EP2506666B1 - Cooking device - Google Patents

Cooking device Download PDF

Info

Publication number
EP2506666B1
EP2506666B1 EP12158449.4A EP12158449A EP2506666B1 EP 2506666 B1 EP2506666 B1 EP 2506666B1 EP 12158449 A EP12158449 A EP 12158449A EP 2506666 B1 EP2506666 B1 EP 2506666B1
Authority
EP
European Patent Office
Prior art keywords
control
heating frequency
heating
frequency units
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12158449.4A
Other languages
German (de)
French (fr)
Other versions
EP2506666A1 (en
Inventor
José Miguel Burdio Pinilla
Ignacio Garde Aranda
Oscar Lucia Gil
Daniel Palacios Tomas
Ramon Peinado Adiego
David Valeau Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Publication of EP2506666A1 publication Critical patent/EP2506666A1/en
Application granted granted Critical
Publication of EP2506666B1 publication Critical patent/EP2506666B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • H05B6/065Control, e.g. of temperature, of power for cooking plates or the like using coordinated control of multiple induction coils

Definitions

  • the invention relates to a cooking device according to the preamble of claim 1.
  • the publication EP 1 951 003 A1 discloses an induction hob with at least two heating frequency units which are operated according to a specific method in order to at least largely avoid intermodulation noises. According to this method, both heating frequency units are operated with an identical and fixed first frequency in a first time interval. In a second time interval, one heating frequency unit is switched off, while the other heating frequency unit is operated with a fixed second frequency. The two frequencies and the relative lengths of the two time intervals are adjusted so that an average output power of each heating frequency unit corresponds to a heating power selected by an operator. At the same time flicker is minimized.
  • the publication WO 2006/117182 A1 discloses an induction hob.
  • the induction coils of the induction hob are operated either with the same frequency or with a frequency difference of approximately 18 kHz.
  • the object of the invention is, in particular, to provide a generic cooking appliance device which enables an advantageously flexible setting of an average output power and simple scalability to a large number of heating frequency units.
  • the object is achieved according to the invention by the features of patent claim 1 and method claim 9, while advantageous refinements and developments of the invention can be found in the subclaims.
  • the invention is based on a cooking device with at least one first and at least one second heating frequency unit and with at least one control unit which is provided for this purpose, the at least two heating frequency units to operate periodically together with a period and to divide the period into at least two time intervals.
  • control unit be provided for selecting a control type from a catalog of control types for each of the at least two time intervals.
  • the cooking appliance device is preferably designed as a hob device and particularly advantageously as an induction hob device. “Provided” is to be understood in particular to be specially programmed and / or designed and / or equipped.
  • the fact that the control unit is intended to "subdivide the period into at least two time intervals" should in particular mean that the control unit defines at least one overlap-free time interval in at least one operating state within the period. A sum of the lengths of the at least two time intervals is preferably equal to the period.
  • heating frequency unit is to be understood in particular to mean an electrical unit which generates an oscillating electrical current, preferably with a frequency of at least 15 kHz, in particular at least 17 kHz and advantageously at least 20 kHz, for operating at least one heating unit.
  • a “heating unit” is to be understood in particular as a unit which is intended to convert at least a large part of electrical energy into heat and thus in particular to heat a food to be cooked.
  • the heating unit comprises a radiant heater, a resistance heater and / or preferably an induction heater, which is provided for converting electrical energy into heat indirectly via induced eddy currents.
  • the heating frequency unit comprises in particular at least one inverter, which preferably comprises two switching units.
  • a “switching unit” is to be understood in particular as a unit which is intended to interrupt a line path comprising at least part of the switching unit.
  • the switching unit is preferably a bidirectional unipolar switch which, in particular, enables current to flow through the switch along the line path in both directions and which in particular shorts an electrical voltage in at least one polarity direction.
  • the inverter comprises at least two bipolar transistors with an insulated gate electrode and, particularly advantageously, at least one damping capacitor.
  • a “line path” is to be understood in particular as an electrically conductive conductor piece between two points.
  • Electrode conductive is to be understood in particular to mean a specific electrical resistance of at most 10 -4 ⁇ m, in particular of at most 10 -5 ⁇ m, advantageously of at most 10 -6 ⁇ m and particularly advantageously of at most 10 -7 ⁇ m at 20 ° C.
  • a “control unit” is to be understood in particular to mean an electronic unit which is preferably at least partially integrated in a control and / or regulating unit of a cooking appliance, in particular an induction hob, and which preferably has a computing unit and in particular, in addition to the computing unit, a storage unit with one stored therein Control program includes.
  • the control unit is preferably provided at least to control and / or regulate the heating frequency units with the aid of control signals and preferably electrical control signals.
  • a “control signal” is to be understood in particular as a signal which triggers a switching process of a heating frequency unit, in particular also indirectly, in at least one operating state.
  • An “electrical control signal” is to be understood in particular as a control signal with an electrical potential of at most 30 V, preferably of at most 20 V, particularly advantageously of at most 10 V and in particular of at least 5 V in relation to a reference potential.
  • the control signal preferably has a periodicity, at least temporarily, in particular with a period of at most 1 ms, in particular of at most 0.1 ms and advantageously of at most 0.05 ms.
  • the control signal is particularly advantageously at least essentially a square-wave signal, which in particular has two discrete values, preferably a switch-on value and a switch-off value. Each of the two values preferably corresponds to a switching position of the heating frequency units and, in particular, their inverters. Under a "frequency" of a heating frequency unit should in particular the frequency of the control signal controlling the heating frequency unit can be understood.
  • control unit is intended to "select a control type from a catalog of control types" for each of the at least two time intervals is to be understood in particular to mean that the control unit is intended to be active and dependent on given framework conditions for the at least two time intervals Select combination of control types.
  • the general conditions can be any general conditions that appear reasonable to a person skilled in the art, but preferably selected target powers for the at least two heating frequency units, curves of the power-frequency curves for a given system of cookware and heating unit, or a specification for minimization Flicker and / or a requirement to minimize a fluctuation in the output power of the heating frequency units.
  • flicker is to be understood in particular as a subjective impression of an instability of a visual perception, which is caused in particular by a light stimulus, the luminance and / or spectral distribution of which fluctuates over time.
  • flicker can be caused by a voltage drop in a mains voltage.
  • a “type of control” is to be understood as a type of control of the at least two heating frequency units by the control unit in a time interval, two different types of control being delimited by the fact that the two types of control have a different number of operated heating frequency units and / or a different number of frequencies used and / or differ by at least one type of calculation and preferably a frequency-independent type of calculation, by means of which at least one frequency used for the control type results from another frequency used for the control type.
  • a "used frequency" of a control type is to be understood in particular as a numerical value of a frequency used in the control type, with zero likewise is to be regarded as a numerical value.
  • a “type of calculation” is to be understood in particular to mean a type of calculation using at least one mathematical operator, the type of calculation being defined exclusively by the at least one mathematical operator and in particular its arrangement with further mathematical operators. In particular, when distinguishing between two types of calculation, numerical values of constants should be irrelevant.
  • the type of calculation is preferably a "simple type of calculation” which in particular has exactly one mathematical operator, such as in particular an addition operator.
  • the type of calculation is preferably an addition of a frequency-independent constant, an exact numerical value of the constant being irrelevant.
  • the fact that a heating frequency unit is “operated” is to be understood in particular to mean that the frequency of the heating frequency unit is different from zero in the relevant time interval.
  • Intermodulation noise is to be understood in particular to mean noises whose frequency spectra have at least a non-zero component with a frequency of less than 18 kHz, in particular less than 17 kHz, preferably less than 16 kHz and particularly advantageously less than 15 kHz.
  • one type of control allows the at least two heating frequency units to be operated jointly "while at least largely avoiding intermodulation noises" is to be understood in particular to mean that when the at least two heating frequency units are operated together according to the type of control, intermodulation noises are at a distance of 1 m from the cooking device device Sound pressure levels of at most 20 dB, in particular of at most 10 dB, preferably of at most 5 dB and particularly advantageously of at most 0 dB.
  • the intermodulation noises are then preferably inaudible by an operator with average hearing.
  • a "catalog of control types" is to be understood in particular as a collection of different control types. As control types come all control types that appear to be useful to a specialist are considered.
  • the catalog of control types preferably includes a control type in which all heating frequency units are operated with the same, non-zero frequency.
  • the control types catalog preferably includes a control type in which all heating frequency units are switched off.
  • the catalog of control types preferably includes control types in which at least one heating frequency unit is switched off and the other heating frequency units are operated at the same frequency.
  • the catalog of control types preferably includes control types in which all heating frequency units are operated and a difference between frequencies of any two heating frequency units is zero or at least 15 kHz, in particular at least 16 kHz, preferably at least 17 kHz and particularly advantageously at least 18 kHz.
  • the catalog of control types preferably includes control types in which at least one heating frequency unit is switched off and a difference between frequencies of any two operated heating frequency units is zero or at least 15 kHz, in particular at least 16 kHz, preferably at least 17 kHz and particularly advantageously at least 18 kHz.
  • the fact that a heating frequency unit is “switched off” in a time interval should in particular be understood to mean that the heating frequency unit has at least essentially a negligibly low output power in the relevant time interval.
  • An “output power that is at least essentially vanishing in the relevant time interval” is to be understood in particular to mean an output power that is at most 50 W, in particular at most 25 W, preferably at most 10 W and particularly advantageously 0 W and / or in the time interval exclusively during a period of time is given, which corresponds to at most 50%, in particular at most 25%, preferably at most 15% and particularly advantageously at most 10% of a length of the time interval.
  • An “output power” of one of the at least two heating frequency units is to be understood in particular to mean a power which is supplied by the heating frequency unit in at least one heating operating state.
  • Such a configuration enables an advantageously flexible setting of an average output power to be achieved. Furthermore, simple scalability to a large number of heating frequency units can be made possible.
  • control unit be provided to select those control types for the at least two time intervals that allow the at least two heating frequency units to be operated with as little fluctuations as possible in a total output power of the at least two heating frequency units and / or a respective output power of the at least one enable two heating frequency units.
  • a “total output power” of the at least two heating frequency units is to be understood in particular as a sum of the output powers of the at least two heating frequency units.
  • control unit is intended to select those control types which enable the at least two heating frequency units to be operated “with as little fluctuations as possible in a respective output power” is to be understood in particular as meaning that it is provided to select those control types in which the greatest maximum fluctuation the output power of the at least two heating frequency units is minimal.
  • the control unit is preferably provided to consider those control types for the at least two time intervals for which the total output power is at least largely constant and to select from these control types those which enable the at least two heating frequency units to be operated with the smallest possible fluctuations in a respective output power.
  • an “total output power is at least largely constant” should be understood in particular to mean that the total output power in at least one operating state has a relative temporal fluctuation which is smaller than that caused by legal requirements and / or standards, in particular by the standard DIN EN 61000- 3-3 specified flicker limit. In this way, ease of use can advantageously be increased, since an at least largely uniform power output can be achieved and flicker can be minimized.
  • the control unit be provided to determine, according to the selected control types, frequencies of control signals of the at least two heating frequency units for each of the at least two time intervals while keeping a total output power of the at least two heating frequency units constant over time.
  • the fact that the control unit is intended to determine the frequencies of the control signals "while at least largely maintaining a constant total output power" means that the control unit specifies the frequencies of the heating frequency units in at least one operating state such that the total output power has a relative temporal Fluctuation that is smaller than a flicker limit determined by legal requirements and / or standards, in particular by the standard DIN EN 61000-3-3. This advantageously allows flicker to be minimized.
  • control unit be provided to adapt average output powers of the at least two heating frequency units to selected target powers.
  • a “mean output power” is to be understood in particular as a time-averaged output power.
  • a relative deviation of the average output power set by the control unit from the target power should be at most 10%, preferably at most 5% and particularly advantageously at most 1%.
  • a high level of operating convenience can be achieved in this way.
  • the mean output power of one of the at least two heating frequency units is preferably always less than or equal to the target power of the corresponding heating frequency unit. In this way, unsafe operating states can be avoided.
  • the control unit is advantageously provided for adapting the mean output powers of the at least two heating frequency units by adapting the at least two time intervals, in particular while keeping the previously determined frequencies constant. In this way, an advantageously high level of operating comfort can be achieved, since on the one hand minimizes flicker and on the other hand, an average output power adapted to the target power can be provided.
  • control unit be provided to control and / or regulate the at least two heating frequency units each by means of a control signal and to adapt a duty cycle of at least one of the control signals in at least one operating state.
  • a “duty cycle” is to be understood in particular as a ratio of a time period in which the control signal assumes the switch-on value within a period to the period of the control signal.
  • one of the heating frequency units can preferably be changed by changing the duty cycle, an output power of the heating frequency unit.
  • control unit is intended to “adapt a duty cycle of at least one of the control signals” is to be understood in particular to mean that the control unit is intended to change the duty cycle of at least one of the control signals in order to thereby change an output power at a fixed level To reach the frequency of a heating frequency unit. This can advantageously further increase flexibility in setting the average output powers of the at least two heating frequency units.
  • control unit be provided to subdivide the period into a number of time intervals which corresponds to a number of heating frequency units to be operated simultaneously.
  • the time intervals preferably follow one another directly, so that a sum of lengths of the time intervals corresponds to the period.
  • a “matrix cooktop” is to be understood in particular as a cooktop in which heating units are arranged in a regular grid under a cooktop plate, and an area of the cooktop plate that can be heated by means of the heating units is preferably at least 60%, in particular at least 70%, advantageously at least 80% and particularly advantageously at least 90% of a total surface of the hob plate.
  • the matrix hob comprises at least 10, in particular at least 20, advantageously at least 30 and particularly advantageously at least 40 heating units.
  • the control unit is advantageously provided for determining power-frequency curves for different duty cycles of a control signal of the at least two heating frequency units.
  • a “power-frequency curve” is to be understood in particular as a functional relationship which is specific to each combination of cookware and a heating unit and which is dependent on the duty cycle and which clearly assigns an output power to each frequency at a given duty cycle.
  • the fact that the control unit is intended to “determine power-frequency curves for different duty cycles of a control signal of the at least two heating frequency units” should in particular be understood to mean that the control unit briefly operates one of the at least two heating frequency units with different frequencies in at least one operating state and reads the output power of the at least one heating frequency unit from a measuring unit for each of these frequencies. This enables an advantageously precise heating operation.
  • a method with a cooking device with at least a first and at least a second heating frequency unit in particular according to one of the preceding claims, is proposed, in which the heating frequency units are operated periodically together with a period and the period is divided into at least two time intervals, each for a control type is selected from a catalog of control types in order to minimize intermodulation noises at least two time intervals.
  • the hob is preferably an induction hob.
  • the hob can also be a matrix hob and particularly advantageously a matrix induction hob.
  • a “matrix induction hob” is to be understood in particular as a matrix hob which has at least one heating unit comprising an induction heating element.
  • FIG 1 shows a cooking device designed as an induction hob 16a.
  • the induction hob 16a comprises a hob 18a, in particular made of a glass ceramic, on which two heating zones 20a, 22a are marked in a known manner.
  • the hob 18a is arranged horizontally and is provided for setting up cooking utensils.
  • touch-sensitive operating elements 26a and display elements 28a of an operating and display unit 30a of the induction hob 16a are marked on the hob 18a in a known manner.
  • the induction hob 16a further comprises a cooking appliance device with a first and a second heating frequency unit 10a, 12a arranged below the hob plate 18a and with a control unit 14a arranged below the hob plate 18a.
  • a cooking appliance device with a first and a second heating frequency unit 10a, 12a arranged below the hob plate 18a and with a control unit 14a arranged below the hob plate 18a.
  • Components which are arranged below the hob plate 18a are shown schematically and in broken lines, functional relationships being indicated by arrows.
  • the control unit 14a is integrated in a control and regulating unit 32a of the induction hob 16a.
  • An induction heating unit assigned to the heating zone 20a and arranged below it is supplied with energy by the first heating frequency unit 10a.
  • An induction heating unit assigned to the heating zone 22a and arranged below it is supplied with energy by the second heating frequency unit 12a.
  • An operator can use the control and display unit 30a to select a heating level for each of the heating zones 20a, 22a, which in each case results in a target power P obj1 , P obj2 for the two heating frequency units 10a, 12a.
  • the control unit 14a is for this It is provided to adapt a respective average output power P ave1 , P ave2 of the heating frequency units 10a, 12a to the target powers P obj1 , P obj2 while largely avoiding intermodulation noises, so that the selected heating levels of the heating zones 20a, 22a can be achieved.
  • the control unit 14a is provided to minimize an overall output power difference F.
  • P 1 (t) denote the output power of the first heating frequency unit 10a at time t and P 2 (t) the output power of the second heating frequency unit 12a at time t.
  • the control unit 14a controls the first heating frequency unit 10a by means of a control signal V 1 (t) and the second heating frequency unit 12a by means of a control signal V 2 (t).
  • FIG 2 shows an example of a non-scale control signal V 1 (t) of the first heating frequency unit 10a in a Cartesian coordinate system.
  • a control voltage V 1 is plotted on an ordinate axis 36 and a time t on an abscissa axis 38.
  • the control signal V 1 (t) is a square wave signal with a switch-on value Vo, a switch-off value of 0 volts and a frequency of f 1A during a first time interval T A of a period T.
  • the switch-on value Vo is held during a switch-on time t 0A .
  • the period of the square wave signal T 0A In the first time interval T A , the period of the square wave signal T 0A .
  • the switch-off value is held for a period of (T 0A - t 0A ).
  • the frequency f 1A of the control signal V 1 (t) is calculated from a reciprocal of the period T 0A .
  • the frequency f 1A is usually between 20 kHz and 100 kHz.
  • a duty cycle D 1A of the control signal V 1 (t) in the first time interval T A is calculated from a quotient of the switch-on time t 0A divided by the period T 0A .
  • the control signal V 1 (t) is also on during a second time interval T B of a period T Square wave signal with switch-on value V 0 and switch-off value of 0 volt.
  • a frequency is f 1B .
  • the switch-on value Vo is held during a switch-on time t 0B .
  • a period of the square wave signal T 0B In the second time interval T B , a period of the square wave signal T 0B .
  • the switch-off value is held for a period of (T 0B - t 0B ).
  • the frequency f 1B of the control signal V 1 (t) is calculated from a reciprocal of the period T 0B .
  • the frequency f 1B is usually between 20 kHz and 100 kHz.
  • a duty cycle D 1B of the control signal V 1 (t) in the second time interval T B is calculated from a quotient of the switch-on time T 0B divided by the period T 0B .
  • a time x separates the first time interval T A and the second time interval T B.
  • the control signal V 1 (t) is repeated.
  • a first of two switching units of the first heating frequency unit 10a is periodically switched in accordance with a periodic change in the switch-on value V 0 and the switch-off value.
  • a second switching unit of the first heating frequency unit 10a is periodically switched in an analog, but time-shifted manner, so that a high-frequency alternating current is produced to operate the induction heating unit assigned to the heating zone 20a.
  • control unit 14a It is the job of the control unit 14a, from this catalog of control types (f 1X , f 2X ) for each of the two time intervals T A and T B a suitable control type (f 1X , f 2X ) and the heating frequency units 10a, 12a according to this control type (f 1X , f 2X ) to operate together so that the average output power P ave1 , P ave2 of each heating frequency unit 10a, 12a corresponds to its target power P obj1 , P obj2 .
  • the control unit 14a first checks whether cookware suitable for inductive heating is placed on the heating zones 20a, 22a of the hob plate 18a. If this is the case, the control unit 14a determines in a next step for different duty cycles d j power-frequency curves P 1 (f, d j ), P 2 (f, d j ) of a given combination of induction heating unit and cookware.
  • the control unit 14a selects a catalog of types of control (f 1X, 2X f) for each of the two time intervals T A, T B, a control mode (f 1X, 2X f), so that with an appropriate choice of the frequencies f 1 A, f 2A , f 1B , f 2B and of duty cycles D 1A , D 2A , D 1B , D 2B, the smallest possible fluctuations in the total output power P 1 + P 2 of the two heating frequency units 10a, 12a and a respective output power P 1 , P 2 of the at least two heating frequency units 10 , 12 occur.
  • the control unit 14a considered all types of control (f 1X , f 2X ) for which the total output power difference F during the transition from the first time interval T A to the second time interval T B with a corresponding choice of the frequencies f 1A , f 2A , f 1B , f 2B and of duty cycles D 1A , D 2A , D 1B , D 2B is smaller than a flicker limit value G defined by the standard DIN EN 61000-3-3: P 1 t A + P 2nd t A - P obj 1 - P obj 2nd ⁇ G and P 1 t B + P 2nd t B - P obj 1 - P obj 2nd ⁇ G , where t A and t B a desired time within the time interval T A and T B indicates.
  • Additional limit values apply for the frequencies f 1A , f 2A , f 1B , f 2B .
  • the curve-specific minimum frequency f min1 and f min2 and thus a maximum achievable output power P 1 , P 2 for each heating frequency unit 10a, 12a.
  • the common maximum frequency f max given by electronic restrictions and thus an output power P 1 , P 2 that can be attained minimally in continuous operation for each heating frequency unit 10 a, 12 a.
  • the valid frequency range is limited as follows: f min 1 / 2nd ⁇ f 1 ⁇ A , f 2nd ⁇ A , f 1 ⁇ B , f 2 B ⁇ f Max .
  • control unit 14a selects the control unit 14a for the common operation of the Wienfrequenzumbleen 10a, 12a finally that of control (f 1X, 2X f) for which a maximum variation of the output power P 1, P 2 of each Heating frequency unit 10a, 12a is minimal.
  • the control unit 14a determines the lengths of the time intervals T A and T B in such a way that the average output power of each heating frequency unit 10a, 12a corresponds to the respective target power P obj1 , P obj2 :
  • control unit 14a has determined two combinations of control types (f 1X , f 2X ) for predetermined target powers P obj1 , P obj2 , which when transitioning from the first time interval T A to the second time interval T B with a corresponding choice of the frequencies f 1A , f 2A , f 1B , f 2B and duty cycles D 1A , D 2A , D 1B , D 2B have a total output power difference F which is smaller than the flicker limit value G.
  • FIG. 3a In a Cartesian coordinate system, for example, two power-frequency curves P 1 (f) and P 2 (f), which are not to scale, for the first combination of control types (f 1X , f 2X ).
  • Output powers P 1 and P 2 of the heating frequency units 10a, 12a are plotted on an ordinate axis 42.
  • the frequency f is plotted on an abscissa axis 44.
  • the target powers P obj1 and P obj2 of the heating frequency units 10a, 12a are set by an operator.
  • the target powers P obj1 , P obj2 are assigned target frequencies f obj1 , f obj2 .
  • the second heating frequency unit 12a has the highest target frequency f obj2 .
  • the first heating frequency unit 10a is operated by the control unit 14a in the first time interval T A with a frequency f 1A lower by 18 kHz. Since the output power P 1 of the first heating frequency unit 10a at the frequency f 1A exceeds the target power P obj1 of the first heating frequency unit 10a, the first heating frequency unit 10a is switched off in the second time interval T B.
  • the types of control used here (f 1X , f 2X ) for the time intervals T A , T B are therefore as follows: In the first time interval T A , the two heating frequency units 10a, 12a are operated with a frequency difference k of 18 kHz (4). In the second time interval T B , one of the heating frequency units 10a is switched off (2).
  • Figure 3b shows, in a Cartesian coordinate system, two power-time curves P 1 (t) and P 2 (t), which are not to scale, for the first combination of control types Figure 3a .
  • the output powers are on an ordinate axis 46 P 1 and P 2 of the heating frequency units 10a, 12a are plotted.
  • Time t is plotted on an abscissa axis 48.
  • An in Figure 3b The illustrated course of the power-time curves P 1 (t) and P 2 (t) is run through periodically with the period T in a heating operating state of the heating frequency units 10a, 12a.
  • the calculation of the lengths of the time intervals T A and T B of the period T by the control unit 14a is carried out as previously described.
  • the output power P 1 of the first heating frequency unit 10a is plotted on an ordinate axis 50.
  • the frequency f is plotted on an abscissa axis 52.
  • the control unit 14a can adjust the output power P 1 of the first heating frequency unit 10a.
  • a reduction in the output power P 1 at a fixed frequency f 1A of the first heating frequency unit 10a can be achieved.
  • Figure 3d shows in two Cartesian coordinate systems, for example, two not to scale total power-time curves for the first combination of control types Figure 3a .
  • the sum of the output powers P 1 + P 2 of the heating frequency units 10a, 12a is plotted on an ordinate axis 54.
  • the time t during three period durations T is plotted on an abscissa axis 56.
  • the top of the two coordinate systems Figure 3d shows a case in which the duty cycle D 1A of the first heating frequency unit 10a has a value d 1 .
  • the frequency f 1A then results in an output power P 1 of the first heating frequency unit 10a of P 1 (f 1A , d 1 ).
  • FIG. 3d shows a case in which the duty cycle D 1A of the first heating frequency unit 10a has a value d n which is smaller than d 1 .
  • the frequency f 1A then results in an output power P 1 of the first heating frequency unit 10a of P 1 (f 1A , d n ) which is smaller than the output power P 1 (f 1A , d 1 ).
  • the output power difference F can be reduced by choosing a smaller duty cycle D 1A .
  • the control unit 14a uses this fact to minimize the total output power difference F below the flicker limit G.
  • Figure 4a shows in a Cartesian coordinate system, for example, two non-scale power-frequency curves P 1 (f) and P 2 (f) for the second combination of control types.
  • the output powers P 1 and P 2 of the heating frequency units 10a, 12a are plotted on an ordinate axis 58.
  • the frequency f is plotted on an abscissa axis 60.
  • the target powers P obj1 and P obj2 of the heating frequency units 10a, 12a are set by an operator.
  • the first heating frequency unit 10a is operated with a frequency f 1A and the second heating frequency unit 12a with a frequency f 2A .
  • the first heating frequency unit 10a is operated with a frequency f 1B and the second heating frequency unit 12a with a frequency f 2B .
  • the frequencies f 1A and f 2A as well as f 1B and f 2B each form a set of frequencies (f 1A , f 2A ), (f 1B , f 2B ), the two frequencies of a set of frequencies (f 1A , f 2A ), (f 1B , f 2B ) by 18 kHz.
  • the type of control used here (f 1X , f 2X ) is identical in both time intervals: the two heating frequency units 10a, 12a are operated in the time interval T X with a frequency difference k of 18 kHz (4). Even if the same type of control is used in both time intervals T A , T B, the frequencies f 1A , f 2A , f 1B , f 2B used differ.
  • Figure 4b shows in a Cartesian coordinate system, for example, two non-scale power-time curves P 1 (t) and P 2 (t) for the second combination of control types Figure 4a .
  • the output powers P 1 and P 2 of the heating frequency units 10a, 12a are plotted on an ordinate axis 62.
  • the time t is plotted on an abscissa axis 64.
  • An in Figure 4b The illustrated course of the power-time curves P 1 (t) and P 2 (t) is run through periodically with the period T in a heating operating state of the heating frequency units 10a, 12a.
  • the first heating frequency unit 10a is operated in the first time interval T A with a greater output power P 1 than in the second time interval T B.
  • the second heating frequency unit 12a is operated in the first time interval T A with a smaller output power P 2 than in the second time interval T B.
  • the total output power P 1 + P 2 is constant over time and is identical to the sum of the target powers P obj1 + P obj2 .
  • the control unit 14a selects the second combination of control types (f 1X , f 2X ) for the joint operation of the two heating frequency units 10a, 12a.
  • FIG. 5 Another embodiment of the invention is shown.
  • the following descriptions are essentially limited to the differences between the exemplary embodiments, with the components, features and functions remaining the same as the description of the other exemplary embodiment, in particular the one Figures 1, 2 , 3a-d and 4a-b , can be referenced.
  • the letter a is in the reference numerals of the exemplary embodiment in the Figures 1, 2 , 3a-d and 4a-b by the letter b in the reference numerals of the embodiment of the Figure 5 replaced.
  • control unit 14b selects the control unit 14b for each time interval T X a of control (f 1X, f 2X, ..., NX f) from a catalog of types of control (f 1X, f 2X, ..., NX F).
  • control types (f 1X , f 2X , ..., f NX ) marked with (2) are actually N control types (f 1X , f 2X , ..., f NX ), since the number of switched-off heating frequency units 10b, 12b represents a distinguishing feature of two different control types (f 1X , f 2X , ..., f NX ). Furthermore, the control types (f 1X , f 2X , ..., f NX ) marked with (3) are also several control types (f 1Xx , f 2X , ..., f NX ).
  • ... P aveN P N t A ⁇ T A / T + P N t B ⁇ T B / T + ...
  • a storage unit can be provided in both exemplary embodiments, in which characteristic power-frequency curves P n (f, d j ) for various typical combinations of cooking utensils and induction heating elements are stored. Storage is then preferably carried out by a manufacturer before delivery of a corresponding induction hob. This makes it possible to dispense with measuring the power-frequency curves P n (f, d j ) before starting heating operation.

