EP2511394B1 - Gusseisen mit Niob und Bauteil - Google Patents

Gusseisen mit Niob und Bauteil Download PDF

Info

Publication number
EP2511394B1
EP2511394B1 EP11162635.4A EP11162635A EP2511394B1 EP 2511394 B1 EP2511394 B1 EP 2511394B1 EP 11162635 A EP11162635 A EP 11162635A EP 2511394 B1 EP2511394 B1 EP 2511394B1
Authority
EP
European Patent Office
Prior art keywords
weight
alloy according
niobium
cobalt
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11162635.4A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2511394A1 (de
Inventor
Susanne Michel
Lutz Dekker
Guido Günther
Babette Tonn
Mark Vierbaum
Stefan Janssen
Alfred Scholz
Shilun Sheng
Stefan Wanjura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Technische Universitaet Darmstadt
Technische Universitaet Clausthal
Friedrich Wilhelms Huette Eisenguss GmbH
Original Assignee
Siemens AG
Technische Universitaet Darmstadt
Technische Universitaet Clausthal
Friedrich Wilhelms Huette Eisenguss GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Technische Universitaet Darmstadt, Technische Universitaet Clausthal, Friedrich Wilhelms Huette Eisenguss GmbH filed Critical Siemens AG
Priority to EP11162635.4A priority Critical patent/EP2511394B1/de
Priority to PCT/EP2012/054941 priority patent/WO2012139864A1/de
Priority to US14/110,498 priority patent/US20140030133A1/en
Priority to RU2013150798/02A priority patent/RU2562175C2/ru
Priority to CN201280018595.2A priority patent/CN103517997A/zh
Publication of EP2511394A1 publication Critical patent/EP2511394A1/de
Application granted granted Critical
Publication of EP2511394B1 publication Critical patent/EP2511394B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion

