EP2499362A2 - Unité d'entraînement pour une turbine éolienne - Google Patents

Unité d'entraînement pour une turbine éolienne

Info

Publication number
EP2499362A2
EP2499362A2 EP10779310A EP10779310A EP2499362A2 EP 2499362 A2 EP2499362 A2 EP 2499362A2 EP 10779310 A EP10779310 A EP 10779310A EP 10779310 A EP10779310 A EP 10779310A EP 2499362 A2 EP2499362 A2 EP 2499362A2
Authority
EP
European Patent Office
Prior art keywords
rotor
drive unit
wind turbine
gear
ring gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10779310A
Other languages
German (de)
English (en)
Inventor
Joerg Winkelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzlon Energy GmbH
Original Assignee
Suzlon Energy GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzlon Energy GmbH filed Critical Suzlon Energy GmbH
Publication of EP2499362A2 publication Critical patent/EP2499362A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/2809Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels
    • F16H1/2845Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels by allowing limited movement of the sun gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/20Gearless transmission, i.e. direct-drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/2809Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels
    • F16H1/2818Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels by allowing limited movement of the ring gear relative to the casing or shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a drive unit for wind turbine, wherein a rotor of the wind turbine is rotatably mounted on a machine carrier.
  • the rotor includes a hub and at least one rotor blade attachable thereto.
  • the drive unit has a transmission for converting the rotational speed of the rotor according to a desired transmission ratio.
  • the transmission a planetary gear, comprises at least one ring gear, a planet carrier, at least two planet gears, a sun gear and an output shaft.
  • the wheels of the transmission are preferably designed as gears.
  • the ring gear is rotatably connected to the rotor and is in operative engagement with planetary gears. These are rotatably mounted on the planet carrier and in turn interact with the sun gear.
  • the rotor of the wind turbine comprises a hub with rotor blades, which are mounted rotatably about their longitudinal axis on the hub.
  • the hub is connected directly to the rotor axis, which is mounted by means of a main bearing on a machine carrier of the wind turbine.
  • the fixed, connected to the machine carrier, outer bearing shell of the main bearing comprises in the radial direction from the outside the rotor axis and the inner radial bearing shell fixed thereto.
  • the invention comprises that the drive unit has a substantially horizontal rotor axis for the rotatable mounting of the rotor.
  • This rotor axis is indirectly or directly fixed to the machine carrier connectable.
  • the advantage arises that the forces and loads of the rotor are introduced directly into the machine carrier, and the main power flow does not take place in the vicinity of the transmission and there can lead to harmful deformations.
  • the storage on a central, pin-like rotor axis can be done by smaller and cheaper bearings.
  • the planetary gear is formed in one stage. With this direct engagement, the gearbox corresponds to a classic tarpaulin gearbox.
  • the planetary gears engage directly in the sun gear.
  • the transmission is particularly favorable, and preferably a translation of about 1 to 10 is achieved.
  • Such a wind turbine is often referred to as a medium-speed wind turbine.
  • further planetary gears are provided, which are rotatably connected to planets, which are in operative engagement with the ring gear.
  • the planet gears are then in indirect operative engagement with the sun, but are each connected to a further planetary gear and form a pair of planets. These other planet gears are then in operative engagement with the sun gear.
  • So can be influenced by the diameter ratios of the planetary pairs to each other, the transmission ratio of the transmission. If the diameter of the first, with the ring gear engaged planet gears is smaller than the diameter of the other planet gears, so the gear ratio of the transmission is increased in contrast to the direct transmission variant.
  • An embodiment, not shown, leads to a multi-stage planetary gear, wherein the sun gear of the first planetary stage, for example, drives a ring gear of the following stage.
  • the transmission comprises three or four planet gears, because this causes the ring gear is improved supported on the planet gears, ie that radial and circumferential forces is transmitted to a planet carrier.
  • the sun gear and the output shaft are supported by the planet gears in the radial direction.
  • the ring gear, the planet gears and the sun gear are formed as gears. It is noteworthy in this invention that preferably exclusively and not more than one output shaft is provided, which is driven exclusively by only one sun gear. Because this is how a load distribution takes place on the different planet gears towards the sun gear.
  • the ring gear is rotatably mounted on the rotor axis. This avoids a bearing of the ring gear through an expensive outer bearing with a large diameter. In this case, the bearing of the ring gear on the bearings of the hub of the wind turbine can be done without using their own separate warehouse. This leads to a reduction of the components and thus to reduced costs.
