πf x·t+φ x) 및 V y(t)=A ysin(2πf y·t+φ y)로 입력되어 미러 플레이트에서 반사된 광에 의해 리사쥬 스캔이 행해진다. 제1 고정단(221)은 미러 플레이트의 양측에 각각 이격되어 형성되고 미러 플레이트가 제1 고정단을 잇는 직선을 축(여기서, X축)으로 하여 회전 진동하는 동안 미러 플레이트의 중심의 변위가 없도록 고정시키는 역할을 한다. 프레임(240)은 미러 플레이트 및 제1 고정단의 둘레를 에워싸는 구성이고, 제2 고정단(222)은 프레임의 양측에 각각 이격되어 형성되고 상기 제1 고정단을 잇는 직선과 수직하는 선상에 위치하여 프레임과 미러 플레이트가 제2 고정단을 잇는 직선을 축(여기서, Y축)으로 하여 회전 진동하는 동안 미러 플레이트의 중심의 변위가 없도록 고정시키는 역할을 한다. 토션바는 미러 플레이트의 중심을 기준으로 직교하는 두 직선상에 4개가 배치된다. 제1 토션바(231)는 미러 플레이트(210)를 탄성 지지하는 것으로 상기 미러 플레이트와 상기 제1 고정단을 연결한다. 제2 토션바(232)는 프레임(240)을 탄성 지지하는 것으로 상기 프레임과 상기 제2 고정단을 연결한다. 3 and 4, the MEMS mirror includes a mirror plate 210, a first fixing end 221, a second fixing end 222, a first torsion bar 231, a second torsion bar 232, Frame 240. The mirror plate 210 reflects light and is rotatable, and the driving signals of both axes are respectively V x (t) = A x sin (2πf x t + φ x ) and V y (t) = A y. Lissajous scanning is performed by the light input into sin (2πf y t + φ y ) and reflected from the mirror plate. The first fixing end 221 is formed on both sides of the mirror plate, respectively, so that there is no displacement of the center of the mirror plate while the mirror plate is rotating and oscillating with a straight line connecting the first fixing end as an axis (here, X axis). It serves to fix it. The frame 240 is configured to surround the circumference of the mirror plate and the first fixed end, and the second fixed end 222 is formed on both sides of the frame, respectively, and is positioned on a line perpendicular to the straight line connecting the first fixed end. Therefore, the frame and the mirror plate serve to fix the center plate of the mirror plate during the rotational oscillation with the axis (here, the Y axis) as a straight line connecting the second fixing end. Four torsion bars are arranged on two straight lines perpendicular to the center of the mirror plate. The first torsion bar 231 elastically supports the mirror plate 210 to connect the mirror plate and the first fixing end. The second torsion bar 232 elastically supports the frame 240 to connect the frame and the second fixed end.
상기 미러 플레이트의 회전 진동에 의해 반사되는 광이 리사쥬 스캐닝을 실행하기 위해 서로 수직하는 제1축 및 제2축으로 회전력을 제공한다. 회전력의 제공 방식은 정전기적(electrostatic), 전자기적(electromagnetic), 전열(electrothermal) 및 압전(piezo) 방식 중에서 취해질 수 있다. 도 3은 정전기적 구동 방식을 취하는 멤스 미러를 도시하였고, 상기 멤스 미러는 도 4의 확대도에 나타나 있는 빗살 모양의 콤(comb)을 가지고, 구동 신호를 인가함으로써 발생하는 인접한 콤의 전기전 척력 또는 인력이 미러 플레이트가 회전하도록 구동시킨다. The light reflected by the rotational vibration of the mirror plate provides a rotational force in a first axis and a second axis that are perpendicular to each other to perform Lissajous scanning. The manner of providing the rotational force may be taken among electrostatic, electromagnetic, electrothermal and piezo methods. FIG. 3 illustrates a MEMS mirror that uses an electrostatic driving method, wherein the MEMS mirror has a comb-shaped comb shown in the enlarged view of FIG. 4, and the electric repulsive force of adjacent combs generated by applying a driving signal. Or the attraction force causes the mirror plate to rotate.
본 발명의 일 실시예에 따른 가변 구조광 생성 장치(1000)가 다양한 패턴 개수로 가변 가능한 구조광을 구현하기 위해서는 패턴 개수를 결정하는 요인인 미러의 구동 주파수를 다양하게 선택할 수 있어야 하고 그 선택의 폭이 되는 공명 대역폭이 넓어야 한다. 즉, 공명 대역폭이 넓다는 것은 진동 모드의 품질 인자(Q-factor)가 낮다는 것을 의미한다. In order for the variable structured light generating apparatus 1000 according to an embodiment of the present invention to implement variable light having a variable number of patterns, it is necessary to variously select a driving frequency of a mirror that determines the number of patterns. The width of the resonance bandwidth should be wide. In other words, a wide resonance bandwidth means a low Q-factor of the vibration mode.
멤스 미러의 품질 인자는 미러 플레이트 및 프레임의 회전 관성모멘트와 토션바의 탄성 복원력과의 관계에서 결정된다. 따라서 멤스 미러의 진동에 대한 품질 인자를 조절하기 위해 제1 또는 제2 토션바의 두께를 변경하는 설계를 통하여 멤스 미러를 제작한다. 즉, 멤스 미러를 제작하는 반도체 공정 전의 설계도에 해당하는 마스크를 그리는 과정에서 토션바의 두께를 조절하여 멤스 미러의 양축의 진동에 대한 품질인자를 결정하게 된다. The quality factor of MEMS mirrors is determined by the relationship between the moment of rotational inertia of the mirror plate and frame and the elastic restoring force of the torsion bar. Therefore, the MEMS mirror is manufactured by changing the thickness of the first or second torsion bar in order to control the quality factor of the MEMS mirror vibration. That is, in the process of drawing a mask corresponding to the blueprint before the semiconductor process of manufacturing the MEMS mirror, the thickness of the torsion bar is adjusted to determine the quality factor for the vibration of both axes of the MEMS mirror.
본 발명의 일 실시예에 따른 가변 구조광 생성 장치(1000)에서 미러(200)로서 멤스 미러가 사용되는 경우, 패턴 개수가 가변 가능한 구조광을 생성하기 위해서는 상기 멤스 미러는 서로 직교하는 양축을 기준으로 회전하고 제1축의 회전 진동에 대한 품질 인자 또는 제2축의 회전 진동에 대한 품질 인자 중에서 어느 하나 이상을 낮게 설계하거나 두 품질인자 중 하나를 더 낮게 설계되는 것이 바람직하며 더 낮은 품질 인자가 100 이하인 것이 더 바람직하다.When the MEMS mirror is used as the mirror 200 in the variable structured light generating apparatus 1000 according to the exemplary embodiment of the present invention, in order to generate the structured light having a variable number of patterns, the MEMS mirrors are based on both axes perpendicular to each other. It is preferable to design at least one of the quality factor for the rotational vibration of the first axis or the quality factor for the rotational vibration of the second axis, or to design one of the two quality factors lower, and the lower quality factor being 100 or less. More preferred.
하기의 도 5 내지 도 7에 대한 설명은 본 발명의 일 실시예에 따른 구조광 생성 장치(1000)와, 나중에 소개될 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 사용되는 구조조명 장치(1000 )에 동일하게 적용됨을 미리 알려둔다. 5 to 7, a structured light generating apparatus 1000 according to an embodiment of the present invention, and a structured lighting device used in a 3D imaging system according to an embodiment of the present invention to be introduced later ( Note that the same applies to 1000 ' ).
