EP2506664B1 - Cooking device - Google Patents

Cooking device Download PDF

Info

Publication number
EP2506664B1
EP2506664B1 EP12158075.7A EP12158075A EP2506664B1 EP 2506664 B1 EP2506664 B1 EP 2506664B1 EP 12158075 A EP12158075 A EP 12158075A EP 2506664 B1 EP2506664 B1 EP 2506664B1
Authority
EP
European Patent Office
Prior art keywords
frequency
obj
unit
heating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12158075.7A
Other languages
German (de)
French (fr)
Other versions
EP2506664A1 (en
Inventor
Jose Maria De La Cuerda Ortin
Oscar Gracia Campos
Ignacio Millan Serrano
Paul Muresan
Ramon Peinado Adiego
David Valeau Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Priority to PL12158075T priority Critical patent/PL2506664T3/en
Publication of EP2506664A1 publication Critical patent/EP2506664A1/en
Application granted granted Critical
Publication of EP2506664B1 publication Critical patent/EP2506664B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • H05B6/065Control, e.g. of temperature, of power for cooking plates or the like using coordinated control of multiple induction coils

Definitions

  • the invention is based on a cooking device device according to the preamble of claim 1.
  • the publication EP 1 951 003 A1 discloses an induction hob having at least two heating frequency units operated according to a particular method to at least substantially avoid intermodulation noise. According to this method, both heating-frequency units are operated at an identical and fixed first frequency in a first time interval. In a second time interval, a heating frequency unit is switched off, while the other heating frequency unit is operated at a fixed second frequency. The two frequencies as well as the relative lengths of the two time intervals are adjusted so that an average output power of each heating frequency unit corresponds to a target power selected by an operator.
  • the object of the invention is, in particular, to provide a cooking appliance device of the generic type which enables an advantageously flexible and easily implementable setting of an average output power.
  • the object is achieved by the features of claim 1 and the method claim 8, while advantageous embodiments and modifications of the invention can be taken from the dependent claims.
  • the invention is based on a cooking device device with at least one first and at least one second heating frequency unit and with at least one control unit which is provided to operate the first heating frequency unit continuously with a fixed first frequency and to operate the second heating frequency unit in at least a first time interval and switch off in at least a second time interval.
  • control unit be provided to operate the second heating frequency unit in the first time interval with at least one frequency which differs from the first frequency by at least 15 kHz, preferably at least 16 kHz and particularly advantageously at least 17 kHz. It can be provided in particular to operate the second heating frequency unit in the first time interval with a changing frequency. Preferably, however, it is provided to operate the second heating frequency unit in the first time interval with a fixed frequency, which differs particularly advantageously by exactly 17 kHz from the first frequency.
  • the first frequency preferably corresponds to a nominal frequency of the first heating frequency unit for a given nominal power.
  • a "target frequency" is to be understood in particular a frequency which supplies the desired power as output power during operation of the heating frequency unit with this frequency.
  • An "output power" of one of the at least two heating-frequency units should in particular be understood to mean a power which is supplied by the heating-frequency unit in at least one heating operating state.
  • the cooking device device is preferably designed as a hob device and particularly advantageously as an induction hob device.
  • a "first time interval” and a “second” time interval are to be understood as meaning, in particular, two temporally successive time intervals of a length greater than 0.
  • the designations "first" and “second” time intervals are intended exclusively for distinguishing the time intervals and, in particular, no statement about a time interval
  • the term "provided” should in particular be understood to mean specially programmed and / or designed and / or equipped.
  • a “heating frequency unit” should in particular be understood to mean an electrical unit which generates an oscillating electrical current, preferably with a frequency of at least 15 kHz, in particular of at least 17 kHz and advantageously of at least 20 kHz, for operation of at least one heating unit.
  • a “heating unit” is to be understood in particular as meaning a unit which is intended to convert electrical energy into heat, at least to a large extent, and thus in particular to heat a food to be cooked.
  • the heating unit comprises a radiant heater, a resistance heater and / or preferably an induction heater, which is intended to convert electrical energy into heat indirectly via induced eddy currents.
  • the heating frequency unit comprises in particular at least one inverter, which preferably comprises two switching units.
  • a “switching unit” is to be understood in particular as meaning a unit which is intended to interrupt a conduction path comprising at least part of the switching unit.
  • the switching unit is a bidirectional unipolar switch which in particular allows a current flow through the switch along the conduction path in both directions and in particular short-circuits an electrical voltage in at least one polarity direction.
  • the inverter comprises at least two bipolar transistors with insulated gate electrode and particularly advantageously at least one damping capacitor.
  • a “conduction path” is to be understood as meaning, in particular, an electrically conductive conductor piece between two points.
  • electrically conductive is to be understood in particular with a specific electrical resistance of at most 10 -4 ⁇ M, in particular of at most 10 -5 ⁇ m, advantageously of at most 10 -6 ⁇ m and particularly advantageously of not more than 10 -7 ⁇ m at 20 ° C.
  • control unit is to be understood in particular as meaning an electronic unit which is preferably at least partially integrated in a control and / or regulating unit of a cooking appliance, in particular an induction hob, and which preferably has an arithmetic unit and in particular in addition to the arithmetic unit a storage unit with a stored therein
  • Control program includes.
  • the control unit is provided to control and / or regulate the heating frequency units by means of control signals and preferably electrical control signals.
  • a "control signal” should be understood in particular to mean a signal which, in particular in at least one operating state, triggers a switching operation of a heating frequency unit, in particular also indirectly.
  • an “electrical control signal” is intended in particular to mean a control signal having an electrical potential of at most 30 V, preferably of at most 20 V, particularly advantageously at most 10 V and in particular at least 0.5 V, based on a reference potential.
  • the control signal has a periodicity at least at times, in particular with a period of at most 1 ms, in particular of at most 0.1 ms and advantageously of at most 0.05 ms.
  • the control signal is at least substantially a rectangular signal, which in particular has two discrete values, preferably a switch-on value and a switch-off value.
  • each of the two values corresponds to a switching position of the heating frequency units and in particular their inverter.
  • a "frequency" of a heating frequency unit is to be understood in particular as the frequency of the control signal controlling the heating frequency unit.
  • a heating frequency unit is "operated” should be understood in particular that the frequency of the heating frequency unit is different from zero.
  • a heating frequency unit is operated “continuously” should be understood in particular that the heating frequency unit is operated continuously during a heating mode, wherein the non-zero frequency of the control signal can change.
  • the fact that a heating frequency unit is operated with a "fixed” frequency should in particular be understood to mean that the heating frequency unit is operated with a frequency that is at least substantially constant during a heating mode.
  • An “at least largely immutable frequency” should be understood in particular to mean a frequency which during the heating mode has a fluctuation of at most 10%, in particular of at most 5%, preferably of at most 1% and particularly advantageously of 0%.
  • a "output power that is at least substantially insignificant in the relevant time interval” should be understood as meaning, in particular, an output power which is at most 100 W, in particular at most 50 W, preferably at most 25 W and particularly advantageously 0 W and / or which is delivered in the time interval exclusively during a period which corresponds to at most 50%, in particular at most 25%, preferably at most 15% and particularly advantageously at most 10% of a length of the time interval.
  • the control unit is provided to control and / or regulate the at least two heating frequency units by means of the control signals in such a way that an average output power of one of the at least two heating frequency units corresponds at least largely to a nominal power selected by an operator.
  • a relative deviation of the set by the control unit average output power of the target power should be at most 20%, preferably at most 10% and more preferably at most 5%.
  • a "mean output power" is to be understood in particular a time-averaged output power.
  • the control unit is in particular provided to make an adjustment of the average output power to the desired power while largely avoiding Intermodulationsge syndromeschen.
  • intermodulation noises with a frequency of less than 17 kHz, in particular less than 16 kHz and preferably less than 15 kHz at a distance of 1 m from the cooking appliance device a sound pressure level of at most 20 dB, in particular of at most 10 dB, preferably of at most 5 dB, and particularly advantageously have a maximum of 0 dB.
  • the intermodulation sounds are inaudible by an average hearing operator.
  • an advantageously flexible adjustment of the average output powers of the heating frequency units can be achieved, in particular since the frequency of the second heating frequency unit can be chosen to be greater or smaller than the first frequency.
  • an easy implementation of the control method can be achieved, in particular by means of software.
  • an operation of both Schufrequenzüen be achieved with the required target performance under at least largely avoiding Intermodulationsge syndromeschen.
  • a simple scalability of the at least two heating frequency units can be made possible on any number of heating frequency units.
  • the control unit is provided for periodically operating the at least two heating frequency units with a period that corresponds to a sum of a length of the first time interval and a length of the second time interval.
  • the control unit for the case that a frequency difference between a minimum of a desired power associated target frequency and a second smallest of a desired power associated target frequency is at least 17 kHz, provided to operate the Schufrequenzong with the smallest nominal frequency continuously with the fixed first frequency. It is then preferably provided to operate at least one further heating frequency unit in the first time interval with a frequency which is at least 15 kHz, in particular at least 16 kHz, preferably at least 17 kHz and particularly advantageously at a frequency which is exactly 17 kHz higher. In this way, a high level of operating comfort can be achieved since a difference between an output power of one of the at least two heating frequency units and a setpoint power can be minimized.
  • control unit in the event that a frequency difference between a minimum nominal power associated target frequency and a second smallest target power associated target frequency is less than 17 kHz, is provided to the heating frequency unit with the second smallest nominal frequency continuously at the fixed first frequency to operate.
  • it is then provided to operate at least one further heating frequency unit in the first time interval with a frequency which is at least 17 kHz and preferably at a frequency which is exactly 17 kHz smaller.
  • control unit is provided to control and / or regulate the at least two heating frequency units in each case by means of a control signal and to adapt a duty cycle of at least one of the control signals in at least one operating state.
  • a ratio of a time duration in which the control signal assumes the switch-on value within a period duration to the period duration of the control signal is to be understood as a "duty cycle”.
  • an output of the heating frequency unit can be changed.
  • control unit is intended to "adjust a duty cycle of at least one of the control signals"
  • control unit is intended to change the duty cycle of at least one of the control signals, thereby changing a fixed output power Frequency of a heating frequency unit.
  • the control unit is provided to adjust the duty cycle to minimize a patch characteristic.
  • a “flicker characteristic” is to be understood in particular as a parameter that represents a measure of flicker.
  • flicker is meant, in particular, a subjective impression of an instability of a visual perception, which is caused in particular by a light stimulus whose luminance and / or spectral distribution varies with time.
  • flicker can be caused by a voltage drop of a mains voltage.
  • the patch characteristic is an overall output power difference, preferably between two time points of two time intervals and particularly advantageously two adjacent time intervals. Under a “total output” is in particular a Sum of the output powers of all heating-frequency units at a given time.
  • a “total output power difference” is to be understood in particular as a difference of the total output powers at two different points in time.
  • the control unit is provided to lower the flicker characteristic below a threshold.
  • the limit value is preferably a value defined by at least one statutory requirement and / or standard, in particular the standard DIN EN 61000-3-3. As a result, ease of use can be increased particularly advantageous and legal requirements and / or standards can be met.
  • the cooking device device comprises at least a third heating frequency unit and that the control unit is provided in at least one operating state to at least temporarily switch off the third heating frequency unit.
  • the control method according to the invention for a cooking device device with more than two heating frequency units and in particular to a cooking appliance device for a matrix hob can be scaled.
  • a "matrix cooktop" is to be understood, in particular, as a cooktop in which heating units are arranged in a regular grid under a cooktop panel, and a region of the cooktop panel which can be heated by means of the heating units is preferably at least 60%, in particular at least 70%, advantageously at least 80%. and particularly advantageously comprises at least 90% of a total area of the hob plate.
  • the matrix cooktop comprises at least 10, in particular at least 20, advantageously at least 30 and particularly advantageously at least 40 heating units.
  • control unit is provided for operating the third heating frequency unit at least partially simultaneously with the second heating frequency unit and at the same frequency as the second heating frequency unit.
  • intermodulation noises can be at least largely avoided, in particular with any number of simultaneously operated heating frequency units.
  • a method is proposed with a cooking device device with at least one first and at least one second heating frequency unit, in which the first heating frequency unit is operated continuously at a fixed first frequency and the second heating frequency unit is operated in at least a first time interval and switched off in at least a second time interval, wherein the second heating frequency unit is operated in the first time interval with at least one frequency which differs from the first frequency at least by 15 kHz, preferably by at least 16 kHz and particularly advantageously by at least 17 kHz.
  • an advantageously flexible adjustment of the average output power of the heating frequency units can be achieved.
  • easy implementation of the control method can be achieved.
  • an operation of both heating frequency units with the required setpoint power can be achieved with at least largely avoiding intermodulation noise.
  • a cooking appliance in particular a hob, proposed with a Garellavorraum invention.
  • the hob is an induction hob.
  • FIG. 1 shows a trained as induction hob 16a cooking appliance.
  • the induction hob 16a comprises a hob plate 18a, in particular of a glass ceramic, on which two heating zones 20a, 22a are marked in a known manner.
  • the hob plate 18a is horizontally disposed in an operative state of the induction hob 16a and provided for setting up cooking utensils.
  • touch-sensitive operating elements 26a and display elements 28a of an operating and display unit 30a of the induction hob 16a are marked in a known manner on the hob plate 18a.
  • the induction hob 16a further comprises a cooking appliance device having a first and a second heating frequency unit 10a, 12a arranged below the hob plate 18a and with a control unit 14a arranged below the hob plate 18a.
  • a cooking appliance device having a first and a second heating frequency unit 10a, 12a arranged below the hob plate 18a and with a control unit 14a arranged below the hob plate 18a.
  • FIG. 1 are components which are arranged below the hob plate 18a, drawn schematically and dashed, with functional relationships are indicated by arrows.
  • the control unit 14a is integrated in a control and regulation unit 32a of the induction hob 16a.
  • An induction heating unit associated with and located below the heating zone 20a is energized by the first heating frequency unit 10a.
  • An induction heating unit associated with and located below the heating zone 22a is energized by the second heating frequency unit 12a.
  • the control unit 14a is provided to adapt a respective average output power P ave1 , P ave2 of the heating frequency units 10a, 12a to the desired powers P obj1 , P obj2 while largely avoiding intermodulation noise, so that the selected heating levels of the heating zones 20a, 22a can be achieved.
  • the control unit 14a controls the first heating frequency unit 10a by means of a control signal V 1 (t) and the second heating frequency unit 12a by means of a control signal V 2 (t).
  • FIG. 2 shows by way of example a not to scale control signal V 2 (t) of the second heating frequency unit 12a in a Cartesian coordinate system.
  • An ordinate axis 36 has a control voltage V 2 and an abscissa axis 38 applied a time t.
  • the control signal V 2 (t) is during a first time interval T A a period T a square wave signal with a switch-V 0 and a switch-off of 0 volts.
  • the switch-on value V 0 is held during a switch-on time t 0 .
  • the square wave signal has a period T 0th During a period of time (T 0 -t 0 ), the turn-off value is held.
  • a frequency f 2 of the control signal V 2 (t) is calculated from a reciprocal of the period T 0 .
  • the frequency f 2 is usually between 20 kHz and 100 kHz.
  • a duty cycle D 2A of the control signal V 2 (t) is calculated from a quotient of the switch-on time t 0 divided by the period T 0 . While V 2 (t) takes the form of the square wave signal, a first of two switching units of the second heating frequency unit 12 a is periodically switched in accordance with a periodic change of the turn-on value V 0 and the turn-off value.
  • a second switching unit of the second heating frequency unit 12a is periodically switched in an analogous but time-shifted manner, so that a high-frequency alternating current results in an operation of the induction heating unit assigned to the heating zone 22a.
  • the control signal V 2 (t) is identical to zero.
  • a time x separates the first time interval T A and the second time interval T B. After the period T has elapsed, the control signal V 2 (t) is repeated.
  • FIG. 3a shows in a Cartesian coordinate system by way of example two not-to-scale power frequency curves P 1 (f) and P 2 (f).
  • output powers P 1 and P 2 of the heating frequency units 10a, 12a are plotted.
  • the frequency f is plotted.
  • the target powers P obj1 and P obj2 of the heating frequency units 10a, 12a are set by an operator.
  • a frequency spacing of the nominal powers P obj1 and P obj2 associated setpoint frequencies f obj1 and f obj2 of the heating frequency units 10a, 12a is at least 17 kHz.
  • the first heating frequency unit 10a has the smallest nominal frequency f obj1 assigned to the desired powers P obj1 , P obj2 .
  • This is then operated by the control unit 14a continuously with a fixed first frequency f 1, that of the target power P obj1 associated nominal frequency f obj1 equivalent.
  • the second heating frequency unit 12a is operated by the control unit 14a in the first time interval T A with a frequency f 2 which is 17 kHz higher. Since the output power P 2 of the second heating frequency unit 12a at the frequency f 2 exceeds the target power P obj2 of the second heating frequency unit 12a, the second heating frequency unit 12a is switched off in the second time interval T B.
  • FIG. 3b shows in a Cartesian coordinate system by way of example two not-to-scale power-time curves P 1 (t) and P 2 (t) for the in FIG. 3a described case.
  • On an ordinate axis 46 the output powers P 1 and P 2 of the Schufrequenztechniken 10a, 12a applied.
  • the time t is plotted on an abscissa axis 48.
  • An in FIG. 3b illustrated course of the power-time curves P 1 (t) and P 2 (t) is in a heating operation state of the heating-frequency units 10 a, 12 a periodically through the period T.
  • the control unit 14a calculates the lengths of the time intervals T A and T B of the period T so that the average output power P ave2 of the second heating frequency unit 12a corresponds to the desired power P obj2 .
  • FIG. 4a shows in a Cartesian coordinate system by way of example two not-to-scale power frequency curves P 1 (f) and P 2 (f).
  • output powers P 1 and P 2 of the heating frequency units 10a, 12a are plotted.
  • the frequency f is plotted.
  • the target powers P obj1 and P obj2 of the heating frequency units 10a, 12a are set by an operator.
  • a frequency spacing of the nominal powers P obj1 and P obj2 associated desired frequencies f obj1 and f obj2 of the heating frequency units 10a, 12a is less than 17 kHz.
  • the first heating frequency unit 10a has the second smallest, that is to say the highest nominal frequency f obj1 assigned to the desired powers P obj1 , P obj2 here .
  • This is then operated by the control unit 14a continuously with a fixed first frequency f 1 , which corresponds to the target power P obj1 associated target frequency f obj1 .
  • the second heating frequency unit 12a is operated by the control unit 14a in the first time interval T A with a frequency f 2 lower by 17 kHz. Since the output power P 2 of the second heating frequency unit 12a at the frequency f 2 exceeds the target power P obj2 of the second heating frequency unit 12a, the second heating frequency unit 12a is switched off in the second time interval T B.
  • FIG. 4b shows in a Cartesian coordinate system by way of example two not-to-scale power-time curves P 1 (t) and P 2 (t) for the in FIG. 4a described case.
  • the output powers P 1 and P 2 of the heating frequency units 10a, 12a are plotted on an ordinate axis 54.
  • the time t is plotted on an abscissa axis 56.
  • An in FIG. 4b illustrated course of the power-time curves P 1 (t) and P 2 (t) is in a heating operation state of the heating-frequency units 10 a, 12 a periodically through the period T.
  • the calculation of the lengths of the time intervals T A and T B of the period T by the control unit 14 a is carried out as described above.
  • the output power P 2 of the second heating frequency unit 12 a is plotted.
  • the frequency f is plotted.
  • FIG. 6 shows in two Cartesian coordinate systems by way of example two non-to-scale total power-time curves.
  • On an ordinate axis 62 in each case the sum of the output powers P 1 + P 2 of the heating frequency units 10a, 12a applied.
  • On an abscissa axis 64 the time t is plotted during three periods T in each case.
  • the top of the two coordinate systems FIG. 6 FIG. 15 shows a case where the duty D 2A of the second heating frequency unit 12 a has a value d 1 .
  • FIG. 5 results in the frequency f 2 then an output P 2 of the second heating frequency unit 12a of P 2 (f 2 , d 1 ).
  • the effect can be achieved by adjusting a duty cycle D 1A of the control signal V 1 (t) of the first Schufrequenzaise 10a in the time interval T A and / or by adjusting a duty cycle D 1B of the control signal V 1 (T) of the first heating frequency unit 10a in the time interval T B, an adjustment of the output power P 1 are made.
  • an induction hob can also have more than two induction heating units, wherein in each case a plurality of induction heating units can each be connected to a heating frequency unit via a respective switching unit.
  • FIGS. 7a, b and 8a, b a further embodiment of the invention is shown.
  • the following descriptions are essentially limited to the differences between the embodiments, with respect to the same components, features and functions on the description of the other embodiment and in particular FIG. 1 can be referenced.
  • the method described above can be easily extended to a cooking appliance device for an induction hob 16b with at least a first heating frequency unit 10b, a second heating frequency unit 12b and a third heating frequency unit.
  • Figure 7a shows in a Cartesian coordinate system, for example, three power-frequency curves P 1 (f), P 2 (f) and P 3 (f) which are not true to scale.
  • Output powers P 1 , P 2 and P 3 of the heating frequency units 10b, 12b are plotted on an ordinate axis 66.
  • the target powers P obj1 , P obj2 and P obj3 of the heating frequency units 10b, 12b are set by an operator.
  • the first heating frequency unit 10b is then operated by a control unit 14b of the cooking appliance device continuously with a fixed first frequency f 1 , which corresponds to the setpoint power P obj1 associated setpoint frequency f obj1 .
  • the second heating frequency unit 12b is controlled by the control unit 14b in a first time interval T A with a 17 kHz higher frequency f 2 operated. Since the output power P 2 of the second heating frequency unit 12b exceeds the nominal power P obj2 at the frequency f 2 , the second heating frequency unit 12b is switched off in a second time interval T B following the first time interval T A.
  • the third heating frequency unit is operated by the control unit 14b in a first time interval T A 'as well with the frequency f 2 . Since the output power P 3 of the third heating frequency unit at the frequency f 2 exceeds the setpoint power P obj3 , the third heating frequency unit is switched off in a second time interval T B 'following the first time interval T A
  • FIG. 7b shows in a Cartesian coordinate system by way of example three not-to-scale power-time curves P 1 (t), P 2 (t) and P 3 (t).
  • the output powers P 1 , P 2 and P 3 of the heating frequency units 10b, 12b are plotted on an ordinate axis 70.
  • the time t is plotted on an abscissa axis 72.
  • the calculation of the lengths of the time intervals T A , T B , T A 'and T B ' of the period T by the control unit 14 b is carried out as described in the previous embodiment. Like in the FIG. 7b shown, overlap the time intervals T A and T A 'at least partially.
  • FIG. 8a shows in a Cartesian coordinate system by way of example three not-to-scale power frequency curves P 1 (f), P 2 (f) and P 3 (f).
  • On an ordinate axis 74 are output powers P 1, P 2 and P 3 of the Schufrequenzillonen 10b, 12b applied.
  • the target powers P obj1 , P obj2 and P obj3 of the heating frequency units 10b, 12b are set by an operator.
  • the first heating frequency unit 10b has a second smallest nominal frequency f obj1 assigned to the nominal powers P obj1 , P obj2 , P obj3
  • the second heating frequency unit 12b has a smallest nominal frequency f associated with the nominal powers P obj1 , P obj2 , P obj3 obj2 on.
  • a frequency spacing between the smallest nominal frequency f obj1 and the second smallest nominal frequency f obj2 is less than 17 kHz.
  • the heating frequency unit 10b with the second smallest nominal frequency f obj1 in the present case, the first heating frequency unit 10b, is then operated by the control unit 14b continuously with a fixed first frequency f 1 , which corresponds to the target power P obj1 associated target frequency f obj1 .
  • the second heating frequency unit 12b is operated by the control unit 14b in the first time interval T A with a frequency f 2 lower by 17 kHz. Since the output power P 2 of the second heating frequency unit 12b at the frequency f 2 exceeds the setpoint power P obj2 , the second heating frequency unit 12b is switched off in the second time interval T B.
  • the third heating frequency unit is also operated by the control unit 14b in the first time interval T A 'at the frequency f 2 . Since the output power P, the target power P obj3 3 exceeds the third Schufrequenzappel at the frequency f 2, the third Schufrequenzappel in the second time interval is switched off T B '.
  • FIG. 8b shows in a Cartesian coordinate system by way of example three not-to-scale power-time curves P 1 (t), P 2 (t) and P 3 (t).
  • the output powers P 1 , P 2 and P 3 of the heating frequency units 10b, 12b are plotted on an ordinate axis 78.
  • the time t is plotted on an abscissa axis 80.
  • the calculation of the lengths of the time intervals T A , T B , T A 'and T B ' of the period T by the control unit 14 b is carried out as previously described. Like in the FIG. 8b shown, overlap the time intervals T A and T A 'at least partially.
  • an adaptation of duty D 1A , D 2A , D 3A and D 1B may be provided, in particular for minimizing a Flickerkennharide F.
  • the control method described with reference to the second embodiment is scalable from three heating frequency units to a plurality of Schufrequenzüen , For example, for a trained as a matrix cooktop induction hob.