  • An embodiment of the invention discloses to store the ring gear on its own separate bearing on the rotor axis.
  • the transmission may have a bell housing, which is rotatably supported by a bearing on the rotor axis, on which the ring gear is arranged.
  • the hub of the wind turbine can have its own separate bearing for support on the rotor axis. This own storage of the hub and the transmission has a particularly positive effect on the load of the transmission, since thus relative movements of a driving hub are not transmitted to the transmission.
  • the planet carrier is arranged rotationally fixed relative to the machine carrier or the rotor axis in the wind turbine.
  • connecting points for indirect or direct, fixed connection to the machine carrier and for power transmission are provided on the rotor axis.
  • the number of effective junctions should be at least equal to or greater than the number of planetary gears that are operatively engaged with the ring gear.
  • connection points can in turn be connected to the planet carrier, wherein the planet carrier is again connectable to the machine carrier.
  • the planet carrier is designed as a disc which can be screwed to the machine carrier.
  • three bearing pins for the planet gears either fixed and integrally provided, or screwed example by anchor bolts. It greatly simplifies the production of the planet carrier when it is formed in several pieces relative to the machine carrier, since a rotationally symmetric disk can be made much easier by rotational machining machining fit as a bulky and heavy machine carrier of the wind turbine.
  • the axis of rotation is in turn fastened on the connection points on the planet carrier, preferably by screws, which extend into the machine frame.
  • the connecting points next to the individual planetary gears on the planet carrier are fastened on the connection points on the planet carrier.
  • the planetary carrier can be formed integrally with the machine carrier, to which then directly the rotor axis can be mounted.
  • the journal for the planet gears are also formed in this case in one piece with the machine carrier or a transition region of the rotor axis or are mounted as a separate bearing pin in the machine carrier, in the rotor axis or in both.
  • Conceivable - but not mandatory - is also that the planetary gears are mounted in the transition region of the rotor axis to the connection points, that is, that the planet carrier is formed directly with the rotor axis, preferably as an integral component.
  • one embodiment indicates providing sealing means for sealing the transmission operatively between the ring gear or bell housing and the planetary carrier or machine frame.
  • the sealing means are effectively arranged on the components which perform a relative movement, rotation - standstill, to each other.
  • the invention comprises a wind turbine with a drive unit according to the embodiments and embodiments described above.
  • Such a wind turbine shows a mounted on a tower engine house with the machine frame.
  • the rotor is rotatably mounted with the hub and at least one rotor blade fastened thereto.
  • This wind turbine has significant advantages in terms of reduced complexity, cost, and increased lifetime relative to other prior art wind turbines.
  • the wind turbine is designed such that between the sun gear and a bearing of the output shaft of the transmission, an axial offset is present.
  • a radial clearance of the sun gear according to the guidance of the sun gear by planetary gears is made possible to prevent excessive loading of the transmission and storage.
  • the ring gear is mounted via a bell housing on the rotor axis with its own bearing. According to a preferred embodiment, it is provided to support the hub of the rotor indirectly via the bell housing or via the ring gear on the rotor axis.
  • At least one, but preferably two separate bearings are provided for storage on the rotor axis for the hub.
  • decoupling connecting means between the ring gear and the rotor, in particular between the ring gear and the hub are effectively arranged to substantially transfer a transmission of axial, radial and / or bending movements of the hub to the ring gear to prevent.
  • This decoupling protects the gearbox from undesired deformations. It takes place through the advantageous separate storage of ring gear and rotor load sharing:
  • the Rotor axle carries weight, shear, lateral and bending forces, with circumferential forces - virtually free of disturbing forces - are transferred to the gear alone.
  • a further embodiment of the invention teaches to provide on the rotor axis, a transmission device for transmitting electrical energy between relatively rotating components, in particular a slip ring device.
  • a power supply e.g. via cable
  • the power supply of the machine house allows to drive electrical components in the hub, such as the motors for pitch adjustment.
  • This is also a transmission of control signals to realize. Further details of the invention will become apparent from the drawings with reference to the description.
  • FIG. 2 shows a longitudinal section through a wind turbine with a first embodiment of the drive unit according to the invention
  • FIG. 3 shows a cross section through the drive unit according to FIG. 2, 3 or 4,
  • FIG. 4 shows a wind turbine according to FIG. 2 with a second embodiment of a drive unit
