EP2497098B1 - Überspannungsschutzelement - Google Patents

Überspannungsschutzelement Download PDF

Info

Publication number
EP2497098B1
EP2497098B1 EP10790719.8A EP10790719A EP2497098B1 EP 2497098 B1 EP2497098 B1 EP 2497098B1 EP 10790719 A EP10790719 A EP 10790719A EP 2497098 B1 EP2497098 B1 EP 2497098B1
Authority
EP
European Patent Office
Prior art keywords
overvoltage
protection element
limiting component
overvoltage protection
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10790719.8A
Other languages
English (en)
French (fr)
Other versions
EP2497098A1 (de
Inventor
Christian Depping
Rainer Durth
Gernot Finis
Thomas Meyer
Andreas Christ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phoenix Contact GmbH and Co KG
Original Assignee
Phoenix Contact GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE202010014430U external-priority patent/DE202010014430U1/de
Application filed by Phoenix Contact GmbH and Co KG filed Critical Phoenix Contact GmbH and Co KG
Priority to SI201031231A priority Critical patent/SI2497098T1/sl
Publication of EP2497098A1 publication Critical patent/EP2497098A1/de
Application granted granted Critical
Publication of EP2497098B1 publication Critical patent/EP2497098B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/36Thermally-sensitive members actuated due to expansion or contraction of a fluid with or without vaporisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/46Thermally-sensitive members actuated due to expansion or contraction of a solid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • H01C7/126Means for protecting against excessive pressure or for disconnecting in case of failure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/04Bases; Housings; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/14Means structurally associated with spark gap for protecting it against overload or for disconnecting it in case of failure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/20Bridging contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H2037/769Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of insulating fusible materials, e.g. for use in the thermal pellets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/767Normally open