Description

Die Erfindung geht aus von einer Gargerätevorrichtung nach dem Oberbegriff des Anspruchs 1.The invention relates to a cooking device according to the preamble of claim 1.

Die Druckschrift EP 1 951 003 A1 offenbart ein Induktionskochfeld mit zumindest zwei Heizfrequenzeinheiten, die gemäß einem bestimmten Verfahren betrieben werden um Intermodulationsgeräusche zumindest weitgehend zu vermeiden. Nach diesem Verfahren werden in einem ersten Zeitintervall beide Heizfrequenzeinheiten mit einer identischen und festen ersten Frequenz betrieben. In einem zweiten Zeitintervall wird eine Heizfrequenzeinheit abgeschaltet, während die andere Heizfrequenzeinheit mit einer festen zweiten Frequenz betrieben wird. Die beiden Frequenzen sowie die relativen Längen der beiden Zeitintervalle werden so angepasst, dass eine mittlere Ausgangsleistung jeder Heizfrequenzeinheit einer von einem Bediener gewählten Heizleistung entspricht. Gleichzeitig wird Flicker minimiert.The publication EP 1 951 003 A1 discloses an induction hob with at least two heating frequency units which are operated according to a specific method in order to at least largely avoid intermodulation noises. According to this method, both heating frequency units are operated with an identical and fixed first frequency in a first time interval. In a second time interval, one heating frequency unit is switched off, while the other heating frequency unit is operated with a fixed second frequency. The two frequencies and the relative lengths of the two time intervals are adjusted so that an average output power of each heating frequency unit corresponds to a heating power selected by an operator. At the same time flicker is minimized.

Die Druckschrift WO 2006/117182 A1 offenbart ein Induktionskochfeld. Die Induktionssuplen des Induktionskochfelds werden entweder mit derselben Frequenz betrieben oder aber mit einer Frequenzdifferenz von etwa 18 kHz.
Die Aufgabe der Erfindung besteht insbesondere darin, eine gattungsgemäße Gargerätevorrichtung bereitzustellen, die eine vorteilhaft flexible Einstellung einer mittleren Ausgangsleistung und eine einfache Skalierbarkeit auf eine Vielzahl von Heizfrequenzeinheiten ermöglicht. Die Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 und des Verfahrensanspruchs 9 gelöst, während vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung den Unteransprüchen entnommen werden können.
The publication WO 2006/117182 A1 discloses an induction hob. The induction coils of the induction hob are operated either with the same frequency or with a frequency difference of approximately 18 kHz.
The object of the invention is, in particular, to provide a generic cooking appliance device which enables an advantageously flexible setting of an average output power and simple scalability to a large number of heating frequency units. The object is achieved according to the invention by the features of patent claim 1 and method claim 9, while advantageous refinements and developments of the invention can be found in the subclaims.

Die Erfindung geht aus von einer Gargerätevorrichtung mit wenigstens einer ersten und wenigstens einer zweiten Heizfrequenzeinheit und mit wenigstens einer Steuereinheit, die dazu vorgesehen ist, die zumindest zwei Heizfrequenzeinheiten gemeinsam periodisch mit einer Periodendauer zu betreiben und die Periodendauer in zumindest zwei Zeitintervalle zu unterteilen.The invention is based on a cooking device with at least one first and at least one second heating frequency unit and with at least one control unit which is provided for this purpose, the at least two heating frequency units to operate periodically together with a period and to divide the period into at least two time intervals.