  • FIG. 5 shows a wind turbine according to FIG. 2 with a third embodiment of a drive unit
  • FIG. 6 is a schematic diagram of a wind turbine with a fourth embodiment of the drive unit.
  • an exemplary wind turbine 1 is shown in FIG. This comprises a tower 2, a machine house 3 and a rotor 7, wherein the machine house 3 is mounted rotatably on the tower 2 by means of an azimuth bearing 5 about a substantially vertical axis 4, in order to enable wind tracking.
  • the rotor 7 is arranged, which comprises a hub 8, to which in turn preferably three rotor blades 9 are arranged.
  • the rotor 7 is mounted on the machine carrier 6 via the drive unit 10 according to the invention and drives a generator 32 for generating electrical current.
  • FIG. 2 shows a first embodiment of the drive unit 10 of the wind turbine 1.
  • the drive unit 10 and the rotor 7 is shown.
  • a machine frame 6 in the machine house 3 is connected to the azimuth bearing 5, whereby the machine house 3 is rotatably mounted about the azimuth bearing 5 about the axis 4 on the tower 3 of the wind turbine 1.
  • the preferably pin-shaped rotor axis 10 is rotatably connected via connecting points 15 in turn arranged on the machine frame 6, wherein the rotor axis 10 and the connection points 15 may be integrally formed.
  • the hub 8 is rotatably mounted on the rotor axis 10, wherein this extends substantially horizontally.
  • the hub 8 includes an access opening 39 to allow access for fitters in the hub 8 in case of maintenance.
  • an axial direction 12, a radial direction 13 and a circumferential direction 14 also valid for the following embodiments defined.
  • the hub 8 of the rotor 7 is rotatably connected via elastic connecting means 17 via a bell housing 19 with a ring gear 20 of a transmission 18, wherein the bell crank 19 and the ring gear 20 may be integrally formed.
  • the ring gear 20 performs the same rotation as the rotor 7.
  • planetary gears 23 which are rotatably supported in a planet carrier 26 by means of bearing journals 25.
  • the planet carrier 26 is rotatably provided with respect to the machine carrier 6, in particular, the planet carrier 26 shown in FIG. 2 by a transition region 16 of the rotor axis 10 to the connection points 15, as shown in FIG. 4 via a separate tarpaulin support 47 or as shown in FIG. 5 directly from the machine frame 6 be formed.
  • the ring gear 20 is supported via the planet gears 23 on the machine carrier 6 and on the rotor axis 1 1.
  • three planetary gears 23 are provided, which is not intended to limit the invention, but also two, four, five or six planetary gears are conceivable.
  • the ring gear 20 is connected to a housing 22 and a bell housing 19 and forms a structural unit which is non-rotatably connected via the connecting means 17 to the hub 8 and consequently rotates with the rotor 7.
  • the initial rotational movement of the rotor 7 is transmitted via the ring gear 20 to the planet gears 23 and - now with a higher speed - transmitted to the sun gear 29 in the center of the transmission 18.
  • the sun gear 29 is connected to an output shaft 31, which passes the rotation with medium speed, high speed to a generator 32 for generating electric power.
  • the output shaft 31 is preferably provided with a brake disk 33, wherein a brake device, not shown, this can act on the mechanical braking of the drive train or the drive device 10.
  • the output shaft 31 is mounted either directly in the machine carrier 6 and / or via a common bearing 34 with the generator 32 on the machine frame 6.
  • the common bearing 34 of the generator 32 and output shaft 31 is particularly simple and inexpensive in terms of production and installation of the wind turbine 1.
  • This combined bearing 34 can be used particularly well here, as the three or more planet gears 23 also represent an effective storage in the radial direction 13, which can be dispensed with a further, the Sonnerad 29 near bearing.
  • an axial displacement Lx is present between the bearing 34 of the output shaft 31 and the sun gear 29, an axial displacement Lx is present.
  • FIG. 3 shows a simplified section through the transmission 18 along the line AA of FIG. 4. Since the present embodiments do not differ significantly with respect to the transmission 18, this also applies to the other embodiments.
  • the housing 22 of the ring gear 20 is adjacent to the rotor blades 9 shown approachable recognizable, wherein the ring gear 20 is shown only on the basis of the center circle of the teeth 21 representing dash-and-dot line.
  • the housing may be formed integrally with the ring gear. It is also conceivable, however, shrink the ring gear 20 as a solid ring in the housing 22 or segmentally introduced into the housing 22 via form or frictional engagement.
  • a point line 16 Radially further inside a point line 16 can be seen, which represents the transition region 16 between the rotor axis 10 and the three connection points 15.
  • the rotor axis 10 for supporting the hub 8 and the ring gear 20, the planet carrier 26 formed as a transition region 16, and the connection points 15 for attachment to the machine carrier 6 then form a one-piece unit that can be produced, for example, as a cast. However, it may also be favorable in terms of assembly and manufacture to produce this assembly from several parts, such as in FIG. 4
  • the planet gears 23 engage in the teeth 21 of the ring gear 20 and the teeth 30 of the sun gear 29, wherein the teeth 24 of the planet gears 23 as a dash-dot line 24 (center circle) is shown.