도 5a 내지 도 5d는 미러의 구동 신호의 구동 주파수에 따라 구조광의 패턴 개수가 변화되는 것을 나타내는 예시적인 도면이고, 도 6a 내지 도 6e는 미러의 구동 신호의 초기 위상에 따라 구조광의 패턴 개수가 변화되는 것을 나타내는 예시적인 도면이며, 도 7a 내지 도 7e는 레이저 광의 변조 신호의 듀티사이클에 따라 구조광의 패턴 개수가 변화되는 것을 나타내는 예시적인 도면이다. 또한, 아래 표 1은 미러의 구동 주파수에 따른 패턴의 개수를 나타낸다.5A to 5D are exemplary views illustrating that the number of patterns of structured light changes according to the driving frequency of the drive signal of the mirror, and FIGS. 6A to 6E illustrate the number of patterns of structured light varying according to the initial phase of the drive signal of the mirror. 7A to 7E are exemplary views illustrating a change in the number of patterns of structured light according to a duty cycle of a modulation signal of laser light. In addition, Table 1 below shows the number of patterns according to the driving frequency of the mirror.
X축 구동주파수 f x X axis drive frequency f x Y축 구동주파수 f y Y axis drive frequency f y 최대공약수Greatest common factor X축 패턴 수 X-axis pattern count Y축 패턴 수Y-axis pattern count 패턴 개수 Pattern count
59805980 68006800 2020 340340 299299 101660101660
60006000 67926792 2424 283283 250250 7075070750
60406040 68006800 4040 170170 151151 2567025670
60066006 67986798 6666 103103 9191 93739373
59945994 68046804 162162 4242 3737 15541554
59845984 68006800 272272 2525 2222 550550
60006000 68006800 400400 1717 1515 255255
59575957 68086808 851851 88 77 5656
도 5a 내지 도 5d는 도 5a에서 도 5e로 갈수록 최대공약수가 작아지는 것을 나타낸다. 도 5a는 미러의 양축의 구동 주파수의 최대공약수(GCD)가 1684 이고, 도 5b는 미러의 양축의 구동 주파수의 최대공약수가 449 이고, 도 5c는 미러의 양축의 구동 주파수의 최대공약수가 95 이며 도 5d는 미러의 양축의 구동 주파수의 최대공약수가 37이다. 즉, 도 5a 내지 도 5d는 미러의 양축의 구동 신호의 구동 주파수에 따라 패턴 개수가 변화되는 것을 도시한다. 또한, 패턴 개수는 미러의 양축의 구동 신호의 구동 주파수들의 최대공약수와 음의 상관관계를 가짐을 알 수 있다. 다시 말해, 양축의 구동 주파수의 최대공약수가 클수록 구조광의 패턴의 개수가 작아짐을 알 수 있다. 이는 표 1을 참조하여도 알 수 있다. 따라서 두 구동주파수의 최대 공약수의 값을 통하여 구조광의 패턴 개수의 예측이 가능하다.5A to 5D show that the greatest common divisor decreases from FIG. 5A to FIG. 5E. 5A shows the greatest common divisor (GCD) of the driving frequencies of the two axes of the mirror, 1684, FIG. 5B shows the greatest common divisor of the driving frequencies of the two axes of the mirror, and FIG. 5D shows a maximum common divisor of the driving frequencies of both axes of the mirror. That is, FIGS. 5A to 5D show that the number of patterns is changed according to the driving frequency of the driving signals on both axes of the mirror. In addition, it can be seen that the number of patterns has a negative correlation with the greatest common factor of the driving frequencies of the driving signals on both axes of the mirror. In other words, it can be seen that the larger the common factor of the driving frequencies of both axes is, the smaller the number of patterns of structured light is. This can also be seen with reference to Table 1. Therefore, it is possible to predict the number of patterns of structured light through the value of the greatest common divisor of the two driving frequencies.
도 6a 내지 도 6e는 미러의 구동 신호의 초기 위상에 따라 구조광의 패턴 개수가 변화되는 것을 나타내는 예시적인 도면이다. 도 6a 내지 도 6e에는, 미러의 구동 주파수가 각각 5269Hz, 6706Hz이고, 구동 주파수의 최대공약수가 479인 경우, 미러의 구동 신호(V x(t)=A xsin(2πf x·t+φ x) 및 V y(t)=A ysin(2πf y·t+φ y))중 어느 하나의 초기 위상을 도 6a에서부터 도 6e로 갈수록 증가시켰을 때 구조광의 변화가 나타나 있다. 도 6a 내지 도 6e에 도시된 바와 같이, 구조광의 패턴 개수는 미러의 구동 신호의 초기 위상에 따라 변화된다. 또한, 구조광의 패턴 모양도 미러의 구동 신호의 초기 위상에 따라 변화된다.6A to 6E are exemplary views illustrating that the number of patterns of structured light changes according to an initial phase of a driving signal of a mirror. 6A to 6E, when the driving frequencies of the mirrors are 5269 Hz and 6706 Hz, respectively, and the maximum common factor of the driving frequencies is 479, the driving signals of the mirrors V x (t) = A x sin (2πf x t + φ x ) and V y (t) = a y sin (2πf y · t + φ y)) has shown that any of the initial phase from the Figure 6a structure, the light changes the increase gradually in Figure 6e in the. As shown in Figs. 6A to 6E, the number of patterns of structured light is changed according to the initial phase of the drive signal of the mirror. The pattern shape of the structured light also changes in accordance with the initial phase of the drive signal of the mirror.
도 7a 내지 도 7e는 레이저 광의 변조 신호의 듀티사이클에 따라 구조광의 패턴 개수가 변화되는 것을 나타내는 예시적인 도면이다. 도 7a 내지 도 7e에는, 미러의 구동 주파수가 각각 5269Hz, 6706Hz이고, 구동 주파수의 최대공약수가 479인 경우, 레이저 광의 변조 신호의 듀티사이클을 변화시켰을 때 구조광의 변화가 나타나 있다. 여기서 듀티사이클(duty cycle)은 ON/OFF 방식의 구형파 신호에서 한 주기(T)에 대한 ON인 시간의 비율을 의미한다. 도 7a는 듀티사이클이 10%이고, 도 7b는 듀티사이클이 30%이고, 도 7c는 듀티사이클이 50%이고, 도 7d는 듀티사이클이 70%이고, 도 7e는 듀티사이클이 90%이다. 도 7a 내지 도 7e에 도시된 바와 같이, 구조광의 패턴 개수는 레이저 광의 변조 신호의 듀티사이클에 따라 변화되고, 구조광의 패턴 모양도 레이저 광의 변조 신호의 듀티사이클에 따라 변화된다. 또한, 구조광의 패턴 개수는 변조 신호의 초기 위상에 따라 변화된다.7A to 7E are exemplary views illustrating that the number of patterns of structured light changes according to a duty cycle of a modulated signal of laser light. 7A to 7E, when the driving frequencies of the mirrors are 5269 Hz and 6706 Hz, respectively, and the maximum common factor of the driving frequency is 479, the change in the structured light is shown when the duty cycle of the modulation signal of the laser light is changed. In this case, the duty cycle refers to the ratio of time that is ON for one cycle T in the ON / OFF square wave signal. FIG. 7A shows a duty cycle of 10%, FIG. 7B shows a duty cycle of 30%, FIG. 7C shows a duty cycle of 50%, FIG. 7D shows a duty cycle of 70%, and FIG. 7E shows a duty cycle of 90%. As shown in Figs. 7A to 7E, the number of patterns of the structured light is changed in accordance with the duty cycle of the modulation signal of the laser light, and the pattern shape of the structured light is also changed in accordance with the duty cycle of the modulation signal of the laser light. In addition, the number of patterns of the structured light varies depending on the initial phase of the modulated signal.
도 5 내지 도 7을 참조하면, 구조광의 패턴 모양은, 미러의 구동 신호의 구동 주파수(f x,f y),구동 신호의 초기 위상(φ x, φ y),레이저 광의 변조 신호의 파형, 변조 신호의 듀티사이클 및 변조 신호의 초기 위상 중에서 적어도 어느 하나에 따라 변화된다. 5 to 7, the pattern shape of the structured light includes a drive frequency f x , f y of the drive signal of the mirror, an initial phase φ x , φ y of the drive signal, a waveform of a modulated signal of laser light, The at least one of the duty cycle of the modulated signal and the initial phase of the modulated signal is varied.