Es wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, für jedes der zumindest zwei Zeitintervalle eine Steuerungsart aus einem Katalog von Steuerungsarten auszuwählen. Vorzugsweise ist die Gargerätevorrichtung als Kochfeldvorrichtung und besonders vorteilhaft als Induktionskochfeldvorrichtung ausgebildet. Unter "vorgesehen" soll insbesondere speziell programmiert und/oder ausgelegt und/oder ausgestattet verstanden werden. Darunter, dass die Steuereinheit dazu vorgesehen ist, "die Periodendauer in zumindest zwei Zeitintervalle zu unterteilen", soll insbesondere verstanden werden, dass die Steuereinheit in zumindest einem Betriebszustand innerhalb der Periodendauer zumindest zwei überlappungsfreie Zeitintervalle definiert. Vorzugsweise ist eine Summe der Längen der zumindest zwei Zeitintervalle gleich der Periodendauer. Unter einer "Heizfrequenzeinheit" soll insbesondere eine elektrische Einheit verstanden werden, die einen oszillierenden elektrischen Strom, vorzugsweise mit einer Frequenz von zumindest 15 kHz, insbesondere von wenigstens 17 kHz und vorteilhaft von mindestens 20 kHz, zu einem Betrieb wenigstens einer Heizeinheit erzeugt. Unter einer "Heizeinheit" soll insbesondere eine Einheit verstanden werden, die dazu vorgesehen ist, elektrische Energie zumindest zu einem Großteil in Wärme umzuwandeln und damit insbesondere ein Gargut zu erhitzen. Insbesondere umfasst die Heizeinheit einen Strahlungsheizkörper, einen Widerstandsheizkörper und/oder vorzugsweise einen Induktionsheizkörper, der dazu vorgesehen ist, elektrische Energie indirekt über induzierte Wirbelströme in Wärme umzuwandeln. Die Heizfrequenzeinheit umfasst insbesondere zumindest einen Wechselrichter, der vorzugsweise zwei Schalteinheiten umfasst. Unter einer "Schalteinheit" soll insbesondere eine Einheit verstanden werden, die dazu vorgesehen ist, einen zumindest einen Teil der Schalteinheit umfassenden Leitungspfad zu unterbrechen. Vorzugsweise ist die Schalteinheit ein bidirektionaler unipolarer Schalter, der insbesondere einen Stromfluss durch den Schalter entlang dem Leitungspfad in beide Richtungen ermöglicht und der insbesondere eine elektrische Spannung in zumindest einer Polungsrichtung kurzschließt. Vorzugsweise umfasst der Wechselrichter zumindest zwei Bipolartransistoren mit isolierter Gate-Elektrode und besonders vorteilhaft zumindest einen Dämpfungskondensator. Unter einem "Leitungspfad" soll insbesondere ein elektrisch leitendes Leiterstück zwischen zwei Punkten verstanden werden. Unter "elektrisch leitend" soll insbesondere mit einem spezifischen elektrischen Widerstand von höchstens 10-4 Ωm, insbesondere von maximal 10-5 Ωm, vorteilhaft von höchstens 10-6 Ωm und besonders vorteilhaft von maximal 10-7 Ωm bei 20°C verstanden werden.It is proposed that the control unit be provided for selecting a control type from a catalog of control types for each of the at least two time intervals. The cooking appliance device is preferably designed as a hob device and particularly advantageously as an induction hob device. “Provided” is to be understood in particular to be specially programmed and / or designed and / or equipped. The fact that the control unit is intended to "subdivide the period into at least two time intervals" should in particular mean that the control unit defines at least one overlap-free time interval in at least one operating state within the period. A sum of the lengths of the at least two time intervals is preferably equal to the period. A “heating frequency unit” is to be understood in particular to mean an electrical unit which generates an oscillating electrical current, preferably with a frequency of at least 15 kHz, in particular at least 17 kHz and advantageously at least 20 kHz, for operating at least one heating unit. A “heating unit” is to be understood in particular as a unit which is intended to convert at least a large part of electrical energy into heat and thus in particular to heat a food to be cooked. In particular, the heating unit comprises a radiant heater, a resistance heater and / or preferably an induction heater, which is provided for converting electrical energy into heat indirectly via induced eddy currents. The heating frequency unit comprises in particular at least one inverter, which preferably comprises two switching units. A “switching unit” is to be understood in particular as a unit which is intended to interrupt a line path comprising at least part of the switching unit. The switching unit is preferably a bidirectional unipolar switch which, in particular, enables current to flow through the switch along the line path in both directions and which in particular shorts an electrical voltage in at least one polarity direction. Preferably the inverter comprises at least two bipolar transistors with an insulated gate electrode and, particularly advantageously, at least one damping capacitor. A “line path” is to be understood in particular as an electrically conductive conductor piece between two points. “Electrically conductive” is to be understood in particular to mean a specific electrical resistance of at most 10 -4 Ωm, in particular of at most 10 -5 Ωm, advantageously of at most 10 -6 Ωm and particularly advantageously of at most 10 -7 Ωm at 20 ° C.

Unter einer "Steuereinheit" soll insbesondere eine elektronische Einheit verstanden werden, die vorzugsweise in einer Steuer- und/oder Regeleinheit eines Gargeräts, insbesondere eines Induktionskochfelds, zumindest teilweise integriert ist und die vorzugsweise eine Recheneinheit und insbesondere zusätzlich zur Recheneinheit eine Speichereinheit mit einem darin gespeicherten Steuerprogramm umfasst. Vorzugsweise ist die Steuereinheit zumindest dazu vorgesehen, die Heizfrequenzeinheiten mit Hilfe von Steuersignalen und vorzugsweise elektrischen Steuersignalen zu steuern und/oder zu regeln. Unter einem "Steuersignal" soll insbesondere ein Signal verstanden werden, welches insbesondere in zumindest einem Betriebszustand einen Schaltvorgang einer Heizfrequenzeinheit auslöst, insbesondere auch mittelbar. Unter einem "elektrischen Steuersignal" soll insbesondere ein Steuersignal mit einem elektrischen Potential von höchstens 30 V, vorzugsweise von maximal 20 V, besonders vorteilhaft von höchstens 10 V und insbesondere von zumindest 5 V bezogen auf ein Referenzpotential verstanden werden. Vorzugsweise weist das Steuersignal zumindest zeitweise eine Periodizität auf, insbesondere mit einer Periodendauer von höchstens 1 ms, insbesondere von maximal 0,1 ms und vorteilhaft von höchstens 0,05 ms. Besonders vorteilhaft ist das Steuersignal zumindest im Wesentlichen ein Rechtecksignal, welches insbesondere zwei diskrete Werte aufweist, vorzugsweise einen Einschaltwert und einen Ausschaltwert. Vorzugsweise entspricht jeder der zwei Werte einer Schaltstellung der Heizfrequenzeinheiten und insbesondere deren Wechselrichter. Unter einer "Frequenz" einer Heizfrequenzeinheit soll insbesondere die Frequenz des die Heizfrequenzeinheit steuernden Steuersignals verstanden werden.A “control unit” is to be understood in particular to mean an electronic unit which is preferably at least partially integrated in a control and / or regulating unit of a cooking appliance, in particular an induction hob, and which preferably has a computing unit and in particular, in addition to the computing unit, a storage unit with one stored therein Control program includes. The control unit is preferably provided at least to control and / or regulate the heating frequency units with the aid of control signals and preferably electrical control signals. A “control signal” is to be understood in particular as a signal which triggers a switching process of a heating frequency unit, in particular also indirectly, in at least one operating state. An “electrical control signal” is to be understood in particular as a control signal with an electrical potential of at most 30 V, preferably of at most 20 V, particularly advantageously of at most 10 V and in particular of at least 5 V in relation to a reference potential. The control signal preferably has a periodicity, at least temporarily, in particular with a period of at most 1 ms, in particular of at most 0.1 ms and advantageously of at most 0.05 ms. The control signal is particularly advantageously at least essentially a square-wave signal, which in particular has two discrete values, preferably a switch-on value and a switch-off value. Each of the two values preferably corresponds to a switching position of the heating frequency units and, in particular, their inverters. Under a "frequency" of a heating frequency unit should in particular the frequency of the control signal controlling the heating frequency unit can be understood.

Darunter, dass die Steuereinheit dazu vorgesehen ist, für jedes der zumindest zwei Zeitintervalle "eine Steuerungsart aus einem Katalog von Steuerungsarten auszuwählen", soll insbesondere verstanden werden, dass die Steuereinheit dazu vorgesehen ist, aktiv und abhängig von gegebenen Rahmenbedingungen für die zumindest zwei Zeitintervalle eine Kombination von Steuerungsarten auszuwählen. Bei den Rahmenbedingungen kann es sich um beliebige, einem Fachmann als sinnvoll erscheinende Rahmenbedingungen handeln, vorzugsweise jedoch um gewählte Sollleistungen für die wenigstens zwei Heizfrequenzeinheiten, um Verläufe der Leistungs-Frequenz-Kurven für ein gegebenes System aus Gargeschirr und Heizeinheit, um eine Vorgabe zur Minimierung von Flicker und/oder um eine Vorgabe zur Minimierung einer Schwankung von Ausgangsleistungen der Heizfrequenzeinheiten handeln. Unter "Flicker" soll insbesondere ein subjektiver Eindruck einer Instabilität einer visuellen Wahrnehmung verstanden werden, der insbesondere durch einen Lichtreiz hervorgerufen wird, dessen Leuchtdichte und/oder Spektralverteilung mit der Zeit schwankt. Insbesondere kann Flicker durch einen Spannungsabfall einer Netzspannung hervorgerufen werden.The fact that the control unit is intended to "select a control type from a catalog of control types" for each of the at least two time intervals is to be understood in particular to mean that the control unit is intended to be active and dependent on given framework conditions for the at least two time intervals Select combination of control types. The general conditions can be any general conditions that appear reasonable to a person skilled in the art, but preferably selected target powers for the at least two heating frequency units, curves of the power-frequency curves for a given system of cookware and heating unit, or a specification for minimization Flicker and / or a requirement to minimize a fluctuation in the output power of the heating frequency units. "Flicker" is to be understood in particular as a subjective impression of an instability of a visual perception, which is caused in particular by a light stimulus, the luminance and / or spectral distribution of which fluctuates over time. In particular, flicker can be caused by a voltage drop in a mains voltage.

Unter einer "Steuerungsart" soll eine Art der Steuerung der wenigstens zwei Heizfrequenzeinheiten durch die Steuereinheit in einem Zeitintervall verstanden werden, wobei zwei unterschiedliche Steuerungsarten dadurch abgegrenzt sind, dass die beiden Steuerungsarten eine unterschiedliche Anzahl betriebener Heizfrequenzeinheiten und/oder eine unterschiedliche Anzahl von verwendeten Frequenzen aufweisen und/oder sich durch zumindest eine Berechnungsart und vorzugsweise eine frequenzunabhängige Berechnungsart unterscheiden, mittels deren wenigstens eine verwendete Frequenz der Steuerungsart aus einer anderen verwendeten Frequenz der Steuerungsart hervorgeht. Unter einer "verwendeten Frequenz" einer Steuerungsart soll insbesondere ein Zahlenwert einer in der Steuerungsart verwendeten Frequenz verstanden werden, wobei Null ebenfalls als ein Zahlenwert anzusehen ist. Unter einer "Berechnungsart" soll insbesondere eine Art einer Berechnung mittels zumindest eines mathematischen Operators verstanden werden, wobei die Berechnungsart ausschließlich durch den zumindest einen mathematischen Operator und insbesondere dessen Anordnung zu weiteren mathematischen Operatoren definiert ist. Insbesondere sollen bei der Unterscheidung zweier Berechnungsarten Zahlenwerte von Konstanten irrelevant sein. Vorzugsweise handelt es sich bei der Berechnungsart um eine "einfache Berechnungsart", die insbesondere genau einen mathematischen Operator, wie insbesondere einen Additionsoperator, aufweist. Vorzugsweise besteht die Berechnungsart in einer Addition einer frequenzunabhängigen Konstante, wobei ein genauer Zahlenwert der Konstante irrelevant ist. Darunter, dass eine Heizfrequenzeinheit "betrieben" wird, soll insbesondere verstanden werden, dass die Frequenz der Heizfrequenzeinheit im betreffenden Zeitintervall von Null verschieden ist. Vorzugsweise erlaubt jede Steuerungsart einen gemeinsamen Betrieb der wenigstens zwei Heizfrequenzeinheiten unter zumindest weitgehender Vermeidung von Intermodulationsgeräuschen. Unter "Intermodulationsgeräuschen" sollen insbesondere Geräusche verstanden werden, deren Frequenzspektren zumindest einen von Null verschiedenen Anteil mit einer Frequenz von weniger als 18 kHz, insbesondere von weniger als 17 kHz, vorzugsweise von weniger als 16 kHz und besonders vorteilhaft von weniger als 15 kHz aufweisen. Darunter, dass eine Steuerungsart einen gemeinsamen Betrieb der wenigstens zwei Heizfrequenzeinheiten "unter zumindest weitgehender Vermeidung von Intermodulationsgeräuschen" erlaubt, soll insbesondere verstanden werden, dass bei einem gemeinsamen Betrieb der wenigstens zwei Heizfrequenzeinheiten gemäß der Steuerungsart Intermodulationsgeräusche in einem Abstand von 1 m von der Gargerätevorrichtung einen Schalldruckpegel von höchstens 20 dB, insbesondere von maximal 10 dB, vorzugsweise von höchstens 5 dB und besonders vorteilhaft von maximal 0 dB aufweisen. Vorzugsweise sind die Intermodulationsgeräusche dann von einem Bediener mit durchschnittlichem Gehör unhörbar.A “type of control” is to be understood as a type of control of the at least two heating frequency units by the control unit in a time interval, two different types of control being delimited by the fact that the two types of control have a different number of operated heating frequency units and / or a different number of frequencies used and / or differ by at least one type of calculation and preferably a frequency-independent type of calculation, by means of which at least one frequency used for the control type results from another frequency used for the control type. A "used frequency" of a control type is to be understood in particular as a numerical value of a frequency used in the control type, with zero likewise is to be regarded as a numerical value. A “type of calculation” is to be understood in particular to mean a type of calculation using at least one mathematical operator, the type of calculation being defined exclusively by the at least one mathematical operator and in particular its arrangement with further mathematical operators. In particular, when distinguishing between two types of calculation, numerical values of constants should be irrelevant. The type of calculation is preferably a "simple type of calculation" which in particular has exactly one mathematical operator, such as in particular an addition operator. The type of calculation is preferably an addition of a frequency-independent constant, an exact numerical value of the constant being irrelevant. The fact that a heating frequency unit is “operated” is to be understood in particular to mean that the frequency of the heating frequency unit is different from zero in the relevant time interval. Each type of control preferably allows the at least two heating frequency units to be operated together, at least largely avoiding intermodulation noises. “Intermodulation noise” is to be understood in particular to mean noises whose frequency spectra have at least a non-zero component with a frequency of less than 18 kHz, in particular less than 17 kHz, preferably less than 16 kHz and particularly advantageously less than 15 kHz. The fact that one type of control allows the at least two heating frequency units to be operated jointly "while at least largely avoiding intermodulation noises" is to be understood in particular to mean that when the at least two heating frequency units are operated together according to the type of control, intermodulation noises are at a distance of 1 m from the cooking device device Sound pressure levels of at most 20 dB, in particular of at most 10 dB, preferably of at most 5 dB and particularly advantageously of at most 0 dB. The intermodulation noises are then preferably inaudible by an operator with average hearing.