  • the hub 8 is mounted on the rotor shaft 10 via a direct bearing 35 at the tip 37 of the rotor axis 10 and indirectly via a bearing 36 of the bell housing 19 of the ring gear 20. Since the hub 8 together with the tip 37 due to bending movement 38 perform, but this may not be transmitted to the ring gear 20, 19 decoupling and / or damping connecting means 17 are provided between the hub 8 and the bell housing. These allow that between hub 8 and bell housing 19 and ring gear 20 is a substantially rotatable connection is established, but no significant axial movements can be transmitted. Such movements would cause the engagement of the ring gear 20 and the planetary gears 23 would be very irregular and variable, which would lead to a very high wear ß the teeth or destruction.
  • the connecting means 17 can also damp torsional vibrations.
  • the connecting means 17 according to FIG. 2 are, for example, designed as a socket, wherein an elastomeric body 40 is arranged in or on the hub 8 or in the bell housing 19 (not shown).
  • the elastomeric body 40 in turn receives a bolt 41 which is fixedly arranged in the bell housing 19 or in the hub (not shown).
  • the bushing is formed such that the bolt 41 is mounted relatively flexibly in the axial direction 12, but not in the radial direction 13.
  • three or more such connecting means 17 between the hub 8 and gear bell 19 are provided.
  • sealing means 27 are provided which seal the gear 18 relative to the machine frame 6.
  • FIG. 4 A further embodiment of the invention is introduced with reference to FIG. 4, wherein the hub 8 is supported on the rotor axis 10 by means of two direct, separate bearings 42, 45. Conveniently, one of the bearings 42, 45 designed as a fixed bearing and one as a floating bearing.
  • the gear bell 19 and the ring gear 20 have their own independent bearing 46 for support on the rotor axis 10.
  • axial and radial movements connecting means 47 which can also be designed as a socket. This has the great advantage that now the ring gear 20 and the hub 8 in Essentially decoupled in the radial direction 13 and axial direction 12 and no interference movements 38 can be transmitted from the rotor 7 to the transmission 18.
  • FIG. 4 A further embodiment of the invention is introduced with reference to FIG. 4, wherein the hub 8 is supported on the rotor axis 10 by means of two direct, separate bearings 42, 45. Conveniently, one of the bearings 42, 45 designed as a fixed bearing and one as a floating bearing.
  • the decoupling means 47 are designed in such a way that the hub 8 and the bell housing 19 have regions which overlap one another in the axial direction 12 but offset in the circumferential direction 14. Between these areas of the hub 8 and the bell housing 19 elastomeric body 48 are provided, although transmitted circumferential forces from the hub 8 to the bell housing 19, and vice versa, but allow an axial and radial displacement hub 8 and the bell housing 19 to each other to some extent. Thus, a favorable and effective transmission of the rotational movement, without transmission of the harmful radial and axial movements 38 is achieved.
  • the planetary carrier 49 In order to enable a cost-effective production of the individual components, as shown in FIG. 4, an independent expression of the planetary carrier 49 is to be proposed.
  • This consists essentially of a disc 50, which in turn carries the bearing pin 51 of the planet gears 23.
  • This disc 50 can be produced very precisely and inexpensively by turning and / or milling processes and consequently be mounted with screw connections to the machine carrier 6. Since the disc 50 of the planet carrier 23 also receives the joints 15 of the rotor axis 1 1, mainly by screw, sets the disc 50 and the center distances of the individual gears 23 of the transmission 18, which are highly relevant to the functioning and the life of the transmission 18 ,
  • This formed as a slip ring device device comprises one or more with the hub 8 rotating pickup 54 and connected to the hub 8 Slip ring 55.
  • the multi-pole slip ring 55 is connected via cables to the power supply of the machine house and to transmit control signals to the controller of the wind turbine 1.
  • FIG. 5 corresponds in many respects to the preceding, wherein the rotor axis 1 1 is formed as a stub axle 56 without a tip. Instead, the rotor 7 is mounted via the hub 8 via a so-called moment bearing 43 on the stub axle 56. This leads to a reduction in weight and at the same time increases the installation space within the hub 8 in order to accommodate drive components for adjusting the angle of attack of the rotor blades 9.
  • the planet carrier 26 is formed here directly from the machine carrier 6, wherein the bearing pins 25 are arranged in the material of the machine carrier 6.
  • FIG. 6 schematically shows a further detail embodiment of the transmission 18 according to FIG. 2, 4 or 5. It is essential that the planet gears 23 do not act directly on the sun gear 29, but each associated with the ring gear 20 in operative engagement with the planet gear 23 another planetary gear 57 is assigned. Thus, the ring gear 20 drives a pair of planets 58, wherein each of the other planetary gear 57, the sun gear 29 acts. Thus, over the proportions of the planetary pairs 58 to each other, the transmission ratio can be influenced.
  • Rotor blades 39 access opening