또한, 구조광의 시야(FOV:Field Of View)는 미러의 양축의 회전 각도가 커질수록 넓어지며, 회전 각도는 미러의 구동 신호의 진폭(A x,A y)에 의해 결정되므로 구조광의 시야는 미러의 구동 신호의 진폭과 양의 상관관계를 가지고 미러의 구동 신호의 진폭(A x,A y)에 따라 변화된다.In addition, the field of view (FOV) of the structured light becomes wider as the angles of rotation of both axes of the mirror become larger, and the angle of rotation is determined by the amplitude (A x , A y ) of the drive signal of the mirror. It has a positive correlation with the amplitude of the drive signal of and changes according to the amplitude (A x , A y ) of the drive signal of the mirror.
요약하자면, 구조광의 패턴 개수, 패턴 모양 및 시야는 미러 양축의 구동 신호의 구동 주파수, 초기 위상 및 진폭과 변조 신호의 듀티사이클 및 초기 위상에 의해 달라질 수 있다. 상기에서 설명한 사실을 토대로, 메모리부(400)는 구조광의 특정 패턴 개수, 특정 패턴 모양, 특정 시야 및 이들의 조합에 대응하는 미러의 양축의 구동 신호의 구동 주파수 값, 초기 위상 값 및 진폭의 값이 구조화되어 기저장되고 제어부(500)와 통신하여 사용자가 입력한 정보에 상응하는 값들을 전달하게 된다.In summary, the pattern number, pattern shape, and field of view of the structured light may vary depending on the driving frequency, initial phase and amplitude of the drive signal of both mirrors, and the duty cycle and initial phase of the modulated signal. On the basis of the above-described fact, the memory unit 400 may drive the drive frequency value, the initial phase value, and the amplitude value of the drive signals on both axes of the mirror corresponding to the specific number of patterns, the specific pattern shape, the specific field of view, and a combination thereof. This structured and stored in advance and communicates with the control unit 500 to transmit values corresponding to the information input by the user.
도 8은 본 발명의 일 실시예에 따른 가변 구조광 생성 방법을 보여주는 순서도를 나타낸다.8 is a flowchart illustrating a method for generating variable structured light according to an embodiment of the present invention.
도 8을 참조하면, 가변 구조광 생성 장치(1000)를 이용하여 가변 구조광을 생성하는 방법으로서, 본 발명의 일 실시예에 따른 가변 구조광 생성 방법은 사용자로부터 원하는 구조광의 패턴 개수, 패턴 모양 및 시야에 대한 정보를 입력받는 단계(S10), 입력받은 정보에 상응하는 미러의 양축 구동 신호의 구동 주파수(f x,f y),초기 위상(φ x, φ y)및 진폭(A x,A y)에 대한 값을 메모리부와 통신하여 추출하고, 상기 추출된 미러의 양축 구동 신호의 구동 주파수(f x,f y)의 최소공배수 또는 상기 최소공배수의 배수를 광원부의 레이저 변조 주파수로 계산하고, 상기 추출된 미러의 양축 구동 신호의 구동 주파수(f x,f y),초기 위상(φ x, φ y)및 진폭(A x,A y)에 대한 값으로 형성되는 정현파의 제어 신호 및 상기 계산된 광원부의 레이저 변조 주파수로 형성되는 구형파의 변조 신호를 생성하는 단계(S20) 및 상기 제어 신호를 상기 미러에 송신하고 상기 변조 신호를 상기 광원부에 송신하여 변조된 레이저 광이 리사쥬 스캐닝을 실행하는 미러에 의해 반사되어 구조광을 생성하는 단계(S30)를 포함한다. Referring to FIG. 8, a method for generating variable structured light using the variable structured light generating apparatus 1000, and the method for generating variable structured light according to an embodiment of the present invention may include a pattern number and pattern shape of desired structured light from a user. And receiving information about a field of view (S10), driving frequencies f x and f y , initial phases φ x , φ y , and amplitudes A x , of the biaxial drive signal of the mirror corresponding to the received information. A y ) is extracted in communication with the memory unit, and the least common multiple of the driving frequency (f x , f y ) or the multiple of the minimum common multiple of the extracted biaxial drive signals of the mirror is calculated as the laser modulation frequency of the light source unit. And a sine wave control signal formed as a value for driving frequencies f x , f y , initial phases φ x , φ y , and amplitudes A x , A y of the biaxial drive signals of the extracted mirrors, and A sphere formed at the calculated laser modulation frequency of the light source unit Generating a modulated signal of the wave (S20) and transmitting the control signal to the mirror and transmitting the modulated signal to the light source unit so that the modulated laser light is reflected by the mirror performing lisage scanning to generate structured light It includes a step (S30).
본 발명의 일 실시예에 따른 가변 구조광 생성 방법의 각각의 단계에 대한 구체적인 설명은 본 발명의 일 실시예에 따른 가변 구조광 생성 장치(1000)에 대한 설명으로 갈음할 수 있다.A detailed description of each step of the variable structured light generating method according to an embodiment of the present invention may be replaced with the description of the variable structured light generating apparatus 1000 according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 3차원 이미징 시스템을 도시한 개략도이다.9 is a schematic diagram illustrating a three-dimensional imaging system according to an embodiment of the present invention.
도 9를 참조하면, 본 발명의 일 실시예에 따른 3차원 이미징 시스템은 가변 구조조명 장치(1000 ), 카메라 모듈(2000) 및 영상 처리 모듈(3000)을 포함한다. 상기 시스템에서, 가변 구조조명 장치(1000 )는 패턴 개수, 패턴 모양 및 시야가 가변하는 구조광을 생성하고 피사체(10)에 조사한다. 카메라 모듈(2000)은 구조광이 조사된 피사체의 영상을 촬영하고, 영상 처리 모듈(3000)은 카메라 모듈(2000)이 촬영한 영상을 처리하고 피사체(10)의 표면에 대한 깊이 영상을 생성하여 3차원 형상을 복원한다.Referring to FIG. 9, a 3D imaging system according to an exemplary embodiment of the present invention includes a variable structure lighting device 1000 , a camera module 2000, and an image processing module 3000. In the system, the variable structure lighting apparatus 1000 generates structured light having a variable number of patterns, a pattern shape, and a field of view, and irradiates the object 10. The camera module 2000 captures an image of the subject to which the structured light is irradiated, and the image processing module 3000 processes the image captured by the camera module 2000 and generates a depth image of the surface of the subject 10. Restore the three-dimensional shape.
카메라 모듈(2000)은 피사체에서 반사되는 광을 모으는 렌즈들과 광 신호를 전기 신호로 전환하는 이미지 센서를 포함하는 일반적인 카메라일 수 있고, 상기 피사체에 조사된 구조광의 패턴을 포함한 피사체의 영상을 캡쳐하여 영상 데이터를 영상 처리 모듈(3000)로 전달한다.The camera module 2000 may be a general camera including lenses that collect light reflected from a subject and an image sensor that converts an optical signal into an electrical signal, and captures an image of the subject including a pattern of structured light irradiated to the subject. The image data is transferred to the image processing module 3000.
영상 처리 모듈(3000)은 상기 카메라 모듈(2000)로부터 캡처된 영상을 수신하고, 상기 영상에 좌표를 생성하고, 각 좌표에서 기준 패턴에 대한 피사체(10)에 반사된 패턴의 시프트(shift)량을 계산함으로써 피사체의 표면에 대한 깊이 정보를 획득하고 피사체의 3차원 형상을 복원한다. 영상 처리 모듈(3000)은 컴퓨터와 같은 장치 내에서 상술한 영상 처리 기능을 수행하도록 구성될 수 있다.The image processing module 3000 receives an image captured from the camera module 2000, generates coordinates in the image, and shifts the amount of shift of the pattern reflected on the subject 10 with respect to the reference pattern at each coordinate. By calculating the depth information on the surface of the subject and to restore the three-dimensional shape of the subject. The image processing module 3000 may be configured to perform the above-described image processing function in a device such as a computer.