Definitions

  • the invention relates to an overvoltage protection element having a housing, having at least one overvoltage limiting component arranged in the housing, in particular a varistor or a gas-filled surge arrester, and having at least two connecting elements for electrically connecting the overvoltage protection element to the current or signal path to be protected, wherein in the normal state of Overvoltage protection element, the connection elements are each in electrical contact with a pole of the overvoltage limiting device.
  • an overvoltage protection element which has a thermal separation device for monitoring the state of a varistor.
  • the first connection element is connected via a flexible conductor to a rigid separation element whose end remote from the flexible conductor is connected via a solder joint to a connection lug provided on the varistor.
  • the other connection element is connected via a flexible conductor fixed to the varistor or a terminal lug on the varistor.
  • the separating element is acted upon by a spring system with a force which results in the separating element being linearly moved away from the connecting lug during the separation of the soldering connection, with the result that the varistor is electrically cut off in the event of thermal overloading.
  • a remote signaling contact is actuated at the same time during the separation of the solder connection, whereby a remote monitoring of the state of the overvoltage protection element is possible.
  • an overvoltage protection element in which the monitoring of the state of a varistor according to the principle of a temperature switch, so that when overheating of the varistor a provided between the varistor and a separator solder joint is separated, resulting in an electrical separation of the varistor.
  • a plastic element is pushed by the restoring force of a spring from a first position to a second position in which the formed as a resilient metal tongue separating element is thermally and electrically separated from the varistor by the plastic element, so that a possibly between the metal tongue and the contact point of the varistor arcing arc is deleted.
  • the plastic element two juxtaposed colored markings In addition, it acts as an optical status indicator, whereby the state of the overvoltage protection element can be read directly on the spot.
  • An overvoltage protection element with a thermal cutoff mechanism is also known.
  • one end of a rigid spring-loaded slider in the normal state of the overvoltage protection element is soldered both to the first connection element and to a connection lug connected to the varistor.
  • An inadmissible heating of the varistor also leads here to a heating of the solder joint, so that the slider is pulled due to the force acting on it a spring from the junction between the first terminal and the terminal lug, resulting in an electrical separation of the varistor.
  • the DE 695 03 743 T2 discloses an overvoltage protection element with two varistors, which has two separating means, which can individually separate the varistors at their end of life.
  • the separating means each have a resilient separating tongue, wherein the first end of the separating tongue firmly connected to the first terminal and the second end of the separating tongue is attached in the normal state of the overvoltage protection element via a solder joint to a connecting tongue on the varistor. If there is an inadmissible heating of the varistor, this leads to a melting of the solder joint.
  • the separation tongue Since the separation tongue is deflected in the soldered state (normal state of the overvoltage protection element) from its rest position and thus biased, the free end of the separation tongue springs when softening the solder joint of the connecting tongue of the varistor, whereby the varistor is electrically disconnected.
  • the separation tongue In order to ensure the required insulation and tracking resistance and to erase an emerging when opening the separation point arc, it is necessary that when pivoting the separation tongue as large a distance between the second end of the separation tongue and the connection tongue of the overvoltage limiting component is achieved.
  • US2009 / 0009921 A1 discloses an overvoltage protection element according to the preamble of claim 1.
  • the known overvoltage protection elements are generally designed as a "protective plug", which together with a device lower part form an overvoltage protection device.
  • a surge protection device which is intended to protect, for example, the phase-leading conductors L1, L2, L3 and the neutral conductor N and possibly also the earth conductor PE, in the known surge protective devices on the bottom of the device corresponding terminals for the individual conductors provided.
  • the connection elements are designed as plug pins in the overvoltage protection element, which are arranged in the lower device part corresponding, connected to the terminals sockets, so that the overvoltage protection element can be easily plugged onto the device base.
  • overvoltage protection devices In such overvoltage protection devices, the installation and assembly by plugging the surge protection elements is very simple and time-saving feasible.
  • overvoltage protection devices partly still have a changeover contact as a signal transmitter for remote signaling of the state of at least one overvoltage protection element as well as an optical status indication in the individual overvoltage protection elements.
  • the status display indicates whether the overvoltage-limiting component arranged in the overvoltage protection element is still functional or not.
  • varistors are used as overvoltage limiting component, although it is also possible to use gas-filled surge arresters, spark gaps or diodes depending on the intended use of the overvoltage protection element.
  • thermal separation devices which are based on the melting of a solder joint, have to fulfill several tasks.
  • a secure and good electrical connection between the first connection element and the overvoltage limiting component must be ensured.
  • the separation point must ensure a safe separation of the overvoltage limiting component as well as a permanent insulation resistance and tracking resistance.
  • the problem is, however, that the solder joint is permanently loaded with a shear stress due to the spring force of the spring element or deflected from its rest position separating tongue in the normal state of the overvoltage protection element.
  • the present invention is therefore based on the object to provide an initially described overvoltage protection element, in which the aforementioned disadvantages are avoided. It should be both a safe and good electrical connection in the normal state as well as a safe separation of a defective overvoltage limiting component to be ensured.
  • an overvoltage protection element according to claim 1. Further embodiments emerge from the subclaims.
  • a heat-expandable, intumescent material is arranged within the housing such that upon thermal overloading of the overvoltage limiting device, the position of the overvoltage limiting device is variable relative to the position of the terminal elements due to expansion of the heat-expandable material such that at least one pole of the overvoltage-limiting device Component is no longer in electrical contact with the corresponding connection element.
  • the heat-expandable material which is preferably composed of a low-melting plastic, for example polyethylene (PE) or polypropylene (PP), and a propellant is in the normal state of the overvoltage protection element in a solid state.
  • a low-melting plastic for example polyethylene (PE) or polypropylene (PP)
  • PP polypropylene
  • a propellant is in the normal state of the overvoltage protection element in a solid state.
  • the heat-expandable material changes state of aggregation and becomes liquid. After exceeding a certain threshold temperature, the heat-expandable material reacts with a large volume increase; the heat-expandable material foams up. This caused by the increase in temperature large increase in volume of the heat-expandable material is used in the overvoltage protection element according to the invention to move the overvoltage limiting component away from the connection elements, so that the overvoltage limiting component is electrically separated.
  • PE polyethylene
  • PP polypropylene
  • the heat-expandable material is activated only upon a corresponding heating, ie thermal overloading of the overvoltage-limiting component, the electrical contact between the connection elements and the poles of the overvoltage-limiting component in the normal state is not mechanically stressed by the heat-expandable material.
  • a shock current carrying plug connection is provided instead of a solder connection.
  • both poles of the overvoltage limiting component are connected via a respective plug connection to a connection element.
  • the heat-expandable material arranged inside the housing assumes both the function of a sensor, which detects an inadmissible self-heating of the overvoltage-limiting component, and the function of an actuator, which moves the overvoltage-limiting component away from the connection elements under thermal overload.
  • the function of the sensor is taken over by the solder joint and the function of the actuator of the spring or deflected from its rest position release agent.
  • the overvoltage protection element according to the invention is designed such that, in the case of thermal overloading of the overvoltage limiting component, both poles are disconnected from the connection elements, so that after the separation has taken place, both poles of the overvoltage limiting component are no longer in electrical contact with the connection elements.
  • the formation of two separation points the extinction of a possibly occurring arc is favored because the two separation points form a series connection, so that increases the total arc length and thus the arc voltage by the series connection of the two separation points.
  • the two poles of the overvoltage limiting component are each electrically connected to a terminal lug or a pin. Due to the design of the connection lugs or pins, both the solder joints and the connections between the poles of the overvoltage limiting component and the connection element can be realized easily.
  • the solder joints are each provided between a connecting lug or a connecting pin and a connecting element while, in the case of a plug connection, the connecting elements have plug sockets on the side facing the connecting lugs or the connecting pins.
  • the housing has an outer housing and a housing disposed in the outer housing, on one side open inner housing, wherein the inner housing is displaceable relative to the outer housing.
  • the connection elements are fixedly connected to the outer housing, while the surge-limiting device is disposed within the inner housing.
  • the hood-shaped inner housing encloses the heat-expandable material in such a way that the inner housing with the overvoltage-limiting component is displaced relative to the outer housing - and thus also to the two connection elements - upon expansion of the heat-expandable material.
  • the inner housing together with the overvoltage-limiting component arranged therein is pushed away from the connection elements so that the poles of the overvoltage-limiting component are no longer in electrically conductive contact with the connection elements.
  • the retaining element can be configured, for example, in the manner of a web and fastened by its two ends to the inner wall of the housing so that it extends in the transverse direction of the overvoltage-limiting component.
  • an overvoltage protection element with an outer housing and an inner housing displaceably arranged in the outer housing
  • the change in position of the inner housing is used for optical indication of the state of the overvoltage limiting component.
  • the inner housing is arranged in the normal state of the overvoltage protection element in its first position within the outer housing so that the upper side of the inner housing does not protrude beyond the upper side of the outer housing.
  • the inner housing is moved due to the expanding material in a second position in which the top of the inner housing protrudes beyond the top of the outer housing. The displacements of the inner housing in case of thermal overload of the overvoltage protection element is thus used to display the functional status of the overvoltage protection element.
  • the housing has two electrically insulated holding elements, wherein in the normal state of the overvoltage protection element, the holding elements are each in electrical contact with a pole or a connecting pin or a connecting lug of the overvoltage limiting component.
  • the holding elements surround the heat-expandable material, so that the overvoltage-limiting component is displaced relative to the holding elements in the event of an inadmissible heating by the expanding material.
  • the overvoltage limiting component is then no longer with the holding elements in electrically conductive contact and is electrically isolated.
  • the electrically conductive holding elements serve both as a housing for receiving the overvoltage limiting component and the heat-expandable material and as connecting elements for the electrical connection of the poles of the overvoltage-limiting component.
  • the electrically conductive contact between the poles or connected to the poles connecting tabs or pins of the surge arrester and serving as connecting elements holding elements can be realized both via a solder connection and via a plug connection, wherein in the realization of a connector in the connection region of the holding elements the connector tabs or the connector pins corresponding sockets can be arranged.
  • Such an overvoltage protection element is particularly suitable when using a gas-filled surge arrester as overvoltage limiting component, wherein the surge arrester can be connected via the two holding elements, for example with a printed circuit board.
  • the overvoltage limiting component is pressed by thermal expansion of the expanding material either upwards - perpendicular to its longitudinal extent - or horizontally to the side.
  • the overvoltage limiting component is pressed by the expanding material both upwards than to the side.
  • the expansion of the heat-expandable material and the consequent change in position of the overvoltage-limiting device ensure that the poles of the over-voltage limiting device are no longer in electrically conductive contact with the holding elements.
  • the overvoltage protection element in case of thermal overload of the overvoltage limiting component in the forming gap between the at least one pole or the connecting tab or the one pin of the overvoltage limiting component and the at least one connecting element penetrates, so that at Cutting the electrical contact resulting arc is suppressed or deleted by the insulating heat-expandable material.
  • At least one plastic part for example made of POM, may be arranged in the region of the connection elements, which is gassing when heated. If an arc occurs in the vicinity of the plastic part, it is extinguished by blowing it with an extinguishing gas, which is generated by the dissociation of the plastic part.
  • a fernübertragbare status display is provided, for which a remote signaling contact is disposed within the housing, which is actuated when the Position of the overvoltage limiting device changed by the expanding material.
  • the heat-expandable, intumescent material used in the overvoltage protection element according to the invention preferably has an activation temperature which is more than 80 ° C.
  • the activation temperature of the heat-expandable material i. H. the temperature at which the material expands, between 120 ° C and 150 ° C.
  • the activation temperature of the heat-expandable material is optimally adapted to the maximum allowable operating temperature of the overvoltage protection element, which is often about 80 ° C.
  • the overvoltage limiting device is to be moved away from its first position by the heat expandable material.
  • the volume increase of the heat-expandable material is preferably at least 200%, ie at least twice the volume of the heat-expandable material before it is activated. Since a rapid separation of the overvoltage limiting component is required in the event of overload, the heat-expandable material is preferably designed such that that it has a response time of less than one second for activation.
  • the heat-expandable material is preferably a support material and a blowing agent.
  • a thermoplastic polymer which is preferably selected from the group consisting of: acrylonitrile-butadiene-styrene (ABS), polyamides (PA), polylacetate (PLA), polymethylmethacrylate (PMMA), polycarbonate (PC), polyethylene terephthalate can be used as carrier (PET), polyolefins, such as Polyethylene (PE), polypropylene (PP), polyisobutylene (PIB), polybutylene (PB), polystyrene (PS), polyetheretherketone (PEEK), polyvinyl chloride (PVC), polybutylene terephthalate (PBT) and celluloid.
  • an elastomer having a low Shore A hardness can also be used as the carrier material, the Shore A hardness preferably being
  • blowing agent either a chemically acting blowing agent or a physically acting blowing agent can be used.
  • a physically acting blowing agent which consists of smallest hollow bodies filled with gases which are present in liquid phase.
  • Such a blowing agent is also referred to as microsphere.
  • the size of the hollow body is in the one to two-digit micrometer range.
  • the shell of the body is diffusion-tight and rigid below the activation temperature, but elastic when the activation temperature is reached. An increase in temperature causes a phase change of the liquid within the hollow body from liquid to gaseous, which leads to a very strong volume increase.
  • suitable choice of the liquid or of the gas while the activation temperature is adjustable, so that the blowing agent can be adapted to the particular application.
  • the proportion of the blowing agent is preferably about 5 to 15% in relation to the carrier material. With such a mixing ratio, a sufficiently good and practical volume increase of the heat-expandable material consisting of the carrier material and the blowing agent is achieved. Overall, such a volume multiplication by a factor of 5 can be achieved.
  • the support material is selected so that its softening temperature is of the order of the activation temperature of the blowing agent.
  • polyethylene (PE) and polypropylene (PP) are particularly suitable as a carrier material.
  • the carrier material or the blowing agent is chosen so that the activation temperature of the blowing agent is greater or less than the softening temperature of the carrier material.
  • the activation temperature of the blowing agent is slightly lower than the softening temperature of the carrier material. This then leads to the fact that the blowing agent already begins with its reaction before the softening temperature of the carrier material is reached. As a result, a bias voltage is built up in the heat-expandable material, which leads to a very rapid volume increase when the softening temperature is reached.
  • a carrier material and a blowing agent is selected in which the activation temperature of the blowing agent is greater than the softening temperature of the carrier material, this leads to the carrier material already softening before the blowing agent reacts, so that the increase in volume of the material begins upon reaching the activation temperature and then ends when the maximum increase in volume has been reached or the activation temperature has fallen below again.
  • the process runs much slower than in the case when the activation temperature is lower than the softening temperature. Such a slower course of the process is suitable, for example, for changing an optical status display.
  • a material combination of blowing agents with different activation temperatures can be used, whereby a stepwise change of the status display depending on the temperature that has occurred in each case is possible.
  • the heat-expandable material consists of two components, which are separated from each other in the non-activated state, wherein the components react with each other with an increase in volume when the separation is canceled.
  • the two components may be, for example, sodium bicarbonate on the one hand and an acid, for. As citric acid, on the other hand, which are initially separated from each other by a release layer. If the separation is canceled, for example by mechanical or thermal Exposure, the two components react with each other, whereby gas is released, which leads to an increase in volume. Similar reactions can also be achieved with multicomponent polyurethanes or by means of rapid oxidations, for example when a combustion process is ignited.
  • the heat-expandable material is designed so that the volume increase is irreversible.
  • the blowing agent and the carrier material it can also be achieved that the carrier material is transferred back to its starting state during cooling, so that the volume increase of the material can be reversed.
  • the activation of the heat-expandable material, and in particular the blowing agent depends on the introduction of heat into the heat-expandable material, good thermal coupling to the over-voltage-limiting component to be monitored is required.
  • active heating can be provided by additional energy input from outside into the material.
  • a heating resistor may be embedded in the heat-expandable material, whose own power dissipation results in additional heating of the material.
  • a heat pipe or a conductor with high thermal conductivity, such as copper be embedded in the material.
  • additional heating of the heat-expandable material can also be achieved by mixing conductive material such as graphite powder or copper powder into the material.
  • conductive material such as graphite powder or copper powder into the material.
  • an intrinsic conductivity of the material is achieved, so that the material is heated in full volume when a voltage is applied through the current flowing through the material.
  • the resistance increases because the number of conductive components per unit volume is reduced. Preferably, this results in a complete cessation of the current flow, whereby the additional heat input is switched off.
  • the figures show an overvoltage protection element 1 with a housing 2, wherein a surge-limiting component is arranged in the housing 2.
  • the overvoltage limiting component is a varistor 3
  • the overvoltage protection element 1 according to FIGS 4 to 12 is a gas-filled surge 3 'acts.
  • the overvoltage protection element 1 which may be formed as a protective plug, has two connection elements 4, 5, which can be inserted into corresponding connection sockets of a device lower part, not shown here.
  • the connection elements 4, 5 are each connected to one pole of the varistor 3, so that the varistor 3 can be connected via the two connection elements 4, 5 to the current or signal path to be protected.
  • a heat-expandable material 6 which is an intumescent material, is arranged in the housing 2, which is initially solid but changes its state of aggregation and becomes liquid as the temperature increases.
  • the heat-expandable material 6 reacts with a large volume increase, ie the material 6 foams up and expands. This then causes the position of the varistor 3 or the surge arrester 3 'to change relative to the position of the connection elements 4, 5, since the heat-expandable material 6 pushes the varistor 3 or the surge arrester 3' out of their first position.
  • the overvoltage protection element 1 according to the Fig. 1 to 3 on the one hand and the overvoltage protection elements 1 according to the 4 to 12 on the other hand differ initially characterized by the fact that in the first embodiment as overvoltage limiting component, a varistor 3 is used, while in the other embodiments, a gas-filled surge arrester 3 'is used.
  • the overvoltage protection elements 1 still differ by the type of electrical contact between the varistor 3 and the connection elements 4, 5 on the one hand and the surge arrester 3 'and the connection elements 4, 5 on the other.
  • the two poles of the surge arrester 3 'via one solder joint 7, 8 are connected to the two connection elements 4, 5, the two poles of the varistor 3 via a plug connection 9, 10 with the two connection elements 4, 5 in electrically conductive contact.
  • the two poles of the varistor 3 are connected via two connecting lugs 11, 12 to the connecting elements 4, 5, wherein the connecting elements 4, 5 on the connecting tabs 11, 12 facing sides each have a female connector 13, 14.
  • the housing 2 has an outer housing 17 and an inner housing 18, which is displaceably arranged in the outer housing 17.
  • the underside of the inner housing 18 is open, so that the inner housing 18 encloses the varistor 3 and the heat-expandable material 6 like a hood. If there is a reduction in the impedance of the varistor 3 due to overloading or due to aging of the varistor 3, then an impermissible leakage current flows through the varistor 3, which leads to a heating of the varistor 3.
  • the varistor 3 is at least partially surrounded by the heat-expandable material 6, a self-heating of the varistor 3 also leads to a heating of the material 6, so that this greatly expands when a certain activation temperature is exceeded. This results in an increase in pressure within the space enclosed by the outer housing 17 and the inner housing 18, so that the inner housing 18 is pushed upwards by the expanding material 6 when the holding force of the inner housing 18 within the outer housing 17 and the contact force between the terminal lugs 11, 12 and the sockets 13, 14 is exceeded by the force of the expanding material 6.
  • the varistor 3 is connected via a holding element 19 with the inner housing 18, wherein the holding element 19 is disposed below the varistor 3 and in the illustration according to the Fig. 1 to 3 perpendicular to the plane of the drawing, that extends in the transverse direction of the varistor 3.
  • the inner housing 18 is thus performed similar to a piston in the outer housing 17, wherein a not shown in the figures stop ensures that the lifting movement of the inner housing 18 is limited upwards.
  • the inner housing 18 is in the normal state of the overvoltage protection element 1 in a first position within the outer housing 17, in which the upper side 20 of the inner housing 18 is substantially flush with the upper side 21 of the outer housing 17, so that the upper side 20 of the inner housing 18th does not protrude beyond the outer housing 17.
  • the inner housing 18 is in thermal overload of the overvoltage protection element 1 after the electrical separation of the varistor 3 in a - Fig. 2 illustrated - second position in which the top 20 of the inner housing 18 extends beyond the top 21 of the outer housing 17.
  • the position of the inner housing 18 thus serves as an optical status display for displaying the state of the overvoltage protection element 1.
  • the heat-expandable material 6 used is preferably an intumescent material which is solid in the normal state of the overvoltage protection element 1 and initially becomes liquid when the temperature rises.
  • a sealing film 22 is arranged in the outer housing 17 above the connecting elements 4, 5, ie opposite the open underside of the inner housing 18, in the illustrated embodiment.
  • the terminal lugs 11, 12 extend in the normal state of the overvoltage protection element 1 through slots provided in the sealing film 22, so that the terminal lugs 11, 12 contacted by the sockets 13, 14 and thus in electrically conductive contact with the connection elements 4, 5.
  • Fig. 3 shows the overvoltage protection element 1 according to Fig. 1 in which the inner housing 18 is in the second position, so that the varistor 3 is separated.
  • the varistor 3 or the inner housing 18 has been pushed not by an expansion of the heat-expandable material 6 upwards, but due to an overpressure caused by a bursting of the varistor 3 due to an extreme overload.
  • An extreme overload can cause a varistor 3 abruptly in a low-impedance state, so that in this extreme case, a line-driven current in the size of the short-circuit current can flow through the varistor 3.
  • a current flowing through the varistor 3 in this case can lead to destruction and thus to a bursting of the varistor 3.
  • the resulting pressure is passed through a formed in the arranged under the varistor 3 holding element 19 opening 23 in the space formed by the outer housing 17, the inner housing 18 and the sealing film 22 space 24.
  • the resulting pressure in this space 24 then causes the inner housing 18 is pushed from its first position to its second position upwards, whereby the varistor 3 is moved away from the connection elements 4, 5, so that the connecting lugs 11, 12 not more with the sockets 13, 14 are in electrically conductive contact.
  • the overloaded varistor 3 is thus reliably and quickly separated.
  • the openings 25 are arranged in the outer housing 17 such that they are closed by the inner housing 18, as long as the inner housing 18 is not yet in its second position.
  • the housing 2 is not an outer housing and an inner housing, but of two U-shaped in cross-section holding elements 26, 27 in addition to the inclusion of the heat-expandable material 6 for holding and contacting the pins 15, 16 of the surge arrester. 3 serve in the normal state of the overvoltage protection element 1.
  • the overvoltage protection element 1 serve the two mutually insulated, electrically conductive support members 26, 27 thus simultaneously as connection elements 4, 5 for the gas-filled surge arrester 3 '.
  • connection elements 4, 5 for the gas-filled surge arrester 3 '.
  • a plug connection according to the Fig. 1 to 3 be provided.
  • the holding elements 26, 27 would have corresponding plug sockets on the sides facing the connection pins 15, 16.
  • the holding elements 26, 27 are formed and the heat-expandable material 6 is arranged between the holding elements 26, 27 such that upon thermal overload of the surge arrester 3 'it is forced upwards by the expanding material 6, the surge arrester 3' in the exemplary embodiment according to the Fig. 7 to 9 pushed away by the expanding material 6 horizontally to the side.
  • an arc can occur, which in the case of an overvoltage protection element 1 can lead to an impermissible current also flowing in the actually disconnected state of the overvoltage-limiting component via the arc.
  • Such an arc is at the in Fig. 2 illustrated embodiment of the overvoltage protection element 1 is prevented in that the expanding heat-expandable material 6 penetrates upon thermal overload of the varistor 3 in the forming gap between the terminal lugs 11, 12 and the sockets 13, 14.
  • Possible switching arcs are deleted by the foaming of the connecting lugs 11, 12. This also applies to the in Fig. 9 illustrated left pin 15 of the surge arrester 3 '.
  • Fig. 10 - 12 show three different variants of an overvoltage protection element 1, each only by the formation of the heat-expandable material 6 from each other and the execution of Fig. 6 differ.
  • conductive particles 30 are arranged, which may be, for example, graphite powder or copper powder.
  • an intrinsic conductivity of the material 6 is achieved, so that when a voltage is applied, a current flows through the heat-expandable material 6, through which the material 6 is heated to full volume. If the material 6 reaches its activation temperature, there is an increase in volume, which also leads to a reduction in the number of conductive components per unit volume, so that as the volume increases, the conductivity of the material 6 decreases, preferably to such an extent that at maximum Volume increase no current flows through the material 6.
  • FIGS. 11 and 12 is a heat pipe 31 and a resistance wire 32 embedded in the heat-expandable material 6, whereby it also comes to an additional heating of the material 6 when a current flows through the heat pipe 31 and the resistance wire 32.
  • the connections of the heat pipe 31 and the resistance wire 32 can either - as in the FIG. 11 and 12 shown - be led out separately or connected to the connection elements 4, 5.
  • the current via the surge arrester 3 ' is also used for additional heating of the heat-expandable material 6 by the heat pipe 31 or the resistance wire 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fuses (AREA)
  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