Description

Die Erfindung geht aus von einer Gargerätevorrichtung nach dem Oberbegriff des Anspruchs 1.The invention is based on a cooking device device according to the preamble of claim 1.

Die Druckschrift EP 1 951 003 A1 offenbart ein Induktionskochfeld mit zumindest zwei Heizfrequenzeinheiten, die gemäß einem bestimmten Verfahren betrieben werden um Intermodulationsgeräusche zumindest weitgehend zu vermeiden. Nach diesem Verfahren werden in einem ersten Zeitintervall beide Heizfrequenzeinheiten mit einer identischen und festen ersten Frequenz betrieben. In einem zweiten Zeitintervall wird eine Heizfrequenzeinheit abgeschaltet, während die andere Heizfrequenzeinheit mit einer festen zweiten Frequenz betrieben wird. Die beiden Frequenzen sowie die relativen Längen der beiden Zeitintervalle werden so angepasst, dass eine mittlere Ausgangsleistung jeder Heizfrequenzeinheit einer von einem Bediener gewählten Sollleistung entspricht.The publication EP 1 951 003 A1 discloses an induction hob having at least two heating frequency units operated according to a particular method to at least substantially avoid intermodulation noise. According to this method, both heating-frequency units are operated at an identical and fixed first frequency in a first time interval. In a second time interval, a heating frequency unit is switched off, while the other heating frequency unit is operated at a fixed second frequency. The two frequencies as well as the relative lengths of the two time intervals are adjusted so that an average output power of each heating frequency unit corresponds to a target power selected by an operator.

Weitere solche Induktionskochfelder sind aus den Dokumenten WO 2006/117182 A1 , US 2010/0237065 A1 , US 2006/0289489 A1 und WO 2005/043737 A2 bekannt.Other such induction hobs are from the documents WO 2006/117182 A1 . US 2010/0237065 A1 . US 2006/0289489 A1 and WO 2005/043737 A2 known.

Die Aufgabe der Erfindung besteht insbesondere darin, eine gattungsgemäße Gargerätevorrichtung bereitzustellen, die eine vorteilhaft flexible und leicht implementierbare Einstellung einer mittleren Ausgangsleistung ermöglicht. Die Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 und des Verfahrensanspruchs 8 gelöst, während vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung den Unteransprüchen entnommen werden können.The object of the invention is, in particular, to provide a cooking appliance device of the generic type which enables an advantageously flexible and easily implementable setting of an average output power. The object is achieved by the features of claim 1 and the method claim 8, while advantageous embodiments and modifications of the invention can be taken from the dependent claims.

Die Erfindung geht aus von einer Gargerätevorrichtung mit zumindest einer ersten und zumindest einer zweiten Heizfrequenzeinheit und mit wenigstens einer Steuereinheit, die dazu vorgesehen ist, die erste Heizfrequenzeinheit kontinuierlich mit einer festen ersten Frequenz zu betreiben und die zweite Heizfrequenzeinheit in zumindest einem ersten Zeitintervall zu betreiben und in zumindest einem zweiten Zeitintervall abzuschalten.The invention is based on a cooking device device with at least one first and at least one second heating frequency unit and with at least one control unit which is provided to operate the first heating frequency unit continuously with a fixed first frequency and to operate the second heating frequency unit in at least a first time interval and switch off in at least a second time interval.