가변 구조조명 장치(1000 ), 카메라 모듈(2000) 및 영상 처리 모듈(3000)은 별도의 PC 환경에서 개별적으로 구성될 수 있으며, 또는 임베디드 형태로 가변 구조조명 장치(1000 ), 카메라 모듈(2000) 및 영상 처리 모듈(3000)이 하나의 보드로 구동되도록 구성될 수 있고, 또는 도 9와 같이 가변 구조조명 장치(1000 ) 및 카메라 모듈(2000)만 임베디드 형태로 구성될 수 있다.The variable structure lighting device 1000 , the camera module 2000 and the image processing module 3000 may be individually configured in separate PC environments, or the variable structure lighting device 1000 , the camera module (in an embedded form). 2000 and the image processing module 3000 may be configured to be driven by one board, or as shown in FIG. 9, only the variable structure lighting apparatus 1000 and the camera module 2000 may be configured in an embedded form.
도 10은 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 있어서, 이용되는 가변 구조조명 장치(1000 )를 도시한 개략도이며, 도 10을 참조하면, 가변 구조조명 장치(1000 )는 변조 신호에 의해 변조된 레이저 광을 출력하는 광원(1100) 및 상기 레이저 광을 반사하고, 서로 직교하는 양축의 구동 신호가 각각 정현파로 입력되어 리사쥬 스캐닝(Lissajous scanning)을 실행하는 스캐너(1200)를 포함하고, 임의의 패턴을 갖는 구조광을 생성하여 피사체에 조사한다.FIG. 10 is a schematic diagram illustrating a variable structure lighting apparatus 1000 used in a 3D imaging system according to an exemplary embodiment of the present invention. Referring to FIG. 10, the variable structure lighting apparatus 1000 is modulated. A light source 1100 for outputting laser light modulated by a signal, and a scanner 1200 for reflecting the laser light, and driving signals of both axes orthogonal to each other are inputted as sine waves to perform Lissajous scanning. And generate structured light having an arbitrary pattern and irradiate the subject.
스캐너(1200)는 미러(1210) 및 미러(1210)를 리사쥬 스캐닝하도록 구동시키는 구동부(1220)를 포함한다. 상기 미러(1210)는 멤스(MEMS:micro-electro mechanical system) 미러일 수 있으며, 광을 반사시키는 미러를 포함하고 미러 평면상에서 서로 직교하는 양축에 정현파가 인가되어 리사쥬 스캐닝이 가능한 스캐너라면, 멤스 미러에 한정되지 않고 가변 구조조명 장치(1000 )에 사용될 수 있다. 예를 들면, 스캐너(1200)는 갈바노 미러 스캐너 등일 수 있다. 구동부(1220)는 미러(1210)에 구동 신호, 즉, V x(t)=A xsin(2πf x·t+φ x) 및 V y(t)=A ysin(2πf y·t+φ y)를 인가한다. 상기 구동 신호가 미러(1210)에 인가되면 미러면에서 반사된 광은 리사쥬 스캐닝을 실행한다.The scanner 1200 includes a mirror 1210 and a driver 1220 for driving the mirror 1210 to Lissajou scanning. The mirror 1210 may be a micro-electro mechanical system (MEMS) mirror, and may include a mirror that reflects light, and if the scanner is capable of applying a sine wave to both axes orthogonal to each other on a mirror plane to enable Lissajou scanning, the MEMS It is not limited to the mirror and may be used for the variable structure lighting device 1000 . For example, the scanner 1200 may be a galvano mirror scanner or the like. The driver 1220 transmits a driving signal to the mirror 1210, that is, V x (t) = A x sin (2πf x t + φ x ) and V y (t) = A y sin (2πf y · t + φ y ) When the driving signal is applied to the mirror 1210, the light reflected from the mirror surface performs Lissajous scanning.
광원(1100)은 스캐너(1200)에서 반사되는 광이 임의의 패턴을 가지는 구조광이기 위해서 변조된 레이저 광을 출력한다. 광원(1100)은 레이저 다이오드를 포함하며, 레이저 다이오드에 인가된 변조 신호의 파형으로 변조된 레이저 광을 출력한다. 이때, 변조 신호는 도 10에 도시된 바와 같이 ON/OFF 방식의 구형파일 수 있으며, 이에 한정되지 않고 정현파, 톱니파 등의 다양한 형태를 가질 수 있다. 다만, 변조 신호의 주파수는 스캐너(1200)의 양축 구동 주파수(f x,f y)의 최소공배수의 배수이다. 또한 레이저 광의 파장 대역은 가시광선 또는 적외선 계열의 대역에 해당하는 것이 바람직하며 레이저 광의 파장은 피사체의 종류에 의해 결정된다. The light source 1100 outputs laser light modulated so that the light reflected from the scanner 1200 is structured light having an arbitrary pattern. The light source 1100 includes a laser diode and outputs modulated laser light in a waveform of a modulation signal applied to the laser diode. At this time, the modulated signal may be a spherical pile of the ON / OFF method, as shown in Figure 10, it is not limited to this may have a variety of forms, such as sine wave, sawtooth wave. However, the frequency of the modulated signal is a multiple of the least common multiple of the biaxial driving frequencies f x and f y of the scanner 1200. In addition, it is preferable that the wavelength band of the laser light corresponds to the visible or infrared ray band, and the wavelength of the laser light is determined by the type of the subject.
본 발명의 일 실시예에 따른 3차원 이미징 시스템에 사용되는 가변 구조조명 장치(1000 )는 광원(1100)과 스캐너(1200)를 포함하고, 광원에서 출력된 변조된 레이저 광이 서로 직교하는 양축(X축 및 Y축)에 V x(t)=A xsin(2πf x·t+φ x) 및 V y(t)=A ysin(2πf y·t+φ y)의 구동 신호가 인가되어 진동하는 스캐너(1200)의 미러(1210)에 입사하고, 스캐너(1200)는 레이저 광을 반사시켜 패턴을 가지는 구조광을 생성하게 된다. 생성된 구조광은 피사체의 3차원 깊이 정보를 얻기 위해 피사체에 조사된다. The variable structure lighting apparatus 1000 used in the 3D imaging system according to an exemplary embodiment of the present invention includes a light source 1100 and a scanner 1200, and the two axes of which the modulated laser light output from the light source is orthogonal to each other. Driving signals of V x (t) = A x sin (2πf x t + φ x ) and V y (t) = A y sin (2πf y t + φ y ) are applied to (X and Y axes). The light is incident on the mirror 1210 of the vibrating scanner 1200, and the scanner 1200 reflects the laser light to generate structured light having a pattern. The generated structured light is irradiated onto the subject to obtain three-dimensional depth information of the subject.
본 발명의 일 실시예에 따른 3차원 이미징 시스템에 사용되는 가변 구조조명 장치(1000 )는 레이저 광의 변조 신호의 주파수 및 듀티사이클과 리사쥬 스캐닝하는 스캐너(1200)에 있어서 미러(1210)의 양축 구동 신호의 구동 주파수, 초기 위상 및 진폭을 조절하여 구조광의 패턴 개수, 패턴 모양 및 시야의 변화가 가능하다.The variable structure lighting apparatus 1000 used in the 3D imaging system according to an exemplary embodiment of the present invention is a dual axis of the mirror 1210 in the scanner 1200 that scans the frequency and duty cycle of the modulated signal of the laser light and the Lissajous. By changing the driving frequency, initial phase and amplitude of the driving signal, it is possible to change the number of patterns, pattern shape, and field of view of the structured light.
본 발명의 일 실시예에 따른 3차원 이미징 시스템에 사용되는 가변 구조조명 장치(1000’)의 가변 구조광 생성 원리는, 앞서 설명한 바 있는, 본 발명의 일 실시예에 따른 가변 구조광 생성 장치(1000)와 동일하다. The variable structured light generating principle of the variable structured lighting device 1000 ′ used in the 3D imaging system according to the exemplary embodiment of the present invention is the variable structured light generating apparatus according to the embodiment of the present invention as described above. 1000).
이 때, 상기 가변 구조광 생성 장치(1000)에 있어서의 미러(200)는 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 사용되는 가변 구조조명 장치(1000’)에서의 미러(1210)와 동일한 구성이 될 수 있다.In this case, the mirror 200 of the variable structured light generating apparatus 1000 may include the mirror 1210 of the variable structured lighting apparatus 1000 ′ used in the 3D imaging system according to the exemplary embodiment. The same configuration can be.