Unter einem "Katalog von Steuerungsarten" soll insbesondere eine Sammlung verschiedener Steuerungsarten verstanden werden. Als Steuerungsarten kommen alle, einem Fachmann als sinnvoll erscheinenden Steuerungsarten in Frage. Vorzugsweise gehört zum Katalog der Steuerungsarten eine Steuerungsart, bei der alle Heizfrequenzeinheiten mit der gleichen, von Null verschiedenen Frequenz betrieben werden. Vorzugsweise gehört zum Katalog der Steuerungsarten eine Steuerungsart, bei der alle Heizfrequenzeinheiten abgeschaltet werden. Vorzugsweise gehören zum Katalog der Steuerungsarten Steuerungsarten, bei denen zumindest eine Heizfrequenzeinheit abgeschaltet wird und die übrigen Heizfrequenzeinheiten mit der gleichen Frequenz betrieben werden. Vorzugsweise gehören zum Katalog der Steuerungsarten Steuerungsarten, bei denen alle Heizfrequenzeinheiten betrieben werden und eine Differenz zwischen Frequenzen zweier beliebiger Heizfrequenzeinheiten Null oder zumindest 15 kHz, insbesondere wenigstens 16 kHz, vorzugsweise mindestens 17 kHz und besonders vorteilhaft zumindest 18 kHz beträgt. Vorzugsweise gehören zum Katalog der Steuerungsarten Steuerungsarten, bei denen zumindest eine Heizfrequenzeinheit abgeschaltet wird und eine Differenz zwischen Frequenzen zweier beliebiger betriebener Heizfrequenzeinheiten Null oder zumindest 15 kHz, insbesondere wenigstens 16 kHz, vorzugsweise mindestens 17 kHz und besonders vorteilhaft zumindest 18 kHz beträgt. Darunter, dass eine Heizfrequenzeinheit in einem Zeitintervall "abgeschaltet" wird, soll insbesondere verstanden werden, dass die Heizfrequenzeinheit im betreffenden Zeitintervall zumindest im Wesentlichen eine verschwindend geringe Ausgangsleistung aufweist. Unter einer "im betreffenden Zeitintervall zumindest im Wesentlichen verschwindend geringen Ausgangsleistung" soll insbesondere eine Ausgangsleistung verstanden werden, die höchstens 50 W, insbesondere maximal 25 W, vorzugsweise höchstens 10 W und besonders vorteilhaft 0 W beträgt und/oder die im Zeitintervall ausschließlich während einer Zeitdauer abgegeben wird, welche höchstens 50%, insbesondere maximal 25%, vorzugsweise höchstens 15% und besonders vorteilhaft höchstens 10% einer Länge des Zeitintervalls entspricht. Unter einer "Ausgangsleistung" einer der wenigstens zwei Heizfrequenzeinheiten soll insbesondere eine Leistung verstanden werden, die in wenigstens einem Heizbetriebszustand von der Heizfrequenzeinheit geliefert wird.A "catalog of control types" is to be understood in particular as a collection of different control types. As control types come all control types that appear to be useful to a specialist are considered. The catalog of control types preferably includes a control type in which all heating frequency units are operated with the same, non-zero frequency. The control types catalog preferably includes a control type in which all heating frequency units are switched off. The catalog of control types preferably includes control types in which at least one heating frequency unit is switched off and the other heating frequency units are operated at the same frequency. The catalog of control types preferably includes control types in which all heating frequency units are operated and a difference between frequencies of any two heating frequency units is zero or at least 15 kHz, in particular at least 16 kHz, preferably at least 17 kHz and particularly advantageously at least 18 kHz. The catalog of control types preferably includes control types in which at least one heating frequency unit is switched off and a difference between frequencies of any two operated heating frequency units is zero or at least 15 kHz, in particular at least 16 kHz, preferably at least 17 kHz and particularly advantageously at least 18 kHz. The fact that a heating frequency unit is “switched off” in a time interval should in particular be understood to mean that the heating frequency unit has at least essentially a negligibly low output power in the relevant time interval. An “output power that is at least essentially vanishing in the relevant time interval” is to be understood in particular to mean an output power that is at most 50 W, in particular at most 25 W, preferably at most 10 W and particularly advantageously 0 W and / or in the time interval exclusively during a period of time is given, which corresponds to at most 50%, in particular at most 25%, preferably at most 15% and particularly advantageously at most 10% of a length of the time interval. An “output power” of one of the at least two heating frequency units is to be understood in particular to mean a power which is supplied by the heating frequency unit in at least one heating operating state.

Durch eine solche Ausgestaltung kann eine vorteilhaft flexible Einstellung einer mittleren Ausgangsleistung erreicht werden. Des Weiteren kann eine einfache Skalierbarkeit auf eine Vielzahl von Heizfrequenzeinheiten ermöglicht werden.Such a configuration enables an advantageously flexible setting of an average output power to be achieved. Furthermore, simple scalability to a large number of heating frequency units can be made possible.

In einer bevorzugten Ausgestaltung der Erfindung wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, diejenigen Steuerungsarten für die zumindest zwei Zeitintervalle auszuwählen, die einen Betrieb der wenigstens zwei Heizfrequenzeinheiten mit möglichst geringen Schwankungen einer Gesamtausgangsleistung der wenigstens zwei Heizfrequenzeinheiten und/oder einer jeweiligen Ausgangsleistung der wenigstens zwei Heizfrequenzeinheiten ermöglichen. Unter einer "Gesamtausgangsleistung" der wenigstens zwei Heizfrequenzeinheiten soll insbesondere eine Summe der Ausgangsleistungen der wenigstens zwei Heizfrequenzeinheiten verstanden werden. Darunter, dass die Steuereinheit dazu vorgesehen ist, diejenigen Steuerungsarten auszuwählen, die einen Betrieb der wenigstens zwei Heizfrequenzeinheiten "mit möglichst geringen Schwankungen einer jeweiligen Ausgangsleistung" ermöglichen, soll insbesondere verstanden werden, dass vorgesehen ist, diejenigen Steuerungsarten auszuwählen, bei denen eine größte maximale Schwankung der Ausgangsleistung der wenigstens zwei Heizfrequenzeinheiten minimal ist. Vorzugsweise ist die Steuereinheit dazu vorgesehen, diejenigen Steuerungsarten für die wenigstens zwei Zeitintervalle zu betrachten, für die die Gesamtausgangsleistung zumindest weitgehend konstant ist und aus diesen Steuerungsarten diejenigen auszuwählen, welche einen Betrieb der wenigstens zwei Heizfrequenzeinheiten mit möglichst geringen Schwankungen einer jeweiligen Ausgangsleistung ermöglichen. Darunter, dass eine "Gesamtausgangsleistung zumindest weitgehend konstant ist", soll insbesondere verstanden werden, dass die Gesamtausgangsleistung in wenigstens einem Betriebszustand eine relative zeitliche Schwankung aufweist, die kleiner als ein durch gesetzliche Vorgaben und/oder Normen, insbesondere durch die Norm DIN EN 61000-3-3 festgelegter Flickergrenzwert ist. Hierdurch kann ein Bedienkomfort vorteilhaft gesteigert werden, da eine zumindest weitgehend gleichmäßige Leistungsabgabe erzielt und Flicker minimiert werden kann.In a preferred embodiment of the invention, it is proposed that the control unit be provided to select those control types for the at least two time intervals that allow the at least two heating frequency units to be operated with as little fluctuations as possible in a total output power of the at least two heating frequency units and / or a respective output power of the at least one enable two heating frequency units. A “total output power” of the at least two heating frequency units is to be understood in particular as a sum of the output powers of the at least two heating frequency units. The fact that the control unit is intended to select those control types which enable the at least two heating frequency units to be operated “with as little fluctuations as possible in a respective output power” is to be understood in particular as meaning that it is provided to select those control types in which the greatest maximum fluctuation the output power of the at least two heating frequency units is minimal. The control unit is preferably provided to consider those control types for the at least two time intervals for which the total output power is at least largely constant and to select from these control types those which enable the at least two heating frequency units to be operated with the smallest possible fluctuations in a respective output power. The fact that an “total output power is at least largely constant” should be understood in particular to mean that the total output power in at least one operating state has a relative temporal fluctuation which is smaller than that caused by legal requirements and / or standards, in particular by the standard DIN EN 61000- 3-3 specified flicker limit. In this way, ease of use can advantageously be increased, since an at least largely uniform power output can be achieved and flicker can be minimized.

In einer besonders bevorzugten Ausgestaltung der Erfindung wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, gemäß den ausgewählten Steuerungsarten für jedes der zumindest zwei Zeitintervalle Frequenzen von Steuersignalen der zumindest zwei Heizfrequenzeinheiten unter zumindest weitgehender zeitlicher Konstanthaltung einer Gesamtausgangsleistung der wenigstens zwei Heizfrequenzeinheiten zu bestimmen. Darunter, dass die Steuereinheit dazu vorgesehen ist, die Frequenzen der Steuersignale "unter zumindest weitgehender zeitlicher Konstanthaltung einer Gesamtausgangsleistung" zu bestimmen, soll insbesondere verstanden werden, dass die Steuereinheit in zumindest einem Betriebszustand die Frequenzen der Heizfrequenzeinheiten derart festlegt, dass die Gesamtausgangsleistung eine relative zeitliche Schwankung aufweist, die kleiner als ein durch gesetzliche Vorgaben und/oder Normen, insbesondere durch die Norm DIN EN 61000-3-3 festgelegter Flickergrenzwert ist. Hierdurch kann Flicker vorteilhaft minimiert werden.In a particularly preferred embodiment of the invention, it is proposed that the control unit be provided to determine, according to the selected control types, frequencies of control signals of the at least two heating frequency units for each of the at least two time intervals while keeping a total output power of the at least two heating frequency units constant over time. The fact that the control unit is intended to determine the frequencies of the control signals "while at least largely maintaining a constant total output power" means that the control unit specifies the frequencies of the heating frequency units in at least one operating state such that the total output power has a relative temporal Fluctuation that is smaller than a flicker limit determined by legal requirements and / or standards, in particular by the standard DIN EN 61000-3-3. This advantageously allows flicker to be minimized.

Ferner wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, mittlere Ausgangsleistungen der wenigstens zwei Heizfrequenzeinheiten an gewählte Sollleistungen anzupassen. Unter einer "mittleren Ausgangsleistung" soll insbesondere eine zeitlich gemittelte Ausgangsleistung verstanden werden. Dabei soll eine relative Abweichung der durch die Steuereinheit eingestellten mittleren Ausgangsleistung von der Sollleistung höchstens 10%, vorzugsweise maximal 5% und besonders vorteilhaft höchstens 1% betragen. Hierdurch kann ein hoher Bedienkomfort erzielt werden. Vorzugsweise ist die mittlere Ausgangsleistung einer der wenigstens zwei Heizfrequenzeinheiten stets kleiner als oder gleich wie die Sollleistung der entsprechenden Heizfrequenzeinheit. Hierdurch können unsichere Betriebszustände vermieden werden.It is also proposed that the control unit be provided to adapt average output powers of the at least two heating frequency units to selected target powers. A “mean output power” is to be understood in particular as a time-averaged output power. A relative deviation of the average output power set by the control unit from the target power should be at most 10%, preferably at most 5% and particularly advantageously at most 1%. A high level of operating convenience can be achieved in this way. The mean output power of one of the at least two heating frequency units is preferably always less than or equal to the target power of the corresponding heating frequency unit. In this way, unsafe operating states can be avoided.

Vorteilhaft ist die Steuereinheit dazu vorgesehen, eine Anpassung der mittleren Ausgangsleistungen der wenigstens zwei Heizfrequenzeinheiten durch eine Anpassung der zumindest zwei Zeitintervalle vorzunehmen, insbesondere unter Konstanthaltung der zuvor bestimmten Frequenzen. Hierdurch kann ein vorteilhaft hoher Bedienkomfort erreicht werden, da einerseits Flicker minimiert und andererseits eine der Sollleistung angepasste mittlere Ausgangsleistung bereitgestellt werden kann.The control unit is advantageously provided for adapting the mean output powers of the at least two heating frequency units by adapting the at least two time intervals, in particular while keeping the previously determined frequencies constant. In this way, an advantageously high level of operating comfort can be achieved, since on the one hand minimizes flicker and on the other hand, an average output power adapted to the target power can be provided.

In einer weiteren Ausgestaltung der Erfindung wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, die zumindest zwei Heizfrequenzeinheiten jeweils mittels eines Steuersignals zu steuern und/oder zu regeln und in wenigstens einem Betriebszustand einen Tastgrad von zumindest einem der Steuersignale anzupassen. Unter einem "Tastgrad" soll insbesondere ein Verhältnis einer Zeitdauer, in der das Steuersignal innerhalb einer Periodendauer den Einschaltwert annimmt, zur Periodendauer des Steuersignals verstanden werden. Vorzugsweise kann bei fester Frequenz einer der Heizfrequenzeinheiten durch eine Veränderung des Tastgrads eine Ausgangsleistung der Heizfrequenzeinheit verändert werden. Darunter, dass die Steuereinheit dazu vorgesehen ist, "einen Tastgrad von zumindest einem der Steuersignale anzupassen", soll insbesondere verstanden werden, dass die Steuereinheit dazu vorgesehen ist, den Tastgrad von zumindest einem der Steuersignale zu verändern, um hierdurch eine Änderung einer Ausgangsleistung bei fester Frequenz einer Heizfrequenzeinheit zu erreichen. Hierdurch kann eine Flexibilität bei einer Einstellung der mittleren Ausgangsleistungen der wenigstens zwei Heizfrequenzeinheiten weiter vorteilhaft erhöht werden.In a further embodiment of the invention, it is proposed that the control unit be provided to control and / or regulate the at least two heating frequency units each by means of a control signal and to adapt a duty cycle of at least one of the control signals in at least one operating state. A “duty cycle” is to be understood in particular as a ratio of a time period in which the control signal assumes the switch-on value within a period to the period of the control signal. In the case of a fixed frequency, one of the heating frequency units can preferably be changed by changing the duty cycle, an output power of the heating frequency unit. The fact that the control unit is intended to “adapt a duty cycle of at least one of the control signals” is to be understood in particular to mean that the control unit is intended to change the duty cycle of at least one of the control signals in order to thereby change an output power at a fixed level To reach the frequency of a heating frequency unit. This can advantageously further increase flexibility in setting the average output powers of the at least two heating frequency units.

Ferner wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, die Periodendauer in eine Anzahl von Zeitintervallen zu unterteilen, die einer Anzahl gleichzeitig zu betreibender Heizfrequenzeinheiten entspricht. Vorzugsweise folgen die Zeitintervalle unmittelbar aufeinander, so dass eine Summe von Längen der Zeitintervalle der Periodendauer entspricht. Hierdurch kann das erfindungsgemäße Steuerungsverfahren für eine Gargerätevorrichtung mit mehr als zwei Heizfrequenzeinheiten und insbesondere auf eine Gargerätevorrichtung für ein Matrix-Kochfeld skaliert werden. Unter einem "Matrix-Kochfeld" soll insbesondere ein Kochfeld verstanden werden, bei dem Heizeinheiten in einem regelmäßigen Raster unter einer Kochfeldplatte angeordnet sind, und ein mittels der Heizeinheiten heizbarer Bereich der Kochfeldplatte vorzugsweise wenigstens 60%, insbesondere zumindest 70%, vorteilhaft zumindest 80% und besonders vorteilhaft wenigstens 90% einer Gesamtfläche der Kochfeldplatte umfasst. Insbesondere umfasst das Matrix-Kochfeld zumindest 10, insbesondere mindestens 20, vorteilhaft wenigstens 30 und besonders vorteilhaft zumindest 40 Heizeinheiten.It is further proposed that the control unit be provided to subdivide the period into a number of time intervals which corresponds to a number of heating frequency units to be operated simultaneously. The time intervals preferably follow one another directly, so that a sum of lengths of the time intervals corresponds to the period. As a result, the control method according to the invention for a cooking device with more than two heating frequency units and in particular for a cooking device for a matrix hob can be scaled. A “matrix cooktop” is to be understood in particular as a cooktop in which heating units are arranged in a regular grid under a cooktop plate, and an area of the cooktop plate that can be heated by means of the heating units is preferably at least 60%, in particular at least 70%, advantageously at least 80% and particularly advantageously at least 90% of a total surface of the hob plate. In particular, the matrix hob comprises at least 10, in particular at least 20, advantageously at least 30 and particularly advantageously at least 40 heating units.

Vorteilhaft ist die Steuereinheit dazu vorgesehen, Leistungs-Frequenz-Kurven für verschiedene Tastgrade eines Steuersignals der wenigstens zwei Heizfrequenzeinheiten zu bestimmen. Unter einer "Leistungs-Frequenz-Kurve" soll insbesondere ein für jede Kombination aus einem Gargeschirr und einer Heizeinheit spezifischer und vom Tastgrad abhängiger funktioneller Zusammenhang verstanden werden, der bei gegebenem Tastgrad jeder Frequenz eindeutig eine Ausgangsleistung zuordnet. Darunter, dass die Steuereinheit dazu vorgesehen ist, "Leistungs-Frequenz-Kurven für verschiedene Tastgrade eines Steuersignals der wenigstens zwei Heizfrequenzeinheiten zu bestimmen", soll insbesondere verstanden werden, dass die Steuereinheit in zumindest einem Betriebszustand eine der wenigstens zwei Heizfrequenzeinheiten mit unterschiedlichen Frequenzen kurzzeitig betreibt und für jede dieser Frequenzen die Ausgangsleistung der wenigstens einen Heizfrequenzeinheit aus einer Messeinheit ausliest. Hierdurch kann ein vorteilhaft präziser Heizbetrieb ermöglicht werden.The control unit is advantageously provided for determining power-frequency curves for different duty cycles of a control signal of the at least two heating frequency units. A “power-frequency curve” is to be understood in particular as a functional relationship which is specific to each combination of cookware and a heating unit and which is dependent on the duty cycle and which clearly assigns an output power to each frequency at a given duty cycle. The fact that the control unit is intended to “determine power-frequency curves for different duty cycles of a control signal of the at least two heating frequency units” should in particular be understood to mean that the control unit briefly operates one of the at least two heating frequency units with different frequencies in at least one operating state and reads the output power of the at least one heating frequency unit from a measuring unit for each of these frequencies. This enables an advantageously precise heating operation.