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Retarders (AREA)

Abstract

L'invention concerne une unité d'entraînement pour une turbine éolienne, un rotor de la turbine éolienne étant monté rotatif sur un bâti. Le rotor comporte un moyeu et au moins une pale de rotor fixée au moyeu. L'unité d'entraînement comporte une transmission pour transformer la vitesse de rotation du rotor selon un rapport de multiplication souhaité. La transmission, un train planétaire, comporte au moins une couronne, un porte-satellites, au moins deux satellites, un planétaire et un arbre de sortie. Les roues de la transmission sont de préférence des roues dentées. Comme le planétaire est relié à un arbre de sortie, l'énergie de rotation peut être introduite dans un générateur. L'invention vise à mettre en oeuvre une unité d'entraînement d'une turbine éolienne évitant les inconvénients de l'état antérieur. A cet effet, un logement économique et simple est crée pour un rotor d'une turbine éolienne comportant une unité d'entraînement robuste et réduisant les coûts. A cet effet, l'unité d'entraînement comporte les caractéristiques de la revendication principale. L'unité d'entraînement présente un axe de rotor sensiblement horizontal pour le logement rotatif du rotor. L'axe du rotor peut être relié fixe au bâti de façon directe ou indirecte. Ainsi et pour la première fois, les forces et contraintes du rotor sont introduites directement dans le bâti et le flux de force principal n'a pas lieu à proximité de la transmission et n'y occasionne donc pas de déformations. Par ailleurs, le logement peut être réalisé sur un axe de rotor central sous forme de pivot, au moyen de paliers plus petits et plus économiques.
EP10779310A 2009-11-13 2010-11-15 Unité d'entraînement pour une turbine éolienne Withdrawn EP2499362A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009052809 2009-11-13
DE102009053757 2009-11-20
PCT/EP2010/067518 WO2011058185A2 (fr) 2009-11-13 2010-11-15 Unité d'entraînement pour une turbine éolienne