  • Die Erfindung betrifft ein Überspannungsschutzelement mit einem Gehäuse, mit mindestens einem in dem Gehäuse angeordneten überspannungsbegrenzenden Bauelement, insbesondere einem Varistor oder einem gasgefüllten Überspannungsableiter, und mit mindestens zwei Anschlusselementen zum elektrischen Anschluss des Überspannungsschutzelements an den zu schützenden Strom- oder Signalpfad, wobei im Normalzustand des Überspannungsschutzelements die Anschlusselemente jeweils mit einem Pol des überspannungsbegrenzenden Bauelements in elektrisch leitendem Kontakt stehen.
  • Aus der DE 42 41 311 A1 ist ein Überspannungsschutzelement bekannt, das zur Überwachung des Zustands eines Varistors eine thermische Abtrennvorrichtung aufweist. Bei diesem Überspannungsschutzelement ist das erste Anschlusselement über einen flexiblen Leiter mit einem starren Trennelement verbunden, dessen dem flexiblen Leiter abgewandtes Ende über eine Lötstelle mit einer am Varistor vorgesehenen Anschlussfahne verbunden ist. Das andere Anschlusselement ist über einen flexiblen Leiter fest mit dem Varistor bzw. einer Anschlussfahne am Varistor verbunden. Das Trennelement wird von einem Federsystem mit einer Kraft beaufschlagt, die dazu führt, dass das Trennelement beim Auftrennen der Lötverbindung von der Anschlussfahne linear wegbewegt wird, so dass der Varistor bei thermischer Überlastung elektrisch abgetrennt wird. Über das Federsystem wird beim Auftrennen der Lötverbindung gleichzeitig ein Fernmeldekontakt betätigt, wodurch eine Fernüberwachung des Zustandes des Überspannungsschutzelements möglich ist.
  • Auch aus der DE 20 2004 006 227 U1 ist ein Überspannungsschutzelement bekannt, bei dem die Überwachung des Zustands eines Varistors nach dem Prinzip eines Temperaturschalters erfolgt, so dass bei Überhitzung des Varistors eine zwischen dem Varistor und einem Trennelement vorgesehene Lötverbindung aufgetrennt wird, was zu einem elektrischen Abtrennen des Varistors führt. Außerdem wird beim Auftrennen der Lötverbindung ein Kunststoffelement durch die Rückstellkraft einer Feder aus einer ersten Position in eine zweite Position geschoben, in der das als federnde Metallzunge ausgebildete Trennelement durch das Kunststoffelement thermisch und elektrisch vom Varistor getrennt ist, so dass ein eventuell zwischen der Metallzunge und der Kontaktstelle des Varistors anstehender Lichtbogen gelöscht wird. Da das Kunststoffelement zwei nebeneinander angeordnete farbige Markierungen aufweist, fungiert es zusätzlich als optische Zustandsanzeige, wodurch der Zustand des Überspannungsschutzelements direkt vor Ort abgelesen werden kann. Aus der DE 699 04 274 T2 ist ebenfalls ein Überspannungsschutzelement mit einem thermischen Abtrennmechanismus bekannt. Bei diesem Überspannungsschutzelement ist ein Ende eines starren federbelasteten Schiebers im Normalzustand des Überspannungsschutzelements sowohl mit dem ersten Anschlusselement als auch mit einer mit dem Varistor verbundenen Anschlussfahne verlötet. Eine unzulässige Erwärmung des Varistors führt auch hier zu einer Erwärmung der Lötstelle, so dass der Schieber aufgrund der an ihm angreifenden Kraft einer Feder aus der Verbindungsstelle zwischen dem ersten Anschlusselement und der Anschlussfahne gezogen wird, was zu einer elektrischen Abtrennung des Varistors führt.
  • Die DE 695 03 743 T2 offenbart ein Überspannungsschutzelement mit zwei Varistoren, das zwei Trennmittel aufweist, die die Varistoren jeweils an ihrem Lebensende einzeln abtrennen können. Die Trennmittel weisen jeweils eine federnde Trennzunge auf, wobei das erste Ende der Trennzunge mit dem ersten Anschluss fest verbunden und das zweite Ende der Trennzunge im Normalzustand des Überspannungsschutzelements über eine Lötstelle an einer Verbindungszunge am Varistor befestigt ist. Kommt es zu einer unzulässigen Erwärmung des Varistors, so führt dies zu einem Aufschmelzen der Lötverbindung. Da die Trennzunge im angelöteten Zustand (Normalzustand des Überspannungsschutzelements) aus ihrer Ruhelage ausgelenkt und somit vorgespannt ist, federt das freie Ende der Trennzunge beim Erweichen der Lötverbindung von der Verbindungszunge des Varistors weg, wodurch der Varistor elektrisch abgetrennt wird. Um die geforderte Isolations- und Kriechstromfestigkeit zu gewährleisten und einen beim Öffnen der Trennstelle entstehenden Lichtbogen zu löschen, ist es erforderlich, dass beim Verschwenken der Trennzunge ein möglichst großer Abstand zwischen dem zweiten Ende der Trennzunge und der Verbindungszunge des überspannungsbegrenzenden Bauelement erzielt wird.
  • US2009/0009921 A1 offenbart ein Überspannungsschutzelement gemäß dem Oberbegriff des Anspruchs 1.
  • Die bekannten Überspannungsschutzelemente sind in der Regel als "Schutzstecker" ausgebildet, die zusammen mit einem Geräteunterteil ein Überspannungsschutzgerät bilden. Zur Installation eines derartigen Überspannungsschutzgeräts, welches beispielsweise die phasenführenden Leiter L1, L2, L3 sowie den Neutralleiter N und gegebenenfalls auch den Erdleiter PE schützen soll, sind bei den bekannten Überspannungsschutzgeräten am Geräteunterteil entsprechende Anschlussklemmen für die einzelnen Leiter vorgesehen. Zur einfachen mechanischen und elektrischen Kontaktierung des Geräteunterteils mit dem jeweiligen Überspannungsschutzelement sind bei dem Überspannungsschutzelement die Anschlusselemente als Steckerstifte ausgebildet, zu denen im Geräteunterteil korrespondierende, mit den Anschlussklemmen verbundene Steckerbuchsen angeordnet sind, so dass das Überspannungsschutzelement einfach auf das Geräteunterteil aufsteckbar ist.
  • Bei derartigen Überspannungsschutzgeräten ist die Installation und Montage durch die Steckbarkeit der Überspannungsschutzelemente sehr einfach und zeitsparend durchführbar. Zusätzlich weisen derartige Überspannungsschutzgeräte teilweise noch einen Wechselkontakt als Signalgeber zur Fernmeldung des Zustands mindestens eines Überspannungsschutzelements sowie eine optische Zustandsanzeige in den einzelnen Überspannungsschutzelementen auf. Über die Zustandsanzeige wird angezeigt, ob das in dem Überspannungsschutzelement angeordnete überspannungsbegrenzende Bauelement noch funktionstüchtig ist oder nicht. Als überspannungsbegrenzendes Bauelement werden dabei insbesondere Varistoren verwendet, wobei jedoch je nach Einsatzzweck des Überspannungsschutzelements auch gasgefüllte Überspannungsableiter, Funkenstrecken oder Dioden eingesetzt werden können.
  • Die zuvor beschriebenen, bei den bekannten Überspannungsschutzelementen verwendeten, thermische Abtrennvorrichtungen, die auf dem Aufschmelzen einer Lötverbindung beruhen, haben mehrere Aufgaben zu erfüllen. Im Normalzustand des Überspannungsschutzelements, d. h. im nicht getrennten Zustand, muss eine sichere und gute elektrische Verbindung zwischen dem ersten Anschlusselement und dem überspannungsbegrenzenden Bauelement gewährleistet sein. Beim Überschreiten einer bestimmten Grenztemperatur muss die Trennstelle eine sichere Abtrennung des überspannungsbegrenzenden Bauelements sowie eine dauerhafte Isolationsfestigkeit und Kriechstromfestigkeit gewährleisten. Problematisch ist dabei jedoch, dass die Lötverbindung aufgrund der Federkraft des Federelements oder der aus ihrer Ruhelage ausgelenkten Trennzunge im Normalzustand des Überspannungsschutzelements dauerhaft mit einer Scherspannung belastet wird.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein eingangs beschriebenes Überspannungsschutzelement zur Verfügung zu stellen, bei welchem die zuvor genannten Nachteile vermieden werden. Dabei soll sowohl eine sichere und gute elektrische Verbindung im Normalzustand als auch eine sichere Abtrennung eines defekten überspannungsbegrenzenden Bauelements gewährleistet sein.
  • Diese Aufgabe ist durch ein Überspannungsschutzelement gemäß des Anspruchs 1 gelöst. Weitere Ausgestaltungen ergeben sich aus den Unteransprüchen. Bei dem eingangs beschriebenen Überspannungsschutzelement ist innerhalb des Gehäuses ein wärmeausdehnbares, intumeszentes Material derart angeordnet, dass bei thermischer Überlastung des überspannungsbegrenzenden Bauelements die Position des überspannungsbegrenzenden Bauelements aufgrund einer Ausdehnung des wärmeausdehnbaren Materials relativ zur Position der Anschlusselemente so veränderbar ist, dass mindestens ein Pol des überspannungsbegrenzenden Bauelements nicht mehr mit dem korrespondierenden Anschlusselement in elektrisch leitendem Kontakt steht.
  • Das wärmeausdehnbare Material, welches sich vorzugsweise aus einem niedrig schmelzenden Kunststoff, beispielsweise Polyethylen (PE) oder Polypropylen (PP), und einem Treibmittel zusammensetzt, befindet sich im Normalzustand des Überspannungsschutzelements in einem festen Zustand. Erhöht sich die Temperatur des wärmeausdehnbaren Materials aufgrund einer erhöhten Eigenerwärmung des überspannungsbegrenzenden Bauelements, so ändert das wärmeausdehnbare Material seinen Aggregatzustand und wird flüssig. Nach Überschreiten einer bestimmten Grenztemperatur reagiert das wärmeausdehnbare Material mit einer starken Volumenzunahme; das wärmeausdehnbare Material schäumt auf. Diese durch den Temperaturanstieg hervorgerufene starke Volumenzunahme des wärmeausdehnbare Materials wird bei dem erfindungsgemäßen Überspannungsschutzelement dazu genutzt, das überspannungsbegrenzende Bauelement von den Anschlusselementen wegzubewegen, so dass das überspannungsbegrenzende Bauelement elektrisch abgetrennt wird.
  • Da das wärmeausdehnbare Material erst bei einer entsprechenden Erwärmung, d. h. bei thermischer Überlastung des überspannungsbegrenzenden Bauelements, aktiviert wird, wird der elektrische Kontakt zwischen den Anschlusselementen und den Polen des überspannungsbegrenzenden Bauelements im Normalzustand durch das wärmeausdehnbare Material mechanisch nicht beansprucht.
  • Bei dem erfindungsgemäßen Überspannungsschutzelement ist anstelle einer Lötverbindung eine stoßstromtragfähige Steckverbindung vorgesehen. Hierzu sind im Normalzustand des Überspannungsschutzelements beide Pole des überspannungsbegrenzenden Bauelements über jeweils eine Steckverbindung mit einem Anschlusselement verbunden. Hierbei übernimmt das innerhalb des Gehäuses angeordnete wärmeausdehnbare Material sowohl die Funktion eines Sensors, der eine unzulässigen Eigenerwärmung des überspannungsbegrenzenden Bauelements detektiert, als auch die Funktion eines Aktors, der das überspannungsbegrenzenden Bauelement bei thermischer Überlastung von den Anschlusselementen wegbewegt. Im Unterschied dazu wird bei den bekannten Überspannungsschutzelementen, die auf dem Aufschmelzen einer Lötverbindung beruhen, die Funktion des Sensors von der Lötstelle und die Funktion des Aktors von der Feder oder dem aus seiner Ruhelage ausgelenkten Trennmittel übernommen.
