EP2487450A1 - Schutzsystem - Google Patents

Schutzsystem Download PDF

Info

Publication number
EP2487450A1
EP2487450A1 EP12000645A EP12000645A EP2487450A1 EP 2487450 A1 EP2487450 A1 EP 2487450A1 EP 12000645 A EP12000645 A EP 12000645A EP 12000645 A EP12000645 A EP 12000645A EP 2487450 A1 EP2487450 A1 EP 2487450A1
Authority
EP
European Patent Office
Prior art keywords
grenade
defense
missile
protection system
meeting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12000645A
Other languages
English (en)
French (fr)
Inventor
Klaus Schlüter
Walter Bernard
Wolfgang Muckenhuber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl BGT Defence GmbH and Co KG
Original Assignee
Diehl BGT Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl BGT Defence GmbH and Co KG filed Critical Diehl BGT Defence GmbH and Co KG
Publication of EP2487450A1 publication Critical patent/EP2487450A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G5/00Elevating or traversing control systems for guns
    • F41G5/08Ground-based tracking-systems for aerial targets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/30Command link guidance systems
    • F41G7/301Details
    • F41G7/305Details for spin-stabilized missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/02Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/02Stabilising arrangements
    • F42B10/26Stabilising arrangements using spin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/66Steering by varying intensity or direction of thrust
    • F42B10/661Steering by varying intensity or direction of thrust using several transversally acting rocket motors, each motor containing an individual propellant charge, e.g. solid charge

Definitions

  • the invention relates to a protection system according to the preamble of the main claim.
  • Such a distance active active vehicle protection system against an approaching missile or against an approaching ballistic projectile is known as AWISS or, as a result thereof, as AVePS and is known in the US Pat DE 199 51 915 A1 described by way of example.
  • the system is installed aboard the potentially-endangered vehicle and is designed to detect, under sensor control, by means of a computer for processing target data, the current threat in an autonomously operating manner and ignited in an uncritical residual distance by means of a directionally directed and controlled approaching the threat, destroying with a Radialsplitter- or in particular with Blastgefechtskopf equipped defense grenade.
  • the grenade is additionally equipped with an approach sensor system for the ignition release.
  • the defensive grenade is fired from a high-agile, extremely fast directional launcher, which is preferably equipped with several, individually interchangeable, ammunition launcher tubes.
  • the azimuth and elevation straighteners operate stationary in the object-fixed Werfersockel, which not only provides the benefits of stability due to low center of gravity of the protection system and a reliable mechanical protection of its drive units, but also less moving masses of the launcher.
  • This active short-range protection system can be adapted to an armored vehicle or installed in a stationary manner. Although the protection system is completely effective; but because it is not above the risk and mobility reasons Vehicle silhouette can be attached, lead adjacent vehicle bodies (as well as adjacent structures in stationary installation) in practice shading sectors in which a threat can not be combated. Although it would be in principle for large land and sea vehicles space for installation of several such protection systems (for example, both sides in the front and in the rear area); but for weight and equipment reasons or from an operational point of view that is usually not feasible.
  • the present invention is based on the technical problem to interpret the per se proven short-range protection system for use in larger areas of danger such as on board large land and sea vehicles, optionally in large-scale stationary environment.
  • transverse thrust control for example a thruster control or simply a ring of radially directed pulse engines running along its circumference; as for other applications such as from the DE 40 36 166 A1 or from the DE 35 21 204 A1 are known.
  • the defensive grenade becomes a kind of track-correctable missile.
  • it undergoes a low rolling rate in a manner known per se by aerodynamic influences.
  • the current roll position in space must be known.
  • this common procedures are either very prone to failure or quite expensive, cf. approximately DE 10 2008 005 100 A1 , Less complicated is a directionally transformed shear transverse orbit correction realized in the present invention by means of a on board the defensive grenade the polar azimuth angle to the threat measuring simple optical sensor, as will be explained below with reference to the drawing.
  • the distance-active protection system 11 has according to Fig. 2 via a directional thrower 12 for defensive grenades 13 and, usually in its immediate vicinity, via a computer-based track device 14 with reconnaissance sensor for detecting and surveying an approaching threat here in the form of a missile 15; as well as for the predetermination of a probable meeting point 16 between the threat 15 and in the direction of the meeting point 16 shot down defensive grenade 13.