또한, 앞서 레이저 광의 변조 신호의 주파수 및 듀티사이클과 리사쥬 스캐닝을 할 때의 미러의 구동 주파수, 초기 위상 및 진폭을 조절하여 구조광의 패턴 개수, 패턴 모양 및 시야의 변화가 가능함을 도 5 내지 도 7과 표 1을 통해 설명한 바 있다. 이는 본 발명의 일 실시에에 따른 3차원 이미징 시스템에서도 동일하게 적용되므로 여기에서는 구체적인 설명을 생략한다.In addition, it is possible to change the pattern number, pattern shape, and field of view of the structured light by adjusting the frequency, duty cycle of the modulation signal of the laser light and the driving frequency, initial phase, and amplitude of the mirror when performing Lissajous scanning. 7 and Table 1 illustrate this. Since the same applies to the three-dimensional imaging system according to an embodiment of the present invention, a detailed description thereof will be omitted.
도 11은 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 사용되는 가변 구조조명 장치(1000 )의 사시도를 나타내고, 도 12는 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 사용되는 가변 구조조명 장치(1000 )의 단면도를 나타낸다. 11 illustrates a perspective view of a variable structure lighting apparatus 1000 used in a 3D imaging system according to an embodiment of the present invention, and FIG. 12 illustrates a variable used in a 3D imaging system according to an embodiment of the present invention. A cross-sectional view of the structural lighting device 1000 is shown.
도 11 및 도 12를 참조하면, 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 사용되는 가변 구조조명 장치(1000 )는 콜리메이터(1260), 광섬유(1270), 스캐너 마운트(1280) 및 하우징(1290)을 더 포함할 수 있다. 11 and 12, the variable structure lighting apparatus 1000 used in the 3D imaging system according to an exemplary embodiment of the present invention may include a collimator 1260, an optical fiber 1270, a scanner mount 1280, and a housing. 1290 may be further included.
상기 콜리메이터(1260)는 광원(1100)에서 출력된 레이저 광이 스캐너(1200)의 미러(1210)로 향하는 경로 상에 배치되어 레이저 광을 콜리메이트 빔(collimated beam)으로 만든다. 콜리메이트 빔(collimated beam)은 레이저에서 사실상 분산이나 집중이 매우 적은 평행 광선을 의미한다. 콜리메이터(1260)는 렌즈의 집합일 수 있다. 광섬유(1270)는 광원(1100)과 콜리메이터(1260) 사이에 위치하며, 광원(1100)에서 출력되는 레이저 광과 결합하여 레이저 광을 콜리메이터(1260) 또는 스캐너(1200)로 전달한다. The collimator 1260 is disposed on a path where the laser light output from the light source 1100 is directed to the mirror 1210 of the scanner 1200 to make the laser light a collimated beam. A collimated beam refers to a parallel beam with very little dispersion or concentration in the laser. The collimator 1260 may be a set of lenses. The optical fiber 1270 is positioned between the light source 1100 and the collimator 1260, and combines with the laser light output from the light source 1100 to transmit the laser light to the collimator 1260 or the scanner 1200.
하우징(1290)은 광섬유(1270)의 일단, 콜리메이터(1260) 및 스캐너(1200)를 수용하며, 일단부에 광섬유의 일단이 삽입 가능한 구명이 형성되고, 타단부의 내부 하면에는 스캐너 마운트(1280)가 구비되고, 타단부의 상면에는 개구가 형성된다. 하우징(1290)은 광섬유(1270)의 일단, 콜리메이터(1260) 및 스캐너(1200)를 각각 고정된 위치에서 수용함으로써, 광원(1100)에서 출력된 레이저 광이 정확히 스캐너(1200)에서 반사되어 피사체(10)에 구조광으로 조사되는 것을 보장한다. The housing 1290 accommodates one end of the optical fiber 1270, the collimator 1260, and the scanner 1200, and a life preserver capable of inserting one end of the optical fiber is formed at one end thereof, and a scanner mount 1280 is formed at the inner bottom of the other end thereof. Is provided, and an opening is formed in the upper surface of the other end part. The housing 1290 accommodates one end of the optical fiber 1270, the collimator 1260, and the scanner 1200 at fixed positions, so that the laser light output from the light source 1100 is accurately reflected by the scanner 1200 so that the object ( 10) to ensure that it is irradiated with structured light.
또한 하우징(1290)은 스캐너의 구동부(1220)를 더 포함할 수 있다. 스캐너의 구동부(1220)는, 스캐너의 미러(1210)와 전기적으로 연결되고 스캐너의 미러(1210)에 구동 신호를 인가하여 스캐너가 리사쥬 스캐닝을 실행하고, 스캐너에서 반사된 광이 결과적으로 패턴 개수, 패턴 모양 및 시야가 가변되는 구조광을 형성하기 위하여 스캐너의 미러면 내의 직교하는 양축에 주파수, 초기 위상 및 진폭이 다양한 정현파를 인가할 수 있도록 형성되며, 도 12에 도시된 바와 같이 플렉서블 인쇄 회로 기판(flexiable printed circuit board)으로 형성되어 하우징(1290)에 수용될 수 있다. 또한, 스캐너의 구동부(1220)는 광원(1100)과 전기적으로 연결되어 상기 변조 신호의 주파수를 결정하는 정보를 제공할 수 있고, 카메라 모듈(2000)과 전기적으로 연결되어 구조광의 조사와 영상 촬영의 동작을 동기화할 수 있으며, 영상 처리 모듈(3000)과 전기적으로 연결되어 상기 기준 패턴을 영상 처리 모듈에 제공할 수 있고, 사용자 인터페이스와 전기적으로 연결되어 사용자가 원하는 패턴 개수, 패턴 모양 및 시야를 갖는 구조광에 대한 정보를 수신할 수 있다.In addition, the housing 1290 may further include a driver 1220 of the scanner. The driver 1220 of the scanner is electrically connected to the mirror 1210 of the scanner and applies a driving signal to the mirror 1210 of the scanner so that the scanner executes Lissajous scanning, and the light reflected from the scanner results in the number of patterns. In order to form structured light having a variable pattern shape and a field of view, a sinusoidal wave having various frequencies, initial phases, and amplitudes may be applied to both orthogonal axes in the mirror surface of the scanner, as shown in FIG. It may be formed of a flexible printed circuit board and accommodated in the housing 1290. In addition, the driver 1220 of the scanner may be electrically connected to the light source 1100 to provide information for determining the frequency of the modulated signal. The scanner 1220 may be electrically connected to the camera module 2000 to perform irradiation of structured light and to capture an image. The operation may be synchronized, and may be electrically connected to the image processing module 3000 to provide the reference pattern to the image processing module. The reference pattern may be electrically connected to the user interface to have a desired number of patterns, pattern shapes, and views. Information about structured light can be received.
또한 하우징(1290)은 스캐너 마운트(1280)를 틸팅 가능하게 하는 틸트 유닛(미도시)을 더 수용할 수 있다. 틸트 유닛은 스캐너 마운트(1280)에 장착되어 스캐너 마운트(1280)의 틸트(tilt)를 조절하며 스캐너 마운트(1280)의 틸트가 조절되면 피사체와 가변 구조조명 장치의 움직임이 없이 피사체에 구조광을 조사할 수 있다. 틸트 유닛은 엑츄에이터(actuator) 등으로 구성될 수 있다.In addition, the housing 1290 may further accommodate a tilt unit (not shown) that enables tilting the scanner mount 1280. The tilt unit is mounted on the scanner mount 1280 to adjust the tilt of the scanner mount 1280. When the tilt of the scanner mount 1280 is adjusted, the tilt unit irradiates the structured light to the subject without moving the subject and the variable structure lighting device. can do. The tilt unit may be configured with an actuator or the like.