  • Das erfindungsgemäße Überspannungsschutzelement ist so ausgebildet, dass bei thermischer Überlastung des überspannungsbegrenzenden Bauelements beide Pole von den Anschlusselementen getrennt werden, so dass nach erfolgter Abtrennung beide Pole des überspannungsbegrenzenden Bauelements mit den Anschlusselementen nicht mehr in elektrischem Kontakt stehen. Durch die Ausbildung von zwei Trennstellen wird das Verlöschen eines evtl. auftretenden Lichtbogens begünstigt, da die beiden Trennstellen eine Reihenschaltung bilden, so dass sich durch die Reihenschaltung der beiden Trennstellen die gesamte Lichtbogenlänge und damit auch die Lichtbogenbrennspannung vergrößert. Hierbei ist es vorteilhaft, wenn - wie zuvor bereits ausgeführt - beide Pole des überspannungsbgerenzenden Bauelements über jeweils eine Steckverbindung mit einem Anschlusselement verbunden sind, da dann das Auftrennen der elektrischen Verbindung in erster Linie von dem Temperaturverhalten des wärmeausdehnbaren Materials und nicht (auch) von dem Auftrennverhalten einer Lötstelle abhängt.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Überspannungsschutzelements sind die beiden Pole des überspannungsbegrenzenden Bauelements jeweils mit einer Anschlusslasche oder einem Anschlussstift elektrisch leitend verbunden. Durch die Ausbildung der Anschlusslaschen bzw. Anschlussstifte lassen sich sowohl die Lötverbindungen als auch die Steckverbindungen zwischen den Polen des überspannungsbegrenzenden Bauelements und den Anschlusselements einfach realisieren. Im ersten Fall sind die Lötstellen jeweils zwischen einer Anschlusslasche bzw. einem Anschlussstift und einem Anschlusselement vorgesehen während bei einer Steckverbindung die Anschlusselemente auf der den Anschlusslaschen oder den Anschlussstiften zugewandten Seite Steckerbuchsen aufweisen. Gemäß einer vorteilhaften konstruktiven Ausgestaltung der Erfindung weist das Gehäuse ein Außengehäuse und ein im Außengehäuse angeordnetes, einseitig offenes Innengehäuse auf, wobei das Innengehäuse relativ zum Außengehäuse verschiebbar ist. Die Anschlusselemente sind dabei ortsfest mit dem Außengehäuse verbunden, während das überspannungsbegrenzende Bauelement innerhalb des Innengehäuses angeordnet ist. Im Normalzustand des Überspannungsschutzelements umschließt dabei das haubenförmige Innengehäuse das wärmeausdehnbare Material derart, dass das Innengehäuse mit dem überspannungsbegrenzenden Bauelements bei einer Ausdehnung des wärmeausdehnbaren Materials relativ zum Außengehäuse - und damit auch zu den beiden Anschlusselemente - verschoben wird. Durch das sich aufgrund einer Erwärmung des überspannungsbegrenzenden Bauelements aktivierte wärmeausdehnbare Material wird somit das Innengehäuse zusammen mit dem darin angeordneten überspannungsbegrenzenden Bauelements von den Anschlusselementen weggedrückt, so dass die Pole des überspannungsbegrenzenden Bauelements nicht mehr mit den Anschlusselementen in elektrisch leitendem Kontakt stehen.
  • Um sicherzustellen, dass bei einer Verschiebung des Innengehäuses auch das überspannungsbegrenzende Bauelement mit verschoben wird, ist dieses vorzugsweise über ein Halteelement mit dem Innengehäuse verbunden. Das Halteelement kann dabei beispielsweise stegartig ausgebildet und mit seinen beiden Enden an der Innenwand des Gehäuses befestigt sein, so dass es sich in Querrichtung des überspannungsbegrenzenden Bauelements erstreckt.
  • Gemäß einer bevorzugten Ausgestaltung eines erfindungsgemäßen Überspannungsschutzelements mit einem Außengehäuse und einem in dem Außengehäuse verschiebbar angeordneten Innengehäuse, wird die Positionveränderung des Innengehäuses zur optischen Anzeige des Zustandes des überspannungsbegrenzenden Bauelements genutzt. Hierzu ist das Innengehäuse im Normalzustand des Überspannungsschutzelements in seiner ersten Position innerhalb des Außengehäuses so angeordnet, dass die Oberseite des Innengehäuses nicht über die Oberseite des Außengehäuses hinausragt. Bei thermischer Überlastung des Überspannungsschutzelements wird das Innengehäuse dagegen aufgrund des sich ausdehnenden Materials in eine zweite Position verschoben, in der die Oberseite des Innengehäuses über die Oberseite des Außengehäuses hinausragt. Die Verschiebungen des Innengehäuses bei thermischer Überlastung des Überspannungsschutzelements wird somit zur Anzeige des Funktionsstatus des Überspannungsschutzelements genutzt.
  • Gemäß einer alternativen konstruktiven Ausgestaltung des erfindungsgemäßen Überspannungsschutzelements weist das Gehäuse zwei voneinander isolierte, elektrisch leitende Halteelemente auf, wobei im Normalzustand des Überspannungsschutzelements die Halteelemente jeweils mit einem Pol bzw. einem Anschlussstift oder einer Anschlusslasche des überspannungsbegrenzenden Bauelements in elektrisch leitendem Kontakt stehen. Dabei umschließen die Halteelemente das wärmeausdehnbare Material, so dass das überspannungsbegrenzende Bauelement bei einer unzulässigen Erwärmung durch das sich ausdehnende Material relativ zu den Halteelementen verschoben wird. Das überspannungsbegrenzende Bauelement steht dann nicht mehr mit den Halteelementen in elektrisch leitendem Kontakt und ist elektrisch abgetrennt. Bei dieser Ausführungsvariante dienen die elektrisch leitenden Halteelemente sowohl als Gehäuse zur Aufnahme des überspannungsbegrenzenden Bauelements und des wärmeausdehnbaren Materials als auch als Anschlusselemente zum elektrischen Anschluss der Pole des überspannungsbegrenzenden Bauelements.
  • Der elektrisch leitende Kontakt zwischen den Polen bzw. den mit den Polen verbundenen Anschlusslaschen oder Anschlussstiften des Überspannungsableiters und den als Anschlusselemente dienenden Halteelementen kann dabei sowohl über eine Lötverbindung als auch über eine Steckverbindung realisiert sein, wobei bei der Realisierung einer Steckverbindung im Anschlussbereich der Halteelemente zu den Anschlusslaschen oder den Anschlussstiften korrespondierende Steckerbuchsen angeordnet sein können. Ein derartiges Überspannungsschutzelement eignet sich insbesondere bei der Verwendung eines gasgefüllten Überspannungsableiters als überspannungsbegrenzendes Bauelement, wobei der Überspannungsableiter über die beiden Halteelemente beispielsweise mit einer Leiterplatte verbunden werden kann.
  • Je nach Ausgestaltung der Halteelemente und je nach Anordnung des überspannungsbegrenzenden Bauelements sowie des wärmeausdehnbaren Materials zwischen den Halteelementen wird das überspannungsbegrenzende Bauelement bei thermischer Überlastung durch das sich ausdehnende Material entweder nach oben - senkrecht zu seiner Längserstreckung - oder horizontal zur Seite gedrückt. Selbstverständlich ist auch eine Ausgestaltung möglich, bei der das überspannungsbegrenzende Bauelement durch das sich ausdehnende Material sowohl nach oben als zur Seite gedrückt wird. In jedem Fällen wird durch die Ausdehnung des wärmeausdehnbaren Materials und die sich daraus ergebende Positionsveränderung des überspannungsbegrenzenden Bauelements dafür gesorgt, dass die Pole des überspannungsbegrenzenden Bauelements nicht mehr mit den Haltelementen in elektrisch leitendem Kontakt stehen.
  • Um eine hohe Isolations- und Kriechstromfestigkeit zu gewährleisten und einen beim Öffnen der Kontakte zwischen den Polen des überspannungsbegrenzenden Bauelements und den Anschlusselementen entstehenden Lichtbogen zu löschen, muss im Stande der Technik ein möglichst großer Abstand zwischen den Polen bzw. den Anschlusslaschen des überspannungsbegrenzenden Bauelements und den Anschlusselementen erzielt werden. Bei dem erfindungsgemäßen Überspannungsschutzelement ist gemäß einer vorteilhaften Ausgestaltung vorgesehen, dass das wärmeausdehnbare Material bei thermischer Überlastung des überspannungsbegrenzenden Bauelements in den sich bildenden Zwischenraum zwischen dem mindestens einen Pol bzw. der einen Anschlusslasche oder dem einen Anschlussstift des überspannungsbegrenzenden Bauelements und dem mindestens einen Anschlusselement eindringt, so dass ein beim Auftrennen des elektrischen Kontakts entstehender Lichtbogen durch das isolierende wärmeausdehnbare Material unterbunden bzw. gelöscht wird. Alternativ oder zusätzlich dazu kann im Bereich der Anschlusselemente mindestens ein Kunststoffteil, beispielsweise aus POM, angeordnet sein, das bei Erwärmung gasend ist. Tritt in der Nähe des Kunststoffteils ein Lichtbogen auf, so wird dieser durch Beblasen mit einem Löschgas gelöscht, welches über die Dissoziation des Kunststoffteils erzeugt wird.
  • Gemäß einer nicht zur vorliegenden Erfindung gehörenden Ausgestaltung des Überspannungsschutzelements, die hier noch kurz erwähnt werden soll, ist alternativ oder zusätzlich zu der zuvor beschriebenen optischen Zustandsanzeige eine fernübertragbare Zustandsanzeige vorgesehen, wozu innerhalb des Gehäuses ein Fernmeldekontakt angeordnet ist, der betätigt wird, wenn sich die Position des überspannungsbegrenzenden Bauelements durch das sich ausdehnende Material verändert.
  • Das bei dem erfindungsgemäßen Überspannungsschutzelement verwendete wärmeausdehnbare, intumeszente Material weist vorzugsweise eine Aktivierungstemperatur auf, die mehr als 80°C beträgt. Vorzugsweise liegt die Aktivierungstemperatur des wärmeausdehnbaren Materials, d. h. die Temperatur, bei der sich das Material ausdehnt, zwischen 120° C und 150° C. Damit ist die Aktivierungstemperatur des wärmeausdehnbaren Materials optimal an die maximal zulässige Betriebstemperatur des Überspannungsschutzelements, die häufig bei etwa 80° C liegt, angepasst.
  • Wie zuvor bereits ausgeführt, soll das überspannungsbegrenzende Bauelement durch das wärmeausdehnbare Material aus seiner ersten Position weg bewegt werden. Erwünscht ist somit eine deutliche Ausdehnung des Materials, wenn dieses seine Aktivierungstemperatur erreicht hat. Die Volumenzunahme des wärmeausdehnbaren Materials beträgt dabei vorzugsweise mindestens 200 %, d. h. mindestens das zweifache des Volumens des wärmeausdehnbaren Materials vor dessen Aktivierung. Da im Überlastfall eine schnelle Abtrennung des überspannungsbegrenzenden Bauelements erforderlich ist, ist das wärmeausdehnbare Material vorzugsweise so ausgebildet, dass es eine Reaktionszeit von weniger als einer Sekunde für die Aktivierung aufweist.
  • Um die zuvor genannten Randbedingungen, d. h. die gewünschte Aktivierungstemperatur, die Volumenzunahme und die Reaktionszeit zu erreichen, besteht das wärmeausdehnbare Material vorzugsweise aus einem Trägermaterial und einem Treibmittel. Als Trägermittel kann dabei insbesondere ein thermoplastisches Polymer verwendet werden, welches vorzugsweise ausgewählt ist aus der Gruppe aufweisend: Acrylnitril-Butadien-Styrol (ABS), Polyamide (PA), Polylacetat (PLA), Polymethylmethacrylat (PMMA), Polycarbonat (PC), Polyethylenterephthalat (PET), Polyolefine, wie z.B. Polyethylen (PE), Polypropylen (PP), Polyisobutylen (PIB), Polybutylen (PB), Polystyrol (PS), Polyetheretherketon (PEEK), Polyvinylchlorid (PVC), Polybutylenterephtalat (PBT) und Celluloid. Alternativ dazu kann auch ein Elastomer mit einer geringen Shore-A Härte als Trägermaterial verwendet werden, wobei die Shore-A Härte vorzugsweise kleiner als 20 ist.
  • Als Treibmittel kann entweder ein chemisch wirkendes Treibmittel oder ein physikalisch wirkendes Treibmittel eingesetzt werden. Gemäß einer bevorzugten Ausgestaltung wird ein physikalisch wirkendes Treibmittel eingesetzt, das aus kleinsten Hohlkörpern besteht, die mit Gasen gefüllt sind, die in Flüssigphase vorliegen. Ein derartiges Treibmittel wird auch als Mikrosphäre bezeichnet. Die Größe der Hohlkörper liegt dabei im ein- bis zweistelligen Mikrometerbereich. Die Hülle der Körper ist diffusionsdicht und unterhalb der Aktivierungstemperatur starr, bei Erreichung der Aktivierungstemperatur jedoch elastisch. Ein Temperaturanstieg verursacht einen Phasenwechsel der Flüssigkeit innerhalb der Hohlkörper von flüssig nach gasförmig, was zu einer sehr starken Volumenzunahme führt. Durch geeignete Wahl der Flüssigkeit bzw. des Gases ist dabei die Aktivierungstemperatur einstellbar, so dass das Treibmittel an den jeweiligen Anwendungsfall angepasst werden kann.