Publications (1)

Publication Number Publication Date
EP2499362A2 true EP2499362A2 (fr) 2012-09-19

Family

ID=43992143

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10779310A Withdrawn EP2499362A2 (fr) 2009-11-13 2010-11-15 Unité d'entraînement pour une turbine éolienne
EP10779309.3A Not-in-force EP2499361B1 (fr) 2009-11-13 2010-11-15 Turbine éolienne

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10779309.3A Not-in-force EP2499361B1 (fr) 2009-11-13 2010-11-15 Turbine éolienne

Country Status (9)

Country Link
US (2) US9206787B2 (fr)
EP (2) EP2499362A2 (fr)
CN (2) CN102713276A (fr)
AU (2) AU2010317918A1 (fr)
DE (2) DE102010043945A1 (fr)
DK (1) DK2499361T3 (fr)
ES (1) ES2553641T3 (fr)
WO (2) WO2011058184A2 (fr)
ZA (2) ZA201204127B (fr)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5543832B2 (ja) * 2010-04-16 2014-07-09 ナブテスコ株式会社 風車用駆動装置
NL2005954C2 (en) * 2010-05-31 2011-12-01 Windchallenge B V Wind turbine.
US8147183B2 (en) * 2010-12-30 2012-04-03 General Electric Company Drivetrain for generator in wind turbine
EP2525090B1 (fr) * 2011-05-18 2016-06-29 ZF Wind Power Antwerpen NV Nacelle d'une éolienne
DE102012000341A1 (de) * 2012-01-11 2013-07-11 Voith Patent Gmbh Windkraftanlage
DE102012208372A1 (de) * 2012-05-18 2013-11-21 Siemens Aktiengesellschaft Windenergieanlage
DE102012011268A1 (de) 2012-06-08 2013-12-12 Centa-Antriebe Kirschey Gmbh Windenergieanlage
DE202012013022U1 (de) 2012-06-08 2014-07-16 Centa-Antriebe Kirschey Gmbh Windenergieanlage
DE102012013372B3 (de) * 2012-07-04 2013-09-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Antriebsstrang für eine Windkraftanlage
DE102013004090A1 (de) * 2013-02-12 2014-08-14 Centa-Antriebe Kirschey Gmbh Kupplungseinheit
DE102013214453B9 (de) * 2013-07-24 2019-06-27 Ovalo Gmbh Linearversteller
DE102013219247A1 (de) * 2013-09-25 2015-03-26 Zf Friedrichshafen Ag Baueinheit mit einer elektrischen Maschine
WO2015057138A1 (fr) * 2013-10-17 2015-04-23 Aktiebolaget Skf Ensemble palier
ES2689723T3 (es) * 2014-03-04 2018-11-15 Nabrawind Sl Tren de potencia de un aerogenerador
DE202016008311U1 (de) 2016-07-07 2017-07-14 Zf Friedrichshafen Ag Getriebeglocke für ein Windkraftgetriebe
DE102016216458A1 (de) 2016-08-31 2018-03-01 Wobben Properties Gmbh Rotorblattnabe für eine Windenergieanlage, und Windenergieanlage mit selbiger
US10572268B2 (en) 2017-04-21 2020-02-25 International Business Machines Corporation Network booting in a peer-to-peer environment using dynamic magnet links
US10619721B2 (en) * 2017-07-21 2020-04-14 General Electric Company Drivetrain assembly for a wind turbine
DE102017118010A1 (de) * 2017-08-08 2019-02-14 Wobben Properties Gmbh Generator für eine Windenergieanlage und Windenergieanlage mit selbigem
AT521775B1 (de) 2018-12-13 2020-06-15 Miba Gleitlager Austria Gmbh Planetengetriebe für eine Windkraftanlage
AT521882B1 (de) 2018-12-13 2021-05-15 Miba Gleitlager Austria Gmbh Gleitlager, insbesondere für ein Getriebe einer Windkraftanlage
AT521885B1 (de) 2018-12-13 2020-09-15 Miba Gleitlager Austria Gmbh Gondel für eine Windkraftanlage
AT521953B1 (de) 2018-12-13 2020-07-15 Miba Gleitlager Austria Gmbh Gondel für eine Windkraftanlage
AT521884B1 (de) 2018-12-13 2020-10-15 Miba Gleitlager Austria Gmbh Verfahren zum Wechseln eines Gleitlagerelementes einer Rotorlagerung einer Windkraftanlage, sowie Gondel für eine Windkraftanlage
CN109751193B (zh) * 2019-03-28 2022-09-27 新疆金风科技股份有限公司 风力发电机组
DE102019119473A1 (de) * 2019-07-18 2021-01-21 Renk Aktiengesellschaft Triebstranganordnung
EP4390119A1 (fr) * 2022-12-20 2024-06-26 Flender GmbH Engrenages planétaires ainsi que chaîne cinématique et éolienne avec un engrenage planétaire correspondant