본 발명의 일 실시예에 따른 3차원 이미징 시스템에 사용되는 가변 구조조명 장치(1000 )에 포함되는 스캐너의 크기는 대략 1mm×1mm이므로 상기 장치의 소형화가 가능하여 단말기에 내장될 수 있으며, 3차원 형상 정보를 필요로 하는 내시경 등의 의료용 장치 및 자동차에도 사용 가능하다. Since the size of the scanner included in the variable structure lighting apparatus 1000 used in the 3D imaging system according to the exemplary embodiment of the present invention is approximately 1 mm × 1 mm, the apparatus can be miniaturized and embedded in the terminal. 3 It can also be used for medical devices such as endoscopes and the like which require dimensional shape information.
상기에서 설명한 바와 같이 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 사용되는 가변 구조조명 장치(1000 )는 스캐너를 포함하며, 스캐너는 미러(1210)와 구동부(1220)를 포함하고, 미러는 멤스 미러일 수 있다.As described above, the variable structure lighting apparatus 1000 used in the 3D imaging system according to the exemplary embodiment of the present invention includes a scanner, and the scanner includes a mirror 1210 and a driver 1220. May be a MEMS mirror.
멤스 미러에 대한 구체적인 실시예에 대해서는 앞서 설명한 내용 및 도 3 및 도 4로 갈음할 수 있다.A detailed embodiment of the MEMS mirror may be replaced with the above description and FIGS. 3 and 4.
본 발명의 일 실시예에 따른 3차원 이미징 시스템에 사용되는 가변 구조조명 장치(1000 ) 역시 본 발명의 일 실시예에 따른 가변 구조조명 장치(1000)와 마찬가지로 다양한 패턴 개수로 가변 가능한 구조광을 구현하기 위해서는 패턴 개수를 결정하는 요인인 미러의 구동 주파수를 다양하게 선택할 수 있어야 하고 그 선택의 폭이 되는 공명 대역폭이 넓어야 한다. 즉, 공명 대역폭이 넓다는 것은 진동 모드의 품질 인자(Q-factor)가 낮다는 것을 의미한다. The variable structure lighting apparatus 1000 used in the 3D imaging system according to the exemplary embodiment of the present invention also has a variable structure variable light having a variable number of patterns like the variable structure lighting apparatus 1000 according to the exemplary embodiment of the present invention. To implement, the driving frequency of the mirror, which determines the number of patterns, should be variously selected, and the resonance bandwidth, which is the choice, should be wide. In other words, a wide resonance bandwidth means a low Q-factor of the vibration mode.
따라서, 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 사용되는 가변 구조조명 장치(1000 )에서 미러(1210)로서 멤스 미러가 사용되는 경우, 패턴 개수가 가변 가능한 구조광을 생성하기 위해서는 상기 멤스 미러는 서로 직교하는 양축을 기준으로 회전하고 제1축의 회전 진동에 대한 품질 인자 또는 제2축의 회전 진동에 대한 품질 인자 중에서 어느 하나 이상을 낮게 설계하거나 두 품질인자 중 하나를 더 낮게 설계되는 것이 바람직하며 더 낮은 품질 인자가 100 이하인 것이 더 바람직하다.Therefore, when the MEMS mirror is used as the mirror 1210 in the variable structure lighting apparatus 1000 used in the 3D imaging system according to an exemplary embodiment of the present invention, in order to generate the structured light having a variable number of patterns, MEMS mirrors are rotated about two axes perpendicular to each other and are designed to have at least one of a quality factor for rotational vibration of the first axis or a quality factor for rotational vibration of the second axis, or one of the two quality factors lower. It is preferred that the lower quality factor is less than or equal to 100.
도 13은 본 발명의 일 실시예에 따른 3차원 이미징 방법의 개략적인 순서도를 나타낸다. 도 13을 참조하면, 본 발명의 일 실시예에 따른 3차원 이미징 방법은 가변 구조조명 장치에서 생성되는 구조광을 피사체에 조사하는 단계(S100), 구조광이 조사된 피사체의 영상을 촬영하는 단계(S200) 및 촬영한 영상을 처리하여 피사체의 3차원 형상을 복원하는 단계(S300)를 포함한다. Figure 13 shows a schematic flowchart of a three-dimensional imaging method according to an embodiment of the present invention. Referring to FIG. 13, in the three-dimensional imaging method according to an embodiment of the present invention, the method may include: irradiating structure light generated by the variable structure lighting apparatus to a subject (S100) and photographing an image of the subject to which the structure light is irradiated. And reconstructing the three-dimensional shape of the subject by processing the captured image (S200).
상기 3차원 이미징 방법의 각각의 단계에 대한 구체적인 설명은 본 발명의 일 실시예에 따른 3차원 이미징 시스템에 대한 설명으로 갈음할 수 있다.A detailed description of each step of the three-dimensional imaging method may be replaced with a description of the three-dimensional imaging system according to an embodiment of the present invention.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 것을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 청구 범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
[부호의 설명][Description of the code]
1000 : 가변 구조광 생성 장치1000: variable structured light generating device
100 : 광원부100: light source
200, 1210 : 미러200, 1210: mirror
300 : 정보입력부300: information input unit
400 : 메모리부400: memory
500 : 제어부500: control unit
510 : 정보수신부510: information receiver
520 : 신호생성부520: signal generator
530 : 신호송신부530: signal transmission unit
1000' : 가변 구조조명 장치1000 ': Variable structure lighting device
1100 : 광원 1100: light source
1200 : 스캐너1200: Scanner
1220 : 구동부1220: drive unit
1260 : 콜리메이터1260: collimator
1270 : 광섬유1270: optical fiber
1280 : 스캐너 마운트1280: Scanner Mount
1290 : 하우징1290: Housing
2000 : 카메라 모듈2000: Camera Module
3000 : 영상 처리 모듈3000: Image Processing Module

Claims (19)

  1. 변조된 레이저 광을 출력하는 광원부;A light source unit outputting modulated laser light;
    상기 레이저 광을 반사하고 서로 직교하는 양축의 구동 신호가 각각 정현파로 입력되어 리사쥬 스캐닝을 실행하는 미러;A mirror for reflecting the laser light and receiving driving signals of two axes orthogonal to each other by a sine wave to perform LISA scanning;
    사용자가 원하는 구조광의 패턴 개수, 패턴 모양 및 시야의 정보를 입력할 수 있는 정보입력부; An information input unit configured to input information of a pattern number, pattern shape, and a field of view of a desired structure light;
    상기 정보에 상응하는 미러의 양축 구동 신호의 구동 주파수, 초기 위상 및 진폭에 대한 값이 기저장되어 있는 메모리부; 및A memory unit in which values for driving frequency, initial phase, and amplitude of the biaxial drive signal of the mirror corresponding to the information are stored in advance; And
    상기 정보에 상응하는 구조광을 생성하기 위해 상기 정보를 수신하고 상기 메모리부와 통신하여 상기 미러의 제어 신호 및 상기 광원부의 변조 신호를 생성하여 송신하는 제어부를 포함하는 가변 구조광 생성 장치.And a control unit which receives the information to generate the structured light corresponding to the information and communicates with the memory unit to generate and transmit a control signal of the mirror and a modulation signal of the light source unit.
  2. 제1항에 있어서,The method of claim 1,
    상기 제어부는,The control unit,
    상기 정보입력부를 통해 입력되는 구조광의 패턴 개수, 패턴 모양 및 시야에 대한 정보를 수신하는 정보수신부;An information receiver configured to receive information on the pattern number, pattern shape, and field of view of the structured light input through the information input unit;
    상기 정보에 상응하는 미러의 양축 구동 신호의 구동 주파수, 초기 위상 및 진폭에 대한 값을 상기 메모리부와 통신하여 추출하고, 상기 추출된 미러의 양축 구동 신호의 구동 주파수의 최소공배수를 상기 광원부의 레이저 변조 주파수로 계산하고, 상기 추출된 미러의 양축 구동 신호의 구동 주파수, 초기 위상 및 진폭에 대한 값으로 형성되는 정현파의 제어 신호 및 상기 계산된 광원부의 레이저 변조 주파수로 형성되는 구형파의 변조 신호를 생성하는 신호생성부; 및Values for driving frequency, initial phase, and amplitude of the two-axis driving signals of the mirror corresponding to the information are extracted by communicating with the memory unit, and the least common multiple of the driving frequencies of the two-axis driving signals of the mirror is extracted. Computes a modulation frequency, and generates a control signal of the sine wave formed by the values for the drive frequency, the initial phase and the amplitude of the two-axis drive signal of the extracted mirror and a modulated signal of the square wave formed by the calculated laser modulation frequency of the light source portion Signal generation unit to; And
    상기 제어 신호를 상기 미러에 송신하고 상기 변조 신호를 상기 광원부에 송신하는 신호송신부를 포함하는 것을 특징으로 하는 가변 구조광 생성 장치.And a signal transmitter for transmitting the control signal to the mirror and transmitting the modulated signal to the light source.