Es wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, die zweite Heizfrequenzeinheit im ersten Zeitintervall mit zumindest einer Frequenz zu betreiben, die sich wenigstens um 15 kHz, vorzugsweise mindestens um 16 kHz und besonders vorteilhaft zumindest um 17 kHz von der ersten Frequenz unterscheidet. Es kann insbesondere vorgesehen sein, die zweite Heizfrequenzeinheit im ersten Zeitintervall mit einer sich verändernden Frequenz zu betreiben. Vorzugsweise ist jedoch vorgesehen, die zweite Heizfrequenzeinheit im ersten Zeitintervall mit einer festen Frequenz zu betreiben, die sich besonders vorteilhaft um genau 17 kHz von der ersten Frequenz unterscheidet. Vorzugsweise entspricht die erste Frequenz einer Sollfrequenz der ersten Heizfrequenzeinheit für eine gegebene Sollleistung. Unter einer "Sollfrequenz" soll insbesondere eine Frequenz verstanden werden, die bei einem Betrieb der Heizfrequenzeinheit mit dieser Frequenz die Sollleistung als Ausgangsleistung liefert. Unter einer "Ausgangsleistung" einer der wenigstens zwei Heizfrequenzeinheiten soll insbesondere eine Leistung verstanden werden, die in wenigstens einem Heizbetriebszustand von der Heizfrequenzeinheit geliefert wird. Vorzugsweise ist die Gargerätevorrichtung als Kochfeldvorrichtung und besonders vorteilhaft als Induktionskochfeldvorrichtung ausgebildet. Unter einem "ersten Zeitintervall" und einem "zweiten "Zeitintervall" sollen insbesondere zwei zeitlich nacheinander liegende Zeitintervalle einer Länge größer null verstanden werden. Die Bezeichnungen "erstes" und "zweites" Zeitintervall sollen ausschließlich zur Unterscheidung der Zeitintervalle dienen und insbesondere keine Aussage über eine zeitliche Reihenfolge der Zeitintervalle beinhalten. Unter "vorgesehen" soll insbesondere speziell programmiert und/oder ausgelegt und/oder ausgestattet verstanden werden.It is proposed that the control unit be provided to operate the second heating frequency unit in the first time interval with at least one frequency which differs from the first frequency by at least 15 kHz, preferably at least 16 kHz and particularly advantageously at least 17 kHz. It can be provided in particular to operate the second heating frequency unit in the first time interval with a changing frequency. Preferably, however, it is provided to operate the second heating frequency unit in the first time interval with a fixed frequency, which differs particularly advantageously by exactly 17 kHz from the first frequency. The first frequency preferably corresponds to a nominal frequency of the first heating frequency unit for a given nominal power. A "target frequency" is to be understood in particular a frequency which supplies the desired power as output power during operation of the heating frequency unit with this frequency. An "output power" of one of the at least two heating-frequency units should in particular be understood to mean a power which is supplied by the heating-frequency unit in at least one heating operating state. The cooking device device is preferably designed as a hob device and particularly advantageously as an induction hob device. A "first time interval" and a "second" time interval are to be understood as meaning, in particular, two temporally successive time intervals of a length greater than 0. The designations "first" and "second" time intervals are intended exclusively for distinguishing the time intervals and, in particular, no statement about a time interval The term "provided" should in particular be understood to mean specially programmed and / or designed and / or equipped.

Unter einer "Heizfrequenzeinheit" soll insbesondere eine elektrische Einheit verstanden werden, die einen oszillierenden elektrischen Strom, vorzugsweise mit einer Frequenz von zumindest 15 kHz, insbesondere von wenigstens 17 kHz und vorteilhaft von mindestens 20 kHz, zu einem Betrieb wenigstens einer Heizeinheit erzeugt. Unter einer "Heizeinheit" soll insbesondere eine Einheit verstanden werden, die dazu vorgesehen ist, elektrische Energie zumindest zu einem Großteil in Wärme umzuwandeln und damit insbesondere ein Gargut zu erhitzen. Insbesondere umfasst die Heizeinheit einen Strahlungsheizkörper, einen Widerstandsheizkörper und/oder vorzugsweise einen Induktionsheizkörper, der dazu vorgesehen ist, elektrische Energie indirekt über induzierte Wirbelströme in Wärme umzuwandeln. Die Heizfrequenzeinheit umfasst insbesondere zumindest einen Wechselrichter, der vorzugsweise zwei Schalteinheiten umfasst. Unter einer "Schalteinheit" soll insbesondere eine Einheit verstanden werden, die dazu vorgesehen ist, einen zumindest einen Teil der Schalteinheit umfassenden Leitungspfad zu unterbrechen. Vorzugsweise ist die Schalteinheit ein bidirektionaler unipolarer Schalter, der insbesondere einen Stromfluss durch den Schalter entlang dem Leitungspfad in beide Richtungen ermöglicht und der insbesondere eine elektrische Spannung in zumindest einer Polungsrichtung kurzschließt. Vorzugsweise umfasst der Wechselrichter zumindest zwei Bipolartransistoren mit isolierter Gate-Elektrode und besonders vorteilhaft zumindest einen Dämpfungskondensator. Unter einem "Leitungspfad" soll insbesondere ein elektrisch leitendes Leiterstück zwischen zwei Punkten verstanden werden. Unter "elektrisch leitend" soll insbesondere mit einem spezifischen elektrischen Widerstand von höchstens 10-4 ΩM, insbesondere von maximal 10-5 Ωm, vorteilhaft von höchstens 10-6 Ωm und besonders vorteilhaft von maximal 10-7 Ωm bei 20°C verstanden werden.A "heating frequency unit" should in particular be understood to mean an electrical unit which generates an oscillating electrical current, preferably with a frequency of at least 15 kHz, in particular of at least 17 kHz and advantageously of at least 20 kHz, for operation of at least one heating unit. A "heating unit" is to be understood in particular as meaning a unit which is intended to convert electrical energy into heat, at least to a large extent, and thus in particular to heat a food to be cooked. Especially The heating unit comprises a radiant heater, a resistance heater and / or preferably an induction heater, which is intended to convert electrical energy into heat indirectly via induced eddy currents. The heating frequency unit comprises in particular at least one inverter, which preferably comprises two switching units. A "switching unit" is to be understood in particular as meaning a unit which is intended to interrupt a conduction path comprising at least part of the switching unit. Preferably, the switching unit is a bidirectional unipolar switch which in particular allows a current flow through the switch along the conduction path in both directions and in particular short-circuits an electrical voltage in at least one polarity direction. Preferably, the inverter comprises at least two bipolar transistors with insulated gate electrode and particularly advantageously at least one damping capacitor. A "conduction path" is to be understood as meaning, in particular, an electrically conductive conductor piece between two points. The term "electrically conductive" is to be understood in particular with a specific electrical resistance of at most 10 -4 ΩM, in particular of at most 10 -5 Ωm, advantageously of at most 10 -6 Ωm and particularly advantageously of not more than 10 -7 Ωm at 20 ° C.

Unter einer "Steuereinheit" soll insbesondere eine elektronische Einheit verstanden werden, die vorzugsweise in einer Steuer- und/oder Regeleinheit eines Gargeräts, insbesondere eines Induktionskochfelds, zumindest teilweise integriert ist und die vorzugsweise eine Recheneinheit und insbesondere zusätzlich zur Recheneinheit eine Speichereinheit mit einem darin gespeicherten Steuerprogramm umfasst. Vorzugsweise ist die Steuereinheit dazu vorgesehen, die Heizfrequenzeinheiten mit Hilfe von Steuersignalen und vorzugsweise elektrischen Steuersignalen zu steuern und/oder zu regeln. Unter einem "Steuersignal" soll insbesondere ein Signal verstanden werden, welches insbesondere in zumindest einem Betriebszustand einen Schaltvorgang einer Heizfrequenzeinheit auslöst, insbesondere auch mittelbar. Unter einem "elektrischen Steuersignal" soll insbesondere ein Steuersignal mit einem elektrischen Potential von höchstens 30 V, vorzugsweise von maximal 20 V, besonders vorteilhaft von höchstens 10 V und insbesondere von zumindest 0,5 V bezogen auf ein Referenzpotential verstanden werden. Vorzugsweise weist das Steuersignal zumindest zeitweise eine Periodizität auf, insbesondere mit einer Periodendauer von höchstens 1 ms, insbesondere von maximal 0,1 ms und vorteilhaft von höchstens 0,05 ms. Besonders vorteilhaft ist das Steuersignal zumindest im Wesentlichen ein Rechtecksignal, welches insbesondere zwei diskrete Werte aufweist, vorzugsweise einen Einschaltwert und einen Ausschaltwert. Vorzugsweise entspricht jeder der zwei Werte einer Schaltstellung der Heizfrequenzeinheiten und insbesondere deren Wechselrichter. Unter einer "Frequenz" einer Heizfrequenzeinheit soll insbesondere die Frequenz des die Heizfrequenzeinheit steuernden Steuersignals verstanden werden.A "control unit" is to be understood in particular as meaning an electronic unit which is preferably at least partially integrated in a control and / or regulating unit of a cooking appliance, in particular an induction hob, and which preferably has an arithmetic unit and in particular in addition to the arithmetic unit a storage unit with a stored therein Control program includes. Preferably, the control unit is provided to control and / or regulate the heating frequency units by means of control signals and preferably electrical control signals. A "control signal" should be understood in particular to mean a signal which, in particular in at least one operating state, triggers a switching operation of a heating frequency unit, in particular also indirectly. An "electrical control signal" is intended in particular to mean a control signal having an electrical potential of at most 30 V, preferably of at most 20 V, particularly advantageously at most 10 V and in particular at least 0.5 V, based on a reference potential. Preferably, the control signal has a periodicity at least at times, in particular with a period of at most 1 ms, in particular of at most 0.1 ms and advantageously of at most 0.05 ms. Particularly advantageously, the control signal is at least substantially a rectangular signal, which in particular has two discrete values, preferably a switch-on value and a switch-off value. Preferably, each of the two values corresponds to a switching position of the heating frequency units and in particular their inverter. A "frequency" of a heating frequency unit is to be understood in particular as the frequency of the control signal controlling the heating frequency unit.

Darunter, dass eine Heizfrequenzeinheit "betrieben" wird, soll insbesondere verstanden werden, dass die Frequenz der Heizfrequenzeinheit von Null verschieden ist. Darunter, dass eine Heizfrequenzeinheit "kontinuierlich" betrieben wird, soll insbesondere verstanden werden, dass die Heizfrequenzeinheit während einer Heizbetriebsart fortlaufend betrieben wird, wobei sich die von Null verschiedene Frequenz des Steuersignals verändern kann. Darunter, dass eine Heizfrequenzeinheit mit "fester" Frequenz betrieben wird, soll insbesondere verstanden werden, dass die Heizfrequenzeinheit mit einer während einer Heizbetriebsart zumindest weitgehend unveränderlichen Frequenz betrieben wird. Unter einer "zumindest weitgehend unveränderlichen Frequenz" soll insbesondere eine Frequenz verstanden werden, die während der Heizbetriebsart eine Schwankung von höchstens 10%, insbesondere von maximal 5%, vorzugsweise von höchstens 1% und besonders vorteilhaft von 0% aufweist. Darunter, dass eine Heizfrequenzeinheit in einem Zeitintervall "abgeschaltet" wird, soll insbesondere verstanden werden, dass die Heizfrequenzeinheit im betreffenden Zeitintervall zumindest im Wesentlichen eine verschwindend geringe Ausgangsleistung aufweist. Unter einer "im betreffenden Zeitintervall zumindest im Wesentlichen verschwindend geringen Ausgangsleistung" soll insbesondere eine Ausgangsleistung verstanden werden, die höchstens 100 W, insbesondere maximal 50 W, vorzugsweise höchstens 25 W und besonders vorteilhaft 0 W beträgt und/oder die im Zeitintervall ausschließlich während einer Zeitdauer abgegeben wird, welche höchstens 50%, insbesondere maximal 25%, vorzugsweise höchstens 15% und besonders vorteilhaft höchstens 10% einer Länge des Zeitintervalls entspricht. Die Steuereinheit ist dazu vorgesehen, die zumindest zwei Heizfrequenzeinheiten derart mittels der Steuersignale zu steuern und/oder zu regeln, dass eine mittlere Ausgangsleistung einer der zumindest zwei Heizfrequenzeinheiten einer von einem Bediener angewählten Sollleistung zumindest weitgehend entspricht. Dabei soll eine relative Abweichung der durch die Steuereinheit eingestellten mittleren Ausgangsleistung von der Sollleistung höchstens 20%, vorzugsweise maximal 10% und besonders vorteilhaft höchstens 5% betragen. Unter einer "mittleren Ausgangsleistung" soll insbesondere eine zeitlich gemittelte Ausgangsleistung verstanden werden. Bei einem gleichzeitigen Betrieb der zumindest zwei Heizfrequenzeinheiten ist die Steuereinheit insbesondere dazu vorgesehen, eine Anpassung der mittleren Ausgangsleistungen an die Sollleistungen unter weitgehender Vermeidung von Intermodulationsgeräuschen vorzunehmen. Unter einer "weitgehenden Vermeidung von Intermodulationsgeräuschen" soll insbesondere verstanden werden, dass Intermodulationsgeräusche mit einer Frequenz von weniger als 17 kHz, insbesondere von weniger als 16 kHz und vorzugsweise von weniger als 15 kHz in einem Abstand von 1 m von der Gargerätevorrichtung einen Schalldruckpegel von höchstens 20 dB, insbesondere von maximal 10 dB, vorzugsweise von höchstens 5 dB und besonders vorteilhaft von maximal 0 dB aufweisen. Vorzugsweise sind die Intermodulationsgeräusche von einem Bediener mit durchschnittlichem Gehör unhörbar.By the fact that a heating frequency unit is "operated" should be understood in particular that the frequency of the heating frequency unit is different from zero. By the fact that a heating frequency unit is operated "continuously" should be understood in particular that the heating frequency unit is operated continuously during a heating mode, wherein the non-zero frequency of the control signal can change. The fact that a heating frequency unit is operated with a "fixed" frequency should in particular be understood to mean that the heating frequency unit is operated with a frequency that is at least substantially constant during a heating mode. An "at least largely immutable frequency" should be understood in particular to mean a frequency which during the heating mode has a fluctuation of at most 10%, in particular of at most 5%, preferably of at most 1% and particularly advantageously of 0%. The fact that a heating frequency unit is "switched off" in a time interval should in particular be understood to mean that the heating frequency unit has at least substantially a negligibly low output power in the relevant time interval. A "output power that is at least substantially insignificant in the relevant time interval" should be understood as meaning, in particular, an output power which is at most 100 W, in particular at most 50 W, preferably at most 25 W and particularly advantageously 0 W and / or which is delivered in the time interval exclusively during a period which corresponds to at most 50%, in particular at most 25%, preferably at most 15% and particularly advantageously at most 10% of a length of the time interval. The control unit is provided to control and / or regulate the at least two heating frequency units by means of the control signals in such a way that an average output power of one of the at least two heating frequency units corresponds at least largely to a nominal power selected by an operator. In this case, a relative deviation of the set by the control unit average output power of the target power should be at most 20%, preferably at most 10% and more preferably at most 5%. A "mean output power" is to be understood in particular a time-averaged output power. In a simultaneous operation of the at least two Heizfrequenzeinheiten the control unit is in particular provided to make an adjustment of the average output power to the desired power while largely avoiding Intermodulationsgeräuschen. A "substantial avoidance of intermodulation noise" should be understood in particular that intermodulation noises with a frequency of less than 17 kHz, in particular less than 16 kHz and preferably less than 15 kHz at a distance of 1 m from the cooking appliance device a sound pressure level of at most 20 dB, in particular of at most 10 dB, preferably of at most 5 dB, and particularly advantageously have a maximum of 0 dB. Preferably, the intermodulation sounds are inaudible by an average hearing operator.