  • Der Anteil des Treibmittels beträgt vorzugsweise etwa 5 bis 15 % im Verhältnis zum Trägermaterial. Bei einem derartigen Mischungsverhältnis wird eine hinreichend gute und praxisgerechte Volumenzunahme des wärmeausdehnbaren Materials, bestehend aus dem Trägermaterial und dem Treibmittel, erreicht. Insgesamt ist so eine Volumenvervielfachung um den Faktor 5 erreichbar.
  • Das Trägermaterial ist so ausgewählt, dass dessen Erweichungstemperatur in der Größenordnung der Aktivierungstemperatur des Treibmittels liegt. Auch unter diesem Gesichtspunkt eignen sich Polyethylen (PE) und Polypropylen (PP) besonders gut als Trägermaterial. Je nach Anwendungsfall wird das Trägermaterial bzw. das Treibmittel dabei so gewählt, dass die Aktivierungstemperatur des Treibmittels größer oder kleiner als die Erweichungstemperatur des Trägermaterials ist. Für Anwendungen, die ein möglichst schnelles Abtrennen eines Bauteils oder das Betätigen eines Schalters erfordern, ist es vorteilhaft, wenn die Aktivierungstemperatur des Treibmittels etwas geringer als die Erweichungstemperatur des Trägermaterials ist. Dies führt dann dazu, dass das Treibmittel bereits mit seiner Reaktion beginnt, bevor die Erweichungstemperatur des Trägermaterials erreicht ist. Dadurch wird in dem wärmeausdehnbaren Material eine Vorspannung aufgebaut, was bei Erreichung der Erweichungstemperatur zu einer sehr schnellen Volumenzunahme führt.
  • Wird ein Trägermaterial und ein Treibmittel gewählt, bei denen die Aktivierungstemperatur des Treibmittels größer als die Erweichungstemperatur des Trägermaterials ist, so führt dies dazu, dass das Trägermaterial bereits erweicht, bevor das Treibmittel reagiert, so dass die Volumenzunahme des Materials mit Erreichung der Aktivierungstemperatur beginnt und dann endet, wenn die maximale Volumenzunahme erreicht ist oder die Aktivierungstemperatur wieder unterschritten wird. Der Prozess verläuft dabei deutlich langsamer als bei dem Fall, wenn die Aktivierungstemperatur geringer als die Erweichungstemperatur ist. Ein solcher langsamerer Verlauf des Prozesses eignet sich beispielsweise zur Veränderung einer optischen Zustandsanzeige. Zur Änderung einer optischen Zustandsanzeige durch die Volumenzunahme eines wärmeausdehnbaren Materials kann eine Materialkombination aus Treibmitteln mit verschiedenen Aktivierungstemperaturen verwendet werden, wodurch eine stufenweise Änderung der Zustandsanzeige in Abhängigkeit von der jeweils aufgetretenen Temperatur möglich ist.
  • Gemäß einer alternativen Ausgestaltung besteht das wärmeausdehnbare Material aus zwei Komponenten, die im nicht aktivierten Zustand voneinander getrennt sind, wobei die Komponenten miteinander unter Volumenzunahme reagieren, wenn die Trennung aufgehoben ist. Bei den beiden Komponenten kann es sich beispielsweise um Natriumhydrogencarbonat einerseits und eine Säure, z. B. Zitronensäure, andererseits handeln, die zunächst voneinander durch eine Trennschicht getrennt sind. Wird die Trennung aufgehoben, beispielsweise durch mechanische oder thermische Einwirkung, so reagieren die beiden Komponenten miteinander, wobei Gas frei wird, was zu einer Volumenzunahme führt. Ähnliche Reaktionen sind auch mit MehrKomponenten Polyurethanen oder mittels schnell ablaufender Oxidationen, beispielsweise bei Zündung eines Verbrennungsprozesses, erreichbar.
  • In der Regel ist das wärmeausdehnbare Material so ausgebildet, dass die Volumenzunahme irreversibel ist. Durch eine geeignete Auswahl und Anordnung des Treibmittels und des Trägermaterials kann jedoch auch erreicht werden, dass das Trägermaterial bei einer Abkühlung das Treibmittel wieder in seinen Ausgangszustand überführt wird, so dass die Volumenzunahme des Materials rückgängig gemacht werden kann.
  • Da die Aktivierung des wärmeausdehnbaren Materials und insbesondere des Treibmittels von der Wärmeeinbringung in das wärmeausdehnbare Material abhängig ist, ist eine gute Wärmeankopplung an das zu überwachende überspannungsbegrenzende Bauelement erforderlich. Um die Wärmeeinbringung in das wärmeausdehnbare Material zu erhöhen bzw. zu verbessern kann eine aktive Erwärmung durch zusätzlichen Energieeintrag von außen in das Material vorgesehen sein.
  • Hierzu kann in dem wärmeausdehnbaren Material beispielsweise ein Heizwiderstand eingebettet sein, dessen eigene Verlustleistungsabgabe zu einer zusätzlichen Erwärmung des Materials führt. Alternativ dazu kann auch eine Heatpipe oder ein Leiter mit großer Wärmeleitfähigkeit, beispielsweise aus Kupfer, in dem Material eingebettet sein. Schließlich kann eine zusätzliche Erwärmung des wärmeausdehnbaren Materials auch dadurch erreicht werden, dass dem Material leitfähige Bestandteile, wie beispielsweise Graphitpulver oder Kupferpulver beigemischt sind. Dadurch wird eine Eigenleitfähigkeit des Materials erreicht, so dass das Material bei Anliegen einer Spannung durch den durch das Material fließenden Strom vollvolumig aufgeheizt wird. Mit der bei Erreichen der Aktivierungstemperatur beginnenden Volumenzunahme des Materials erhöht sich dabei der Widerstand, da sich die Anzahl der leitfähigen Komponenten pro Volumeneinheit reduziert. Vorzugsweise kommt es dadurch zu einem vollständigen Erliegen des Stromflusses, wodurch die zusätzliche Wärmeeinbringung abgeschaltet wird.
  • Im Einzelnen gibt es nun eine Vielzahl von Möglichkeiten, das erfindungsgemäße Überspannungsschutzelement auszugestalten und weiterzubilden. Dazu wird verwiesen sowohl auf die dem Patentanspruch 1 nachgeordneten Patentansprüche als auch auf die nachfolgende Beschreibung bevorzugter Ausführungsbeispiele in Verbindung mit der Zeichnung. In der Zeichnung zeigen
  • Fig. 1
    eine Schnittdarstellung eines ersten Ausführungsbeispiels eines Überspannungsschutzelements, im Normalzustand,
    Fig. 2
    eine Schnittdarstellung des Überspannungsschutzelements gemäß Fig. 1, mit einem abgetrennten Varistor,
    Fig. 3
    eine weitere Schnittdarstellung eines Überspannungsschutzelements gemäß Fig. 1, mit einem abgetrennten Varistor,
    Fig. 4
    eine Schnittdarstellung eines zweiten Ausführungsbeispiels eines Überspannungsschutzelements, im Normalzustand,
    Fig. 5
    eine Draufsicht des Überspannungsschutzelements gemäß Fig. 4, im Normalzustand,
    Fig. 6
    eine Schnittdarstellung des Überspannungsschutzelements gemäß Fig. 4, mit einem abgetrennten Überspannungsableiter,
    Fig. 7
    eine Schnittdarstellung eines dritten Ausführungsbeispiels eines Überspannungsschutzelements, im Normalzustand,
    Fig. 8
    das Überspannungsschutzelement gemäß Fig. 7, in der Draufsicht,
    Fig. 9
    das Überspannungsschutzelement gemäß Fig. 8, mit einem abgetrennten Überspannungsableiter, in der Draufsicht,
    Fig. 10 - 12
    drei Varianten des Überspannungsschutzelements gemäß Fig. 6, mit einem abgetrennten Überspannungsableiter
  • Die Figuren zeigen ein Überspannungsschutzelement 1 mit einem Gehäuse 2, wobei in dem Gehäuse 2 ein überspannungsbegrenzendes Bauelement angeordnet ist. Bei dem Ausführungsbeispiel gemäß den Fig. 1 bis 3 handelt sich es bei dem überspannungsbegrenzenden Bauelement um einen Varistor 3, während es sich bei dem Überspannungsschutzelement 1 gemäß den Fig. 4 bis 12 um einen gasgefüllten Überspannungsableiter 3' handelt.
  • Das Überspannungsschutzelement 1 gemäß den Fig. 1 bis 3, das als Schutzstecker ausgebildet sein kann, weist zwei Anschlusselemente 4, 5 auf, die in korrespondierende Anschlussbuchsen eines hier nicht dargestellten Geräteunterteils einsteckbar sind. Die Anschlusselemente 4, 5 sind im Normalzustand des Überspannungsschutzelements 1 jeweils mit einem Pol des Varistors 3 verbunden, so dass der Varistor 3 über die beiden Anschlusselemente 4, 5 mit dem zu schützenden Strom- oder Signalpfad verbunden werden kann.
  • Wie aus den Fig. 1, 4 und 7 ersichtlich ist, ist im Normalzustand des Überspannungsschutzelements 1 ein wärmeausdehnbares Material 6, bei dem es sich um ein intumeszentes Material handelt, im Gehäuse 2 angeordnet, das zunächst fest ist, bei ansteigender Temperatur jedoch seinen Aggregatzustand ändert und flüssig wird. Bei Überschreiten einer Aktivierungstemperatur reagiert das wärmeausdehnbare Material 6 mit einer starken Volumenzunahme, d.h. das Material 6 schäumt auf und dehnt sich aus. Dies führt dann dazu, dass sich die Position des Varistors 3 bzw. des Überspannungsableiters 3' relativ zur Position der Anschlusselemente 4, 5 verändert, da das wärmeausdehnbare Material 6 den Varistor 3 bzw. den Überspannungsableiter 3' aus seiner ersten Position wegdrückt. Bei den Ausführungsbeispielen gemäß den Fig. 2 und 6 ist der Varistor 3 bzw. der Überspannungsableiter 3' dabei nach oben und bei dem Ausführungsbeispiel gemäß Fig. 9 zur Seite weggedrückt worden.
  • Das Überspannungsschutzelement 1 gemäß den Fig. 1 bis 3 einerseits und die Überspannungsschutzelemente 1 gemäß den Fig. 4 bis 12 andererseits unterscheiden sich zunächst dadurch voneinander, dass bei dem ersten Ausführungsbeispiel als überspannungsbegrenzendes Bauelement ein Varistor 3 verwendet wird, während bei den anderen Ausführungsbeispielen ein gasgefüllter Überspannungsableiter 3' eingesetzt ist. Darüber hinaus unterscheiden sich die Überspannungsschutzelemente 1 noch durch die Art der elektrischen Kontaktierung zwischen dem Varistor 3 und den Anschlusselementen 4, 5 einerseits und dem Überspannungsableiter 3' und den Anschlusselementen 4, 5 andererseits.
  • Während bei den beiden Ausführungsbeispielen gemäß den Fig. 4 und 7 im Normalzustand des Überspannungsschutzelements 1 die beiden Pole des Überspannungsableiters 3' über jeweils eine Lötstelle 7, 8 mit den beiden Anschlusselementen 4, 5 verbunden sind, stehen die beiden Pole des Varistors 3 über eine Steckverbindung 9, 10 mit den beiden Anschlusselementen 4, 5 in elektrisch leitendem Kontakt. Dabei sind die beiden Pole des Varistors 3 über zwei Anschlusslaschen 11, 12 mit den Anschlusselementen 4, 5 verbunden, wobei die Anschlusselemente 4, 5 auf der den Anschlusslaschen 11, 12 zugewandten Seiten jeweils eine Steckerbuchse 13, 14 aufweist. Bei dem in Fig. 4 dargestellten Ausführungsbeispiel des Überspannungsschutzelements 1 sind die beiden Pole des Überspannungsableiters 3' jeweils mit einem Anschlussstift 15, 16 verbunden, so dass die Lötstellen 7, 8 zwischen den Anschlussstiften 15, 16 und den Anschlusselementen 4, 5 ausgebildet sind.