Ferner wird ein Verfahren mit einer Gargerätevorrichtung mit wenigstens einer ersten und wenigstens einer zweiten Heizfrequenzeinheit, insbesondere nach einem der vorhergehenden Ansprüche, vorgeschlagen, bei dem die Heizfrequenzeinheiten gemeinsam periodisch mit einer Periodendauer betrieben werden und die Periodendauer in zumindest zwei Zeitintervalle unterteilt wird, wobei für jedes der zumindest zwei Zeitintervalle zur Minimierung von Intermodulationsgeräuschen eine Steuerungsart aus einem Katalog von Steuerungsarten ausgewählt wird. Hierdurch kann eine vorteilhaft flexible Einstellung einer mittleren Ausgangsleistung und eine einfache Skalierbarkeit auf eine Vielzahl von Heizfrequenzeinheiten ermöglicht werden.Furthermore, a method with a cooking device with at least a first and at least a second heating frequency unit, in particular according to one of the preceding claims, is proposed, in which the heating frequency units are operated periodically together with a period and the period is divided into at least two time intervals, each for a control type is selected from a catalog of control types in order to minimize intermodulation noises at least two time intervals. This enables an advantageously flexible setting of an average output power and simple scalability to a large number of heating frequency units.

Ferner wird ein Gargerät, insbesondere ein Kochfeld, mit einer erfindungsgemäßen Gargerätevorrichtung vorgeschlagen. Vorzugsweise handelt es sich bei dem Kochfeld um ein Induktionskochfeld. Das Kochfeld kann ferner ein Matrix-Kochfeld und besonders vorteilhaft ein Matrix-Induktionskochfeld sein. Unter einem "Matrix-Induktionskochfeld" soll insbesondere ein Matrix-Kochfeld verstanden werden, das zumindest eine einen Induktionsheizkörper umfassende Heizeinheit aufweist.Furthermore, a cooking device, in particular a hob, with a cooking device device according to the invention is proposed. The hob is preferably an induction hob. The hob can also be a matrix hob and particularly advantageously a matrix induction hob. A “matrix induction hob” is to be understood in particular as a matrix hob which has at least one heating unit comprising an induction heating element.

Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind zwei Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination.Further advantages result from the following description of the drawing. Two exemplary embodiments of the invention are shown in the drawing. The drawing, the description and the claims contain numerous features in combination.

Es zeigen:

Fig. 1
ein Induktionskochfeld mit einer erfindungsgemäßen Gargerätevorrichtung mit zwei Heizfrequenzeinheiten,
Fig. 2
ein beispielhaftes, nicht maßstabsgetreues Steuersignal einer der zwei Heizfrequenzeinheiten,
Fig. 3a
beispielhafte, nicht maßstabsgetreue Leistungs-Frequenz-Kurven für die zwei Heizfrequenzeinheiten gemäß einer ersten Kombination aus Steuerungsarten,
Fig. 3b
je eine beispielhafte, nicht maßstabsgetreue Leistungs-Zeit-Kurve für die zwei Heizfrequenzeinheiten gemäß der ersten Kombination der Steuerungsarten aus Fig. 3a,
Fig. 3c
beispielhafte, nicht maßstabsgetreue Leistungs-Frequenz-Kurven einer der zwei Heizfrequenzeinheiten bei unterschiedlichen Tastgraden eines Steuersignals,
Fig. 3d
beispielhafte, nicht maßstabsgetreue Gesamtleistungs-Zeit-Kurven gemäß der ersten Kombination der Steuerungsarten aus Fig. 3a,
Fig. 4a
beispielhafte, nicht maßstabsgetreue Leistungs-Frequenz-Kurven für die zwei Heizfrequenzeinheiten gemäß einer zweiten Kombination aus Steuerungsarten,
Fig. 4b
je eine beispielhafte, nicht maßstabsgetreue Leistungs-Zeit-Kurve für die zwei Heizfrequenzeinheiten gemäß der zweiten Kombination der Steuerungsarten aus Fig. 4a und
Fig. 5
beispielhafte, nicht maßstabsgetreue Leistungs-Zeit-Kurven für N gleichzeitig betriebene Heizfrequenzeinheiten einer weiteren erfindungsgemäßen Gargerätevorrichtung.
Show it:
Fig. 1
an induction hob with a cooking device device according to the invention with two heating frequency units,
Fig. 2
an exemplary, not to scale control signal of one of the two heating frequency units,
Fig. 3a
exemplary, non-to-scale power-frequency curves for the two heating frequency units according to a first combination of control types,
Fig. 3b
each an exemplary, not to scale, power-time curve for the two heating frequency units according to the first combination of control types Fig. 3a ,
Fig. 3c
exemplary, not to scale, power-frequency curves of one of the two heating frequency units with different duty cycles of a control signal,
Fig. 3d
exemplary, not to scale, total power-time curves according to the first combination of control types Fig. 3a ,
Fig. 4a
exemplary, non-to-scale power-frequency curves for the two heating frequency units according to a second combination of control types,
Fig. 4b
each an exemplary, not to scale, power-time curve for the two heating frequency units according to the second combination of control types Fig. 4a and
Fig. 5
exemplary, not to scale, power-time curves for N heating frequency units operated simultaneously in a further cooking device according to the invention.

Figur 1 zeigt ein als Induktionskochfeld 16a ausgebildetes Gargerät. Das Induktionskochfeld 16a umfasst eine Kochfeldplatte 18a, insbesondere aus einer Glaskeramik, auf der in bekannter Weise zwei Heizzonen 20a, 22a markiert sind. Die Kochfeldplatte 18a ist in einem betriebsbereiten Zustand des Induktionskochfelds 16a horizontal angeordnet und zu einem Aufstellen von Gargeschirr vorgesehen. Des Weiteren sind auf der Kochfeldplatte 18a in bekannter Weise berührungsempfindliche Bedienelemente 26a und Anzeigeelemente 28a einer Bedien- und Anzeigeeinheit 30a des Induktionskochfelds 16a markiert. Das Induktionskochfeld 16a umfasst ferner eine Gargerätevorrichtung mit einer ersten und einer zweiten unterhalb der Kochfeldplatte 18a angeordneten Heizfrequenzeinheit 10a, 12a und mit einer unterhalb der Kochfeldplatte 18a angeordneten Steuereinheit 14a. In Figur 1 sind Bauteile, welche unterhalb der Kochfeldplatte 18a angeordnet sind, schematisch und gestrichelt gezeichnet, wobei funktionelle Zusammenhänge mit Pfeilen gekennzeichnet sind. Die Steuereinheit 14a ist in eine Steuer- und Regeleinheit 32a des Induktionskochfelds 16a integriert. Eine der Heizzone 20a zugeordnete und unterhalb dieser angeordnete Induktionsheizeinheit wird durch die erste Heizfrequenzeinheit 10a mit Energie versorgt. Eine der Heizzone 22a zugeordnete und unterhalb dieser angeordnete Induktionsheizeinheit wird durch die zweite Heizfrequenzeinheit 12a mit Energie versorgt. Ein Bediener kann mittels der Bedien- und Anzeigeeinheit 30a eine Heizstufe für jede der Heizzonen 20a, 22a wählen, woraus sich jeweils eine Sollleistung Pobj1, Pobj2 für die zwei Heizfrequenzeinheiten 10a, 12a ergibt. Die Steuereinheit 14a ist dazu vorgesehen, eine jeweilige mittlere Ausgangsleistung Pave1, Pave2 der Heizfrequenzeinheiten 10a, 12a an die Sollleistungen Pobj1, Pobj2 unter weitgehender Vermeidung von Intermodulationsgeräuschen anzupassen, so dass die gewählten Heizstufen der Heizzonen 20a, 22a erreicht werden können. Darüber hinaus ist die Steuereinheit 14a dazu vorgesehen, eine Gesamtausgangsleistungsdifferenz F zu minimieren. Bei der Gesamtausgangsleistungsdifferenz F handelt es sich um eine maximale Differenz zwischen zwei Gesamtausgangsleistungen P1 + P2 der zwei Heizfrequenzeinheiten 10a, 12a zu zwei verschiedenen Zeitpunkten t1 und t2: F = P 1 t 1 + P 2 t 1 P 1 t 2 + P 2 t 2 .

Figure imgb0001
Figure 1 shows a cooking device designed as an induction hob 16a. The induction hob 16a comprises a hob 18a, in particular made of a glass ceramic, on which two heating zones 20a, 22a are marked in a known manner. When the induction hob 16a is ready for operation, the hob 18a is arranged horizontally and is provided for setting up cooking utensils. Furthermore, touch-sensitive operating elements 26a and display elements 28a of an operating and display unit 30a of the induction hob 16a are marked on the hob 18a in a known manner. The induction hob 16a further comprises a cooking appliance device with a first and a second heating frequency unit 10a, 12a arranged below the hob plate 18a and with a control unit 14a arranged below the hob plate 18a. In Figure 1 Components which are arranged below the hob plate 18a are shown schematically and in broken lines, functional relationships being indicated by arrows. The control unit 14a is integrated in a control and regulating unit 32a of the induction hob 16a. An induction heating unit assigned to the heating zone 20a and arranged below it is supplied with energy by the first heating frequency unit 10a. An induction heating unit assigned to the heating zone 22a and arranged below it is supplied with energy by the second heating frequency unit 12a. An operator can use the control and display unit 30a to select a heating level for each of the heating zones 20a, 22a, which in each case results in a target power P obj1 , P obj2 for the two heating frequency units 10a, 12a. The control unit 14a is for this It is provided to adapt a respective average output power P ave1 , P ave2 of the heating frequency units 10a, 12a to the target powers P obj1 , P obj2 while largely avoiding intermodulation noises, so that the selected heating levels of the heating zones 20a, 22a can be achieved. In addition, the control unit 14a is provided to minimize an overall output power difference F. The total output power difference F is a maximum difference between two total output powers P 1 + P 2 of the two heating frequency units 10a, 12a at two different times t 1 and t 2 : F = P 1 t 1 + P 2nd t 1 - P 1 t 2nd + P 2nd t 2nd .
Figure imgb0001

Hierbei bezeichnen P1(t) die Ausgangsleistung der ersten Heizfrequenzeinheit 10a zur Zeit t und P2(t) die Ausgangsleistung der zweiten Heizfrequenzeinheit 12a zur Zeit t. Die Steuereinheit 14a steuert die erste Heizfrequenzeinheit 10a mittels eines Steuersignals V1(t) und die zweite Heizfrequenzeinheit 12a mittels eines Steuersignals V2(t).Here, P 1 (t) denote the output power of the first heating frequency unit 10a at time t and P 2 (t) the output power of the second heating frequency unit 12a at time t. The control unit 14a controls the first heating frequency unit 10a by means of a control signal V 1 (t) and the second heating frequency unit 12a by means of a control signal V 2 (t).

Figur 2 zeigt beispielhaft ein nicht maßstabsgetreues Steuersignal V1(t) der ersten Heizfrequenzeinheit 10a in einem kartesischen Koordinatensystem. Auf einer Ordinatenachse 36 ist eine Steuerspannung V1 und auf einer Abszissenachse 38 eine Zeit t aufgetragen. Das Steuersignal V1(t) ist während eines ersten Zeitintervalls TA einer Periodendauer T ein Rechtecksignal mit einem Einschaltwert Vo, einem Ausschaltwert von 0 Volt und einer Frequenz von f1A. Der Einschaltwert Vo wird während einer Einschaltzeit t0A gehalten. Im ersten Zeitintervall TA beträgt eine Periodendauer des Rechtecksignals T0A. Während einer Zeitdauer von (T0A - t0A) wird der Ausschaltwert gehalten. Die Frequenz f1A des Steuersignals V1(t) berechnet sich aus einem Kehrwert der Periodendauer T0A. Die Frequenz f1A liegt üblicherweise zwischen 20 kHz und 100 kHz. Ein Tastgrad D1A des Steuersignals V1(t) im ersten Zeitintervall TA berechnet sich aus einem Quotienten der Einschaltzeit t0A dividiert durch die Periodendauer T0A. Das Steuersignal V1(t) ist während eines zweiten Zeitintervalls TB einer Periodendauer T ebenfalls ein Rechtecksignal mit dem Einschaltwert V0 und dem Ausschaltwert von 0 Volt. Im zweiten Zeitintervall TB beträgt eine Frequenz jedoch f1B. Der Einschaltwert Vo wird während einer Einschaltzeit t0B gehalten. Im zweiten Zeitintervall TB beträgt eine Periodendauer des Rechtecksignals T0B. Während einer Zeitdauer von (T0B - t0B) wird der Ausschaltwert gehalten. Die Frequenz f1B des Steuersignals V1(t) berechnet sich aus einem Kehrwert der Periodendauer T0B. Die Frequenz f1B liegt üblicherweise zwischen 20 kHz und 100 kHz. Ein Tastgrad D1B des Steuersignals V1(t) im zweiten Zeitintervall TB berechnet sich aus einem Quotienten der Einschaltzeit T0B dividiert durch die Periodendauer T0B. Ein Zeitpunkt x trennt das erste Zeitintervall TA und das zweite Zeitintervall TB. Nach Ablauf der Periodendauer T wiederholt sich das Steuersignal V1(t). Einem Verlauf von V1(t) folgend wird gemäß einem periodischen Wechsel des Einschaltwerts V0 und des Ausschaltwerts eine erste von zwei Schalteinheiten der ersten Heizfrequenzeinheit 10a periodisch geschaltet. Eine zweite Schalteinheit der ersten Heizfrequenzeinheit 10a wird in analoger, jedoch zeitversetzter Weise periodisch geschaltet, so dass ein hochfrequenter Wechselstrom zu einem Betrieb der der Heizzone 20a zugeordneten Induktionsheizeinheit entsteht. Figure 2 shows an example of a non-scale control signal V 1 (t) of the first heating frequency unit 10a in a Cartesian coordinate system. A control voltage V 1 is plotted on an ordinate axis 36 and a time t on an abscissa axis 38. The control signal V 1 (t) is a square wave signal with a switch-on value Vo, a switch-off value of 0 volts and a frequency of f 1A during a first time interval T A of a period T. The switch-on value Vo is held during a switch-on time t 0A . In the first time interval T A , the period of the square wave signal T 0A . The switch-off value is held for a period of (T 0A - t 0A ). The frequency f 1A of the control signal V 1 (t) is calculated from a reciprocal of the period T 0A . The frequency f 1A is usually between 20 kHz and 100 kHz. A duty cycle D 1A of the control signal V 1 (t) in the first time interval T A is calculated from a quotient of the switch-on time t 0A divided by the period T 0A . The control signal V 1 (t) is also on during a second time interval T B of a period T Square wave signal with switch-on value V 0 and switch-off value of 0 volt. In the second time interval T B , however, a frequency is f 1B . The switch-on value Vo is held during a switch-on time t 0B . In the second time interval T B , a period of the square wave signal T 0B . The switch-off value is held for a period of (T 0B - t 0B ). The frequency f 1B of the control signal V 1 (t) is calculated from a reciprocal of the period T 0B . The frequency f 1B is usually between 20 kHz and 100 kHz. A duty cycle D 1B of the control signal V 1 (t) in the second time interval T B is calculated from a quotient of the switch-on time T 0B divided by the period T 0B . A time x separates the first time interval T A and the second time interval T B. After the period T has elapsed, the control signal V 1 (t) is repeated. Following a course of V 1 (t), a first of two switching units of the first heating frequency unit 10a is periodically switched in accordance with a periodic change in the switch-on value V 0 and the switch-off value. A second switching unit of the first heating frequency unit 10a is periodically switched in an analog, but time-shifted manner, so that a high-frequency alternating current is produced to operate the induction heating unit assigned to the heating zone 20a.