Durch eine solche Ausgestaltung kann eine vorteilhaft flexible Einstellung der mittleren Ausgangsleistungen der Heizfrequenzeinheiten erzielt werden, insbesondere da die Frequenz der zweiten Heizfrequenzeinheit größer oder kleiner als die erste Frequenz gewählt werden kann. Ferner kann eine leichte Implementierbarkeit des Steuerungsverfahrens erreicht werden, insbesondere mittels einer Software. Des Weiteren kann insbesondere auch bei stark unterschiedlichen Sollleistungen für die zumindest zwei Heizfrequenzeinheiten ein Betrieb beider Heizfrequenzeinheiten mit der geforderten Sollleistung unter wenigstens weitgehender Vermeidung von Intermodulationsgeräuschen erzielt werden. Ferner kann eine einfache Skalierbarkeit von den zumindest zwei Heizfrequenzeinheiten auf eine beliebige Anzahl von Heizfrequenzeinheiten ermöglicht werden. Vorzugsweise ist die Steuereinheit in wenigstens einem Betriebszustand dazu vorgesehen, die zumindest zwei Heizfrequenzeinheiten periodisch mit einer Periodendauer zu betreiben, die einer Summe einer Länge des ersten Zeitintervalls und einer Länge des zweiten Zeitintervalls entspricht. Hierdurch kann eine vorteilhaft einfache Steuerung der mittleren Ausgangsleistung erzielt werden.By means of such a configuration, an advantageously flexible adjustment of the average output powers of the heating frequency units can be achieved, in particular since the frequency of the second heating frequency unit can be chosen to be greater or smaller than the first frequency. Furthermore, an easy implementation of the control method can be achieved, in particular by means of software. Furthermore, in particular even with greatly different desired powers for the at least two heating frequency units, an operation of both Heizfrequenzeinheiten be achieved with the required target performance under at least largely avoiding Intermodulationsgeräuschen. Furthermore, a simple scalability of the at least two heating frequency units can be made possible on any number of heating frequency units. Preferably, in at least one operating state, the control unit is provided for periodically operating the at least two heating frequency units with a period that corresponds to a sum of a length of the first time interval and a length of the second time interval. As a result, an advantageously simple control of the average output power can be achieved.

Vorteilhaft ist die Steuereinheit für den Fall, dass ein Frequenzabstand zwischen einer kleinsten einer Sollleistung zugeordneten Sollfrequenz und einer zweitkleinsten einer Sollleistung zugeordneten Sollfrequenz wenigstens 17 kHz beträgt, dazu vorgesehen, die Heizfrequenzeinheit mit der kleinsten Sollfrequenz kontinuierlich mit der festen ersten Frequenz zu betreiben. Vorzugsweise ist dann vorgesehen, wenigstens eine weitere Heizfrequenzeinheit im ersten Zeitintervall mit einer um zumindest 15 kHz, insbesondere um wenigstens 16 kHz, vorzugsweise um mindestens 17 kHz und besonders vorteilhaft mit einer um genau 17 kHz höheren Frequenz zu betreiben. Hierdurch kann ein hoher Bedienkomfort erzielt werden, da eine Differenz zwischen einer Ausgangsleistung einer der zumindest zwei Heizfrequenzeinheiten und einer Sollleistung minimiert werden kann.Advantageously, the control unit for the case that a frequency difference between a minimum of a desired power associated target frequency and a second smallest of a desired power associated target frequency is at least 17 kHz, provided to operate the Heizfrequenzeinheit with the smallest nominal frequency continuously with the fixed first frequency. It is then preferably provided to operate at least one further heating frequency unit in the first time interval with a frequency which is at least 15 kHz, in particular at least 16 kHz, preferably at least 17 kHz and particularly advantageously at a frequency which is exactly 17 kHz higher. In this way, a high level of operating comfort can be achieved since a difference between an output power of one of the at least two heating frequency units and a setpoint power can be minimized.

Ferner wird vorgeschlagen, dass die Steuereinheit für den Fall, dass ein Frequenzabstand zwischen einer kleinsten einer Sollleistung zugeordneten Sollfrequenz und einer zweitkleinsten einer Sollleistung zugeordneten Sollfrequenz kleiner als 17 kHz ist, dazu vorgesehen ist, die Heizfrequenzeinheit mit der zweitkleinsten Sollfrequenz kontinuierlich mit der festen ersten Frequenz zu betreiben. Vorzugsweise ist dann vorgesehen, wenigstens eine weitere Heizfrequenzeinheit im ersten Zeitintervall mit einer um zumindest 17 kHz und vorzugsweise mit einer um genau 17 kHz kleineren Frequenz zu betreiben. Hierdurch kann ein Betrieb der zumindest zwei Heizfrequenzeinheiten jeweils mit einer der jeweiligen Sollleistung entsprechenden mittleren Ausgangsleistung auch im Falle eines kleinen Frequenzabstands ermöglicht werden.It is also proposed that the control unit in the event that a frequency difference between a minimum nominal power associated target frequency and a second smallest target power associated target frequency is less than 17 kHz, is provided to the heating frequency unit with the second smallest nominal frequency continuously at the fixed first frequency to operate. Preferably, it is then provided to operate at least one further heating frequency unit in the first time interval with a frequency which is at least 17 kHz and preferably at a frequency which is exactly 17 kHz smaller. As a result, an operation of the at least two heating frequency units each with one of the respective desired power corresponding average output power are made possible even in the case of a small frequency spacing.

In einer weiteren Ausgestaltung der Erfindung wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, die zumindest zwei Heizfrequenzeinheiten jeweils mittels eines Steuersignals zu steuern und/oder zu regeln und in wenigstens einem Betriebszustand einen Tastgrad von zumindest einem der Steuersignale anzupassen. Unter einem "Tastgrad" soll insbesondere ein Verhältnis einer Zeitdauer, in der das Steuersignal innerhalb einer Periodendauer den Einschaltwert annimmt, zur Periodendauer des Steuersignals verstanden werden. Vorzugsweise kann bei fester Frequenz einer der Heizfrequenzeinheiten durch eine Veränderung des Tastgrads eine Ausgangsleistung der Heizfrequenzeinheit verändert werden. Darunter, dass die Steuereinheit dazu vorgesehen ist, "einen Tastgrad von zumindest einem der Steuersignale anzupassen", soll insbesondere verstanden werden, dass die Steuereinheit dazu vorgesehen ist, den Tastgrad von zumindest einem der Steuersignale zu verändern, um hierdurch eine Änderung einer Ausgangsleistung bei fester Frequenz einer Heizfrequenzeinheit zu erreichen. Hierdurch kann eine Flexibilität bei der Einstellung der mittleren Ausgangsleistungen der zumindest zwei Heizfrequenzeinheiten weiter vorteilhaft erhöht werden.In a further embodiment of the invention, it is proposed that the control unit is provided to control and / or regulate the at least two heating frequency units in each case by means of a control signal and to adapt a duty cycle of at least one of the control signals in at least one operating state. In particular, a ratio of a time duration in which the control signal assumes the switch-on value within a period duration to the period duration of the control signal is to be understood as a "duty cycle". Preferably, at a fixed frequency of one of the heating frequency units by changing the duty cycle, an output of the heating frequency unit can be changed. By the fact that the control unit is intended to "adjust a duty cycle of at least one of the control signals", it should be understood, in particular, that the control unit is intended to change the duty cycle of at least one of the control signals, thereby changing a fixed output power Frequency of a heating frequency unit. As a result, a flexibility in the setting of the average output powers of the at least two heating frequency units can be further advantageously increased.

Vorteilhaft ist die Steuereinheit dazu vorgesehen, die Tastgrade zur Minimierung einer Flickerkenngröße anzupassen. Unter einer "Flickerkenngröße" soll insbesondere eine Kenngröße verstanden werden, die ein Maß für Flicker darstellt. Unter "Flicker" soll insbesondere ein subjektiver Eindruck einer Instabilität einer visuellen Wahrnehmung verstanden werden, der insbesondere durch einen Lichtreiz hervorgerufen wird, dessen Leuchtdichte und/oder Spektralverteilung mit der Zeit schwankt. Insbesondere kann Flicker durch einen Spannungsabfall einer Netzspannung hervorgerufen werden. Insbesondere ist die Flickerkenngröße eine Gesamtausgangsleistungsdifferenz, vorzugsweise zwischen zwei Zeitpunkten zweier Zeitintervalle und besonders vorteilhaft zweier aneinander angrenzender Zeitintervalle. Unter einer "Gesamtausgangsleistung" soll insbesondere eine Summe der Ausgangsleistungen aller Heizfrequenzeinheiten zu einem bestimmten Zeitpunkt verstanden werden. Unter einer "Gesamtausgangsleistungsdifferenz" soll insbesondere eine Differenz der Gesamtausgangsleistungen zu zwei verschiedenen Zeitpunkten verstanden werden. Vorzugsweise ist die Steuereinheit dazu vorgesehen, die Flickerkenngröße unter einen Grenzwert zu senken. Vorzugsweise ist der Grenzwert ein durch zumindest eine gesetzliche Vorgabe und/oder eine Norm, insbesondere die Norm DIN EN 61000-3-3, festgelegter Wert. Hierdurch kann ein Bedienkomfort besonders vorteilhaft gesteigert werden und es können gesetzliche Vorgaben und/oder Normen eingehalten werden.Advantageously, the control unit is provided to adjust the duty cycle to minimize a patch characteristic. A "flicker characteristic" is to be understood in particular as a parameter that represents a measure of flicker. By "flicker" is meant, in particular, a subjective impression of an instability of a visual perception, which is caused in particular by a light stimulus whose luminance and / or spectral distribution varies with time. In particular, flicker can be caused by a voltage drop of a mains voltage. In particular, the patch characteristic is an overall output power difference, preferably between two time points of two time intervals and particularly advantageously two adjacent time intervals. Under a "total output" is in particular a Sum of the output powers of all heating-frequency units at a given time. A "total output power difference" is to be understood in particular as a difference of the total output powers at two different points in time. Preferably, the control unit is provided to lower the flicker characteristic below a threshold. The limit value is preferably a value defined by at least one statutory requirement and / or standard, in particular the standard DIN EN 61000-3-3. As a result, ease of use can be increased particularly advantageous and legal requirements and / or standards can be met.

In einer weiteren Ausgestaltung der Erfindung wird vorgeschlagen, dass die Gargerätevorrichtung zumindest eine dritte Heizfrequenzeinheit umfasst und dass die Steuereinheit in wenigstens einem Betriebszustand dazu vorgesehen ist, die dritte Heizfrequenzeinheit zumindest zeitweise abzuschalten. Hierdurch kann das erfindungsgemäße Steuerungsverfahren für eine Gargerätevorrichtung mit mehr als zwei Heizfrequenzeinheiten und insbesondere auf eine Gargerätevorrichtung für ein Matrix-Kochfeld skaliert werden. Unter einem "Matrix-Kochfeld" soll insbesondere ein Kochfeld verstanden werden, bei dem Heizeinheiten in einem regelmäßigen Raster unter einer Kochfeldplatte angeordnet sind, und ein mittels der Heizeinheiten heizbarer Bereich der Kochfeldplatte vorzugsweise wenigstens 60%, insbesondere zumindest 70%, vorteilhaft zumindest 80% und besonders vorteilhaft wenigstens 90% einer Gesamtfläche der Kochfeldplatte umfasst. Insbesondere umfasst das Matrix-Kochfeld zumindest 10, insbesondere mindestens 20, vorteilhaft wenigstens 30 und besonders vorteilhaft zumindest 40 Heizeinheiten.In a further embodiment of the invention it is proposed that the cooking device device comprises at least a third heating frequency unit and that the control unit is provided in at least one operating state to at least temporarily switch off the third heating frequency unit. As a result, the control method according to the invention for a cooking device device with more than two heating frequency units and in particular to a cooking appliance device for a matrix hob can be scaled. A "matrix cooktop" is to be understood, in particular, as a cooktop in which heating units are arranged in a regular grid under a cooktop panel, and a region of the cooktop panel which can be heated by means of the heating units is preferably at least 60%, in particular at least 70%, advantageously at least 80%. and particularly advantageously comprises at least 90% of a total area of the hob plate. In particular, the matrix cooktop comprises at least 10, in particular at least 20, advantageously at least 30 and particularly advantageously at least 40 heating units.

Vorteilhaft ist die Steuereinheit dazu vorgesehen, die dritte Heizfrequenzeinheit zumindest teilweise gleichzeitig mit der zweiten Heizfrequenzeinheit und mit der gleichen Frequenz wie die zweite Heizfrequenzeinheit zu betreiben. Hierdurch können Intermodulationsgeräusche zumindest weitgehend vermieden werden, insbesondere bei einer beliebigen Anzahl von gleichzeitig betriebenen Heizfrequenzeinheiten.Advantageously, the control unit is provided for operating the third heating frequency unit at least partially simultaneously with the second heating frequency unit and at the same frequency as the second heating frequency unit. As a result, intermodulation noises can be at least largely avoided, in particular with any number of simultaneously operated heating frequency units.