Definitions

  • the invention relates to a cast iron with niobium according to claim 1 and a component according to claim 19.
  • GJS alloys nodular cast iron
  • Molybdenum also shows a very high tendency to increase.
  • the object is achieved by an alloy according to claim 1 and a component according to claim 19.
  • the invention is that cobalt and / or niobium can partially replace molybdenum.
  • the application limits, which have the previous GJS alloy can be overcome.
  • the iron-based alloy according to the invention has high elongations for the range of application in the temperature range of 450 ° C - 550 ° C and has the following composition (in wt .-%): Silicon (Si) 2.0% - 4.5%, Carbon (C) 2.9% - 4.0%, Niobium (Nb) 0.05% - 0.7%, Molybdenum (Mo) 0.3% - 1.5%, optional Cobalt (Co) 0.1% - 2.0%, Manganese (Mn) ⁇ 0.3%, Nickel (Ni) ⁇ 0.5%, Magnesium (Mg) ⁇ 0.07%, Phosphorus (P) ⁇ 0.05%, Sulfur (S) ⁇ 0.012%, Chrome (Cr) ⁇ 0.1%, Antimony (Sb) ⁇ 0.004%, Rest iron.
  • the proportion of silicon, cobalt, niobium and molybdenum is ⁇ 7.5% by weight, in particular ⁇ 6.5% by weight.
  • Niobium improves creep strength with consistently high LCF strength and good toughness.
  • Niobium causes a higher heat resistance due to the precipitation of finely distributed Nb carbides, whereby the application limits are shifted to high temperatures.
  • Cobalt causes a solid solution which positively influences the properties of the alloy at high temperatures and low stresses.
  • the proportion of cobalt in the alloy is between 0.5 wt% to 1.5 wt%.
  • magnesium By magnesium, the spherical formation of the graphite is obtained and magnesium is preferably present at least 0.03 wt .-%, a maximum of 0.07 wt .-%.
  • chromium (Cr) having at least 0.01% by weight but not more than 0.05% by weight, which increases the oxidation resistance.
  • the alloy can have further elements.
  • the alloy low minimum admixtures of Phosphorus (P) 0.05% by weight Sulfur (S) 0.001% by weight Magnesium (Mg) 0.01% by weight Antimony (Sb) Cerium (Ce) present, which have a positive influence on the castability and / or the formation of the spheroidal graphite, but may not be too high, otherwise outweigh the negative influences.
  • the component with the alloy shows an optimal ferritic microstructure with nodular graphite.
  • the table shows exemplary alloys of the invention having improved mechanical properties.
  • the alloy contains no vanadium (V) and / or titanium (Ti) and / or tantalum (Ta) and / or copper (Cu).
  • FIG. 1 a steam turbine 300, 303 is shown with a turbine shaft 309 extending along a rotation axis 306.
  • the steam turbine has a high-pressure turbine section 300 and a medium-pressure turbine section 303, each having an inner housing 312 and an outer housing 315 enclosing this.
  • the high-pressure turbine part 300 is designed, for example, in Topfbauart.
  • the medium-pressure turbine part 303 is designed, for example, double-flow. It is also possible for the medium-pressure turbine section 303 to be single-flow.
  • a bearing 318 is arranged between the high-pressure turbine section 300 and the medium-pressure turbine section 303, the turbine shaft 309 having a bearing region 321 in the bearing 318.
  • the turbine shaft 309 is supported on another bearing 324 adjacent to the high pressure turbine sub 300.
  • the high-pressure turbine section 300 has a shaft seal 345.
  • the turbine shaft 309 is sealed from the outer housing 315 of the medium-pressure turbine section 303 by two further shaft seals 345.
  • the turbine shaft 309 in the high-pressure turbine section 300 has the high-pressure impeller blade 357. This high-pressure blading 357, together with the associated blades, not shown, represents a first blading region 360.
  • the medium-pressure turbine part 303 has a central steam inflow region 333. Associated with the steam inflow region 333, the turbine shaft 309 has a radially symmetrical shaft shield 363, a cover plate, on the one hand for dividing the steam flow into the two flows of the medium-pressure turbine section 303 and for preventing direct contact of the hot steam with the turbine shaft 309.
  • the turbine shaft 309 has in the medium-pressure turbine section 303 a second blading area 366 with the medium-pressure blades 354 on. The hot steam flowing through the second blading area 366 flows out of the medium-pressure turbine section 303 from a discharge connection 369 to a downstream low-pressure turbine, not shown.
  • the turbine shaft 309 is composed for example of two partial turbine shafts 309a and 309b, which are fixedly connected to one another in the region of the bearing 318.
  • Each turbine shaft 309a, 309b has a cooling line 372 formed as a central bore 372a along the axis of rotation 306.
  • the cooling line 372 is connected to the steam outlet region 351 via an inflow line 375 having a radial bore 375a.
  • the coolant line 372 is connected to a cavity not shown below the shaft shield.
  • the feed lines 375 are configured as a radial bore 375a, allowing "cold" steam from the high pressure turbine section 300 to flow into the central bore 372a.
  • the vapor passes through the storage area 321 into the medium-pressure turbine section 303 and there to the mantle surface 330 of the turbine shaft 309 in the steam inflow area 333.
  • the steam flowing through the cooling line has a significantly lower temperature as the reheated steam flowing into the Dampfeinström Siemens 333, so that an effective cooling of the first blade rows 342 of the medium-pressure turbine section 303 and the mantle surface 330 is ensured in the region of these blade rows 342.
  • FIG. 2 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • an intake housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • annular annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal during operation of the gas turbine 100 Charges.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110. To withstand the prevailing temperatures, they can be cooled by means of a coolant.
  • substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • SX structure monocrystalline
  • DS structure longitudinal grains
  • iron-, nickel- or cobalt-based superalloys are used as the material for the components.
  • superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 are used as the material for the components.
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • a thermal barrier coating On the MCrAlX may still be present a thermal barrier coating, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • suitable coating processes such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.
  • the guide vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane foot opposite Guide vane head on.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
EP11162635.4A 2011-04-15 2011-04-15 Gusseisen mit Niob und Bauteil Active EP2511394B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11162635.4A EP2511394B1 (de) 2011-04-15 2011-04-15 Gusseisen mit Niob und Bauteil
PCT/EP2012/054941 WO2012139864A1 (de) 2011-04-15 2012-03-21 Gusseisen mit niob und bauteil
US14/110,498 US20140030133A1 (en) 2011-04-15 2012-03-21 Cast iron containing niobium and component
RU2013150798/02A RU2562175C2 (ru) 2011-04-15 2012-03-21 Чугун, содержащий ниобий, и конструктивный элемент
CN201280018595.2A CN103517997A (zh) 2011-04-15 2012-03-21 具有铌的铸铁和构件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11162635.4A EP2511394B1 (de) 2011-04-15 2011-04-15 Gusseisen mit Niob und Bauteil

Publications (2)

Publication Number Publication Date
EP2511394A1 EP2511394A1 (de) 2012-10-17
EP2511394B1 true EP2511394B1 (de) 2015-05-27

Family

ID=44477045

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11162635.4A Active EP2511394B1 (de) 2011-04-15 2011-04-15 Gusseisen mit Niob und Bauteil

Country Status (5)