  3. 제1항에 있어서,The method of claim 1,
    상기 미러는 멤스 미러인 것을 특징으로 하는 가변 구조광 생성 장치.And the mirror is a MEMS mirror.
  4. 제3항에 있어서,The method of claim 3,
    상기 멤스 미러는 서로 직교하는 양축을 기준으로 회전 진동하고 제1축의 회전 진동에 대한 품질인자(Q-factor)가 제2축의 회전 진동에 대한 품질인자보다 더 낮게 설계되는 것을 특징으로 하는 가변 구조광 생성 장치. The MEMS mirror is a variable structured light, characterized in that the rotational vibration on the basis of both axes perpendicular to each other and the quality factor (Q-factor) for the rotational vibration of the first axis is lower than the quality factor for the rotational vibration of the second axis Generating device.
  5. 제1항에 있어서,The method of claim 1,
    상기 구조광의 패턴 개수는, The number of patterns of the structured light is
    상기 구동 신호의 구동 주파수들의 최대공약수와 음의 상관관계를 가지고 상기 최대공약수에 의해 결정되며,Determined by the greatest common divisor having a negative correlation with the greatest common divisor of the driving frequencies of the driving signal,
    상기 구동 신호의 초기 위상, 상기 변조 신호의 듀티사이클(duty cycle) 또는 상기 변조 신호의 초기 위상에 따라 변화되는 것을 특징으로 하는 가변 구조광 생성 장치. 것을 특징으로 하는 가변 구조광 생성 장치. And varying according to an initial phase of the drive signal, a duty cycle of the modulated signal, or an initial phase of the modulated signal. A variable structured light generating device, characterized in that.
  6. 제1항에 있어서,The method of claim 1,
    상기 구조광의 패턴 모양은, 상기 구동 신호의 구동 주파수, 상기 구동 신호의 초기 위상, 상기 변조 신호의 파형, 상기 변조 신호의 듀티사이클 및 상기 변조 신호의 초기 위상 중에서 적어도 어느 하나에 따라 변화되는 것을 특징으로 하는 가변 구조광 생성 장치.The pattern shape of the structured light is changed according to at least one of a driving frequency of the driving signal, an initial phase of the driving signal, a waveform of the modulation signal, a duty cycle of the modulation signal, and an initial phase of the modulation signal. A variable structured light generating device.
  7. 제1항에 있어서,The method of claim 1,
    상기 구조광의 시야는, 상기 구동 신호의 양축 구동 신호의 진폭과 양의 상관관계를 갖고 상기 진폭에 의해 결정되는 것을 특징으로 하는 가변 구조광 생성 장치.And the field of view of the structured light has a positive correlation with the amplitude of the biaxial drive signal of the drive signal and is determined by the amplitude.
  8. 제1항에 있어서,The method of claim 1,
    상기 광원부에서 출력되는 레이저 광이 ON/OFF 방식의 구형파에 의해 변조되는 것을 특징으로 하는 가변 구조광 생성 장치.And a laser beam output from the light source unit is modulated by an ON / OFF square wave.
  9. 제1항에 있어서,The method of claim 1,
    상기 변조 신호의 주파수는 상기 미러의 양축 구동 신호의 구동 주파수의 최소공배수의 배수인 것을 특징으로 하는 가변 구조광 생성 장치. And a frequency of the modulated signal is a multiple of a least common multiple of a drive frequency of both axis drive signals of the mirror.
  10. 제1항에 있어서,The method of claim 1,
    상기 광원부는 레이저 광을 변조시키기 위해 상기 미러로 향하는 레이저의 일측에 광변조 소자를 더 포함하고, 상기 광변조 소자에 ON/OFF 방식의 구형파인 변조 신호가 가해지고, 상기 구형파의 변조 주파수는 상기 미러의 양축 구동 신호의 구동 주파수의 최소공배수 또는 상기 최소공배수의 배수인 것을 특징으로 하는 가변 구조광 생성 장치. The light source unit further includes a light modulator on one side of the laser toward the mirror to modulate the laser light, the modulated signal of the square wave of the ON / OFF method is applied to the light modulator, the modulation frequency of the square wave is And a minimum common multiple of a driving frequency of the two-axis driving signal of the mirror or a multiple of the minimum common multiple.
  11. 패턴 개수, 패턴 모양 및 시야가 가변되는 구조광을 생성하는 가변 구조조명 장치;A variable structure lighting device for generating structure light having a variable number of patterns, a pattern shape, and a field of view;
    상기 구조광이 조사된 피사체의 영상을 촬영하는 카메라 모듈; 및A camera module for capturing an image of the subject to which the structured light is irradiated; And
    상기 카메라 모듈이 촬영한 영상을 처리하여 상기 피사체의 3차원 형상을 복원하는 영상 처리 모듈을 포함하고,And an image processing module for restoring the 3D shape of the subject by processing the image photographed by the camera module.
    상기 가변 구조조명 장치는, 변조 신호에 의해 변조된 레이저 광을 출력하는 광원 및 상기 레이저 광을 반사하고, 서로 직교하는 양축의 구동 신호가 각각 정현파로 입력되어 리사쥬 스캐닝(Lissajous scanning)을 실행하는 스캐너를 포함하고,The variable structure lighting apparatus includes a light source for outputting a laser light modulated by a modulated signal and the laser light, and driving signals of both axes orthogonal to each other are input as sine waves to perform Lissajous scanning. Includes a scanner,
    상기 변조 신호의 주파수는 상기 구동 신호의 구동 주파수들의 최소공배수의 배수인 것을 특징으로 하는 3차원 이미징 시스템.And the frequency of the modulated signal is a multiple of the least common multiple of the drive frequencies of the drive signal.
  12. 제11항에 있어서,The method of claim 11,
    상기 구조광의 패턴 개수는, The number of patterns of the structured light is
    상기 구동 신호의 구동 주파수들의 최대공약수와 음의 상관관계를 가지고 상기 최대공약수에 의해 결정되며,Determined by the greatest common divisor having a negative correlation with the greatest common divisor of the driving frequencies of the driving signal,
    상기 구동 신호의 초기 위상, 상기 변조 신호의 듀티사이클(duty cycle) 또는 상기 변조 신호의 초기 위상에 따라 변화되는 것을 특징으로 하는 3차원 이미징 시스템.And an initial phase of the drive signal, a duty cycle of the modulated signal, or an initial phase of the modulated signal.
  13. 제11항에 있어서,The method of claim 11,
    상기 구조광의 패턴 모양은, 상기 구동 신호의 구동 주파수, 상기 구동 신호의 초기 위상, 상기 변조 신호의 파형, 상기 변조 신호의 듀티사이클 및 상기 변조 신호의 초기 위상 중에서 적어도 어느 하나에 따라 변화되는 것을 특징으로 하는 3차원 이미징 시스템.The pattern shape of the structure light is changed according to at least one of a driving frequency of the driving signal, an initial phase of the driving signal, a waveform of the modulation signal, a duty cycle of the modulation signal, and an initial phase of the modulation signal. 3D imaging system.
  14. 제11항에 있어서,The method of claim 11,
    상기 구조광의 시야는, 상기 구동 신호의 진폭과 양의 상관관계를 가지고 상기 진폭에 따라 변화되는 것을 특징으로 하는 3차원 이미징 시스템.And the field of view of the structured light is varied according to the amplitude with a positive correlation with the amplitude of the drive signal.