Ferner wird ein Verfahren mit einer Gargerätevorrichtung mit zumindest einer ersten und zumindest einer zweiten Heizfrequenzeinheit vorgeschlagen, bei dem die erste Heizfrequenzeinheit kontinuierlich mit einer festen ersten Frequenz betrieben wird und die zweite Heizfrequenzeinheit in zumindest einem ersten Zeitintervall betrieben und in zumindest einem zweiten Zeitintervall abgeschaltet wird, wobei die zweite Heizfrequenzeinheit im ersten Zeitintervall mit zumindest einer Frequenz betrieben wird, die sich wenigstens um 15 kHz, vorzugsweise mindestens um 16 kHz und besonders vorteilhaft zumindest um 17 kHz von der ersten Frequenz unterscheidet. Hierdurch kann eine vorteilhaft flexible Einstellung der mittleren Ausgangsleistungen der Heizfrequenzeinheiten erzielt werden. Ferner kann eine leichte Implementierbarkeit des Steuerungsverfahrens erreicht werden. Des Weiteren kann insbesondere auch bei stark unterschiedlichen Sollleistungen für die zumindest zwei Heizfrequenzeinheiten ein Betrieb beider Heizfrequenzeinheiten mit der geforderten Sollleistung unter wenigstens weitgehender Vermeidung von Intermodulationsgeräuschen erzielt werden.Furthermore, a method is proposed with a cooking device device with at least one first and at least one second heating frequency unit, in which the first heating frequency unit is operated continuously at a fixed first frequency and the second heating frequency unit is operated in at least a first time interval and switched off in at least a second time interval, wherein the second heating frequency unit is operated in the first time interval with at least one frequency which differs from the first frequency at least by 15 kHz, preferably by at least 16 kHz and particularly advantageously by at least 17 kHz. In this way, an advantageously flexible adjustment of the average output power of the heating frequency units can be achieved. Furthermore, easy implementation of the control method can be achieved. Furthermore, in particular even with greatly differing setpoint powers for the at least two heating frequency units, an operation of both heating frequency units with the required setpoint power can be achieved with at least largely avoiding intermodulation noise.

Ferner wird ein Gargerät, insbesondere ein Kochfeld, mit einer erfindungsgemäßen Gargerätevorrichtung vorgeschlagen. Vorzugsweise handelt es sich bei dem Kochfeld um ein Induktionskochfeld.Furthermore, a cooking appliance, in particular a hob, proposed with a Gargerätevorrichtung invention. Preferably, the hob is an induction hob.

Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind zwei Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.Further advantages emerge from the following description of the drawing. In the drawing, two embodiments of the invention are shown. The drawing, the description and the claims contain numerous features in combination. The person skilled in the art will expediently also consider the features individually and combine them into meaningful further combinations.

Es zeigen:

Fig. 1
ein Induktionskochfeld mit einer Gargerätevorrichtung mit zwei Heizfrequenzeinheiten,
Fig. 2
ein beispielhaftes, nicht maßstabsgetreues Steuersignal einer der zwei Heizfrequenzeinheiten,
Fig. 3a
beispielhafte, nicht maßstabsgetreue Leistungs-Frequenz-Kurven für die zwei Heizfrequenzeinheiten bei einem Frequenzabstand von zumindest 17 kHz zwischen einer kleinsten und einer zweitkleinsten Sollfrequenz der Heizfrequenzeinheiten,
Fig. 3b
je eine beispielhafte, nicht maßstabsgetreue Leistungs-Zeit-Kurve für die zwei Heizfrequenzeinheiten für den Fall aus Fig. 3a,
Fig. 4a
beispielhafte, nicht maßstabsgetreue Leistungs-Frequenz-Kurven für die zwei Heizfrequenzeinheiten bei einem Frequenzabstand von weniger als 17 kHz zwischen einer kleinsten und einer zweitkleinsten Sollfrequenz der Heizfrequenzeinheiten,
Fig. 4b
je eine beispielhafte, nicht maßstabsgetreue Leistungs-Zeit-Kurve für die zwei Heizfrequenzeinheiten für den Fall aus Fig. 4a,
Fig. 5
beispielhafte, nicht maßstabsgetreue Leistungs-Frequenz-Kurven einer der zwei Heizfrequenzeinheiten bei unterschiedlichen Tastgraden eines Steuersignals,
Fig. 6
beispielhafte, nicht maßstabsgetreue Gesamtleistungs-Zeit-Kurven,
Fig. 7a
beispielhafte, nicht maßstabsgetreue Leistungs-Frequenz-Kurven für drei Heizfrequenzeinheiten einer weiteren Gargerätevorrichtung bei einem Frequenzabstand von mehr als 17 kHz zwischen einer kleinsten und einer zweitkleinsten Sollfrequenz der Heizfrequenzeinheiten,
Fig. 7b
je eine beispielhafte, nicht maßstabsgetreue Leistungs-Zeit-Kurve für die drei Heizfrequenzeinheiten für den Fall aus Fig. 7a,
Fig. 8a
beispielhafte, nicht maßstabsgetreue Leistungs-Frequenz-Kurven für drei Heizfrequenzeinheiten der Gargerätevorrichtung aus Fig. 7a bei einem Frequenzabstand von weniger als 17 kHz zwischen einer kleinsten und einer zweitkleinsten Sollfrequenz der Heizfrequenzeinheiten und
Fig. 8b
je eine beispielhafte, nicht maßstabsgetreue Leistungs-Zeit-Kurve für die drei Heizfrequenzeinheiten für den Fall aus Fig. 8a.
Show it:
Fig. 1
an induction hob with a cooking appliance device with two heating frequency units,
Fig. 2
an exemplary, not to scale, control signal of one of the two heating frequency units,
Fig. 3a
exemplary, not to scale true power frequency curves for the two heating frequency units at a frequency spacing of at least 17 kHz between a minimum and a second smallest nominal frequency of the heating frequency units,
Fig. 3b
an exemplary, not to scale true power-time curve for the two heating frequency units for the case off Fig. 3a .
Fig. 4a
exemplary, not to scale true power frequency curves for the two heating frequency units at a frequency spacing of less than 17 kHz between a minimum and a second smallest nominal frequency of the heating frequency units,
Fig. 4b
an exemplary, not to scale true power-time curve for the two heating frequency units for the case off Fig. 4a .
Fig. 5
exemplary, not to scale power frequency curves of one of the two heating frequency units at different duty cycles of a control signal,
Fig. 6
exemplary, not to scale total power-time curves,
Fig. 7a
exemplary, not to scale true power frequency curves for three heating frequency units of another cooking appliance device at a frequency spacing of more than 17 kHz between a minimum and a second smallest nominal frequency of the heating frequency units,
Fig. 7b
depending on an exemplary, not to scale true power-time curve for the three heating frequency units for the case Fig. 7a .
Fig. 8a
exemplary, not to scale true power frequency curves for three heating frequency units of Gargerätevorrichtung off Fig. 7a at a frequency spacing of less than 17 kHz between a minimum and a second smallest nominal frequency of the heating frequency units and
Fig. 8b
depending on an exemplary, not to scale true power-time curve for the three heating frequency units for the case Fig. 8a ,

Figur 1 zeigt ein als Induktionskochfeld 16a ausgebildetes Gargerät. Das Induktionskochfeld 16a umfasst eine Kochfeldplatte 18a, insbesondere aus einer Glaskeramik, auf der in bekannter Weise zwei Heizzonen 20a, 22a markiert sind. Die Kochfeldplatte 18a ist in einem betriebsbereiten Zustand des Induktionskochfelds 16a horizontal angeordnet und zu einem Aufstellen von Gargeschirr vorgesehen. Des Weiteren sind auf der Kochfeldplatte 18a in bekannter Weise berührungsempfindliche Bedienelemente 26a und Anzeigeelemente 28a einer Bedien- und Anzeigeeinheit 30a des Induktionskochfelds 16a markiert. Das Induktionskochfeld 16a umfasst ferner eine Gargerätevorrichtung mit einer ersten und einer zweiten unterhalb der Kochfeldplatte 18a angeordneten Heizfrequenzeinheit 10a, 12a und mit einer unterhalb der Kochfeldplatte 18a angeordneten Steuereinheit 14a. In Figur 1 sind Bauteile, welche unterhalb der Kochfeldplatte 18a angeordnet sind, schematisch und gestrichelt gezeichnet, wobei funktionelle Zusammenhänge mit Pfeilen gekennzeichnet sind. Die Steuereinheit 14a ist in eine Steuerund Regeleinheit 32a des Induktionskochfelds 16a integriert. Eine der Heizzone 20a zugeordnete und unterhalb dieser angeordnete Induktionsheizeinheit wird durch die erste Heizfrequenzeinheit 10a mit Energie versorgt. Eine der Heizzone 22a zugeordnete und unterhalb dieser angeordnete Induktionsheizeinheit wird durch die zweite Heizfrequenzeinheit 12a mit Energie versorgt. Ein Bediener kann mittels der Bedien- und Anzeigeeinheit 30a eine Heizstufe für jede der Heizzonen 20a, 22a wählen, woraus sich jeweils eine Sollleistung Pobj1, Pobj2 für die zwei Heizfrequenzeinheiten 10a, 12a ergibt. Die Steuereinheit 14a ist dazu vorgesehen, eine jeweilige mittlere Ausgangsleistung Pave1, Pave2 der Heizfrequenzeinheiten 10a, 12a an die Sollleistungen Pobj1, Pobj2 unter weitgehender Vermeidung von Intermodulationsgeräuschen anzupassen, so dass die gewählten Heizstufen der Heizzonen 20a, 22a erreicht werden können. Die Steuereinheit 14a steuert die erste Heizfrequenzeinheit 10a mittels eines Steuersignals V1(t) und die zweite Heizfrequenzeinheit 12a mittels eines Steuersignals V2(t). FIG. 1 shows a trained as induction hob 16a cooking appliance. The induction hob 16a comprises a hob plate 18a, in particular of a glass ceramic, on which two heating zones 20a, 22a are marked in a known manner. The hob plate 18a is horizontally disposed in an operative state of the induction hob 16a and provided for setting up cooking utensils. Furthermore, touch-sensitive operating elements 26a and display elements 28a of an operating and display unit 30a of the induction hob 16a are marked in a known manner on the hob plate 18a. The induction hob 16a further comprises a cooking appliance device having a first and a second heating frequency unit 10a, 12a arranged below the hob plate 18a and with a control unit 14a arranged below the hob plate 18a. In FIG. 1 are components which are arranged below the hob plate 18a, drawn schematically and dashed, with functional relationships are indicated by arrows. The control unit 14a is integrated in a control and regulation unit 32a of the induction hob 16a. An induction heating unit associated with and located below the heating zone 20a is energized by the first heating frequency unit 10a. An induction heating unit associated with and located below the heating zone 22a is energized by the second heating frequency unit 12a. An operator can select a heating stage for each of the heating zones 20a, 22a by means of the operating and display unit 30a, which results in a desired output P obj1 , P obj2 for the two heating frequency units 10a, 12a. The control unit 14a is provided to adapt a respective average output power P ave1 , P ave2 of the heating frequency units 10a, 12a to the desired powers P obj1 , P obj2 while largely avoiding intermodulation noise, so that the selected heating levels of the heating zones 20a, 22a can be achieved. The control unit 14a controls the first heating frequency unit 10a by means of a control signal V 1 (t) and the second heating frequency unit 12a by means of a control signal V 2 (t).

Figur 2 zeigt beispielhaft ein nicht maßstabsgetreues Steuersignal V2(t) der zweiten Heizfrequenzeinheit 12a in einem kartesischen Koordinatensystem. Auf einer Ordinatenachse 36 ist eine Steuerspannung V2 und auf einer Abszissenachse 38 eine Zeit t aufgetragen. Das Steuersignal V2(t) ist während eines ersten Zeitintervalls TA einer Periodendauer T ein Rechtecksignal mit einem Einschaltwert V0 und einem Ausschaltwert von 0 Volt. Der Einschaltwert V0 wird während einer Einschaltzeit t0 gehalten. Das Rechtecksignal weist eine Periodendauer T0 auf. Während einer Zeitdauer von (T0 - t0) wird der Ausschaltwert gehalten. Eine Frequenz f2 des Steuersignals V2(t) berechnet sich aus einem Kehrwert der Periodendauer T0. Die Frequenz f2 liegt üblicherweise zwischen 20 kHz und 100 kHz. Ein Tastgrad D2A des Steuersignals V2(t) berechnet sich aus einem Quotienten der Einschaltzeit t0 dividiert durch die Periodendauer T0. Während V2(t) die Form des Rechtecksignals annimmt, wird gemäß einem periodischen Wechsel des Einschaltwerts V0 und des Ausschaltwerts eine erste von zwei Schalteinheiten der zweiten Heizfrequenzeinheit 12a periodisch geschaltet. Eine zweite Schalteinheit der zweiten Heizfrequenzeinheit 12a wird in analoger, jedoch zeitversetzter Weise periodisch geschaltet, so dass ein hochfrequenter Wechselstrom zu einem Betrieb der der Heizzone 22a zugeordneten Induktionsheizeinheit entsteht. Während eines zweiten Teilintervalls TB der Periodendauer T mit TB = T-TA ist das Steuersignal V2(t) identisch null. Ein Zeitpunkt x trennt das erste Zeitintervall TA und das zweite Zeitintervall TB. Nach Ablauf der Periodendauer T wiederholt sich das Steuersignal V2(t). FIG. 2 shows by way of example a not to scale control signal V 2 (t) of the second heating frequency unit 12a in a Cartesian coordinate system. An ordinate axis 36 has a control voltage V 2 and an abscissa axis 38 applied a time t. The control signal V 2 (t) is during a first time interval T A a period T a square wave signal with a switch-V 0 and a switch-off of 0 volts. The switch-on value V 0 is held during a switch-on time t 0 . The square wave signal has a period T 0th During a period of time (T 0 -t 0 ), the turn-off value is held. A frequency f 2 of the control signal V 2 (t) is calculated from a reciprocal of the period T 0 . The frequency f 2 is usually between 20 kHz and 100 kHz. A duty cycle D 2A of the control signal V 2 (t) is calculated from a quotient of the switch-on time t 0 divided by the period T 0 . While V 2 (t) takes the form of the square wave signal, a first of two switching units of the second heating frequency unit 12 a is periodically switched in accordance with a periodic change of the turn-on value V 0 and the turn-off value. A second switching unit of the second heating frequency unit 12a is periodically switched in an analogous but time-shifted manner, so that a high-frequency alternating current results in an operation of the induction heating unit assigned to the heating zone 22a. During a second sub-interval T B of the period T with T B = TT A , the control signal V 2 (t) is identical to zero. A time x separates the first time interval T A and the second time interval T B. After the period T has elapsed, the control signal V 2 (t) is repeated.