Für einen gemeinsamen Betrieb der zwei Heizfrequenzeinheiten 10a, 12a sind bestimmte Bedingungen an die Frequenzen f1X, f2X der Steuersignale V1(t), V2(t) der Heizfrequenzeinheiten 10a, 12a zu stellen, um von einem Bediener als störend empfundene Intermodulationsgeräusche zu minimieren. Der Index "X" steht hierbei stellvertretend für die Buchstaben "A" und "B", welche die Zeitintervalle TA und TB kennzeichnen. Im Fall von zwei gleichzeitig zu betreibenden Heizfrequenzeinheiten 10a, 12a sind folgende weitgehend intermodulationsfreie Steuerungsarten (f1X, f2X) für ein Zeitintervall TX denkbar: (1) Beide Heizfrequenzeinheiten 10a, 12a werden im Zeitintervall TX mit der gleichen von Null verschiedenen Frequenz f1X, f2X betrieben. (2) Eine der zwei Heizfrequenzeinheiten 10a, 12a wird im Zeitintervall TX abgeschaltet. (3) Beide Heizfrequenzeinheiten 10a, 12a werden im Zeitintervall TX abgeschaltet. (4) Die zwei Heizfrequenzeinheiten 10a, 12a werden im Zeitintervall TX mit einer Frequenzdifferenz k betrieben, wobei die Frequenzdifferenz k zumindest 15 kHz beträgt. Es ist Aufgabe der Steuereinheit 14a, aus diesem Katalog von Steuerungsarten (f1X, f2X) für jedes der zwei Zeitintervalle TA und TB eine passende Steuerungsart (f1X, f2X) auszuwählen und die Heizfrequenzeinheiten 10a, 12a gemäß dieser Steuerungsart (f1X, f2X) gemeinsam zu betreiben, so dass die mittlere Ausgangsleistung Pave1, Pave2 einer jeden Heizfrequenzeinheit 10a, 12a ihrer Sollleistung Pobj1, Pobj2 entspricht.For a joint operation of the two heating frequency units 10a, 12a, certain conditions have to be placed on the frequencies f 1X , f 2X of the control signals V 1 (t), V 2 (t) of the heating frequency units 10a, 12a, in order to make intermodulation noises that are perceived as disturbing by an operator to minimize. The index "X" here represents the letters "A" and "B", which characterize the time intervals T A and T B. In the case of two heating frequency units 10a, 12a to be operated simultaneously, the following largely intermodulation-free control types (f 1X , f 2X ) are conceivable for a time interval T X : (1) Both heating frequency units 10a, 12a become in the time interval T X with the same non-zero frequency f 1X , f 2X operated. (2) One of the two heating frequency units 10a, 12a is switched off in the time interval T X. (3) Both heating frequency units 10a, 12a are switched off in the time interval T X. (4) The two heating frequency units 10a, 12a are operated with a frequency difference k in the time interval T X , the frequency difference k being at least 15 kHz. It is the job of the control unit 14a, from this catalog of control types (f 1X , f 2X ) for each of the two time intervals T A and T B a suitable control type (f 1X , f 2X ) and the heating frequency units 10a, 12a according to this control type (f 1X , f 2X ) to operate together so that the average output power P ave1 , P ave2 of each heating frequency unit 10a, 12a corresponds to its target power P obj1 , P obj2 .

Für den Fall, dass ein Bediener mittels der Bedien- und Anzeigeeinheit 30a einen gleichzeitigen Betrieb beider Heizfrequenzeinheiten 10a, 12a anwählt, prüft die Steuereinheit 14a zunächst, ob zur induktiven Erwärmung taugliches Gargeschirr auf den Heizzonen 20a, 22a der Kochfeldplatte 18a platziert ist. Ist dies der Fall, so bestimmt die Steuereinheit 14a in einem nächsten Schritt für verschiedene Tastgrade dj Leistungs-Frequenz-Kurven P1(f,dj), P2(f,dj) einer gegebenen Kombination aus Induktionsheizeinheit und Gargeschirr. Hierzu ändert die Steuereinheit 14a für einen festen Tastgrad dj schrittweise eine Frequenz f eines Steuersignals V1(t), V2(t) ausgehend von einer Höchstfrequenz fmax zu einer jeweiligen Mindestfrequenz fmin1, fmin2, betreibt die jeweilige Heizfrequenzeinheit 10a, 12a kurzzeitig mit der eingestellten Frequenz f und liest die Ausgangsleistung P1, P2 der betreffenden Heizfrequenzeinheit 10a, 12a aus einer Messeinheit der Gargerätevorrichtung aus. Die Steuereinheit 14a führt diese Bestimmung für Tastgrade dj = 50%, 40%, 30%, 20% und 10% durch. Beispielhaft ergeben sich hierdurch für die Heizfrequenzeinheit 10a die in Figur 3c gezeigten Leistungs-Frequenz-Kurven P1(f,dj) für verschiedene Tastgrade dj.In the event that an operator selects a simultaneous operation of both heating frequency units 10a, 12a by means of the operating and display unit 30a, the control unit 14a first checks whether cookware suitable for inductive heating is placed on the heating zones 20a, 22a of the hob plate 18a. If this is the case, the control unit 14a determines in a next step for different duty cycles d j power-frequency curves P 1 (f, d j ), P 2 (f, d j ) of a given combination of induction heating unit and cookware. To this end, changes the control unit 14a for a fixed duty cycle d j stepwise a frequency f of a control signal V 1 (t), V 2 min1 (t) starting from a maximum frequency f max f to a respective minimum frequency f min2, operates the respective Heizfrequenzeinheit 10a, 12a briefly with the set frequency f and reads the output power P 1 , P 2 of the relevant heating frequency unit 10a, 12a from a measuring unit of the cooking device. The control unit 14a makes this determination for duty cycles d j = 50%, 40%, 30%, 20% and 10%. As an example, this results in the heating frequency unit 10a in Figure 3c shown power-frequency curves P 1 (f, d j ) for different duty cycles d j .

Da zwei Heizfrequenzeinheiten 10a, 12a gleichzeitig zu betreiben sind, ist die Periodendauer T in die zwei Zeitintervalle TA und TB zu unterteilen, deren Längen in einem späteren Schritt bestimmt werden. Zunächst wählt die Steuereinheit 14a aus einem Katalog von Steuerungsarten (f1X, f2X) für jedes der zwei Zeitintervalle TA, TB eine Steuerungsart (f1X, f2X) aus, so dass bei entsprechender Wahl der Frequenzen f1A, f2A, f1B, f2B und von Tastgraden D1A, D2A, D1B, D2B möglichst geringe Schwankungen der Gesamtausgangsleistung P1 + P2 der zwei Heizfrequenzeinheiten 10a, 12a und einer jeweiligen Ausgangsleistung P1, P2 der wenigstens zwei Heizfrequenzeinheiten 10, 12 auftreten. Die Steuereinheit 14a betrachtet hierzu alle Steuerungsarten (f1X, f2X), für die die Gesamtausgangsleistungsdifferenz F beim Übergang vom ersten Zeitintervall TA zum zweiten Zeitintervall TB bei entsprechender Wahl der Frequenzen f1A, f2A, f1B, f2B und von Tastgraden D1A, D2A, D1B, D2B kleiner ist als ein durch die Norm DIN EN 61000-3-3 festgelegter Flickergrenzwert G: P 1 t A + P 2 t A P obj 1 P obj 2 G

Figure imgb0002
und P 1 t B + P 2 t B P obj 1 P obj 2 G ,
Figure imgb0003
wobei tA bzw. tB einen beliebigen Zeitpunkt innerhalb des Zeitintervalls TA bzw. TB kennzeichnet. Hierbei gelten zusätzliche Grenzwerte für die Frequenzen f1A, f2A, f1B, f2B. Zum einen existiert jeweils die kurvenspezifische Mindestfrequenz fmin1 und fmin2 und damit eine maximal erreichbare Ausgangsleistung P1, P2 für jede Heizfrequenzeinheit 10a, 12a. Des Weiteren existiert die gemeinsame durch elektronische Restriktionen gegebene Höchstfrequenz fmax und damit eine in einem kontinuierlichen Betrieb minimal erreichbare Ausgangsleistung P1, P2 für jede Heizfrequenzeinheit 10a, 12a. Der gültige Frequenzbereich ist also folgendermaßen eingeschränkt: f min 1 / 2 f 1 A , f 2 A , f 1 B , f 2B f max .
Figure imgb0004
Since two heating frequency units 10a, 12a are to be operated simultaneously, the period T must be divided into the two time intervals T A and T B , the lengths of which will be determined in a later step. First, the control unit 14a selects a catalog of types of control (f 1X, 2X f) for each of the two time intervals T A, T B, a control mode (f 1X, 2X f), so that with an appropriate choice of the frequencies f 1 A, f 2A , f 1B , f 2B and of duty cycles D 1A , D 2A , D 1B , D 2B, the smallest possible fluctuations in the total output power P 1 + P 2 of the two heating frequency units 10a, 12a and a respective output power P 1 , P 2 of the at least two heating frequency units 10 , 12 occur. The control unit 14a considered all types of control (f 1X , f 2X ) for which the total output power difference F during the transition from the first time interval T A to the second time interval T B with a corresponding choice of the frequencies f 1A , f 2A , f 1B , f 2B and of duty cycles D 1A , D 2A , D 1B , D 2B is smaller than a flicker limit value G defined by the standard DIN EN 61000-3-3: P 1 t A + P 2nd t A - P obj 1 - P obj 2nd G
Figure imgb0002
and P 1 t B + P 2nd t B - P obj 1 - P obj 2nd G ,
Figure imgb0003
where t A and t B a desired time within the time interval T A and T B indicates. Additional limit values apply for the frequencies f 1A , f 2A , f 1B , f 2B . On the one hand, there is the curve-specific minimum frequency f min1 and f min2 and thus a maximum achievable output power P 1 , P 2 for each heating frequency unit 10a, 12a. Furthermore, there is the common maximum frequency f max given by electronic restrictions and thus an output power P 1 , P 2 that can be attained minimally in continuous operation for each heating frequency unit 10 a, 12 a. The valid frequency range is limited as follows: f min 1 / 2nd f 1 A , f 2nd A , f 1 B , f 2 B f Max .
Figure imgb0004

Aus den betrachteten Steuerungsarten (f1X, f2X) wählt die Steuereinheit 14a für den gemeinsamen Betrieb der Heizfrequenzeinheiten 10a, 12a schließlich diejenige Steuerungsart (f1X, f2X) aus, für die eine maximale Schwankung der Ausgangsleistung P1, P2 einer jeden Heizfrequenzeinheit 10a, 12a minimal ist. Im Anschluss daran bestimmt die Steuereinheit 14a die Längen der Zeitintervalle TA und TB derart, dass die mittlere Ausgangsleistung einer jeden Heizfrequenzeinheit 10a, 12a der jeweiligen Sollleistung Pobj1, Pobj2 entspricht: P ave 1 = P 1 t A × T A / T + P 1 t B × T B / T = P obj 1

Figure imgb0005
und P ave 2 = P 2 t A × T A / T + P 2 t B × T B / T = P obj 2 .
Figure imgb0006
From the observed control modes (f 1X, f 2X) selects the control unit 14a for the common operation of the Heizfrequenzeinheiten 10a, 12a finally that of control (f 1X, 2X f) for which a maximum variation of the output power P 1, P 2 of each Heating frequency unit 10a, 12a is minimal. The control unit 14a then determines the lengths of the time intervals T A and T B in such a way that the average output power of each heating frequency unit 10a, 12a corresponds to the respective target power P obj1 , P obj2 : P ave 1 = P 1 t A × T A / T + P 1 t B × T B / T = P obj 1
Figure imgb0005
and P ave 2nd = P 2nd t A × T A / T + P 2nd t B × T B / T = P obj 2nd .
Figure imgb0006

Das von der Steuereinheit 14a durchgeführte Auswahlverfahren soll im Folgenden anhand eines Fallbeispiels erläutert werden. Angenommen die Steuereinheit 14a habe bei vorgegebenen Sollleistungen Pobj1, Pobj2 zwei Kombinationen aus Steuerungsarten (f1X, f2X) bestimmt, welche bei einem Übergang vom ersten Zeitintervall TA zum zweiten Zeitintervall TB bei entsprechender Wahl der Frequenzen f1A, f2A, f1B, f2B und Tastgrade D1A, D2A, D1B, D2B eine Gesamtausgangsleistungsdifferenz F aufweisen, die kleiner ist als der Flickergrenzwert G.The selection process carried out by the control unit 14a will be explained below using a case example. Assume that the control unit 14a has determined two combinations of control types (f 1X , f 2X ) for predetermined target powers P obj1 , P obj2 , which when transitioning from the first time interval T A to the second time interval T B with a corresponding choice of the frequencies f 1A , f 2A , f 1B , f 2B and duty cycles D 1A , D 2A , D 1B , D 2B have a total output power difference F which is smaller than the flicker limit value G.

Für diesen Fall zeigt Figur 3a in einem kartesischen Koordinatensystem beispielhaft zwei nicht maßstabsgetreue Leistungs-Frequenz-Kurven P1(f) und P2(f) für die erste Kombination aus Steuerungsarten (f1X, f2X). Auf einer Ordinatenachse 42 sind Ausgangsleistungen P1 und P2 der Heizfrequenzeinheiten 10a, 12a aufgetragen. Auf einer Abszissenachse 44 ist die Frequenz f aufgetragen. Die Sollleistungen Pobj1 und Pobj2 der Heizfrequenzeinheiten 10a, 12a werden durch einen Bediener eingestellt. Den Sollleistungen Pobj1, Pobj2 zugeordnet sind Sollfrequenzen fobj1, fobj2. Ohne Beschränkung der Allgemeinheit sei angenommen, die zweite Heizfrequenzeinheit 12a besitze die höchste Sollfrequenz fobj2. Diese wird dann durch die Steuereinheit 14a in beiden Zeitintervallen TA und TB kontinuierlich mit einer festen Frequenz f2A = f2B betrieben, die der Sollfrequenz fobj2 entspricht. Die erste Heizfrequenzeinheit 10a wird durch die Steuereinheit 14a im ersten Zeitintervall TA mit einer um 18 kHz niedrigeren Frequenz f1A betrieben. Da die Ausgangsleistung P1 der ersten Heizfrequenzeinheit 10a bei der Frequenz f1A die Sollleistung Pobj1 der ersten Heizfrequenzeinheit 10a übersteigt, wird die erste Heizfrequenzeinheit 10a im zweiten Zeitintervall TB abgeschaltet. Die hier verwendeten Steuerungsarten (f1X, f2X) für die Zeitintervalle TA, TB sind demnach folgende: Im ersten Zeitintervall TA werden die beiden Heizfrequenzeinheiten 10a, 12a mit einer Frequenzdifferenz k von 18 kHz betrieben (4). Im zweiten Zeitintervall TB wird eine der Heizfrequenzeinheiten 10a abgeschaltet (2).For this case shows Figure 3a In a Cartesian coordinate system, for example, two power-frequency curves P 1 (f) and P 2 (f), which are not to scale, for the first combination of control types (f 1X , f 2X ). Output powers P 1 and P 2 of the heating frequency units 10a, 12a are plotted on an ordinate axis 42. The frequency f is plotted on an abscissa axis 44. The target powers P obj1 and P obj2 of the heating frequency units 10a, 12a are set by an operator. The target powers P obj1 , P obj2 are assigned target frequencies f obj1 , f obj2 . Without restricting generality, it is assumed that the second heating frequency unit 12a has the highest target frequency f obj2 . This is then operated continuously by the control unit 14a in both time intervals T A and T B at a fixed frequency f 2A = f 2B , which corresponds to the target frequency f obj2 . The first heating frequency unit 10a is operated by the control unit 14a in the first time interval T A with a frequency f 1A lower by 18 kHz. Since the output power P 1 of the first heating frequency unit 10a at the frequency f 1A exceeds the target power P obj1 of the first heating frequency unit 10a, the first heating frequency unit 10a is switched off in the second time interval T B. The types of control used here (f 1X , f 2X ) for the time intervals T A , T B are therefore as follows: In the first time interval T A , the two heating frequency units 10a, 12a are operated with a frequency difference k of 18 kHz (4). In the second time interval T B , one of the heating frequency units 10a is switched off (2).

Figur 3b zeigt in einem kartesischen Koordinatensystem beispielhaft zwei nicht maßstabsgetreue Leistungs-Zeit-Kurven P1(t) und P2(t) für die erste Kombination aus Steuerungsarten aus Figur 3a. Auf einer Ordinatenachse 46 sind die Ausgangsleistungen P1 und P2 der Heizfrequenzeinheiten 10a, 12a aufgetragen. Auf einer Abszissenachse 48 ist die Zeit t aufgetragen. Ein in Figur 3b dargestellter Verlauf der Leistungs-Zeit-Kurven P1(t) und P2(t) wird in einem Heizbetriebszustand der Heizfrequenzeinheiten 10a, 12a periodisch mit der Periodendauer T durchlaufen. Die Berechnung der Längen der Zeitintervalle TA und TB der Periodendauer T durch die Steuereinheit 14a erfolgt wie zuvor beschrieben. Wie anhand der Figur 3b zu erkennen, existiert ein Sprung in der Gesamtausgangsleistung P1 + P2 beim Übergang vom ersten Zeitintervall TA zum zweiten Zeitintervall TB. Damit diese Steuerungsart (f1X, f2X) überhaupt in Frage kommt, wurde der Tastgrad D1A des Steuersignals V1(t) der ersten Heizfrequenzeinheit 10a im ersten Zeitintervall TA von 50% auf 20% erniedrigt. Figure 3b shows, in a Cartesian coordinate system, two power-time curves P 1 (t) and P 2 (t), which are not to scale, for the first combination of control types Figure 3a . The output powers are on an ordinate axis 46 P 1 and P 2 of the heating frequency units 10a, 12a are plotted. Time t is plotted on an abscissa axis 48. An in Figure 3b The illustrated course of the power-time curves P 1 (t) and P 2 (t) is run through periodically with the period T in a heating operating state of the heating frequency units 10a, 12a. The calculation of the lengths of the time intervals T A and T B of the period T by the control unit 14a is carried out as previously described. As with the Figure 3b to recognize, there is a jump in the total output power P 1 + P 2 during the transition from the first time interval T A to the second time interval T B. So that this type of control (f 1X , f 2X ) comes into question at all, the duty cycle D 1A of the control signal V 1 (t) of the first heating frequency unit 10a was reduced from 50% to 20% in the first time interval T A.