Country Link
US (1) US20140030133A1 (ru)
EP (1) EP2511394B1 (ru)
CN (1) CN103517997A (ru)
RU (1) RU2562175C2 (ru)
WO (1) WO2012139864A1 (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217892A1 (de) * 2012-10-01 2014-05-15 Siemens Aktiengesellschaft Gusseisen mit Niob und Bauteil
JP6090905B2 (ja) * 2012-11-26 2017-03-08 株式会社日本製鋼所 高温延性と高温クリープ破断寿命に優れた球状黒鉛鋳鉄およびその製造方法
US9955462B2 (en) * 2014-09-26 2018-04-24 Qualcomm Incorporated Ultra-low latency LTE control data communication
US9980257B2 (en) 2014-09-26 2018-05-22 Qualcomm Incorporated Ultra-low latency LTE reference signal transmission
SE538682C2 (en) * 2014-10-27 2016-10-18 Scania Cv Ab A cast iron article with a corrosion resistant layer and a method of producing said article
CN104342594A (zh) * 2014-12-02 2015-02-11 江苏金洋机械有限公司 一种用于制备高铁扣件用铁垫板的合金
RU2629406C1 (ru) * 2016-12-13 2017-08-29 Юлия Алексеевна Щепочкина Чугун
CN108149142A (zh) * 2018-02-01 2018-06-12 广西超盛网络科技有限责任公司 一种耐腐蚀钢材及其制备方法
CN112626409A (zh) * 2020-12-15 2021-04-09 江苏泽茗精密机械制造股份有限公司 用于涡轮壳的耐高温蠕墨铸铁的制备工艺

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3411957A (en) * 1965-06-01 1968-11-19 Nisso Seiko Kabushiki Kaisha Method of manufacturing a cast iron roll
SU926057A1 (ru) * 1980-07-22 1982-05-07 Днепропетровский Тепловозоремонтный Завод Чугун
US5323883A (en) * 1988-09-20 1994-06-28 Nissan Motor Company, Limited Friction device
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
DE58908611D1 (de) 1989-08-10 1994-12-08 Siemens Ag Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile.
JP2898749B2 (ja) * 1990-07-04 1999-06-02 株式会社クボタ 高耐摩耗ロール材およびその製造法
JP3370676B2 (ja) 1994-10-14 2003-01-27 シーメンス アクチエンゲゼルシヤフト 腐食・酸化及び熱的過負荷に対して部材を保護するための保護層並びにその製造方法
EP1306454B1 (de) 2001-10-24 2004-10-06 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
DE50006694D1 (de) 1999-07-29 2004-07-08 Siemens Ag Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils
EP1319729B1 (de) 2001-12-13 2007-04-11 Siemens Aktiengesellschaft Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
JP2003221639A (ja) * 2002-01-31 2003-08-08 Aisin Takaoka Ltd タービンハウジング一体型排気マニホルド及びその製造方法
DE10309386B4 (de) * 2003-03-04 2005-02-24 Federal-Mogul Burscheid Gmbh Verfahren zur Herstellung eines Gusseisenwerkstoffes mit gezieltem Restkarbidanteil
EP1652949A4 (en) * 2003-07-18 2008-06-25 Hitachi Metals Ltd AUSTENITIC HEAT-RESISTANT BALL GRAPHITE CAST IRON
DE102004040055A1 (de) * 2004-08-18 2006-03-02 Federal-Mogul Burscheid Gmbh Gusseisenwerkstoff für Kolbenringe
EP1877593A2 (en) * 2005-05-05 2008-01-16 Wescast Industries, Inc. Cast iron with improved high temperature properties
WO2007040464A1 (en) * 2005-09-15 2007-04-12 Grede Foundries, Inc. High silicon niobium casting alloy and process for producing the same
EP1808504A1 (de) * 2006-01-16 2007-07-18 Siemens Aktiengesellschaft Gusseisen mit Kobalt und Bauteil und seine Verwendung in Dampfturbinen
RU2327773C2 (ru) * 2006-06-13 2008-06-27 Юлия Алексеевна Щепочкина Чугун
US7846381B2 (en) * 2008-01-29 2010-12-07 Aarrowcast, Inc. Ferritic ductile cast iron alloys having high carbon content, high silicon content, low nickel content and formed without annealing
DE102008051042A1 (de) * 2008-10-09 2010-04-15 Siemens Aktiengesellschaft Gusseisen mit Kobalt und Bauteil

Also Published As

Publication number Publication date
CN103517997A (zh) 2014-01-15
US20140030133A1 (en) 2014-01-30
RU2562175C2 (ru) 2015-09-10
WO2012139864A1 (de) 2012-10-18
EP2511394A1 (de) 2012-10-17
RU2013150798A (ru) 2015-05-20