Figur 3a zeigt in einem kartesischen Koordinatensystem beispielhaft zwei nicht maßstabsgetreue Leistungs-Frequenz-Kurven P1(f) und P2(f). Auf einer Ordinatenachse 42 sind Ausgangsleistungen P1 und P2 der Heizfrequenzeinheiten 10a, 12a aufgetragen. Auf einer Abszissenachse 44 ist die Frequenz f aufgetragen. Die Sollleistungen Pobj1 und Pobj2 der Heizfrequenzeinheiten 10a, 12a werden durch einen Bediener eingestellt. Im vorliegenden Fall beträgt ein Frequenzabstand von den Sollleistungen Pobj1 und Pobj2 zugeordneten Sollfrequenzen fobj1 und fobj2 der Heizfrequenzeinheiten 10a, 12a zumindest 17 kHz. Ohne Beschränkung der Allgemeinheit sei angenommen, die erste Heizfrequenzeinheit 10a weise die kleinste den Solleistungen Pobj1, Pobj2 zugeordnete Sollfrequenz fobj1 auf. Diese wird dann durch die Steuereinheit 14a kontinuierlich mit einer festen ersten Frequenz f1 betrieben, die der der Sollleistung Pobj1 zugeordneten Sollfrequenz fobj1 entspricht. Die zweite Heizfrequenzeinheit 12a wird durch die Steuereinheit 14a im ersten Zeitintervall TA mit einer um 17 kHz höheren Frequenz f2 betrieben. Da die Ausgangsleistung P2 der zweiten Heizfrequenzeinheit 12a bei der Frequenz f2 die Solleistung Pobj2 der zweiten Heizfrequenzeinheit 12a übersteigt, wird die zweite Heizfrequenzeinheit 12a im zweiten Zeitintervall TB abgeschaltet. FIG. 3a shows in a Cartesian coordinate system by way of example two not-to-scale power frequency curves P 1 (f) and P 2 (f). On an ordinate axis 42, output powers P 1 and P 2 of the heating frequency units 10a, 12a are plotted. On an abscissa axis 44, the frequency f is plotted. The target powers P obj1 and P obj2 of the heating frequency units 10a, 12a are set by an operator. In the present case, a frequency spacing of the nominal powers P obj1 and P obj2 associated setpoint frequencies f obj1 and f obj2 of the heating frequency units 10a, 12a is at least 17 kHz. Without limiting the generality, let it be assumed that the first heating frequency unit 10a has the smallest nominal frequency f obj1 assigned to the desired powers P obj1 , P obj2 . This is then operated by the control unit 14a continuously with a fixed first frequency f 1, that of the target power P obj1 associated nominal frequency f obj1 equivalent. The second heating frequency unit 12a is operated by the control unit 14a in the first time interval T A with a frequency f 2 which is 17 kHz higher. Since the output power P 2 of the second heating frequency unit 12a at the frequency f 2 exceeds the target power P obj2 of the second heating frequency unit 12a, the second heating frequency unit 12a is switched off in the second time interval T B.

Figur 3b zeigt in einem kartesischen Koordinatensystem beispielhaft zwei nicht maßstabsgetreue Leistungs-Zeit-Kurven P1(t) und P2(t) für den in Figur 3a beschriebenen Fall. Auf einer Ordinatenachse 46 sind die Ausgangsleistungen P1 und P2 der Heizfrequenzeinheiten 10a, 12a aufgetragen. Auf einer Abszissenachse 48 ist die Zeit t aufgetragen. Ein in Figur 3b dargestellter Verlauf der Leistungs-Zeit-Kurven P1(t) und P2(t) wird in einem Heizbetriebszustand der Heizfrequenzeinheiten 10a, 12a periodisch mit der Periodendauer T durchlaufen. Die Steuereinheit 14a berechnet die Längen der Zeitintervalle TA und TB der Periodendauer T so, dass die mittlere Ausgangsleistung Pave2 der zweiten Heizfrequenzeinheit 12a der Sollleistung Pobj2 entspricht. Es gilt: P ave 2 = T A / T × P 2 0 t x = P obj 2 .

Figure imgb0001
FIG. 3b shows in a Cartesian coordinate system by way of example two not-to-scale power-time curves P 1 (t) and P 2 (t) for the in FIG. 3a described case. On an ordinate axis 46, the output powers P 1 and P 2 of the Heizfrequenzeinheiten 10a, 12a applied. The time t is plotted on an abscissa axis 48. An in FIG. 3b illustrated course of the power-time curves P 1 (t) and P 2 (t) is in a heating operation state of the heating-frequency units 10 a, 12 a periodically through the period T. The control unit 14a calculates the lengths of the time intervals T A and T B of the period T so that the average output power P ave2 of the second heating frequency unit 12a corresponds to the desired power P obj2 . The following applies: P ave 2 = T A / T × P 2 0 t x = P obj 2 ,
Figure imgb0001

Figur 4a zeigt in einem kartesischen Koordinatensystem beispielhaft zwei nicht maßstabsgetreue Leistungs-Frequenz-Kurven P1(f) und P2(f). Auf einer Ordinatenachse 50 sind Ausgangsleistungen P1 und P2 der Heizfrequenzeinheiten 10a, 12a aufgetragen. Auf einer Abszissenachse 52 ist die Frequenz f aufgetragen. Die Sollleistungen Pobj1 und Pobj2 der Heizfrequenzeinheiten 10a, 12a werden durch einen Bediener eingestellt. Im vorliegenden Fall beträgt ein Frequenzabstand von den Sollleistungen Pobj1 und Pobj2 zugeordneten Sollfrequenzen fobj1 und fobj2 der Heizfrequenzeinheiten 10a, 12a weniger als 17 kHz. Ohne Beschränkung der Allgemeinheit sei angenommen, die erste Heizfrequenzeinheit 10a weise die zweitkleinste, das heißt hier die höchste den Solleistungen Pobj1, Pobj2 zugeordnete Sollfrequenz fobj1 auf. Diese wird dann durch die Steuereinheit 14a kontinuierlich mit einer festen ersten Frequenz f1 betrieben, die der der Sollleistung Pobj1 zugeordneten Sollfrequenz fobj1 entspricht. Die zweite Heizfrequenzeinheit 12a wird durch die Steuereinheit 14a im ersten Zeitintervall TA mit einer um 17 kHz niedrigeren Frequenz f2 betrieben. Da die Ausgangsleistung P2 der zweiten Heizfrequenzeinheit 12a bei der Frequenz f2 die Solleistung Pobj2 der zweiten Heizfrequenzeinheit 12a übersteigt, wird die zweite Heizfrequenzeinheit 12a im zweiten Zeitintervall TB abgeschaltet. FIG. 4a shows in a Cartesian coordinate system by way of example two not-to-scale power frequency curves P 1 (f) and P 2 (f). On an ordinate axis 50, output powers P 1 and P 2 of the heating frequency units 10a, 12a are plotted. On an abscissa axis 52, the frequency f is plotted. The target powers P obj1 and P obj2 of the heating frequency units 10a, 12a are set by an operator. In the present case, a frequency spacing of the nominal powers P obj1 and P obj2 associated desired frequencies f obj1 and f obj2 of the heating frequency units 10a, 12a is less than 17 kHz. Without limiting the generality, let it be assumed that the first heating frequency unit 10a has the second smallest, that is to say the highest nominal frequency f obj1 assigned to the desired powers P obj1 , P obj2 here . This is then operated by the control unit 14a continuously with a fixed first frequency f 1 , which corresponds to the target power P obj1 associated target frequency f obj1 . The second heating frequency unit 12a is operated by the control unit 14a in the first time interval T A with a frequency f 2 lower by 17 kHz. Since the output power P 2 of the second heating frequency unit 12a at the frequency f 2 exceeds the target power P obj2 of the second heating frequency unit 12a, the second heating frequency unit 12a is switched off in the second time interval T B.

Figur 4b zeigt in einem kartesischen Koordinatensystem beispielhaft zwei nicht maßstabsgetreue Leistungs-Zeit-Kurven P1(t) und P2(t) für den in Figur 4a beschriebenen Fall. Auf einer Ordinatenachse 54 sind die Ausgangsleistungen P1 und P2 der Heizfrequenzeinheiten 10a, 12a aufgetragen. Auf einer Abszissenachse 56 ist die Zeit t aufgetragen. Ein in Figur 4b dargestellter Verlauf der Leistungs-Zeit-Kurven P1(t) und P2(t) wird in einem Heizbetriebszustand der Heizfrequenzeinheiten 10a, 12a periodisch mit der Periodendauer T durchlaufen. Die Berechnung der Längen der Zeitintervalle TA und TB der Periodendauer T durch die Steuereinheit 14a erfolgt wie zuvor beschrieben. FIG. 4b shows in a Cartesian coordinate system by way of example two not-to-scale power-time curves P 1 (t) and P 2 (t) for the in FIG. 4a described case. The output powers P 1 and P 2 of the heating frequency units 10a, 12a are plotted on an ordinate axis 54. The time t is plotted on an abscissa axis 56. An in FIG. 4b illustrated course of the power-time curves P 1 (t) and P 2 (t) is in a heating operation state of the heating-frequency units 10 a, 12 a periodically through the period T. The calculation of the lengths of the time intervals T A and T B of the period T by the control unit 14 a is carried out as described above.

Figur 5 zeigt in einem kartesischen Koordinatensystem beispielhaft nicht maßstabsgetreue Leistungs-Frequenz-Kurven P2(f,dj) für verschiedene Tastgrade D2A = dj (j = 1,..., n) des Steuersignals V2(t) der zweiten Heizfrequenzeinheit 12a (siehe auch Figur 2). Auf einer Ordinatenachse 58 ist die Ausgangsleistung P2 der zweiten Heizfrequenzeinheit 12a aufgetragen. Auf einer Abszissenachse 60 ist die Frequenz f aufgetragen. Durch eine Anpassung des Tastgrads D2A, beispielsweise von 0,5 auf kleinere Werte, kann die Steuereinheit 14a eine Anpassung der Ausgangsleistung P2 der zweiten Heizfrequenzeinheit 12a vornehmen. Hierdurch kann insbesondere eine Erniedrigung der Ausgangsleistung P2 bei fester Frequenz f2 der zweiten Heizfrequenzeinheit 12a erreicht werden. Eine besondere Bedeutung hat dieser Sachverhalt bei einer Minimierung einer Flickerkenngröße F. FIG. 5 shows in a Cartesian coordinate system by way of example not true-to-scale power frequency curves P 2 (f, d j ) for different duty cycles D 2A = d j (j = 1, ..., n) of the control signal V 2 (t) of the second heating frequency unit 12a (see also FIG. 2 ). On an ordinate axis 58, the output power P 2 of the second heating frequency unit 12 a is plotted. On an abscissa axis 60, the frequency f is plotted. By adapting the duty cycle D 2A , for example from 0.5 to smaller values, the control unit 14a can adjust the output power P 2 of the second heating frequency unit 12a. In this way, in particular a lowering of the output power P 2 at a fixed frequency f 2 of the second heating frequency unit 12a can be achieved. This fact has a special significance in minimizing a patch characteristic F.

Figur 6 zeigt in zwei kartesischen Koordinatensystemen beispielhaft zwei nicht maßstabsgetreue Gesamtleistungs-Zeit-Kurven. Auf einer Ordinatenachse 62 ist jeweils die Summe der Ausgangsleistungen P1 + P2 der Heizfrequenzeinheiten 10a, 12a aufgetragen. Auf einer Abszissenachse 64 ist jeweils die Zeit t während drei Periodendauern T aufgetragen. Das obere der zwei Koordinatensysteme aus Figur 6 zeigt einen Fall, bei dem der Tastgrad D2A der zweiten Heizfrequenzeinheit 12a einen Wert d1 aufweist. Gemäß Figur 5 ergibt sich bei der Frequenz f2 dann eine Ausgangsleistung P2 der zweiten Heizfrequenzeinheit 12a von P2(f2,d1). Das untere der zwei Koordinatensysteme aus Figur 6 zeigt einen Fall, bei dem der Tastgrad D2A der zweiten Heizfrequenzeinheit 12a einen Wert dn aufweist, welcher kleiner ist als d1. Gemäß Figur 5 ergibt sich bei der Frequenz f2 dann eine Ausgangsleistung P2 der zweiten Heizfrequenzeinheit 12a von P2(f2,dn), die kleiner ist als die Ausgangsleistung P2(f2,d1). Wie anhand von Figur 6 zu erkennen, kann die mit einer Gesamtleistungsdifferenz F = P 1 0 t x + P 2 0 t x - P 1 x t T + P 2 x t T

Figure imgb0002

zwischen den Zeitintervallen TA und TB identische Flickerkenngröße F durch die Wahl eines kleineren Tastgrads D2A verkleinert werden. Die Steuereinheit 14a nutzt diesen Sachverhalt zur Minimierung der Flickerkenngröße F. FIG. 6 shows in two Cartesian coordinate systems by way of example two non-to-scale total power-time curves. On an ordinate axis 62 in each case the sum of the output powers P 1 + P 2 of the heating frequency units 10a, 12a applied. On an abscissa axis 64, the time t is plotted during three periods T in each case. The top of the two coordinate systems FIG. 6 FIG. 15 shows a case where the duty D 2A of the second heating frequency unit 12 a has a value d 1 . According to FIG. 5 results in the frequency f 2 then an output P 2 of the second heating frequency unit 12a of P 2 (f 2 , d 1 ). The bottom of the two coordinate systems FIG. 6 FIG. 12 shows a case where the duty D 2A of the second heating frequency unit 12a has a value d n which is smaller than d 1 . According to FIG. 5 at the frequency f 2 , an output power P 2 of the second heating frequency unit 12a of P 2 (f 2 , d n ), which is smaller than the output power P 2 (f 2 , d 1 ), then results. As based on FIG. 6 To recognize that can be with a total power difference F = P 1 0 t x + P 2 0 t x - P 1 x t T + P 2 x t T
Figure imgb0002

between the time intervals T A and T B identical flicker characteristic F be reduced by the choice of a smaller duty cycle D 2A . The control unit 14a uses this fact to minimize the patch characteristic F.