  15. 제11항에 있어서,The method of claim 11,
    상기 가변 구조조명 장치는,The variable structure lighting device,
    상기 광원에서 출력된 레이저 광이 상기 스캐너로 향하는 경로 상에 배치되어, 상기 레이저 광을 콜리메이트 빔(collimated beam)으로 만드는 콜리메이터를 더 포함하는, 3차원 이미징 시스템.And a collimator disposed on a path toward which the laser light output from the light source is directed to the scanner to make the laser light into a collimated beam.
  16. 제15항에 있어서,The method of claim 15,
    상기 가변 구조조명 장치는, The variable structure lighting device,
    상기 광원에서 출력되는 레이저 광을 결합하는 광섬유; 및An optical fiber for coupling the laser light output from the light source; And
    상기 광섬유의 일단, 상기 콜리메이터 및 상기 스캐너를 수용하는 하우징을 더 포함하고, One end of the optical fiber, the collimator and the housing for receiving the scanner further,
    상기 하우징의 일단부에 상기 광섬유의 일단이 삽입 가능한 구멍이 형성되고, 상기 하우징의 타단부의 내부 하면에는 스캐너 마운트가 구비되고, 상기 하우징의 타단부의 상면에서는 개구가 형성되는 것을 특징으로 하는 3차원 이미징 시스템.A hole into which one end of the optical fiber is inserted at one end of the housing, a scanner mount is provided on an inner lower surface of the other end of the housing, and an opening is formed on an upper surface of the other end of the housing; 3D imaging system.
  17. 제16항에 있어서,The method of claim 16,
    상기 스캐너 마운트는 틸팅 가능한 것을 특징으로 하는 3차원 이미징 시스템.And the scanner mount is tiltable.
  18. 제11항에 있어서,The method of claim 11,
    상기 스캐너는 미러 및 상기 미러가 리사쥬 스캐닝하도록 구동시키는 구동부를 포함하는 것을 특징으로 하는 3차원 이미징 시스템.And the scanner comprises a mirror and a drive unit for driving the mirror to Lissajou scanning.
  19. 제18항에 있어서,The method of claim 18,
    상기 미러는 멤스 미러인 것을 특징으로 하는 3차원 이미징 시스템.And the mirror is a MEMS mirror.
PCT/KR2019/009009 2018-07-24 2019-07-22 Variable structured light generating device and 3d imaging system WO2020022721A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180086182A KR102059438B1 (en) 2018-07-24 2018-07-24 Apparatus for generating variable structured-light and method for the same
KR10-2018-0086182 2018-07-24
KR10-2019-0009085 2019-01-24
KR1020190009085A KR102139040B1 (en) 2019-01-24 2019-01-24 Three-dimensional imaging system using variable structured illumination apparatus

Publications (1)

Publication Number Publication Date
WO2020022721A1 true WO2020022721A1 (en) 2020-01-30

Family

ID=69181821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009009 WO2020022721A1 (en) 2018-07-24 2019-07-22 Variable structured light generating device and 3d imaging system

Country Status (1)

Country Link
WO (1) WO2020022721A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021179127A1 (en) * 2020-03-09 2021-09-16 深圳华大生命科学研究院 Super-resolution imaging system and method, biological sample identification system and method, nucleic acid sequencing imaging system and method, and nucleic acid identification system and method
CN115655153A (en) * 2022-11-09 2023-01-31 四川大学 Light source modulation method and MEMS scanning 3D imaging system and method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080010752A (en) * 2006-07-28 2008-01-31 권성훈 Mems-based light projection engine and associated method of manufacture
JP2013513828A (en) * 2009-12-14 2013-04-22 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. Deflection device for projection device, projection device for projecting image, and method for controlling deflection device for projection device
KR20160057167A (en) * 2014-11-13 2016-05-23 삼성전자주식회사 Electronic Apparatus Including 3D Image Sensor Module
KR20160091380A (en) * 2013-11-27 2016-08-02 쑤저우 유니버시티 Super-resolution microscopy imaging method and system for continuously adjustable structured light illumination
KR20170049614A (en) * 2013-06-28 2017-05-10 인텔 코포레이션 Mems scanning mirror light pattern generation
US20170180688A1 (en) * 2015-12-21 2017-06-22 Hitachi-Lg Data Storage, Inc. Scanning image display device
KR101767116B1 (en) * 2016-05-04 2017-08-11 한국과학기술원 Method of High resolution and high frame rate Lissajous scanning for MEMS laser scanner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080010752A (en) * 2006-07-28 2008-01-31 권성훈 Mems-based light projection engine and associated method of manufacture
JP2013513828A (en) * 2009-12-14 2013-04-22 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. Deflection device for projection device, projection device for projecting image, and method for controlling deflection device for projection device
KR20170049614A (en) * 2013-06-28 2017-05-10 인텔 코포레이션 Mems scanning mirror light pattern generation
KR20160091380A (en) * 2013-11-27 2016-08-02 쑤저우 유니버시티 Super-resolution microscopy imaging method and system for continuously adjustable structured light illumination
KR20160057167A (en) * 2014-11-13 2016-05-23 삼성전자주식회사 Electronic Apparatus Including 3D Image Sensor Module
US20170180688A1 (en) * 2015-12-21 2017-06-22 Hitachi-Lg Data Storage, Inc. Scanning image display device
KR101767116B1 (en) * 2016-05-04 2017-08-11 한국과학기술원 Method of High resolution and high frame rate Lissajous scanning for MEMS laser scanner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOUNG-HYEON SEO ET AL.: "Variable Structured Illumination Using Lissajous Scanning MEMS Mirror", 2018 INTERNATIONAL CONFERENCE OPTICAL MEMS AND NANOPHOTONICS, 29 July 2018 (2018-07-29), Lausanne, Switzerland, pages 153 - 154, XP033398230 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021179127A1 (en) * 2020-03-09 2021-09-16 深圳华大生命科学研究院 Super-resolution imaging system and method, biological sample identification system and method, nucleic acid sequencing imaging system and method, and nucleic acid identification system and method
CN115655153A (en) * 2022-11-09 2023-01-31 四川大学 Light source modulation method and MEMS scanning 3D imaging system and method thereof
CN115655153B (en) * 2022-11-09 2023-10-10 四川大学 Light source modulation method, MEMS scanning 3D imaging system and imaging method thereof

Similar Documents

Publication Publication Date Title
WO2020040390A1 (en) Apparatus and method for generating three-dimensional image
WO2020022721A1 (en) Variable structured light generating device and 3d imaging system
WO2016171412A1 (en) Three-dimensional oral cavity scan device using piezoelectric element based pattern module and variable focus lens
US5003385A (en) Stereoscopic television system
WO2015198238A1 (en) Mounting system for optics
WO2019235859A1 (en) Camera module and depth information extraction method therefor
KR102139040B1 (en) Three-dimensional imaging system using variable structured illumination apparatus
JP7409532B2 (en) Optical equipment, measuring equipment, robots, electronic equipment, moving objects, and modeling equipment
WO2020235948A1 (en) Three-dimensional intraoral scanner
WO2003061275A2 (en) Imaging device and related methods
CN110291359B (en) Three-dimensional measuring device
CN110235046A (en) A kind of laser projection device and a kind of laser projection system
JP2005504487A (en) Scanning camera
WO2010002189A2 (en) Laser scanning display and beam alignment method thereof
JP2008514344A (en) Configuration memory for scanning beam devices
KR100858602B1 (en) Measurement system for evaluating moving image quality of displays
WO2020067745A1 (en) Camera device
WO2022231349A1 (en) Camera device
JP2000171742A (en) Scanning optical system and scanning image pickup optical system
KR102059438B1 (en) Apparatus for generating variable structured-light and method for the same
CN216246133U (en) Structured light projection device, depth data measuring head and computing equipment
WO2022154160A1 (en) Camera module
WO1995025971A2 (en) Scanning apparatus and method
JP2024513936A (en) Depth data measurement head, calculation device and measurement method
WO2024035157A1 (en) Camera device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840101

Country of ref document: EP

Kind code of ref document: A1