Figur 3c zeigt hierzu in einem kartesischen Koordinatensystem beispielhaft nicht maßstabsgetreue Leistungs-Frequenz-Kurven P1(f,dj) für verschiedene Tastgrade D1A = dj (j = 1,..., n) des Steuersignals V1(t) der ersten Heizfrequenzeinheit 10a (siehe auch Figur 2). Auf einer Ordinatenachse 50 ist die Ausgangsleistung P1 der ersten Heizfrequenzeinheit 10a aufgetragen. Auf einer Abszissenachse 52 ist die Frequenz f aufgetragen. Durch eine Anpassung des Tastgrads D1A, beispielsweise von 0,5 auf kleinere Werte, kann die Steuereinheit 14a eine Anpassung der Ausgangsleistung P1 der ersten Heizfrequenzeinheit 10a vornehmen. Hierdurch kann insbesondere eine Erniedrigung der Ausgangsleistung P1 bei fester Frequenz f1A der ersten Heizfrequenzeinheit 10a erreicht werden. Figure 3c shows for this purpose in a Cartesian coordinate system, for example, not to scale power-frequency curves P 1 (f, d j ) for different duty cycles D 1A = d j (j = 1, ..., n) of the control signal V 1 (t) of the first Heating frequency unit 10a (see also Figure 2 ). The output power P 1 of the first heating frequency unit 10a is plotted on an ordinate axis 50. The frequency f is plotted on an abscissa axis 52. By adjusting the duty cycle D 1A , for example from 0.5 to smaller values, the control unit 14a can adjust the output power P 1 of the first heating frequency unit 10a. As a result, in particular a reduction in the output power P 1 at a fixed frequency f 1A of the first heating frequency unit 10a can be achieved.

Figur 3d zeigt in zwei kartesischen Koordinatensystemen beispielhaft zwei nicht maßstabsgetreue Gesamtleistungs-Zeit-Kurven für die erste Kombination aus Steuerungsarten aus Figur 3a. Auf einer Ordinatenachse 54 ist jeweils die Summe der Ausgangsleistungen P1 + P2 der Heizfrequenzeinheiten 10a, 12a aufgetragen. Auf einer Abszissenachse 56 ist jeweils die Zeit t während drei Periodendauern T aufgetragen. Das obere der zwei Koordinatensysteme aus Figur 3d zeigt einen Fall, bei dem der Tastgrad D1A der ersten Heizfrequenzeinheit 10a einen Wert d1 aufweist. Gemäß Figur 3c ergibt sich bei der Frequenz f1A dann eine Ausgangsleistung P1 der ersten Heizfrequenzeinheit 10a von P1(f1A,d1). Das untere der zwei Koordinatensysteme aus Figur 3d zeigt einen Fall, bei dem der Tastgrad D1A der ersten Heizfrequenzeinheit 10a einen Wert dn aufweist, welcher kleiner ist als d1. Gemäß Figur 3c ergibt sich bei der Frequenz f1A dann eine Ausgangsleistung P1 der ersten Heizfrequenzeinheit 10a von P1(f1A,dn), die kleiner ist als die Ausgangsleistung P1(f1A,d1). Wie anhand von Figur 3d zu erkennen, kann die Ausgangsleistungsdifferenz F durch die Wahl eines kleineren Tastgrads D1A verkleinert werden. Die Steuereinheit 14a nutzt diesen Sachverhalt zur Minimierung der Gesamtausgangsleistungsdifferenz F unter den Flickergrenzwert G. Figure 3d shows in two Cartesian coordinate systems, for example, two not to scale total power-time curves for the first combination of control types Figure 3a . The sum of the output powers P 1 + P 2 of the heating frequency units 10a, 12a is plotted on an ordinate axis 54. The time t during three period durations T is plotted on an abscissa axis 56. The top of the two coordinate systems Figure 3d shows a case in which the duty cycle D 1A of the first heating frequency unit 10a has a value d 1 . According to Figure 3c the frequency f 1A then results in an output power P 1 of the first heating frequency unit 10a of P 1 (f 1A , d 1 ). The lower of the two coordinate systems Figure 3d shows a case in which the duty cycle D 1A of the first heating frequency unit 10a has a value d n which is smaller than d 1 . According to Figure 3c The frequency f 1A then results in an output power P 1 of the first heating frequency unit 10a of P 1 (f 1A , d n ) which is smaller than the output power P 1 (f 1A , d 1 ). As with Figure 3d To recognize, the output power difference F can be reduced by choosing a smaller duty cycle D 1A . The control unit 14a uses this fact to minimize the total output power difference F below the flicker limit G.

Figur 4a zeigt in einem kartesischen Koordinatensystem beispielhaft zwei nicht maßstabsgetreue Leistungs-Frequenz-Kurven P1(f) und P2(f) für die zweite Kombination aus Steuerungsarten. Auf einer Ordinatenachse 58 sind die Ausgangsleistungen P1 und P2 der Heizfrequenzeinheiten 10a, 12a aufgetragen. Auf einer Abszissenachse 60 ist die Frequenz f aufgetragen. Die Sollleistungen Pobj1 und Pobj2 der Heizfrequenzeinheiten 10a, 12a werden durch einen Bediener eingestellt. Im ersten Zeitintervall TA wird die erste Heizfrequenzeinheit 10a mit einer Frequenz f1A und die zweite Heizfrequenzeinheit 12a mit einer Frequenz f2A betrieben. Im zweiten Zeitintervall TB wird die erste Heizfrequenzeinheit 10a mit einer Frequenz f1B und die zweite Heizfrequenzeinheit 12a mit einer Frequenz f2B betrieben. Die Frequenzen f1A und f2A sowie f1B und f2B bilden jeweils einen Satz von Frequenzen (f1A, f2A), (f1B, f2B), wobei sich die beiden Frequenzen eines Satzes von Frequenzen (f1A, f2A), (f1B, f2B) um 18 kHz unterscheiden. Die hier verwendete Steuerungsart (f1X, f2X) ist in beiden Zeitintervallen identisch: Die beiden Heizfrequenzeinheiten 10a, 12a werden im Zeitintervall TX mit einer Frequenzdifferenz k von 18 kHz betrieben (4). Auch wenn in beiden Zeitintervallen TA, TB die gleiche Steuerungsart zum Einsatz kommt, unterscheiden sich die verwendeten Frequenzen f1A, f2A, f1B, f2B. Figure 4a shows in a Cartesian coordinate system, for example, two non-scale power-frequency curves P 1 (f) and P 2 (f) for the second combination of control types. The output powers P 1 and P 2 of the heating frequency units 10a, 12a are plotted on an ordinate axis 58. The frequency f is plotted on an abscissa axis 60. The target powers P obj1 and P obj2 of the heating frequency units 10a, 12a are set by an operator. In the first time interval T A , the first heating frequency unit 10a is operated with a frequency f 1A and the second heating frequency unit 12a with a frequency f 2A . In the second time interval T B , the first heating frequency unit 10a is operated with a frequency f 1B and the second heating frequency unit 12a with a frequency f 2B . The frequencies f 1A and f 2A as well as f 1B and f 2B each form a set of frequencies (f 1A , f 2A ), (f 1B , f 2B ), the two frequencies of a set of frequencies (f 1A , f 2A ), (f 1B , f 2B ) by 18 kHz. The type of control used here (f 1X , f 2X ) is identical in both time intervals: the two heating frequency units 10a, 12a are operated in the time interval T X with a frequency difference k of 18 kHz (4). Even if the same type of control is used in both time intervals T A , T B, the frequencies f 1A , f 2A , f 1B , f 2B used differ.

Figur 4b zeigt in einem kartesischen Koordinatensystem beispielhaft zwei nicht maßstabsgetreue Leistungs-Zeit-Kurven P1(t) und P2(t) für die zweite Kombination aus Steuerungsarten aus Figur 4a. Auf einer Ordinatenachse 62 sind die Ausgangsleistungen P1 und P2 der Heizfrequenzeinheiten 10a, 12a aufgetragen. Auf einer Abszissenachse 64 ist die Zeit t aufgetragen. Ein in Figur 4b dargestellter Verlauf der Leistungs-Zeit-Kurven P1(t) und P2(t) wird in einem Heizbetriebszustand der Heizfrequenzeinheiten 10a, 12a periodisch mit der Periodendauer T durchlaufen. Die erste Heizfrequenzeinheit 10a wird im ersten Zeitintervall TA mit einer größeren Ausgangsleistung P1 betrieben als im zweiten Zeitintervall TB. Die zweite Heizfrequenzeinheit 12a wird hingegen im ersten Zeitintervall TA mit einer kleineren Ausgangsleistung P2 betrieben als im zweiten Zeitintervall TB. Die Gesamtausgangsleistung P1 + P2 ist zeitlich konstant und identisch zur Summe der Sollleistungen Pobj1 + Pobj2. Figure 4b shows in a Cartesian coordinate system, for example, two non-scale power-time curves P 1 (t) and P 2 (t) for the second combination of control types Figure 4a . The output powers P 1 and P 2 of the heating frequency units 10a, 12a are plotted on an ordinate axis 62. The time t is plotted on an abscissa axis 64. An in Figure 4b The illustrated course of the power-time curves P 1 (t) and P 2 (t) is run through periodically with the period T in a heating operating state of the heating frequency units 10a, 12a. The first heating frequency unit 10a is operated in the first time interval T A with a greater output power P 1 than in the second time interval T B. In contrast, the second heating frequency unit 12a is operated in the first time interval T A with a smaller output power P 2 than in the second time interval T B. The total output power P 1 + P 2 is constant over time and is identical to the sum of the target powers P obj1 + P obj2 .

Da die größte maximale Schwankung der Ausgangsleistungen der Heizfrequenzeinheiten 10a, 12a für die zweite Kombination aus Steuerungsarten (f1X, f2X) gemäß Figur 4b kleiner ist als für die erste Kombination aus Steuerungsarten (f1X, f2X) gemäß Figur 3b, wählt die Steuerungseinheit 14a die zweite Kombination aus Steuerungsarten (f1X, f2X) für den gemeinsamen Betrieb der zwei Heizfrequenzeinheiten 10a, 12a aus.Since the largest maximum fluctuation in the output powers of the heating frequency units 10a, 12a for the second combination of control types (f 1X , f 2X ) according to Figure 4b is smaller than for the first combination of control types (f 1X , f 2X ) according to Figure 3b , the control unit 14a selects the second combination of control types (f 1X , f 2X ) for the joint operation of the two heating frequency units 10a, 12a.

In der Figur 5 ist ein weiteres Ausführungsbeispiel der Erfindung gezeigt. Die nachfolgenden Beschreibungen beschränken sich im Wesentlichen auf die Unterschiede zwischen den Ausführungsbeispielen, wobei bezüglich gleich bleibender Bauteile, Merkmale und Funktionen auf die Beschreibung des anderen Ausführungsbeispiels, insbesondere der Figuren 1, 2, 3a-d und 4a-b, verwiesen werden kann. Zur Unterscheidung der Ausführungsbeispiele ist der Buchstabe a in den Bezugszeichen des Ausführungsbeispiels in den Figuren 1, 2, 3a-d und 4a-b durch den Buchstaben b in den Bezugszeichen des Ausführungsbeispiels der Figur 5 ersetzt. Bezüglich gleich bezeichneter Bauteile, insbesondere in Bezug auf Bauteile mit gleichen Bezugszeichen, kann grundsätzlich auch auf die Zeichnungen und/oder die Beschreibung des Ausführungsbeispiels der Figuren 1, 2, 3a-d und 4a-b verwiesen werden.In the Figure 5 Another embodiment of the invention is shown. The following descriptions are essentially limited to the differences between the exemplary embodiments, with the components, features and functions remaining the same as the description of the other exemplary embodiment, in particular the one Figures 1, 2 , 3a-d and 4a-b , can be referenced. To distinguish the exemplary embodiments, the letter a is in the reference numerals of the exemplary embodiment in the Figures 1, 2 , 3a-d and 4a-b by the letter b in the reference numerals of the embodiment of the Figure 5 replaced. With regard to components with the same designation, in particular with respect to components with the same reference numerals, it is also possible in principle to refer to the drawings and / or the description of the exemplary embodiment in FIG Figures 1, 2 , 3a-d and 4a-b to get expelled.

Das oben beschriebene Verfahren ist leicht auf eine Gargerätevorrichtung mit N gleichzeitig zu betreibenden Heizfrequenzeinheiten 10b, 12b übertragbar, wie in Figur 5 in einer nicht maßstabsgetreuen Darstellung von Leistungs-Zeit-Kurven Pn(t) mit n = 1, 2, ..., N beispielhaft gezeigt. In diesem Fall unterteilt eine Steuereinheit 14b eine Periodendauer T in N Zeitintervalle TX (X = A, B, ..., N) und betreibt die N Heizfrequenzeinheiten 10b, 12b in jedem der Zeitintervalle TX mit einer Steuerungsart (f1X, f2X, ..., fNX). Wie im vorhergehenden Ausführungsbeispiel wählt die Steuereinheit 14b für jedes Zeitintervall TX eine Steuerungsart (f1X, f2X, ..., fNX) aus einem Katalog aus Steuerungsarten (f1X, f2X, ..., fNX) aus. Dieser Katalog umfasst zumindest folgende Steuerungsarten: (1) Alle Heizfrequenzeinheiten 10b, 12b werden im Zeitintervall TX mit der gleichen von Null verschiedenen Frequenz betrieben. (2) Von den Heizfrequenzeinheiten 10b, 12b werden y Heizfrequenzeinheiten 10b, 12b abgeschaltet, wobei y = 1, 2, ..., N. (3) Zumindest zwei Heizfrequenzeinheiten 10b, 12b unterscheiden sich in ihrer Frequenz fnX (n = 1, 2, ..., N) um eine Frequenzdifferenz k. Hierbei ist zu beachten, dass es sich bei den mit (2) gekennzeichneten Steuerungsarten (f1X, f2X, ..., fNX) tatsächlich um N Steuerungsarten (f1X, f2X, ..., fNX) handelt, da die Anzahl abgeschalteter Heizfrequenzeinheiten 10b, 12b ein Unterscheidungsmerkmal zweier verschiedener Steuerungsarten (f1X, f2X, ..., fNX) darstellt. Ferner handelt es sich bei den mit (3) gekennzeichneten Steuerungsarten (f1X, f2X, ..., fNX) ebenfalls um mehrere Steuerungsarten (f1Xx, f2X, ..., fNX). Für den Fachmann ist naheliegend, dass durch Kombination zweier der hier genannten Steuerungsarten (f1X, f2X, ..., fNX), insbesondere der mit (2) und (3) gekennzeichneten Steuerungsarten (f1X, f2X, ..., fNX), neue Steuerungsarten (f1X, f2X, ..., fNX) gebildet werden können. Insbesondere ist vorteilhaft, wenn in jedem der N Zeitintervalle TX eine andere der N Heizfrequenzeinheiten mit einer Frequenz fnX betrieben wird und die übrigen (N - 1) Heizfrequenzeinheiten im gleichen Zeitintervall TX mit einer Frequenz (fnX ± k) betrieben werden, wobei besonders vorteilhaft k = 18 kHz gilt. Die im vorhergehenden Ausführungsbeispiel genannten Bedingungen verallgemeinern sich folgendermaßen: P 1 t A + P 2 t A + + P N t A P obj 1 P obj 2 P objN G , P 1 t B + P 2 t B + + P N t B P obj 1 P obj 2 P objN G , P 1 t N + P 2 t N + + P N t N P obj 1 P obj 2 P objN G ,