Über die Anpassung der Ausgangsleistung P2 der zweiten Heizfrequenzeinheit 12a hinausgehend, kann durch eine Anpassung eines Tastgrads D1A des Steuersignals V1(t) der ersten Heizfrequenzeinheit 10a im Zeitintervall TA und/oder durch eine Anpassung eines Tastgrads D1B des Steuersignals V1(t) der ersten Heizfrequenzeinheit 10a im Zeitintervall TB eine Anpassung der Ausgangsleistung P1 vorgenommen werden. Hierdurch können weitere Einstellmöglichkeiten erschlossen werden, insbesondere dann, wenn eine Einstellung der mittleren Ausgangsleistung Pave1 und/oder Pave2 auf die Sollleistung Pobj1 und/oder Pobj2 aufgrund einer möglichen Mindestfrequenz und/oder einer möglichen Höchstfrequenz bei einem Tastgrad D1A, D1B von 0,5 unmöglich wäre.Adjusting the output power P 2 of the second Heizfrequenzeinheit 12a addition, the effect can be achieved by adjusting a duty cycle D 1A of the control signal V 1 (t) of the first Heizfrequenzeinheit 10a in the time interval T A and / or by adjusting a duty cycle D 1B of the control signal V 1 (T) of the first heating frequency unit 10a in the time interval T B, an adjustment of the output power P 1 are made. In this way, further setting options can be developed, in particular if an adjustment of the average output power P ave1 and / or P ave2 to the desired power P obj1 and / or P obj2 due to a possible minimum frequency and / or a possible maximum frequency at a duty cycle D 1A , D 1B of 0.5 would be impossible.

Alternativ kann ein Induktionskochfeld auch über mehr als zwei Induktionsheizeinheiten verfügen, wobei jeweils mehrere Induktionsheizeinheiten über je eine Schalteinheit mit einer Heizfrequenzeinheit verbunden sein können.Alternatively, an induction hob can also have more than two induction heating units, wherein in each case a plurality of induction heating units can each be connected to a heating frequency unit via a respective switching unit.

In den Figuren 7a, b und 8a, b ist ein weiteres Ausführungsbeispiel der Erfindung gezeigt. Die nachfolgenden Beschreibungen beschränken sich im Wesentlichen auf die Unterschiede zwischen den Ausführungsbeispielen, wobei bezüglich gleich bleibender Bauteile, Merkmale und Funktionen auf die Beschreibung des anderen Ausführungsbeispiels und insbesondere auf Figur 1 verwiesen werden kann. Zur Unterscheidung der Ausführungsbeispiele ist der Buchstabe a in den Bezugszeichen des Ausführungsbeispiels in den Figuren 1 bis 5 durch den Buchstaben b in den Bezugszeichen des Ausführungsbeispiels der Figuren 7a, b und 8a, b ersetzt.In the FIGS. 7a, b and 8a, b a further embodiment of the invention is shown. The following descriptions are essentially limited to the differences between the embodiments, with respect to the same components, features and functions on the description of the other embodiment and in particular FIG. 1 can be referenced. To distinguish the embodiments, the letter a in the reference numerals of the embodiment in the FIGS. 1 to 5 by the letter b in the reference numerals of the embodiment of FIGS. 7a , b and 8a, b replaced.

Das zuvor beschriebene Verfahren kann leicht auf eine Gargerätevorrichtung für ein Induktionskochfeld 16b mit zumindest einer ersten Heizfrequenzeinheit 10b, einer zweiten Heizfrequenzeinheit 12b und einer dritten Heizfrequenzeinheit erweitert werden.The method described above can be easily extended to a cooking appliance device for an induction hob 16b with at least a first heating frequency unit 10b, a second heating frequency unit 12b and a third heating frequency unit.

Figur 7a zeigt hierzu in einem kartesischen Koordinatensystem beispielhaft drei nicht maßstabsgetreue Leistungs-Frequenz-Kurven P1(f), P2(f) und P3(f). Auf einer Ordinatenachse 66 sind Ausgangsleistungen P1, P2 und P3 der Heizfrequenzeinheiten 10b, 12b aufgetragen. Auf einer Abszissenachse 68 ist die Frequenz f aufgetragen. Die Sollleistungen Pobj1, Pobj2 und Pobj3 der Heizfrequenzeinheiten 10b, 12b werden durch einen Bediener eingestellt. Ohne Beschränkung der Allgemeinheit sei angenommen, die erste Heizfrequenzeinheit 10b weise eine kleinste den Solleistungen Pobj1, Pobj2, Pobj3 zugeordnete Sollfrequenz fobj1 auf und die zweite Heizfrequenzeinheit 12b weise eine zweitkleinste den Solleistungen Pobj1, Pobj2, Pobj3 zugeordnete Sollfrequenz fobj2 auf. Ein Frequenzabstand zwischen der kleinsten Sollfrequenz fobj1 und der zweitkleinsten Sollfrequenz fobj2 beträgt zumindest 17 kHz. Die erste Heizfrequenzeinheit 10b wird dann durch eine Steuereinheit 14b der Gargerätevorrichtung kontinuierlich mit einer festen ersten Frequenz f1 betrieben, die der der Sollleistung Pobj1 zugeordneten Sollfrequenz fobj1 entspricht. Die zweite Heizfrequenzeinheit 12b wird durch die Steuereinheit 14b in einem ersten Zeitintervall TA mit einer um 17 kHz höheren Frequenz f2 betrieben. Da die Ausgangsleistung P2 der zweiten Heizfrequenzeinheit 12b bei der Frequenz f2 die Solleistung Pobj2 übersteigt, wird die zweite Heizfrequenzeinheit 12b in einem zweiten, an das erste Zeitintervall TA anschließenden Zeitintervall TB abgeschaltet. Die dritte Heizfrequenzeinheit wird durch die Steuereinheit 14b in einem ersten Zeitintervall TA' ebenso mit der Frequenz f2 betrieben. Da die Ausgangsleistung P3 der dritten Heizfrequenzeinheit bei der Frequenz f2 die Sollleistung Pobj3 übersteigt, wird die dritte Heizfrequenzeinheit in einem zweiten, an das erste Zeitintervall TA' anschließende Zeitintervall TB' abgeschaltet. Figure 7a shows in a Cartesian coordinate system, for example, three power-frequency curves P 1 (f), P 2 (f) and P 3 (f) which are not true to scale. Output powers P 1 , P 2 and P 3 of the heating frequency units 10b, 12b are plotted on an ordinate axis 66. On an abscissa axis 68, the frequency f is plotted. The target powers P obj1 , P obj2 and P obj3 of the heating frequency units 10b, 12b are set by an operator. Without loss of generality, it is assumed the first Heizfrequenzeinheit 10b, a smallest the Solleistungen P obj1, P obj2, P obj3 associated nominal frequency f obj1, and the second Heizfrequenzeinheit 12b, a second smallest to Solleistungen P obj1, P obj2, P obj3 associated nominal frequency f obj2 on. A frequency spacing between the smallest nominal frequency f obj1 and the second smallest nominal frequency f obj2 is at least 17 kHz. The first heating frequency unit 10b is then operated by a control unit 14b of the cooking appliance device continuously with a fixed first frequency f 1 , which corresponds to the setpoint power P obj1 associated setpoint frequency f obj1 . The second heating frequency unit 12b is controlled by the control unit 14b in a first time interval T A with a 17 kHz higher frequency f 2 operated. Since the output power P 2 of the second heating frequency unit 12b exceeds the nominal power P obj2 at the frequency f 2 , the second heating frequency unit 12b is switched off in a second time interval T B following the first time interval T A. The third heating frequency unit is operated by the control unit 14b in a first time interval T A 'as well with the frequency f 2 . Since the output power P 3 of the third heating frequency unit at the frequency f 2 exceeds the setpoint power P obj3 , the third heating frequency unit is switched off in a second time interval T B 'following the first time interval T A '.

Figur 7b zeigt in einem kartesischen Koordinatensystem beispielhaft drei nicht maßstabsgetreue Leistungs-Zeit-Kurven P1(t), P2(t) und P3(t). Auf einer Ordinatenachse 70 sind die Ausgangsleistungen P1, P2 und P3 der Heizfrequenzeinheiten 10b, 12b aufgetragen. Auf einer Abszissenachse 72 ist die Zeit t aufgetragen. Die Berechnung der Längen der Zeitintervalle TA, TB, TA' und TB' der Periodendauer T durch die Steuereinheit 14b erfolgt wie im vorherigen Ausführungsbeispiel beschrieben. Wie in der Figur 7b gezeigt, überlappen sich die Zeitintervalle TA und TA' zumindest teilweise. FIG. 7b shows in a Cartesian coordinate system by way of example three not-to-scale power-time curves P 1 (t), P 2 (t) and P 3 (t). The output powers P 1 , P 2 and P 3 of the heating frequency units 10b, 12b are plotted on an ordinate axis 70. The time t is plotted on an abscissa axis 72. The calculation of the lengths of the time intervals T A , T B , T A 'and T B ' of the period T by the control unit 14 b is carried out as described in the previous embodiment. Like in the FIG. 7b shown, overlap the time intervals T A and T A 'at least partially.

Figur 8a zeigt in einem kartesischen Koordinatensystem beispielhaft drei nicht maßstabsgetreue Leistungs-Frequenz-Kurven P1(f), P2(f) und P3(f). Auf einer Ordinatenachse 74 sind Ausgangsleistungen P1, P2 und P3 der Heizfrequenzeinheiten 10b, 12b aufgetragen. Auf einer Abszissenachse 76 ist die Frequenz f aufgetragen. Die Sollleistungen Pobj1, Pobj2 und Pobj3 der Heizfrequenzeinheiten 10b, 12b werden durch einen Bediener eingestellt. Ohne Beschränkung der Allgemeinheit sei angenommen, die erste Heizfrequenzeinheit 10b weise eine zweitkleinste den Sollleistungen Pobj1, Pobj2, Pobj3 zugeordnete Sollfrequenz fobj1 auf und die zweite Heizfrequenzeinheit 12b weise eine kleinste den Sollleistungen Pobj1, Pobj2, Pobj3 zugeordnete Sollfrequenz fobj2 auf. Ein Frequenzabstand zwischen der kleinsten Sollfrequenz fobj1 und der zweitkleinsten Sollfrequenz fobj2 beträgt weniger als 17 kHz. Diejenige Heizfrequenzeinheit 10b mit der zweitkleinsten Sollfrequenz fobj1, im vorliegenden Fall die erste Heizfrequenzeinheit 10b, wird dann durch die Steuereinheit 14b kontinuierlich mit einer festen ersten Frequenz f1 betrieben, die der der Sollleistung Pobj1 zugeordneten Sollfrequenz fobj1 entspricht. Die zweite Heizfrequenzeinheit 12b wird durch die Steuereinheit 14b im ersten Zeitintervall TA mit einer um 17 kHz niedrigeren Frequenz f2 betrieben. Da die Ausgangsleistung P2 der zweiten Heizfrequenzeinheit 12b bei der Frequenz f2 die Sollleistung Pobj2 übersteigt, wird die zweite Heizfrequenzeinheit 12b im zweiten Zeitintervall TB abgeschaltet. Die dritte Heizfrequenzeinheit wird durch die Steuereinheit 14b im ersten Zeitintervall TA' ebenso mit der Frequenz f2 betrieben. Da die Ausgangsleistung P3 der dritten Heizfrequenzeinheit bei der Frequenz f2 die Sollleistung Pobj3 übersteigt, wird die dritte Heizfrequenzeinheit im zweiten Zeitintervall TB' abgeschaltet. FIG. 8a shows in a Cartesian coordinate system by way of example three not-to-scale power frequency curves P 1 (f), P 2 (f) and P 3 (f). On an ordinate axis 74 are output powers P 1, P 2 and P 3 of the Heizfrequenzeinheiten 10b, 12b applied. On an abscissa axis 76, the frequency f is plotted. The target powers P obj1 , P obj2 and P obj3 of the heating frequency units 10b, 12b are set by an operator. Without restricting the generality, let it be assumed that the first heating frequency unit 10b has a second smallest nominal frequency f obj1 assigned to the nominal powers P obj1 , P obj2 , P obj3 , and the second heating frequency unit 12b has a smallest nominal frequency f associated with the nominal powers P obj1 , P obj2 , P obj3 obj2 on. A frequency spacing between the smallest nominal frequency f obj1 and the second smallest nominal frequency f obj2 is less than 17 kHz. The heating frequency unit 10b with the second smallest nominal frequency f obj1 , in the present case, the first heating frequency unit 10b, is then operated by the control unit 14b continuously with a fixed first frequency f 1 , which corresponds to the target power P obj1 associated target frequency f obj1 . The second heating frequency unit 12b is operated by the control unit 14b in the first time interval T A with a frequency f 2 lower by 17 kHz. Since the output power P 2 of the second heating frequency unit 12b at the frequency f 2 exceeds the setpoint power P obj2 , the second heating frequency unit 12b is switched off in the second time interval T B. The third heating frequency unit is also operated by the control unit 14b in the first time interval T A 'at the frequency f 2 . Since the output power P, the target power P obj3 3 exceeds the third Heizfrequenzeinheit at the frequency f 2, the third Heizfrequenzeinheit in the second time interval is switched off T B '.

Figur 8b zeigt in einem kartesischen Koordinatensystem beispielhaft drei nicht maßstabsgetreue Leistungs-Zeit-Kurven P1(t), P2(t) und P3(t). Auf einer Ordinatenachse 78 sind die Ausgangsleistungen P1, P2 und P3 der Heizfrequenzeinheiten 10b, 12b aufgetragen. Auf einer Abszissenachse 80 ist die Zeit t aufgetragen. Die Berechnung der Längen der Zeitintervalle TA, TB, TA' und TB' der Periodendauer T durch die Steuereinheit 14b erfolgt wie zuvor beschrieben. Wie in der Figur 8b gezeigt, überlappen sich die Zeitintervalle TA und TA' zumindest teilweise. FIG. 8b shows in a Cartesian coordinate system by way of example three not-to-scale power-time curves P 1 (t), P 2 (t) and P 3 (t). The output powers P 1 , P 2 and P 3 of the heating frequency units 10b, 12b are plotted on an ordinate axis 78. The time t is plotted on an abscissa axis 80. The calculation of the lengths of the time intervals T A , T B , T A 'and T B ' of the period T by the control unit 14 b is carried out as previously described. Like in the FIG. 8b shown, overlap the time intervals T A and T A 'at least partially.