  • a hit in the meeting point 16 is not necessary to ward off the threat 15, it suffices the destructive or distracting effect of a nearby blasted Blastgevenchtskopfes the defensive grenade 13th ,
  • the Defense Grenade 13 experiences a preliminary ignition timing at its launch.
  • the defensive grenade 13 remains connected via a data link 17 in the form of a radio or (here) wire connection with the protection system 11 in order to receive continuously updated meeting points 16 in the form of appropriately corrected ignition times via the computer of the track device 14. So would be up to a short defense distance in the order of less than 10 meters, the remaining encounter residual error so low that in the defensive grenade 13 itself no proximity sensor would be required.
  • the protection system 11 according to the invention is designed for larger defense distances, up to the order of 100 meters; which at the same time better protection against residual effects of the per se destroyed threat 15 is achieved.
  • the now-powered defense grenade 13 has a low roll rate. Therefore, for the spatially appropriate triggering of the pulse generator, the current roll position in the room must be detected.
  • the defensive grenade 13 is according to Fig. 1 equipped with an infrared sensor 18 in the region of its tip. It detects the azimuth direction 19 of the approaching threat-representing missile 15 with respect to a grenade-fixed coordinate system with reference direction 23.
  • a polarization receiver eg IR diode with polarization filter
  • an optical detector with only two recording fields (namely for 180 ° selection) is sufficient.
  • an optical four-quadrant detector for azimuth detection.
  • an n-fold sector detector (with n> 4) is to be preferred as the sensor 18. The provides the azimuth angle 19 of the hotspot of the approaching missile 15 with an angular accuracy of accordingly 360 ° / n, based on the center of the sensor field of view. At least the same resolution can be achieved via an evaluation logic by means of an array detector.
  • the azimuth angle 19 thus obtained on board the defense grenade 13 (with respect to the grenade coordinate system with reference direction 23) of the approach of the threat 15 is transmitted via the data link 17 (FIG. Fig. 2 ) to the protection system 11, in particular returned to the computer of his track device 14.
  • the instantaneous space vector 20 of the missile 15 and the instantaneous space vector 21 of the defensive grenade 13 are determined virtually constantly via angle and distance measurements, and the respective trajectory 22 of the missile and the respective trajectory 23 of the defense grenade for finding the meeting point 16 are determined from their sequences , in the vicinity of the defensive grenade 13 is to be detonated.
  • the direction of flight 30 'of the defensive grenade 13 should be tracked. Accordingly, the actual momentary space vector of the line of sight 24 changes from the defensive grenade 13 to the missile 15.
  • the actual instantaneous roll attitude 25 of the defensive grenade 13 with respect to the space fixed vertical 26 is determined by the line of sight 24 in space and aboard the defensive grenade 13 for this evaluation, it may be assumed that the roll axis of the defense grenade 13 is identical to the tangent to the space vector 20.
  • the shift of the meeting point from 16 to 16 'is ( Fig. 3 ) as a storage vector 27 and conditional on the direction 28 of a spatially fixed coordinate system in the grenade cross-sectional plane projected correction pulse 29 for the Nachlenken the defensive grenade 13.
  • Relative to the coordinate system of the correction pulse 29 has the desired angle according to the sum of angles 25 + 28th
  • the computer of the track device 14 can determine the nearest one of the circumference of the defense grenade 13 individually triggerable pulse generator and ignite the data link 17 to correct the garnet space vector 21 so that the direction 30 'assumes.
  • the defense distance to the meeting point 16 is about tripled and one with a sensor 18 for determining the polar azimuth 19 of the missile to be defended 15 and equipped with a shear thrust control, roll-stabilized driven defensive grenade 13 while maintaining a data link 17 to the track device 14 shot.
  • the defense grenade 13 learns by means of a transverse oriented correction pulse 29 by in accordance with an emigration of the meeting point 16-16 'changed space vector 21 a path correction to the updated meeting point 16' out.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

Um mittels eines Schutzsystemes (11) nach Art eines abstandsaktiven Fahrzeugschutzes auf Basis einer der anfliegenden Bedrohung (15) entgegenzuschießenden Abwehrgranate (13) auch größere Areale möglichst abschattungsfrei überstreichen zu können, wird die Abwehrdistanz zum Begegnungspunkt (16) größenordnungsmäßig etwa verdreifacht und dafür eine mit einem Sensor (18) zum Ermitteln der polaren Azimutrichtung (19) des abzuwehrenden Flugkörpers (15) und mit einer Querschubsteuerung ausgestattete, rollstabilisiert angetriebene Abwehrgranate (13) unter Aufrechterhalten einer Datenstrecke (17) zur Trackeinrichtung (14) verschossen. Über diese Datenstrecke (17) erfährt die Abwehrgranate (13) mittels eines quer orientierten Korrekturimpulses (29) durch nach Maßgabe eines Auswanderns des Begegnungspunktes (16-16') veränderten Raumvektor (21) eine Bahnkorrektur zum aktualisierten Begegnungspunkt (16') hin.