Similar Documents

Publication Publication Date Title
EP2511394B1 (de) Gusseisen mit Niob und Bauteil
EP1974068B1 (de) Gusseisen mit kobalt und bauteil
DE112009002015B4 (de) Turbolader und Schaufellagerring hierfür
DE112009002014B4 (de) Turbolader und Verstellschaufel hierfür
DE112012001661T5 (de) Austenitische Eisenbasislegierung, Turbolader und Bauteil daraus
EP2712943A2 (de) Gusseisen mit Niob und Bauteil
EP2432905B1 (de) Ferritisch martensitische eisenbasislegierung, ein bauteil und ein verfahren
WO2006133980A1 (de) Schichtsystem für ein bauteil mit wärmedämmschicht und metallischer erosionsschutzschicht, verfahren zur herstellung und verfahren zum betreiben einer dampfturbine
EP1696108A1 (en) Heat resistant alloy for exhaust valves durable at 900°C and exhaust valves made for the alloy
DE69821493T2 (de) Verwendung eines hitzebeständigen Gussstahles für Bauteile von Turbinengehäuse n
DE112012003677T5 (de) Turbolader und ein Bauteil hierfür
WO2010040606A1 (de) Sphärogusseisen mit kobalt
DE112012001811T5 (de) Turbolader und Bauteil hierfür
EP2749663B1 (en) Heat-resisting steel for exhaust valves
DE112009002017T5 (de) Turbolader und Aufnahmeschiebe hierfür
DE112009002021T5 (de) Turbolader und Verstellring hierfür
WO2011047714A1 (de) Legierung zur gerichteten erstarrung und bauteil aus stängelförmigen kristallen
EP1692322B1 (de) Metallische schutzschicht
JPH05239590A (ja) 耐摩耗性に優れた鋼
DE102020213539A1 (de) Legierung, Rohteil, Bauteil aus Austenit sowie ein Verfahren
DE102020213394A1 (de) Martensitischer Stahl mit Z-Phase, Pulver sowie Rohteil oder Bauteil
DE102021124859A1 (de) Verfahren zur herstellung und entsprechend hergestelltes bauteil aus einer nickelbasissuperlegierung für den heissgaskanal einer strömungsmaschine
DE112020007281T5 (de) Düsenkomponente, variabler düsenmechanismus eines turboladers mit variabler geometrie, turbolader mit variabler geometrie und verfahren zur herstellung einer düsenkomponente
JP6289873B2 (ja) 析出強化型フェライト系耐熱鋼、該耐熱鋼を用いたタービン高温部材、および該タービン高温部材を用いたタービン
KR20200009434A (ko) 상온 및 고온 강도가 우수한 오스테나이트강

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

Owner name: TECHNISCHE UNIVERSITAET CLAUSTHAL

Owner name: FRIEDRICH WILHELMS-HUETTE EISENGUSS GMBH

Owner name: TECHNISCHE UNIVERSITAET DARMSTADT

17P Request for examination filed

Effective date: 20130206

17Q First examination report despatched

Effective date: 20140424

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 728919

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011006922

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150928

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150827

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150828

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150827

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150527

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011006922

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

26N No opposition filed

Effective date: 20160301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011006922

Country of ref document: DE

Representative=s name: MAIER, DANIEL OLIVER, DIPL.-ING. UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011006922

Country of ref document: DE

Owner name: FRIEDRICH WILHELMS-HUETTE EISENGUSS GMBH, DE

Free format text: FORMER OWNERS: FRIEDRICH WILHELMS-HUETTE EISENGUSS GMBH, 45473 MUELHEIM, DE; SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE; TECHNISCHE UNIVERSITAET CLAUSTHAL, 38678 CLAUSTHAL-ZELLERFELD, DE; TECHNISCHE UNIVERSITAET DARMSTADT, 64289 DARMSTADT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011006922

Country of ref document: DE

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Free format text: FORMER OWNERS: FRIEDRICH WILHELMS-HUETTE EISENGUSS GMBH, 45473 MUELHEIM, DE; SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE; TECHNISCHE UNIVERSITAET CLAUSTHAL, 38678 CLAUSTHAL-ZELLERFELD, DE; TECHNISCHE UNIVERSITAET DARMSTADT, 64289 DARMSTADT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011006922

Country of ref document: DE

Owner name: TECHNISCHE UNIVERSITAET CLAUSTHAL, DE

Free format text: FORMER OWNERS: FRIEDRICH WILHELMS-HUETTE EISENGUSS GMBH, 45473 MUELHEIM, DE; SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE; TECHNISCHE UNIVERSITAET CLAUSTHAL, 38678 CLAUSTHAL-ZELLERFELD, DE; TECHNISCHE UNIVERSITAET DARMSTADT, 64289 DARMSTADT, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUEA

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Effective date: 20170208

Ref country code: FR

Ref legal event code: TQ

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Effective date: 20170208

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160415

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 728919

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170622 AND 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160415

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110415

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220421

Year of fee payment: 12

Ref country code: GB

Payment date: 20220520

Year of fee payment: 12

Ref country code: FR

Payment date: 20220414

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220825 AND 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220708

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220617

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230415

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230415