Auch hier kann analog zum vorherigen Ausführungsbeispiel eine Anpassung von Tastgraden D1A, D2A, D3A und D1B vorgesehen sein, insbesondere auch zur Minimierung einer Flickerkenngröße F. Das anhand des zweiten Ausführungsbeispiels beschriebene Steuerungsverfahren ist von drei Heizfrequenzeinheiten auf eine Vielzahl von Heizfrequenzeinheiten skalierbar, beispielsweise für ein als Matrixkochfeld ausgebildetes Induktionskochfeld.Again, analogous to the previous embodiment, an adaptation of duty D 1A , D 2A , D 3A and D 1B may be provided, in particular for minimizing a Flickerkenngröße F. The control method described with reference to the second embodiment is scalable from three heating frequency units to a plurality of Heizfrequenzeinheiten , For example, for a trained as a matrix cooktop induction hob.

Bei allen beschriebenen Ausführungsformen gilt ferner, dass, falls kein geeigneter Satz von Frequenzen f1, f2, Zeitintervallen TA, TB, TA', TB' usw. und Tastgraden D1A, D1B, D2A, D3A usw. auffindbar ist, insbesondere da eine maximal mögliche Höchstfrequenz und/oder eine minimal mögliche Mindestfrequenz einzuhalten sind, oben beschriebenes Steuerungsverfahren mit anderen, einem Fachmann bekannten und sinnvoll erscheinenden Steuerungsverfahren kombinierbar ist. So ist beispielsweise denkbar, dass auf Zeitintervalle TA und TB ein weiteres Zeitintervall TC folgt, in dem alle oder auch nur ein Teil der Heizfrequenzeinheiten abgeschaltet sind oder mit einer weiteren gemeinsamen Frequenz f3 betrieben werden. Bezugszeichen 10 Heizfrequenzeinheit 70 Ordinatenachse 12 Heizfrequenzeinheit 72 Abszissenachse 14 Steuereinheit 74 Ordinatenachse 16 Induktionskochfeld 76 Abszissenachse 18 Kochfeldplatte 78 Ordinatenachse 20 Heizzone 80 Abszissenachse 22 Heizzone dj Tastgrad (j=1,..., n) 26 Bedienelement D1A Tastgrad 28 Anzeigeelement D1B Tastgrad 30 Bedien- und Anzeigeeinheit D2A Tastgrad 32 Steuer- und Regeleinheit D3A Tastgrad 36 Ordinatenachse F Flickerkenngröße 38 Abszissenachse f Frequenz 42 Ordinatenachse f1 Frequenz 44 Abszissenachse f2 Frequenz 46 Ordinatenachse f3 Frequenz 48 Abszissenachse fobj1 Sollfrequenz 50 Ordinatenachse fobj2 Sollfrequenz 52 Abszissenachse fobj3 Sollfrequenz 54 Ordinatenachse P1 Ausgangsleistung 56 Abszissenachse P1(f) Leistungs-Frequenz-Kurve 58 Ordinatenachse P1(t) Leistungs-Zeit-Kurve 60 Abszissenachse P2 Ausgangsleistung 62 Ordinatenachse P2(f) Leistungs-Frequenz-Kurve 64 Abszissenachse P2(f,dj) Leistungs-Frequenz-Kurve 66 Ordinatenachse P2(t) Leistungs-Zeit-Kurve 68 Abszissenachse P3 Ausgangsleistung P3(f) Leistungs-Frequenz-Kurve P3(t) Leistungs-Zeit-Kurve Pave1 Mittlere Ausgangsleistung Pave2 Mittlere Ausgangsleistung Pobj1 Sollleistung Pobj2 Sollleistung Pobj3 Sollleistung T Periodendauer T0 Periodendauer TA Zeitintervall TA' Zeitintervall TB Zeitintervall TB' Zeitintervall TC Zeitintervall t Zeit t0 Einschaltzeit V0 Einschaltwert V1(t) Steuersignal V2 Steuerspannung V2(t) Steuersignal x Zeitpunkt x' Zeitpunkt In all of the described embodiments, further, if no suitable set of frequencies f 1 , f 2 , time intervals T A , T B , T A ', T B ', etc. and duty cycles D 1A , D 1B , D 2A , D 3A etc. can be found, in particular to comply with a maximum possible maximum frequency and / or a minimum possible minimum frequency are, the control method described above with other, known to a person skilled and seem reasonable sense control method combined. It is thus conceivable, for example, for time intervals T A and T B to be followed by a further time interval T C during which all or even only part of the heating frequency units are switched off or operated at a further common frequency f 3 . reference numeral 10 Heizfrequenzeinheit 70 axis of ordinates 12 Heizfrequenzeinheit 72 abscissa 14 control unit 74 axis of ordinates 16 Induction hob 76 abscissa 18 Hotplate 78 axis of ordinates 20 heating zone 80 abscissa 22 heating zone d j Duty cycle (j = 1, ..., n) 26 operating element D 1A duty cycle 28 display element D 1B duty cycle 30 Operating and display unit D 2A duty cycle 32 Control unit D 3A duty cycle 36 axis of ordinates F Flickerkenngröße 38 abscissa f frequency 42 axis of ordinates f 1 frequency 44 abscissa f 2 frequency 46 axis of ordinates f 3 frequency 48 abscissa f obj1 nominal frequency 50 axis of ordinates f obj2 nominal frequency 52 abscissa f obj3 nominal frequency 54 axis of ordinates P 1 output 56 abscissa P 1 (f) Power-frequency curve 58 axis of ordinates P 1 (t) Power-time curve 60 abscissa P 2 output 62 axis of ordinates P 2 (f) Power-frequency curve 64 abscissa P 2 (f, dj ) Power-frequency curve 66 axis of ordinates P 2 (t) Power-time curve 68 abscissa P 3 output P 3 (f) Power-frequency curve P 3 (t) Power-time curve P ave1 Average output power P ave2 Average output power P obj1 target power P obj2 target power P obj3 target power T period T 0 period T A time interval T A ' time interval T B time interval T B ' time interval T C time interval t Time t 0 on time V 0 Switch-on V 1 (t) control signal V 2 control voltage V 2 (t) control signal x time x ' time

Claims (9)

  1. Cooking device apparatus having at least one first and at least one second heat frequency unit (10a, 12a; 10b, 12b) and having at least one control unit (14a; 14b), which is provided to continuously operate the first heat frequency unit (10a; 10b) and to operate the second heat frequency unit (12a, 12b) in at least one first time interval (TA ) and to switch it off in at least one second time interval (TB ), wherein the control unit (14a; 14b) is provided to operate the second heat frequency unit (12a; 12b) in the first time interval (TA ) with at least one frequency (f 2), which differs at least by 15 kHz from a first frequency (f 1) of the first heat frequency unit (10a; 10b), characterised in that the control unit (14a; 14b) is provided to continuously operate the first heat frequency unit (10a; 10b) with the fixed first frequency (f 1), wherein in the event that a frequency interval between a smallest target frequency (f obj1, f obj2) assigned to a target output (P obj1, P obj2) and a second smallest target frequency (f obj1, f obj2) assigned to a target output (P obj1, P obj2) is smaller than 17 kHz, the control unit (14a; 14b) is provided to continuously operate the heat frequency unit (10a, 12a; 10b, 12b) with the second smallest frequency (f obj1, f obj2) with the fixed first frequency (f 1).
  2. Cooking device apparatus according to claim 1, characterised in that in the event that a frequency interval between a smallest target frequency (f obj1, f obj2) assigned to a target output (P obj1, P obj2) and a second smallest target frequency (f obj1, f obj2) assigned to a target output (P obj1, P obj2) amounts to at least 17 kHz, the control unit (14a; 14b) is provided to continuously operate the heat frequency unit (10a, 12a; 10b, 12b) with the smallest target frequency (f obj1, f obj2) with the fixed first frequency (f 1).
  3. Cooking device apparatus according to one of the preceding claims, characterised in that the control unit (14a; 14b) is provided to control and/or regulate the at least two heat frequency units (10a, 12a; 10b, 12b) by means of a control signal (V 1(t), V 2(t)) in each case and to adjust a pulse duty factor (D 1A ,D 1B ,D 2A ,D 3A ) of at least one of the control signals (V 1(t), V 2(t)) in at least one operating state.
  4. Cooking device apparatus according to claim 3, characterised in that the control unit (14a; 14b) is provided to adjust the pulse duty factors (D 1A ,D 1B ,D 2A ,D 3A ) in order to minimise a flicker parameter (F).
  5. Cooking device apparatus according to one of the preceding claims, characterised by at least one third heat frequency unit.
  6. Cooking device apparatus according to claim 5, characterised in that the control unit (14b) is provided in at least one operating state to at least temporarily switch off the third heat frequency unit.
  7. Cooking device apparatus according to claim 5 or 6, characterised in that the control unit (14b) is provided to operate the third heat frequency unit at least partially at the same time as the second heat frequency unit (12b) and with the same frequency (f 2) as the second heat frequency unit (12b).
  8. Method with a cooking device apparatus having at least one first and at least one second heat frequency unit (10a, 12a; 10b, 12b), in particular according to one of the preceding claims, in which the first heat frequency unit (10a; 10b) is operated continuously and the second heat frequency unit (12a; 12b) is operated in at least one first time interval (TA ) and is switched off in at least one second time interval (TB ), wherein the second heat frequency unit (12a; 12b) is operated in the first time interval (TA ) with at least one frequency (f 2) which differs at least by 15 kHz from a first frequency (f 1) of the first heat frequency unit (10a; 10b), characterised in that the first heat frequency unit (10a; 10b) is continuously operated with the fixed first frequency (f 1), wherein in the event that a frequency interval between a smallest target frequency (f obj1, f obj2) assigned to a target output (P obj1, P obj2) and a second smallest target frequency (f obj1, f obj2) assigned to a target output (P obj1, P obj2) is smaller than 17 kHz, the heat frequency unit (10a, 12a; 10b, 12b) with the second smallest target frequency (f obj1, f obj2) is continuously operated with the fixed first frequency (f 1).
  9. Cooking device, in particular hob, having a cooking device apparatus according to one of claims 1 to 7.
EP12158075.7A 2011-03-28 2012-03-05 Cooking device Active EP2506664B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL12158075T PL2506664T3 (en) 2011-03-28 2012-03-05 Cooking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201130459 2011-03-28

Publications (2)

Publication Number Publication Date
EP2506664A1 EP2506664A1 (en) 2012-10-03
EP2506664B1 true EP2506664B1 (en) 2016-02-24

Family

ID=45841253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12158075.7A Active EP2506664B1 (en) 2011-03-28 2012-03-05 Cooking device

Country Status (3)

Country Link
EP (1) EP2506664B1 (en)
ES (1) ES2564264T3 (en)
PL (1) PL2506664T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2945461B1 (en) * 2014-03-24 2017-05-10 BSH Hausgeräte GmbH Cooking device
JP6827163B2 (en) * 2016-04-25 2021-02-10 パナソニックIpマネジメント株式会社 Induction heating cooker

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2201937B1 (en) * 2003-11-03 2005-02-01 Bsh Electrodomesticos España, S.A. PROCEDURE FOR THE OPERATION OF A CONVERTER CIRCUIT.
DE102005021888A1 (en) * 2005-05-04 2007-02-15 E.G.O. Elektro-Gerätebau GmbH Method and arrangement for power supply of a plurality of induction coils in an induction device
US20060289489A1 (en) * 2005-05-09 2006-12-28 Dongyu Wang Induction cooktop with remote power electronics
PL1951003T5 (en) 2007-01-23 2023-08-21 Whirlpool Corporation Control method for induction cooking hob and induction cooking hob adapted to carry out such method
TWI394547B (en) * 2009-03-18 2013-05-01 Delta Electronics Inc Heating apparatus

Also Published As

Publication number Publication date
EP2506664A1 (en) 2012-10-03
ES2564264T3 (en) 2016-03-21
PL2506664T3 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
EP2506663B1 (en) Cooking device
EP1878309B1 (en) Method and arrangement for supplying power to several induction coils in an induction apparatus
EP2586271B1 (en) Cooker hob device
EP2095686B1 (en) Heating device circuit
EP2469970B1 (en) Cooking device
EP1931177B1 (en) Heating device connection
EP3560276B1 (en) Cooking appliance apparatus
EP2389787A2 (en) Hob having at least one heating zone having several heating elements
EP2928265B1 (en) Induction heating device and induction hob
EP2506665B1 (en) Cooking device
EP2506666B1 (en) Cooking device
DE19708335B4 (en) Heating power regulation for induction cooker
EP2911472B2 (en) Cooking appliance, in particular cooking hob device, with a plurality of inverters
EP2469972B1 (en) Cooking device and method of controlling the cooking device which diminish in an iterative manner a flicker characteristic.
EP2506664B1 (en) Cooking device
EP2469971B1 (en) Cooking device
EP2506673B1 (en) Induction cooktop
EP3641497B1 (en) Cooking device
EP2548407B1 (en) Cooktop
EP3641494B1 (en) Cooking device
EP2945461B1 (en) Cooking device
DE102012211399A1 (en) Home appliance device e.g. cooking hob device has control unit that controls heating units to increase heating power of one heating zone more than other heating zone during specific mode of operation
EP2506667B1 (en) Induction heating device
EP2550841B1 (en) Hob device
DE102019215954A1 (en) Cooking device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130403

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BSH HAUSGERAETE GMBH

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 6/06 20060101AFI20150721BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150921

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 777308

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2564264

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160321

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012006023

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160524

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160624

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012006023

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160305

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

26N No opposition filed

Effective date: 20161125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160524

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 777308

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160305

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230220

Year of fee payment: 12

Ref country code: GB

Payment date: 20230323

Year of fee payment: 12

Ref country code: DE

Payment date: 20230331

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230331

Year of fee payment: 12

Ref country code: ES

Payment date: 20230414

Year of fee payment: 12