Description

  • Die Erfindung betrifft ein Schutzsystem gemäß dem Oberbegriff des Hauptanspruches.
  • Ein derartiges, abstandswirksames aktives Fahrzeug-Schutzsystem gegen einen anfliegenden Flugkörper oder gegen ein sich annäherndes ballistisches Geschoß ist als AWISS oder, daraus hervorgegangen, als AVePS bekannt und etwa in der DE 199 51 915 A1 beispielhaft beschrieben. Das System ist an Bord des potentiell bedrohten Fahrzeuges installiert und dafür ausgelegt, sensorgesteuert, mittels eines Rechners zum Verarbeiten von Zieldaten, autonom operierend die aktuelle Bedrohung zu erfassen und sie in unkritischem Restabstand mittels einer gerichtet verbrachten und bei hinreichender Annäherung an die Bedrohung kontrolliert gezündeten, mit Radialsplitter- oder insbesondere mit Blastgefechtskopf ausgestatteten Abwehrgranate zu zerstören. Für den Sonderfall einer Auslegung zur Abwehr von sehr schnellen Bedrohungen wie durch KE-Penetratoren ist die Granate zusätzlich mit einer Annäherungssensorik für die Zündauslösung ausgestattet.
  • Die Abwehrgranate wird aus einem hochagilen, extrem schnell richtbaren Werfer verschossen, der vorzugsweise mit mehreren, individuell austauschbaren, munitionierten Werferrohren bestückt ist. Die Azimut- und Elevations-Richtantriebe arbeiten stationär im objektfesten Werfersockel, was nicht nur die Vorteile der Stabilität infolge niedrigliegenden Schwerpunktes des Schutzsystemes und eines zuverlässigen mechanischem Schutzes von dessen Antriebsaggregaten, sondern auch nur geringer zu bewegender Massen des Werfers erbringt.
  • Dieses aktive Nahbereichs-Schutzsystem kann auf einem gepanzerten Fahrzeug adaptiert oder auch stationär installiert werden. Zwar ist das Schutzsystem rundum wirkend; aber da es aus Gefährdungs- und Mobilitätsgründen nicht oberhalb der Fahrzeugsilhouette angebracht werden kann, führen benachbarte Fahrzeug-Aufbauten (wie auch benachbarte Bauwerke bei stationärer Installation) in der Praxis zu Abschattungssektoren, in denen eine Bedrohung nicht bekämpft werden kann. Zwar wäre bei großen Land- und Seefahrzeugen grundsätzlich Platz für Einbau mehrerer derartiger Schutzsysteme (etwa beidseitig im Front- und im Heckbereich); aber aus Gewichts- und Ausstattungsgründen oder aus operativen Gesichtspunkten ist das in der Regel nicht realisierbar.
  • In Erkenntnis derartiger Gegebenheiten liegt vorliegender Erfindung die technische Problemstellung zugrunde, das an sich bewährte Nahbereichs-Schutzsystem für Einsatz auch in größerflächigen Gefährdungsbereichen wie an Bord von großen Land-und Seefahrzeugen, optional auch in großflächiger stationärer Umgebung, auszulegen.
  • Diese Aufgabe des Schutzes auch eines größeren Areals mittels nur eines derartigen Schutzsystemes ist erfindungsgemäß nach den Merkmalen des Hauptanspruches gelöst. Danach wird der Bekämpfungsabstand vergrößert und dafür die Abwehrgranate nun mit Einrichtungen zur Bahnkorrektur ausgestattet, sowie mit einem eigenen Antrieb und mit optischem Sensor, der die anfliegende Bedrohung im Infrarot-Spektralbereich erfasst. Die Sensorik des Schutzsystemes dient nun nicht nur dem Richten des Werfers, sondern, über eine materielle oder immaterielle Datenverbindung, auch der Bahnkorrektur der Abwehrgranate. Die verfügt dazu über eine Querschubsteuerung, etwa eine Thrustersteuerung oder einfach über einen längs ihres Umfanges verlaufenden Ring von radial gerichteten Impulstriebwerken; wie sie für andere Anwendungsfälle etwa aus der DE 40 36 166 A1 oder aus der DE 35 21 204 A1 bekannt sind.