  • Bei dem Ausführungsbeispiel des erfindungsgemäßen Überspannungsschutzelements 1 gemäß den Fig. 1 bis 3 weist das Gehäuse 2 ein Außengehäuse 17 und ein im Außengehäuse 17 verschiebbar angeordnetes Innengehäuse 18 auf. Wie aus den Figuren ersichtlich ist, ist die Unterseite des Innengehäuses 18 offen, so dass das Innengehäuse 18 den Varistor 3 und das wärmeausdehnbare Material 6 haubenförmig umschließt. Kommt es aufgrund einer Überlastung oder aufgrund von Alterung des Varistors 3 zu einer Verringerung der Impedanz des Varistors 3, so fließt ein unzulässiger Leckstrom durch den Varistor 3, was zu einer Erwärmung des Varistors 3 führt. Da der Varistor 3 zumindest teilweise von dem wärmeausdehnbaren Material 6 umgeben ist, führt eine Eigenerwärmung des Varistors 3 auch zu einer Erwärmung des Materials 6, so dass sich dieses bei Überschreiten einer bestimmten Aktivierungstemperatur stark ausdehnt. Dies führt zu einer Druckerhöhung innerhalb des von dem Außengehäuse 17 und dem Innengehäuse 18 umschlossenen Raumes, so dass das Innengehäuse 18 durch das sich ausdehnende Material 6 nach oben gedrückt wird, wenn die Haltekraft des Innengehäuses 18 innerhalb des Außengehäuses 17 und die Kontaktkraft zwischen den Anschlusslaschen 11, 12 und den Steckerbuchsen 13, 14 durch die Kraft des sich ausdehnenden Materials 6 überschritten wird.
  • Damit sich mit dem Innengehäuse 18 auch der Varistor 3 nach oben bewegt, ist der Varistor 3 über ein Halteelement 19 mit dem Innengehäuse 18 verbunden, wobei das Haltelement 19 unterhalb des Varistors 3 angeordnet ist und sich bei der Darstellung gemäß den Fig. 1 bis 3 senkrecht zur Zeichenebene, d.h. in Querrichtung des Varistors 3 erstreckt. Das Innengehäuse 18 ist somit ähnlich wie ein Kolben im Außengehäuse 17 geführt, wobei ein in den Figuren nicht dargestellter Anschlag dafür sorgt, dass die Hubbewegung des Innengehäuses 18 nach oben begrenzt ist.
  • Wie aus Fig. 1 ersichtlich ist, befindet sich das Innengehäuse 18 im Normalzustand des Überspannungsschutzelements 1 in einer ersten Position innerhalb des Außengehäuses 17, in der die Oberseite 20 des Innengehäuses 18 im wesentlichen bündig mit der Oberseite 21 des Außengehäuses 17 abschließt, so dass die Oberseite 20 des Innengehäuses 18 nicht über das Außengehäuse 17 hinausragt. Im Unterschied dazu befindet sich das Innengehäuse 18 bei thermischer Überlastung des Überspannungsschutzelements 1 nach der elektrischen Abtrennung des Varistors 3 in einer - in Fig. 2 dargestellten - zweiten Position, in der die Oberseite 20 des Innengehäuses 18 über die Oberseite 21 des Außengehäuses 17 hinausragt. Die Position des Innengehäuses 18 dient somit als optische Statusanzeige zur Anzeige des Zustands des Überspannungsschutzelements 1.
  • Zuvor ist ausgeführt worden, dass als wärmeausdehnbares Material 6 vorzugsweise ein intumeszentes Material verwendet wird, das im Normalzustand des Überspannungsschutzelements 1 fest ist und bei einem Temperaturanstieg zunächst flüssig wird. Um ein Austreten des flüssigen intumeszenten Materials 6 sicher zu verhindern, ist bei dem dargestellten Ausführungsbeispiel oberhalb der Anschlusselemente 4, 5, d.h. gegenüber der offenen Unterseite des Innengehäuses 18, eine Dichtfolie 22 im Außengehäuse 17 angeordnet. Dabei erstrecken sich die Anschlusslaschen 11, 12 im Normalzustand des Überspannungsschutzelements 1 durch in der Dichtfolie 22 vorgesehene Schlitze, so dass die Anschlusslaschen 11, 12 von den Steckerbuchsen 13, 14 kontaktiert und somit mit den Anschlusselementen 4, 5 in elektrisch leitendem Kontakt stehen.
  • Fig. 3 zeigt das Überspannungsschutzelement 1 gemäß Fig. 1, bei dem das Innengehäuse 18 sich in der zweiten Position befindet, so dass der Varistor 3 abgetrennt ist. Im Unterschied zu der Darstellung gemäß Fig. 2 ist bei der Darstellung gemäß Fig. 3 der Varistor 3 bzw. das Innengehäuse 18 jedoch nicht durch eine Ausdehnung des wärmeausdehnbaren Materials 6 nach oben geschoben worden, sondern aufgrund eines Überdrucks, der durch ein Bersten des Varistors 3 aufgrund einer extremen Überlastung hervorgerufen worden ist. Eine extreme Überlastung kann einen Varistor 3 schlagartig in einen niederimpedantes Zustand versetzen, so dass in diesem Extremfall ein netzgetriebener Strom in der Größe des Kurzschlussstromes durch den Varistor 3 fließen kann. Ein in diesem Fall durch den Varistor 3 fließender Strom kann zu einer Zerstörung und damit zu einem Bersten des Varistors 3 führen. Der dabei entstehende Druck wird über eine in dem unter dem Varistor 3 angeordneten Haltelement 19 ausgebildete Öffnung 23 in den durch das Außengehäuse 17, das Innengehäuse 18 und die Dichtfolie 22 gebildeten Raum 24 geleitet. Der in diesem Raum 24 entstehende Druck führt dann dazu, dass das Innengehäuse 18 aus seiner ersten Position in seine zweite Position nach oben gedrückt wird, wodurch auch der Varistor 3 von den Anschlusselementen 4, 5 wegbewegt wird, so dass die Anschlusslaschen 11, 12 nicht mehr mit den Steckerbuchsen 13, 14 in elektrisch leitendem Kontakt sind. Der überlastete Varistor 3 wird somit zuverlässig und schnell abgetrennt.
  • In der in Fig. 3 dargestellten Position des Innengehäuses 18 kann der in dem Raum 24 bestehende erhöhte Druck durch die im Außengehäuse 17 ausgebildeten Öffnungen 25 entweichen. Die Öffnungen 25 sind derart im Außengehäuse 17 angeordnet, dass sie durch das Innengehäuse 18 verschlossen sind, solange sich das Innengehäuse 18 noch nicht in seiner zweiten Position befindet.
  • Bei dem in Fig. 4 dargestellten Ausführungsbeispiel des Überspannungsschutzelements 1 besteht das Gehäuse 2 nicht aus einem Außengehäuse und einem Innengehäuse, sondern aus zwei im Querschnitt U-förmigen Halteelementen 26, 27 die neben der Aufnahme des wärmeausdehnbaren Materials 6 auch zur Halterung und Kontaktierung der Anschlussstifte 15, 16 des Überspannungsableiters 3' im Normalzustand des Überspannungsschutzelements 1 dienen. Bei den in den Fig. 4 bis 12 dargestellten Ausführungsbeispielen des Überspannungsschutzelement 1 dienen die beiden voneinander isolierten, elektrisch leitenden Halteelemente 26, 27 somit gleichzeitig als Anschlusselemente 4, 5 für den gasgefüllten Überspannungsableiter 3'. Aus Fig. 4 ist dabei ersichtlich, dass im Normalzustand des Überspannungsschutzelements 1 jeweils eine Lötstelle 7, 8 zwischen den beiden Anschlussstiften 15, 16 und den Halteelementen 26, 27 ausgebildet ist.
  • Kommt es bei diesem Übergangsschutzelement 1 zu einer Erwärmung des Überspannungsableiters 3', so führt dies auch zu einer Erwärmung des unterhalb des Überspannungsableiters 3' angeordneten wärmeausdehnbaren Materials 6, so dass sich dieses bei Erreichen seiner Aktivierungstemperatur ausdehnt. Der Überspannungsableiter 3' wird dann nach oben gedrückt, wenn die von dem wärmeausdehnbaren Material 6 ausgeübte Kraft größer als die Haltekraft der sich erweichenden Lötstellen 7, 8 ist. In dieser in Fig. 6 dargestellten zweiten Position des Überspannungsableiters 3' sind die beiden Anschlussstifte 15, 16 nicht mehr in elektrisch leitendem Kontakt mit den Halteelementen 26, 27, so dass der Überspannungsableiter 3' über die Halteelemente 26, 27 auch nicht mehr an den zu schützenden Signalpfad angeschlossen ist. Die elektrische Verbindung der Halteelemente 26, 27 mit dem zu schützenden Signalpfad erfolgt bei den Ausführungsbeispielen gemäß den Fig. 4 bis 12 dadurch, dass die Halteelemente 26, 27 mit einer Leiterplatte 28 verbunden sind.
  • Anstelle der in den Figuren dargestellten Lötverbindung zwischen den Anschlussstiften 15, 16 und den Halteelementen 26, 27 kann grundsätzlich auch eine Steckverbindung entsprechend den Fig. 1 bis 3 vorgesehen sein. In diesem Fall würden die Halteelemente 26, 27 auf der den Anschlussstiften 15, 16 zugewandten Seiten entsprechende Steckerbuchsen aufweisen.
  • Während bei dem Ausführungsbeispiel gemäß den Fig. 4 bis 6 die Halteelemente 26, 27 so ausgebildet und das wärmeausdehnbare Material 6 derart zwischen den Halteelementen 26, 27 angeordnet ist, dass bei thermischer Überlastung des Überspannungsableiters 3' dieser durch das sich ausdehnende Material 6 nach oben gedrückt wird, wird der Überspannungsableiter 3' bei dem Ausführungsbeispiel gemäß den Fig. 7 bis 9 durch das sich ausdehnende Material 6 horizontal zur Seite weggedrückt.
  • Grundsätzlich kann es beim Öffnen eines elektrischen Kontakts, über den ein Strom fließt, zu einem Lichtbogen kommen, was bei einem Überspannungsschutzelement 1 dazu führen kann, dass auch im eigentlich abgetrennten Zustand des überspannungsbegrenzenden Bauelements über den Lichtbogen noch ein unzulässiger Strom fließt. Ein derartiger Lichtbogen wird bei dem in Fig. 2 dargestellten Ausführungsbeispiel des Überspannungsschutzelements 1 dadurch verhindert, dass das sich ausdehnende wärmeausdehnbare Material 6 bei thermischer Überlastung des Varistors 3 in den sich bildenden Zwischenraum zwischen den Anschlusslaschen 11, 12 und den Steckerbuchsen 13, 14 eindringt. Mögliche Schaltlichtbögen werden durch das Umschäumen der Anschlusslaschen 11, 12 gelöscht. Dies gilt entsprechend auch für den in Fig. 9 dargestellten linken Anschlussstift 15 des Überspannungsableiters 3'.
  • Um darüber hinaus auch bei der in Fig. 3 dargestellten Situation des Überspannungsschutzelements 1 einen beim Auftrennen der elektrischen Verbindung zwischen den Anschlusslaschen 11, 12 und den Steckerbuchsen 13, 14 anstehenden Lichtbogen zu löschen, sind die beiden Anschlusselemente 4, 5 von einem Kunststoffteil 29 umgeben, dass bei einem anstehenden Lichtbogen gasend ist. Bei einem anstehenden Lichtbogen wird durch die Dissoziation der Kunststoffteile 29 somit eine Beblasung des Lichtbogens erzeugt, wodurch der Lichtbogen gelöscht wird.
  • Die Fig. 10 - 12 zeigen drei verschiedene Varianten eines Überspannungsschutzelements 1, die sich jeweils nur durch die Ausbildung des wärmeausdehnbaren Materials 6 voneinander und von der Ausführung gemäß Fig. 6 unterscheiden.
  • Bei dem Ausführungsbeispiel gemäß Fig. 10 sind in dem wärmeausdehnbaren Materials 6 leitfähige Partikel 30 angeordnet, bei denen es sich beispielsweise um Graphitpulver oder Kupferpulver handeln kann. Durch die Beimischung der leitfähigen Partikel 30 wird eine Eigenleitfähigkeit des Materials 6 erreicht, so dass bei Anliegen einer Spannung ein Strom durch das wärmeausdehnbare Material 6 fließt, durch den das Material 6 vollvolumig aufgeheizt wird. Erreicht das Material 6 seine Aktivierungstemperatur, so kommt es zu einer Volumenzunahme, was auch dazu führt, dass sich die Anzahl der leitfähigen Komponenten pro Volumeneinheit reduziert, so dass sich mit der Volumenzunahme die Leitfähigkeit des Materials 6 verringert, vorzugsweise so weit, dass bei maximaler Volumenzunahme kein Strom mehr durch das Material 6 fließt.
  • Bei den Ausführungsbeispielen gemäß Fig. 11 und 12 ist eine Heatpipe 31 bzw. ein Widerstandsdraht 32 in dem wärmeausdehnbaren Material 6 eingebettet, wodurch es ebenfalls zu einer zusätzlichen Erwärmung des Materials 6 kommt, wenn durch die Heatpipe 31 bzw. den Widerstandsdraht 32 ein Strom fließt. Die Anschlüsse der Heatpipe 31 und des Widerstandsdrahts 32 können dabei entweder - wie in den Fig. 11 und 12 dargestellt - separat herausgeführt sein oder mit den Anschlusselementen 4, 5 verbunden sein. Im zweiten Fall wird der Strom über den Überspannungsableiter 3' auch zur zusätzlichen Erwärmung des wärmeausdehnbaren Materials 6 durch die Heatpipe 31 bzw. den Widerstandsdraht 32 genutzt.
  • Es ist ersichtlich, dass die zuvor beschriebenen Varianten bzw. Ausgestaltungen des wärmeausdehnbaren Materials 6 nicht nur bei einem Überspannungsschutzelement 1 mit einem gasgefüllten Überspannungsableiter 3' gemäß Fig. 6 sondern auch bei einem Überspannungsschutzelement 1 mit einem Varistor 3 gemäß Fig. 1 eingesetzt werden können.