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2341250A1 (de) * 1973-08-16 1975-02-27 Stetter Gmbh Antriebsvorrichtung fuer die trommel von automischern
DE4402184C2 (de) * 1994-01-26 1995-11-23 Friedrich Prof Dr Ing Klinger Vielpol-Synchrongenerator für getriebelose Horizontalachsen-Windkraftanlagen mit Nennleistungen bis zu mehreren Megawatt
ES2166832T5 (es) * 1994-10-07 2008-02-16 Windtec Consulting Gmbh Engranaje planetario para una turbina eolica.
DE19916454A1 (de) * 1999-04-12 2000-10-19 Flender A F & Co Getriebe für eine Windkraftanlage
DE19930751A1 (de) 1999-07-02 2001-01-04 Franz Mitsch Verfahren zur Reduzierung von Schwingungen in Windkraftanlagen
SE515712C3 (sv) * 2000-02-10 2001-10-23 Abb Ab Elkraftgenererande anordning
AU2001276593A1 (en) * 2000-08-15 2002-02-25 Hansen Transmissions International Nv Drive assembly for wind turbines
DE10224439C5 (de) 2002-06-01 2009-12-31 Aloys Wobben Verfahren zur Montage/Demontage von Komponenten einer Windenergieanlage
DE10318945B3 (de) 2003-04-26 2004-10-28 Aerodyn Gmbh Getriebeanordnung für Windenergieanlagen
GB0326933D0 (en) * 2003-11-19 2003-12-24 Hansen Transmissions Int Gear transmission unit with planet carrier
DE102004030929B3 (de) 2004-06-25 2005-10-20 Repower Systems Ag Windenergieanlage
DE102004064007B4 (de) 2004-09-24 2009-08-20 Aloys Wobben Windenergieanlage mit einer Generatorkühlung
ES2278530B1 (es) * 2006-01-17 2008-07-01 GAMESA INNOVATION & TECHNOLOGY, S.L. Turbina eolica con multiplicadora totalmente integrada.
BE1017135A3 (nl) 2006-05-11 2008-03-04 Hansen Transmissions Int Een tandwielkast voor een windturbine.
CN101255849A (zh) 2007-02-28 2008-09-03 新疆金风科技股份有限公司 悬臂齿轮轴柔性传动风力发电机组
US7935020B2 (en) * 2007-08-27 2011-05-03 General Electric Company Integrated medium-speed geared drive train
US8365866B2 (en) * 2008-07-10 2013-02-05 General Electric Company Internal lubrication for a gearbox, a power-generating wind turbine system, and a power-generating system
EP2253843A1 (fr) * 2009-05-12 2010-11-24 Ecotecnia Energias Renovables S.L. Éolienne
US20120184404A1 (en) * 2009-06-25 2012-07-19 Clipper Windpower, Llc Damping of Plantary Gears with Flex-Pins for Wind Turbines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011058185A2 *