  • So wird die Abwehrgranate gewissermaßen zu einem bahnkorrigierbaren Flugkörper. Zu seiner Flugstabilisierung erfährt er in an sich bekannter Art durch aerodynamische Einflüsse eine geringe Rollrate. Für einen räumlich definierten Querimpuls muss deshalb die aktuelle Roll-Lage im Raum bekannt sein. Dafür geläufige Verfahren sind entweder sehr störanfällig oder recht aufwändig, vgl. etwa DE 10 2008 005 100 A1 . Weniger aufwändig wird eine richtungstransformierte Querschub-Bahnkorrektur im Rahmen vorliegender Erfindung mittels eines an Bord der Abwehrgranate den polaren Azimutwinkel zur Bedrohung messenden einfachen optischen Sensors realisiert, wie es nachfolgend anhand der Zeichnung näher erläutert wird.
  • In der Zeichnung zeigt, skizziert unter Beschränkung auf das Funktionswesentliche,
  • Fig. 1
    die Sichtlinie zur anfliegenden Bedrohung im Granaten-Koordinatensystem,
    Fig. 2
    die Bahndaten im raumfesten Koordinatensystem und
    Fig. 3
    die Bestimmung eines Korrekturimpulses aus den beiden Koordinatensystemen.
  • Das abstandsaktive Schutzsystem 11 verfügt gemäß Fig. 2 über einen richtbaren Werfer 12 für Abwehrgranaten 13 und, gewöhnlich in dessen unmittelbarer Nähe, über eine rechnerbasierte Trackeinrichtung 14 mit Aufklärungssensor zur Erfassung und Bahnvermessung einer anfliegenden Bedrohung hier in Form eines Flugkörpers 15; sowie zur Vorausbestimmung eines wahrscheinlichen Begegnungspunktes16 zwischen der Bedrohung 15 und der in Richtung auf den Begegnungspunkt 16 abgeschossenen Abwehrgranate 13. Ein Treffer im Begegnungspunkt 16 ist zur Abwehr der Bedrohung 15 nicht erforderlich, es genügt die zerstörerische oder ablenkende Wirkung eines nahebei gezündeten Blastgefechtskopfes der Abwehrgranate 13.
  • Die Abwehrgranate 13 erfährt bei ihrem Abschuss einen vorläufigen Zündzeitpunkt. Außerdem bleibt die Abwehrgranate 13 über eine Datenstrecke 17 in Form einer Funk-oder (hier) Drahtverbindung mit dem Schutzsystem 11 verbunden, um über den Rechner der Trackeinrichtung 14 laufend aktualisierte Begegnungspunkte 16 in Form von entsprechend korrigierten Zündzeitpunkten übermittelt zu bekommen. So wäre bis auf eine kurze Abwehrdistanz in der Größenordnung weniger 10 Meter der verbleibende Begegnungs-Restfehler derart gering, dass in der Abwehrgranate 13 selbst kein Annäherungssensor erforderlich wäre. Um aber die in größeren Arealen auftretenden Abschattungssektoren zu überwinden, wird das Schutzsystem 11 erfindungsgemäß für größere Abwehrdistanzen, bis in die Größenordnung von 100 Metern, ausgelegt; womit zugleich ein besserer Schutz gegen Resteinwirkungen der an sich zerstörten Bedrohung 15 erzielt wird. Da sich nun die vorausschätzbare Ablage im Begegnungspunkt 16 entsprechend vergrößert, wird nicht mehr nur der Zündzeitpunkt aktualisiert, sondern es erfolgt auch eine Ablagekorrektur für die Abwehrgranate 13. Die erfährt dazu eine Bahnkorrektur; und außerdem erhält sie, zum Verringern der Verbringungszeit, einen Antrieb. Da wegen der (etwa im Vergleich zu Luftabwehrsystemen) immer noch geringen Verbringungsdistanz eine aerodynamische Lenkung nicht realisierbar ist, es erfolgt eine Querschubsteuerung. Mittels eines passend gezündeten Impulsgebers ist eine in diesem Schutzsystem 11 auftretende, maximal einige Meter betragende Ablage hinreichend korrigierbar.