Claims (16)

  1. Überspannungsschutzelement mit einem Gehäuse (2), mit mindestens einem in dem Gehäuse (2) angeordneten überspannungsbegrenzenden Bauelement (3), insbesondere einem Varistor oder einem gasgefüllten Überspannungsableiter, und mit zwei Anschlusselementen (4, 5) zum elektrischen Anschluss des Überspannungsschutzelements (1) an den zu schützenden Strom- oder Signalpfad, wobei im Normalzustand des Überspannungsschutzelements (1) die Anschlusselemente (4, 5) jeweils mit einem Pol des überspannungsbegrenzenden Bauelements (3) in elektrisch leitendem Kontakt stehen,
    wobei innerhalb des Gehäuses (2) ein intumeszente Material (6) derart angeordnet ist, dass bei thermischer Überlastung des überspannungsbegrenzenden Bauelements (3, 3') die Position des überspannungsbegrenzenden Bauelements (3, 3') aufgrund einer Ausdehnung des intumeszenten Materials (6) relativ zur Position der Anschlusselemente (4, 5) so veränderbar ist, dass mindestens ein Pol des überspannungsbegrenzenden Bauelements (3, 3') nicht mehr mit dem korrespondierenden Anschlusselement (4, 5) in elektrisch leitendem Kontakt steht,
    dadurch gekennzeichnet,
    dass im Normalzustand des Überspannungsschutzelements (1) beide Pole des überspannungsbegrenzenden Bauelements (3, 3') jeweils über eine Steckverbindung (9, 10) mit einem Anschlusselement (4, 5) verbunden sind.
  2. Überspannungsschutzelement nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Pole des überspannungsbegrenzenden Bauelements (3, 3') jeweils mit einer Anschlusslasche (11, 12) oder einem Anschlussstift (15, 16) elektrisch leitend verbunden sind.
  3. Überspannungsschutzelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Gehäuse (2) ein Außengehäuse (17) und ein im Außengehäuse (17) angeordnetes, einseitig offenes Innengehäuse (18) aufweist, dass die Anschlusselemente (4, 5) ortfest mit dem Außengehäuse (17) verbunden sind, dass das überspannungsbegrenzende Bauelement (3, 3') innerhalb des Innengehäuses (18) angeordnet ist, dass das Innengehäuse (18) im Normalzustand des Überspannungsschutzelements (1) das intumeszente Material (6) umschließt, und dass das Innengehäuse (18) mit dem überspannungsbegrenzenden Bauelement (3, 3') bei einer Ausdehnung des intumeszenten Materials (6) aufgrund einer Erwärmung des überspannungsbegrenzenden Bauelements (3, 3') relativ zum Außengehäuse (17) verschiebbar ist.
  4. Überspannungsschutzelement nach Anspruch 3, dadurch gekennzeichnet, dass das überspannungsbegrenzende Bauelement (3, 3') über ein Halteelement (19) mit dem Innengehäuse (18) verbunden ist, wobei das Halteelement (19) mit seinen beiden Enden an der Innenwand des Innengehäuses (18) befestigt ist und sich vorzugsweise in Querrichtung des überspannungsbegrenzenden Bauelements (3) erstreckt.
  5. Überspannungsschutzelement nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Innengehäuse (18) im Normalzustand des Überspannungsschutzelements (1) in einer ersten Position innerhalb des Außengehäuses (17) angeordnet ist, in der die Oberseite (20) des Innengehäuses (18) nicht über die Oberseite (21) des Außengehäuses (17) hinausragt und dass bei thermischer Überlastung des Überspannungsschutzelements (1) das Innengehäuse (18) in eine zweite Position verschiebbar ist, in der die Oberseite (20) des Innengehäuses (18) über die Oberseite (21) des Außengehäuses (17) hinausragt.
  6. Überspannungsschutzelement nach einem der Ansprüche 3 bis 5, wobei die beiden Pole des überspannungsbegrenzenden Bauelements (3, 3') jeweils mit einer Anschlusslasche (11, 12) elektrisch leitend verbunden sind, dadurch gekennzeichnet, dass auf der den Anschluselementen (4, 5) zugewandten offenen Seite des Innengehäuses (18) eine Dichtfolie (22) angeordnet ist, wobei sich im Normalzustand, des Überspannungsschutzelements (1) die Anschlusslaschen (11, 12) durch die Dichtfolie (22) erstrecken, so dass die Anschlusslaschen (11, 12) mit den Anschlusselement (4, 5) in elektrisch leitendem Kontakt sind.
  7. Überspannungsschutzelement nach Anspruch 6, dadurch gekennzeichnet, dass in dem unter dem überspannungsbegrenzenden Bauelement (3, 3') angeordneten Halteelement (19) eine Öffnung (23) ausgebildet ist, durch die der bei einer Zerstörung des überspannungsbegrenzenden Bauelements (3, 3') aufgrund einer extremem Überlastung entstehende Druck entweichen kann, so dass sich die Position des Innengehäuses (18) mit dem überspannungbegrenzenden Bauelement (3, 3') relativ zum Außengehäuse (17) verändert und die Pole des überspannungsbegrenzenden Bauelements (3, 3') nicht mehr mit den Anschlusselementen (4, 5) in elektrisch leitendem Kontakt stehen.
  8. Überspannungsschutzelement nach Anspruch 7, dadurch gekennzeichet, dass in dem Außengehäuse (17) mindestens eine Öffnung (25) ausgebildet ist, durch die der Druck entweichen kann, wenn sich das Innengehäuse (18) in der zweiten Position befindet.
  9. Überspannungsschutzelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Gehäuse (2) zwei voneinander isolierte, elektrisch leitende Halteelemente (26, 27) aufweist, dass im Normalzustand des Überspannungsschutzelements (1) die Halteelemente (26, 27) jeweils mit einem Pol bzw. einer Anschlusslasche (11, 12) oder einem Anschlussstift (15, 16) des überspannungsbegrenzenden Bauelements (3, 3') in elektrisch leitendem Kontakt stehen und das intumeszente Material (6) umschließen, und dass das Überspannungsbegrenzende Bauelement (3, 3') bei einer Ausdehnung des intumeszenten Materials (6) aufgrund einer Erwärmung des überspannungsbegrenzenden Bauelements (3, 3') relativ zu den Halteelementen (26, 27) verschiebbar ist.
  10. Überspannungsschutzelement nach Anspruch 9, dadurch gekennzeichnet, dass das überspannungsbegrenzende Bauelement (3, 3') bei thermischer Überlastung durch das sich ausdehnende intumeszente Material (6) nach oben gedrückt wird, so dass die Pole des überspannungsbegrenzenden Bauelements (3, 3') nicht mehr mit den Halteelementen (26, 27) in elektrisch leitendem Kontakt stehen.
  11. Überspannungsschutzelement nach Anspruch 9, dadurch gekenntzeichnet, dass das überspannungsbegrenzende Bauelement (3, 3') bei thermischer Überlastung durch das sich ausdehnende intumeszente Material (6) horizontal zur Seite gedrückt wird, so dass die Pole des überspannungsbegrenzenden Bauelements (3, 3') nicht mehr mit den Halteelementen (26, 27) in elektrisch leitendem Kontakt stehen.
  12. Überspannungsschutzelement nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das intumeszente Material (6) bei thermischer Überlastung des überspannungsbegrenzenden Bauelements (3, 3') in den sich bildenden Zwischenraum zwischen dem mindestens einen Pol bzw. der einer Anschlusslasche (11, 12) oder dem einen Anschlussstift (15, 16) des überspannungsbegrenzenden Bauelements (3, 3') und dem mindestens einen Anschlusselement (4, 5) eindringt, so dass ein beim Auftrennen des elektrischen Kontakts zweischen dem mindestens einen Pol und dem mindestens einen Anschlusselement (4, 5) entstehender Lichtbogen durch das isolierende intumeszente Material (6) unterbunden bzw. gelöscht wird.
  13. Überspannungsschutzelement nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass im Bereich der Anschlusselemente (4, 5) mindestens ein Kunststoffteil (29) angeordnet ist, das bei Erwärmung gasend ist.
  14. Überspannungsschutzelement nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das intumeszente Material (6) ein Trägermittel, insbesondere ein thermoplastischer Polymer oder ein Elastomer mit geringer Shore-Härte, und ein Treibmittel aufweist, wobei als Treibmittel vorzugsweise ein physikalisch wirkendes Treibmittel, insbesondere Mikrosphären, verwendet werden.
  15. Überspannungsschutzelement nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das intumeszente Material (6) zwei Komponenten aufweist, die im nicht aktivierten Zustand voneinander getrennt sind, wobei die Komponenten miteinander unter Volumenzunahme reagieren, wenn die Trennung aufgehoben ist.
  16. Überspannungsschutzelement nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Aktivierung des intumeszenten Materials (6) durch eine aktive Erwärmung durch zusätzlichen Energieeintrag von außen unterstützt wird.
EP10790719.8A 2009-11-05 2010-11-05 Überspannungsschutzelement Not-in-force EP2497098B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201031231A SI2497098T1 (sl) 2009-11-05 2010-11-05 Element za zaščito pred prenapetostjo