Also Published As

Publication number Publication date
US20120244989A1 (en) 2012-09-27
CN102667149A (zh) 2012-09-12
DK2499361T3 (en) 2016-02-01
AU2010317919A1 (en) 2012-07-05
DE102010043945A1 (de) 2011-08-18
US9206787B2 (en) 2015-12-08
ZA201204332B (en) 2013-01-31
CN102713276A (zh) 2012-10-03
DE102010043946A1 (de) 2011-07-07
WO2011058185A3 (fr) 2011-12-01
ES2553641T3 (es) 2015-12-10
EP2499361A2 (fr) 2012-09-19
WO2011058184A2 (fr) 2011-05-19
EP2499361B1 (fr) 2015-10-21
WO2011058184A3 (fr) 2011-12-01
WO2011058185A2 (fr) 2011-05-19
ZA201204127B (en) 2013-02-27
US20120263594A1 (en) 2012-10-18
AU2010317918A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
WO2011058185A2 (fr) Unité d'entraînement pour une turbine éolienne
EP1999369B1 (fr) Ligne de transmission entre un rotor et un dispositif de commande d'une installation à énergie éolienne
EP1045140B1 (fr) Boíte de vitesses pour éolienne
EP2508754B1 (fr) Système de transmission pour une éolienne
EP2668048B1 (fr) Amortisseur électrique
DE102007012408A1 (de) Windenergieanlagen mit lastübertragenden Bauteilen
DE102019132941B4 (de) Antriebseinheit und Antriebsanordnung
EP2775165B1 (fr) Amortisseur électromécanique
WO2015158753A1 (fr) Système d'entraînement d'une éolienne
EP2573386A1 (fr) Système de transmission pour une éolienne
EP2097641A2 (fr) Transmission d'éolienne à couple divisé
WO2011110453A2 (fr) Joint tournant entre une pale de rotor et le moyeu du rotor d'un aérogénérateur
EP2710271A1 (fr) Unité palier, notamment pour une éolienne
WO2019197251A1 (fr) Palier conçu pour un module hybride
EP3589839A1 (fr) Unité de réglage pour régler l'azimut et/ou le pas d'une éolienne et procédé
WO2013072004A1 (fr) Train planétaire doté d'un carter de mécanisme
EP3491238B1 (fr) Bâti machine et rotor pour éolienne et procédé correspondant
DE102015211277A1 (de) Antriebsaggregat für ein Kraftfahrzeug, insbesondere Personenkraftfahrzeug
EP3121443B1 (fr) Logement des paliers d'entrainement d'eolienne et eolienne
EP2514076A1 (fr) Ensemble génératrice pour une éolienne
DE102007053586B4 (de) Lageranordnung für ein Getriebe einer Windturbine
EP2677171B1 (fr) Installation éolienne dotée d'un moyen d'accouplement disposé entre l'engrenage épicycloïdal et le générateur pour l'équilibrage du décalage axial, radial et angulaire
DE10239657B3 (de) Verdrehaktuator für einen geteilten Stabilisator
DE102012013372B3 (de) Antriebsstrang für eine Windkraftanlage
EP2486275B1 (fr) Chaîne cinématique et éolienne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120613

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140603