Figure imgb0007
P ave 1 = P 1 t A × T A / T + P 1 t B × T B / T + + P 1 t N × T N / T = P obj 1 , P ave 2 = P 2 t A × T A / T + P 2 t B × T B / T + + P 2 t N × T N / T = P obj 2 , P aveN = P N t A × T A / T + P N t B × T B / T + + P N t N × T N / T = P objN und f min 1 / 2 / / N f nX f max ,
Figure imgb0008
wobei tx einen beliebigen Zeitpunkt innerhalb des Zeitintervalls TX, Pn die Ausgangsleistung der n-ten Heizfrequenzeinheit 10b, 12b und Pobjn die Sollleistung der n-ten Heizfrequenzeinheit 10b, 12b bezeichnet. Eine Auswahl der Steuerungsarten (f1X, f2X, ..., fNX) für die N Zeitintervalle Tx erfolgt analog zur Auswahl im vorhergehenden Ausführungsbeispiel.The method described above is easily transferable to a cooking appliance device with N heating frequency units 10b, 12b to be operated simultaneously, as in FIG Figure 5 shown by way of example in a representation of power-time curves P n (t) with n = 1, 2,... N that is not to scale. In this case, a control unit 14b divides a period T into N time intervals T X (X = A, B, ..., N) and operates the N heating frequency units 10b, 12b in each of the time intervals T X with a control type (f 1X , f 2X , ..., f NX ). As in the previous embodiment selects the control unit 14b for each time interval T X a of control (f 1X, f 2X, ..., NX f) from a catalog of types of control (f 1X, f 2X, ..., NX F). This catalog includes at least the following types of control: (1) All heating frequency units 10b, 12b are operated at the same non-zero frequency in the time interval T X. (2) Of the heating frequency units 10b, 12b, y heating frequency units 10b, 12b are switched off, where y = 1, 2, ..., N. (3) At least two heating frequency units 10b, 12b differ in their frequency f nX (n = 1 , 2, ..., N) by a frequency difference k. Please note that the control types (f 1X , f 2X , ..., f NX ) marked with (2) are actually N control types (f 1X , f 2X , ..., f NX ), since the number of switched-off heating frequency units 10b, 12b represents a distinguishing feature of two different control types (f 1X , f 2X , ..., f NX ). Furthermore, the control types (f 1X , f 2X , ..., f NX ) marked with (3) are also several control types (f 1Xx , f 2X , ..., f NX ). It is obvious to a person skilled in the art that by combining two of the control types mentioned here (f 1X , f 2X , ..., f NX ), in particular the control types (f 1X , f 2X , ..) marked with (2) and (3). ., f NX ), new control types (f 1X , f 2X , ..., f NX ) can be formed. It is particularly advantageous if, in each of the N time intervals T X, another of the N heating frequency units is operated with a frequency f nX and the remaining (N − 1) heating frequency units are operated in the same time interval T X with a frequency (f nX ± k), k = 18 kHz being particularly advantageous. The conditions mentioned in the previous exemplary embodiment are generalized as follows: P 1 t A + P 2nd t A + ... + P N t A - P obj 1 - P obj 2nd - ... - P objN G , P 1 t B + P 2nd t B + ... + P N t B - P obj 1 - P obj 2nd - ... - P objN G , ... P 1 t N + P 2nd t N + ... + P N t N - P obj 1 - P obj 2nd - ... - P objN G ,
Figure imgb0007
P ave 1 = P 1 t A × T A / T + P 1 t B × T B / T + ... + P 1 t N × T N / T = P obj 1 , P ave 2nd = P 2nd t A × T A / T + P 2nd t B × T B / T + ... + P 2nd t N × T N / T = P obj 2nd , ... P aveN = P N t A × T A / T + P N t B × T B / T + ... + P N t N × T N / T = P objN and f min 1 / 2nd / ... / N f nX f Max ,
Figure imgb0008
where t x denotes an arbitrary point in time within the time interval T X , P n the output power of the nth heating frequency unit 10b, 12b and P objn the target power of the nth heating frequency unit 10b, 12b. A selection of the control types (f 1X , f 2X , ..., f NX ) for the N time intervals T x is carried out analogously to the selection in the previous exemplary embodiment.

Alternativ kann in beiden Ausführungsbeispielen eine Speichereinheit vorgesehen sein, in welcher charakteristische Leistungs-Frequenz-Kurven Pn(f,dj) für verschiedene typische Kombinationen aus Gargeschirren und Induktionsheizelementen abgespeichert sind. Eine Speicherung erfolgt dann vorzugsweise durch einen Hersteller vor Auslieferung eines entsprechenden Induktionskochfelds. Hierdurch kann auf eine Messung der Leistungs-Frequenz-Kurven Pn(f,dj) vor Beginn eines Heizbetriebs verzichtet werden. Bezugszeichen D1B Tastgrad 10 Heizfrequenzeinheit D1C Tastgrad 12 Heizfrequenzeinheit D2A Tastgrad 14 Steuereinheit D2B Tastgrad 16 Induktionskochfeld F Gesamtausgangsleistungsdifferenz 18 Kochfeldplatte 20 Heizzone f Frequenz 22 Heizzone f1A Frequenz 26 Bedienelement f1B Frequenz 28 Anzeigeelement f2A Frequenz 30 Bedien- und Anzeigeeinheit f2B Frequenz 32 Steuer- und Regeleinheit fmin1 Mindestfrequenz 36 Ordinatenachse fmin2 Mindestfrequenz 38 Abszissenachse fmax Höchstfrequenz 42 Ordinatenachse fnX Frequenz 44 Abszissenachse fobj1 Sollfrequenz 46 Ordinatenachse fobj2 Sollfrequenz 48 Abszissenachse G Flickergrenzwert 50 Ordinatenachse k Frequenzdifferenz 52 Abszissenachse P1 Ausgangsleistung 54 Ordinatenachse P1(f) Leistungs-Frequenz-Kurve 56 Abszissenachse P1(f,dj) Leistungs-Frequenz-Kurve 58 Ordinatenachse P1(t) Leistungs-Zeit-Kurve 60 Abszissenachse P2 Ausgangsleistung 62 Ordinatenachse P2(f) Leistungs-Frequenz-Kurve 64 Abszissenachse P2(f,dj) Leistungs-Frequenz-Kurve dj Tastgrad (j = 1,..., n) Pn(f,dj) Leistungs-Frequenz-Kurve D1A Tastgrad P2(t) Leistungs-Zeit-Kurve Pave1 Mittlere Ausgangsleistung Pave2 Mittlere Ausgangsleistung Pn Ausgangsleistung Pn(t) Leistungs-Zeit-Kurve Pobj1 Sollleistung Pobj2 Sollleistung Pobjn Sollleistung T Periodendauer T0A Periodendauer T0B Periodendauer TA Zeitintervall TB Zeitintervall Tx Zeitintervall t Zeit t0A Einschaltzeit t0B Einschaltzeit t1 Zeitpunkt t2 Zeitpunkt tx Zeitpunkt Vo Einschaltwert V1(t) Steuersignal V1 Steuerspannung V2(t) Steuersignal x Zeitpunkt y Anzahl Alternatively, a storage unit can be provided in both exemplary embodiments, in which characteristic power-frequency curves P n (f, d j ) for various typical combinations of cooking utensils and induction heating elements are stored. Storage is then preferably carried out by a manufacturer before delivery of a corresponding induction hob. This makes it possible to dispense with measuring the power-frequency curves P n (f, d j ) before starting heating operation. Reference numerals D 1B Duty cycle 10th Heating frequency unit D 1C Duty cycle 12th Heating frequency unit D 2A Duty cycle 14 Control unit D 2B Duty cycle 16 Induction hob F Total output power difference 18th Cooktop 20th Heating zone f frequency 22 Heating zone f 1A frequency 26 Control element f 1B frequency 28 Display element f 2A frequency 30th Control and display unit f 2B frequency 32 Control and regulation unit f min1 Minimum frequency 36 Ordinate axis f min2 Minimum frequency 38 Axis of abscissa f max Maximum frequency 42 Ordinate axis f nX frequency 44 Axis of abscissa f obj1 Target frequency 46 Ordinate axis f obj2 Target frequency 48 Axis of abscissa G Flicker limit 50 Ordinate axis k Frequency difference 52 Axis of abscissa P 1 Output power 54 Ordinate axis P 1 (f) Power frequency curve 56 Axis of abscissa P 1 (f, d j ) Power frequency curve 58 Ordinate axis P 1 (t) Performance-time curve 60 Axis of abscissa P 2 Output power 62 Ordinate axis P 2 (f) Power frequency curve 64 Axis of abscissa P 2 (f, d j ) Power frequency curve d j Duty cycle (j = 1, ..., n) Pn (f, d j ) Power frequency curve D 1A Duty cycle P 2 (t) Performance-time curve P ave1 Average output power P ave2 Average output power P n Output power P n (t) Performance-time curve P obj1 Target power P obj2 Target power P objn Target power T Period duration T 0A Period duration T 0B Period duration T A Time interval T B Time interval T x Time interval t time t 0A On time t 0B On time t 1 time t 2 time t x time Vo Switch-on value V 1 (t) Control signal V 1 Control voltage V 2 (t) Control signal x time y number

Claims (10)

  1. Cooking appliance device having at least a first and at least a second heating frequency unit (10, 12) and having at least one control unit (14) that is provided so as to operate the at least two heating frequency units (10, 12) simultaneously periodically with one period duration (T) and to divide the period duration (T) into at least two time intervals (TA, TB), characterized in that the control unit (14) is provided so as to select a control mode (f1x, f2x) for each of the at least two time intervals (TA, TB) from a catalogue of control modes (f1x, f2x), wherein the control mode (f1x, f2x) is a mode of control of at least two heating frequency units by the control unit (14) in a time interval (TA, TB) and wherein two different control modes (f1x, f2x) are defined by virtue of the fact that the two control modes (f1x, f2x) involve operating a different number of heating frequency units (10, 12) and/or using a different number of frequencies (f1A, f2A, f1B, f2B) and/or said control modes differ by at least one calculating method by means of which at least one frequency (f1A, f2A, f1B, f2B) that is used in the control mode (f1X, f2X) is produced from another frequency (f1A, f2A, f1B, f2B) that is used in the control mode (f1X, f2X).
  2. Cooking appliance device according to claim 1, characterised in that the control unit (14) is provided so as for the at least two time intervals (TA, TB) to select the particular control modes (f1X, f2X) that render it possible to operate the at least two heating frequency units (10, 12) with as few as possible fluctuations of a total output power of the at least two heating frequency units (10, 12) and/or of a respective output power (P1, P2) of the at least two heating frequency units (10, 12).
  3. Cooking appliance device according to claim 1 or 2, characterised in that the control unit (14) is provided so as in accordance with the selected control modes (f1X, f2X), to determine for each of the at least two time intervals (TA, TB) frequencies (f1A, f2A, f1B, f2B) of control signals (V1(t), V2(t)) of the at least two heating frequency units (10, 12) while at least to a great extent temporarily maintaining constant a total output power (P) of the at least two heating frequency units (10,12).
  4. Cooking appliance device according to one of the preceding claims, characterised in that the control unit (14) is provided so as to adapt average output powers (Pave1, Pave2) of the at least two heating frequency units (10, 12) to selected desired powers (Pobj1, Pobj2).
  5. Cooking appliance device according to claim 4, characterised in that the control unit (14) is provided so as to adapt the average output powers (Pave1, Pave2) of the at least two heating frequency units (10, 12) by virtue of adapting the at least two time intervals (TA, TB).
  6. Cooking appliance device according to one of the preceding claims, characterised in that the control unit (14) is provided so as to perform open-loop control and/or closed-loop control of the at least two heating frequency units (10, 12) respectively by means of a control signal (V1(t), V2(t)) and in at least one operating state to adapt a duty cycle (D1A, D2A, D1B, D2B) of at least one of the control signals (V1(t), V2(t)).
  7. Cooking appliance device according to one of the preceding claims, characterised in that the control unit (14) is provided so as to divide the period duration (T) into a number of time intervals (TA, TB) that correspond to a number of heating frequency units (10, 12) that are to be operated simultaneously.
  8. Cooking appliance device according to one of the preceding claims, characterised in that that the control unit (14) is provided so as to determine power-frequency graphs (P1(f,dj), P2(f,dj) for different duty cycles (dj) of a control signal (V1(t), V2(t)) of the at least two heating frequency units (10, 12).
  9. Method for operating a cooking appliance device according to one of the preceding claims having at least a first and at least a second heating frequency unit (10, 12), wherein the heating frequency units (10, 12) are operated simultaneously periodically for a period duration (T) and the period duration (T) is divided into at least two time intervals (TA, TB), characterised in that a control mode (f1X, f2X) is selected for each of the at least two time intervals (TA, TB) from a catalogue of control modes (f1X, f2X) so as to minimize intermodulation noises, wherein a control mode (f1X, f2X) is a mode of control of at least two heating frequency units by the control unit (14) in a time interval (TA, TB) and wherein two different control modes (f1x, f2x) are defined by virtue of the fact that the two control modes (f1x, f2x) involve operating a different number of heating frequency units (10, 12) and/or use a different number of frequencies (f1A, f2A, f1B, f2B) and/or said control modes differ by at least one calculating method by means of which at least one frequency (f1A, f2A, f1B, f2B) that is used in the control mode (f1X, f2X) is produced from another frequency (f1A, f2A, f1B, f2B) that is used in the control mode (f1X, f2X).
  10. Cooking appliance, in particular a hob, having a cooking appliance device according to one of claims 1 to 8.
EP12158449.4A 2011-03-28 2012-03-07 Cooking device Active EP2506666B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201130456 2011-03-28

Publications (2)

Publication Number Publication Date
EP2506666A1 EP2506666A1 (en) 2012-10-03
EP2506666B1 true EP2506666B1 (en) 2020-05-06

Family

ID=45939115

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12158449.4A Active EP2506666B1 (en) 2011-03-28 2012-03-07 Cooking device

Country Status (2)

Country Link
EP (1) EP2506666B1 (en)
ES (1) ES2798178T3 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2911472B2 (en) * 2013-12-20 2022-11-09 BSH Hausgeräte GmbH Cooking appliance, in particular cooking hob device, with a plurality of inverters
ES2564888B1 (en) * 2014-09-24 2017-01-05 BSH Electrodomésticos España S.A. Cooking appliance device and procedure for putting into operation a cooking appliance device
ES2673132B1 (en) * 2016-12-19 2019-03-28 Bsh Electrodomesticos Espana Sa Induction cooking appliance device.
CN111432512B (en) * 2020-04-16 2022-03-18 深圳市鑫汇科股份有限公司 Electromagnetic heating equipment and heating control device and method thereof
CN114698166B (en) * 2020-12-29 2023-06-16 佛山市顺德区美的电热电器制造有限公司 Electromagnetic heating apparatus, noise suppressing method, heating control system, and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2201937B1 (en) * 2003-11-03 2005-02-01 Bsh Electrodomesticos España, S.A. PROCEDURE FOR THE OPERATION OF A CONVERTER CIRCUIT.
DE102005021888A1 (en) * 2005-05-04 2007-02-15 E.G.O. Elektro-Gerätebau GmbH Method and arrangement for power supply of a plurality of induction coils in an induction device
ES2338057T5 (en) 2007-01-23 2023-03-09 Whirlpool Co Control method for an induction cooker and induction cooker adapted to carry out said method
TWI394547B (en) * 2009-03-18 2013-05-01 Delta Electronics Inc Heating apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2506666A1 (en) 2012-10-03
ES2798178T3 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
EP2236004B1 (en) Induction hob comprising a plurality of induction heaters
EP1878309B1 (en) Method and arrangement for supplying power to several induction coils in an induction apparatus
EP2506666B1 (en) Cooking device
EP2586271B1 (en) Cooker hob device
EP2469970B1 (en) Cooking device
EP2506663B1 (en) Cooking device
WO2010084096A2 (en) Hob having at least one heating zone having several heating elements
EP3001773B1 (en) Cooking device and method for operating a cooking appliance
EP3560276A1 (en) Cooking appliance apparatus, and method for operating a cooking appliance apparatus
EP2506665B1 (en) Cooking device
DE19708335B4 (en) Heating power regulation for induction cooker
EP2911472B2 (en) Cooking appliance, in particular cooking hob device, with a plurality of inverters
EP2469972B1 (en) Cooking device and method of controlling the cooking device which diminish in an iterative manner a flicker characteristic.
EP3021639A1 (en) Method for operating a cooking field device and cooking field device
EP2506673B1 (en) Induction cooktop
EP2506664B1 (en) Cooking device
EP2469971B1 (en) Cooking device
EP3641497B1 (en) Cooking device
EP3484242B1 (en) Induction cooking device
EP3565379B1 (en) Induction device
EP2548407B1 (en) Cooktop
EP2945461B1 (en) Cooking device
DE102012211399A1 (en) Home appliance device e.g. cooking hob device has control unit that controls heating units to increase heating power of one heating zone more than other heating zone during specific mode of operation
EP2550841B1 (en) Hob device
EP2506667B1 (en) Induction heating device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130403

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BSH HAUSGERAETE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161123

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1268922

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012016042

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2798178

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012016042

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210307

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210307

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1268922

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120307

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230323

Year of fee payment: 12

Ref country code: DE

Payment date: 20230331

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230322

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230414

Year of fee payment: 12