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009053145A DE102009053145A1 (de) 2009-11-05 2009-11-05 Überspannungsschutzelement
DE201020014431 DE202010014431U1 (de) 2009-11-05 2010-10-20 Überspannungsschutzelement
DE202010014430U DE202010014430U1 (de) 2009-11-05 2010-10-20 Überspannungsschutzelement und elektrisches Gerät
PCT/EP2010/006738 WO2011054524A1 (de) 2009-11-05 2010-11-05 Überspannungsschutzelement

Publications (2)

Publication Number Publication Date
EP2497098A1 EP2497098A1 (de) 2012-09-12
EP2497098B1 true EP2497098B1 (de) 2016-06-29

Family

ID=43853031

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10790719.8A Not-in-force EP2497098B1 (de) 2009-11-05 2010-11-05 Überspannungsschutzelement

Country Status (7)

Country Link
US (2) US9093203B2 (de)
EP (1) EP2497098B1 (de)
CN (1) CN102598182B (de)
DE (2) DE102009053145A1 (de)
RU (1) RU2561203C2 (de)
SI (1) SI2497098T1 (de)
WO (1) WO2011054524A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2958789B1 (fr) * 2010-04-09 2012-05-11 Abb France Dispositif de protection contre les surtensions transitoires a deconnecteur thermique ameliore
DE102010038066B4 (de) * 2010-08-06 2012-05-03 Phoenix Contact Gmbh & Co. Kg Thermische Überlastschutzanordnung
WO2012166143A1 (en) * 2011-06-02 2012-12-06 Halliburton Energy Services Changing the state of a switch through the application of power
WO2013000498A1 (en) * 2011-06-27 2013-01-03 Abb Technology Ag Voltage surge protection device and high voltage circuit breakers
DE102011052805B4 (de) * 2011-08-18 2013-07-18 Phoenix Contact Gmbh & Co. Kg Sicherung
DE102011118908A1 (de) * 2011-11-18 2013-05-23 Dehn + Söhne Gmbh + Co. Kg Adapter zur Montage von als Steckmodule ausgeführten Überspannungsschutzgeräten auf einem Verdrahtungsträger
EP2854141B1 (de) * 2013-09-30 2020-03-25 Siemens Aktiengesellschaft Überspannungsableiter
DE102013017157B4 (de) * 2013-10-16 2021-11-04 Phoenix Contact Gmbh & Co. Kg Vorrichtung zur Montage mindestens eines als Steckmodul ausgebildeten Überspannungsschutzgeräts
DE112014006583B4 (de) * 2014-05-23 2021-05-27 Mitsubishi Electric Corporation Überspannungsschutzelement
RU2705203C1 (ru) * 2016-09-28 2019-11-06 Абб Швайц Аг Импульсный разрядник и способ его изготовления
US20180286617A1 (en) * 2017-03-28 2018-10-04 Management Sciences, Inc. Method, System, and Apparatus to Prevent Electrical or Thermal-Based Hazards in Conduits
EP3425756B1 (de) 2017-07-07 2020-03-25 Pepperl+Fuchs AG Gehäuse zur aufnahme einer platine mit einer überspannungsschutzeinheit sowie überspannungsschutzmodul
JP6333501B1 (ja) * 2017-07-13 2018-05-30 三菱電機株式会社 サージ吸収素子および電子部品
GB2565131B (en) 2017-08-04 2021-07-28 Ge Aviat Systems Ltd Modular power system and method of mitigating failure propagation between a plurality of modules in a modular power system
CN110350501B (zh) 2018-04-04 2022-04-05 爱普科斯电子元器件(珠海保税区)有限公司 三相电涌保护装置
CN108711477B (zh) * 2018-05-24 2020-06-30 深圳市嘉莹达电子有限公司 一种高功率精密贴片电阻的结构
CN108981075B (zh) * 2018-09-21 2023-07-18 宁波奥克斯电气股份有限公司 一种防护装置以及空调器
EP3937202B1 (de) * 2019-03-06 2024-07-17 Alps Alpine Co., Ltd. Schaltvorrichtung und öffnungs-/schliessdetektionsvorrichtung
FR3094147B1 (fr) * 2019-03-20 2023-01-06 Citel Dispositif de protection contre les surtensions
DE102019209252A1 (de) 2019-06-26 2020-12-31 Te Connectivity Germany Gmbh Trägerstruktur, Zellkontaktiersystem und Herstellungsverfahren
US10937614B1 (en) * 2019-12-11 2021-03-02 Yi-Hsiang Wang Switch module with a built-in structure of anti-surge and linkage disconnection
CN115151982A (zh) * 2019-12-20 2022-10-04 豪倍公司 具有断路器装置的不露带电部分的放电器
CN113130248B (zh) * 2019-12-30 2022-08-19 西安西电高压开关有限责任公司 一种组合式旁路开关
CN113707499B (zh) * 2021-10-28 2022-02-08 江西怡杉环保股份有限公司 一种继电器固定机构
CN115236452A (zh) * 2022-06-29 2022-10-25 镇江易拓电气有限公司 一种灵活组网型母线槽在线运行状态智能监测系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009013505U1 (de) * 2008-12-11 2010-04-15 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzelement

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3609635A (en) * 1968-08-21 1971-09-28 Prod Design & Mfg Self-ejecting electric plug
US4047143A (en) * 1976-07-09 1977-09-06 Western Electric Company, Inc. Fused resistive electrical protection device
US4225841A (en) * 1977-07-21 1980-09-30 Behr-Thomson Dehnstoffregler Gmbh Temperature-dependent switch
US4276532A (en) * 1978-07-08 1981-06-30 Murata Manufacturing Co., Ltd. Thermal fuse
US4186366A (en) * 1978-10-20 1980-01-29 Illinois Tool Works Inc. Radial lead thermal cut-off device
US4288833A (en) * 1979-12-17 1981-09-08 General Electric Company Lightning arrestor
DE3109133C2 (de) * 1981-03-11 1991-03-28 Behr-Thomson Dehnstoffregler Gmbh, 7014 Kornwestheim Elektrisches Schaltgerät mit einem thermostatischen Arbeitselement als Betätigungselement und mit einem als Mikroschalter ausgebildeten Schaltelement
US4380001A (en) * 1981-07-07 1983-04-12 Mikizo Kasamatsu Electric safety device
US4538347A (en) * 1984-06-18 1985-09-03 Gte Laboratories Incorporated Method for making a varistor package
DE3437778A1 (de) * 1984-10-16 1986-04-17 Behr-Thomson Dehnstoffregler Gmbh, 7014 Kornwestheim Schaltgeraet
JPS6329426A (ja) * 1986-07-21 1988-02-08 岡崎 資 温度ヒユ−ズ
DE3643622A1 (de) 1986-09-23 1988-06-30 Bettermann Obo Ohg Schutzvorrichtung an varistoren
DE3710359C2 (de) * 1986-09-23 1995-07-06 Bettermann Obo Ohg Vorrichtung zur Überwachung von in einem Stromkreis integrierten Varistoren
DE3632224A1 (de) * 1986-09-23 1988-04-07 Bettermann Obo Ohg Vorrichtung zur ueberwachung von in einen stromkreis integrierten varistoren
JP2820703B2 (ja) * 1989-01-25 1998-11-05 株式会社オリエント 温度電流感知器
FR2696588B1 (fr) * 1992-10-07 1994-12-09 Legrand Sa Limiteur de surtension à moyen indicateur de mise en défaut.
DE4241311C2 (de) 1992-12-08 1995-06-08 Phoenix Contact Gmbh & Co Temperaturschalter mit einem Bausteingehäuse
FR2727806A1 (fr) 1994-12-05 1996-06-07 Soule Sa Dispositif de protection a l'encontre de surtensions transitoires a base de varistances et deconnecteurs thermiques
DE29519313U1 (de) * 1995-12-06 1996-01-25 Dehn + Söhne GmbH + Co KG, 90489 Nürnberg Überspannungsableiter
US5790359A (en) * 1996-03-16 1998-08-04 Joslyn Electronic Systems Corporation Electrical surge protector with thermal disconnect
US5816493A (en) * 1996-04-08 1998-10-06 Texan Corporation Thermally expansible compositions methods for preparation and devices using same
DE19626275A1 (de) * 1996-06-29 1998-01-02 Tridelta Ueberspannungsableite Niederspannungsableiter
US5708553A (en) * 1996-07-18 1998-01-13 Hung; Je Automatic switching-off structure for protecting electronic device from burning
JP3017950B2 (ja) * 1996-09-09 2000-03-13 東洋システム株式会社 電流・温度複合ヒューズ
JP3377031B2 (ja) * 1998-06-05 2003-02-17 矢崎総業株式会社 回路保護素子の接続構造
US6430019B1 (en) * 1998-06-08 2002-08-06 Ferraz S.A. Circuit protection device
FR2783365B1 (fr) 1998-09-15 2000-12-01 Soule Materiel Electr Dispositif de protection d'installations electriques contre les perturbations de l'alimentation
US6211770B1 (en) * 1999-04-27 2001-04-03 Mcg Electronics, Inc. Metal oxide varistor module
US6445277B1 (en) * 1999-06-22 2002-09-03 Yazaki Corporation Safety device of electric circuit and process for producing the same
DE19936112A1 (de) * 1999-07-31 2001-02-01 Mannesmann Vdo Ag Halbleiterschalter
DE10001667C1 (de) * 2000-01-03 2001-10-25 Dehn & Soehne Mehrpoliger Überspannungsableiter zum Einsatz in Niederspannungs-Stromversorgungssystemen
DE10136617C1 (de) * 2001-07-17 2002-10-10 Siemens Ag Überspannungsableiter zum Einsatz in Energieübertragungsnetzen
DE10137873C1 (de) * 2001-08-02 2002-10-17 Epcos Ag Elektrokeramisches Bauelement
US6583711B2 (en) * 2001-11-08 2003-06-24 Chin-Chi Yang Temperature sensitive circuit breaker
EP1313117B1 (de) * 2001-11-16 2014-06-04 Abb Ag Lichtbogenlöschanordnung für ein elektronisches Schaltgerät
DE202004006227U1 (de) 2004-04-16 2004-09-16 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzgerät
MXPA06012057A (es) * 2004-04-19 2007-01-25 Soule Protection Surtensions Dispositivo de proteccion contra sobretensiones con medios de desconexion e indicacion visual mejorados.
DE102005014601A1 (de) * 2005-03-31 2006-10-05 Conti Temic Microelectronic Gmbh Elektronische Baugruppe
US8665057B2 (en) * 2005-03-31 2014-03-04 Conti Temic Microelectronic Gmbh Electronic assembly having stressable contact bridge with fuse function
US7477503B2 (en) * 2005-04-30 2009-01-13 Efi Electronics Corporation Circuit protection device
RU2412496C2 (ru) * 2005-08-05 2011-02-20 Кива Спол. С Р.О. Устройство защиты от перенапряжения с сигнализацией состояния
DE102006037551B4 (de) * 2006-02-13 2012-03-22 Dehn + Söhne Gmbh + Co. Kg Überspannungsableiter mit mindestens einem Ableitelement, beispielsweise einem Varistor
US7483252B2 (en) * 2006-12-05 2009-01-27 Ferraz Shawmut S.A. Circuit protection device
DE102007030653B4 (de) * 2007-07-02 2017-04-13 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzelement
DE102008029670B4 (de) * 2008-06-24 2016-10-20 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzelement
DE102009022069B4 (de) * 2009-01-12 2016-10-20 Dehn + Söhne Gmbh + Co. Kg Überspannungsableiter
DE102009035060A1 (de) * 2009-07-28 2011-02-03 Phoenix Contact Gmbh & Co. Kg Überspannungschutzelement
DE102009036125A1 (de) * 2009-08-05 2011-02-10 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzelement
DE102010007428A1 (de) * 2010-02-09 2011-08-11 Phoenix Contact GmbH & Co. KG, 32825 Überspannungsschutzelement
US8502637B2 (en) * 2010-09-22 2013-08-06 Thomas & Betts International, Inc. Surge protective device with thermal decoupler and arc suppression
US8816390B2 (en) * 2012-01-30 2014-08-26 Infineon Technologies Ag System and method for an electronic package with a fail-open mechanism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009013505U1 (de) * 2008-12-11 2010-04-15 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzelement

Also Published As

Publication number Publication date
US9748063B2 (en) 2017-08-29
DE102009053145A1 (de) 2011-05-12
DE202010014431U1 (de) 2011-08-08
US9093203B2 (en) 2015-07-28
RU2012122868A (ru) 2013-12-10
CN102598182B (zh) 2015-07-22
CN102598182A (zh) 2012-07-18
RU2561203C2 (ru) 2015-08-27
WO2011054524A1 (de) 2011-05-12
US20120229246A1 (en) 2012-09-13
SI2497098T1 (sl) 2016-10-28
EP2497098A1 (de) 2012-09-12
US20150364281A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
EP2497098B1 (de) Überspannungsschutzelement
EP3577673B1 (de) Triggerbare schmelzsicherung für niederspannungsanwendungen
EP2553691B1 (de) Überspannungsschutzeinrichtung, umfassend mindestens einen überspannungsableiter
EP1958304B1 (de) Steckbarer überspannungsableiter
DE102008031917B4 (de) Überspannungschutzelement
DE102011053414B4 (de) Überspannungsschutzgerät mit einer thermischen Abtrennvorrichtung
DE102011102941B4 (de) Funkenstrecke mit mehreren in Reihe geschalteten, in einer Stapelanordnung befindlichen Einzelfunkenstrecken
EP2284857A2 (de) Überspannungsschutzelement
DE102008029670B4 (de) Überspannungsschutzelement
WO2011054523A1 (de) Elektrisches gerät
DE112010005119T5 (de) Überspannungsableiter mit thermischer Überlastsicherung
DE102012004678A1 (de) Überspannungsschutzgerät
DE102008061323B3 (de) Überspannungsschutzelement
DE102013019390B4 (de) Überspannungsschutzeinrichtung, aufweisend mindestens einen Überspannungsableiter und eine, mit dem Überspannungsableiter in Reihe geschaltete, thermisch auslösbare Schalteinrichtung
DE202014103262U1 (de) Überspannungsschutzelement
WO2016110359A1 (de) Überspannungsschutzgerät mit im thermischen überlastfall aktivierter mechanischer abtrennvorrichtung
EP2267850B1 (de) Überspannungsschutzelement
DE202010014430U1 (de) Überspannungsschutzelement und elektrisches Gerät
EP2212976B1 (de) Überspannungsableiter mit thermischem überlastschutz
DE102017105029B4 (de) Abschaltelement und Überspannungsschutzanordnung mit einem Abschaltelement
DE202018101334U1 (de) Überspannungsschutzanordnung
DE102019117973B3 (de) Überspannungsschutzelement
DE102017112429A1 (de) Überspannungsschutzelement
DE102017204293B3 (de) Elektrisches Gerät mit einer integrierten Abtrenneinrichtung
DE202021105100U1 (de) Überspannungsschutzelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010011930

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01H0037460000

Ipc: H01C0007120000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 37/46 20060101ALI20151216BHEP

Ipc: H01C 7/12 20060101AFI20151216BHEP

Ipc: H01H 37/74 20060101ALN20151216BHEP

Ipc: H01T 1/14 20060101ALI20151216BHEP

INTG Intention to grant announced

Effective date: 20160112

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 809671

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011930

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160629

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161029

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161127

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20161026

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011930

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

26N No opposition filed

Effective date: 20170330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161105

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161105

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 809671

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161105

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171106

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20180712

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220127

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010011930

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601