  • Aus Stabilitätsgründern weist die nun angetriebene Abwehrgranate 13 allerdings eine geringe Rollrate auf. Deshalb muss, für die räumlich passende Auslösung des Impulsgebers, die momentane Roll-Lage im Raum erfasst werden. Dafür ist die Abwehrgranate 13 gemäß Fig. 1 im Bereich ihrer Spitze mit einem Infrarot-Sensor 18 ausgestattet. Der stellt die Azimutrichtung 19 des anfliegenden, die Bedrohung darstellenden Flugkörpers 15 in Bezug auf ein granatenfestes Koordinatensystem mit Referenzrichtung 23 fest. Dafür genügt im einfachsten Falle - nämlich bei polarisierter Bestrahlung der Granate 15, die mit einem Polarisationsempfänger (z. B. IR-Diode mit Polarisationsfilter) ausgestattet ist - ein optischer Detektor mit nur zwei Aufnahmefeldern (nämlich zur 180°-Selektion). Ohne Sensierung einer derartigen, zusätzlichen Beleuchtung, sondern bei Ansprechen auf die thermische Abstrahlung des Flugkörpers 15 selbst, genügt als Sensor 18 ein optischer Vierquadranten-Detektor zur Azimuterkennung. Im Interesse höherer Auflösung ist aber als Sensor 18 ein n-fach-sektorieller Detektor (mit n > 4) zu bevorzugen. Der liefert den Azimutwinkel 19 des Hotspots des sich annähernden Flugkörpers 15 mit einer Winkelgenauigkeit von dementsprechend 360°/n, bezogen auf den Mittelpunkt des Sensor-Sichtfeldes. Mindestens gleiche Auflösung ist über eine Auswertelogik mittels eines Array-Detektors erzielbar.
  • Der so an Bord der Abwehrgranate 13 gewonnene Azimutwinkel 19 (in Bezug auf das Granaten-Koordinatensystem mit Referenzrichtung 23) der Annäherung der Bedrohung 15 wird über die Datenstrecke 17 (Fig. 2) an das Schutzsystem 11, insbesondere an den Rechner seiner Trackeinrichtung 14 rückgemeldet. Von dort aus wird quasi ständig über Winkel- und Entfernungsmessungen der momentane Raumvektor 20 des Flugkörpers 15 und der momentane Raumvektor 21 der Abwehrgranate 13 bestimmt und aus deren Abfolgen die jeweilige Trajektorie 22 des Flugkörpers und die jeweilige Trajektorie 23 der Abwehrgranate zum Auffinden des Begegnungspunktes 16 bestimmt, in dessen Nähe die Abwehrgranate 13 gezündet werden soll. Dem korrekturbedingten Auswandern des Begegnungspunktes 16-16' (Fig. 3) soll die Flugrichtung 30' der Abwehrgranate 13 nachgeführt werden. Entsprechend verändert sich der tatsächliche, momentane Raumvektor der Sichtlinie 24 von der Abwehrgranate 13 zum Flugkörper 15. Die tatsächliche momentane Roll-Lage 25 der Abwehrgranate 13 in Bezug auf die raumfeste Vertikale 26 bestimmt sich aus der Sichtlinie 24 im Raum und dem an Bord der Abwehrgranate 13 ermittelten Azimutwinkel 19. Für diese Auswertung darf angenommen werden, dass die Rollachse der Abwehrgranate 13 identisch ist mit der Tangente an den Raumvektor 20.
  • Die Verlagerung des Begegnungspunktes von 16 nach 16' ist (Fig. 3) als Ablagevektor 27 darstellbar und bedingt die Richtung 28 eines im raumfesten Koordinatensystem in die Granatenquerschnittsebene projizierten Korrekturimpulses 29 für das Nachlenken der Abwehrgranate 13. Bezogen auf deren Koordinatensystem hat der Korrekturimpuls 29 den Sollwinkel gemäß der Winkelsumme 25+28. Dementsprechend kann der Rechner der Trackeinrichtung 14 den nächstgelegenen der längs des Umfanges der Abwehrgranate 13 individuell auslösbaren Impulsgeber bestimmen und über die Datenstrecke 17 zur Korrektur des Granaten-Raumvektors 21 zünden, so dass die die Richtung 30' annimmt.
  • Um mittels eines Schutzsystemes 11 nach Art eines abstandsaktiven Fahrzeugschutzes auf Basis einer der anfliegenden Bedrohung 15 entgegenzuschießenden Abwehrgranate 13 auch größere Areale möglichst abschattungsfrei überstreichen zu können, wird also erfindungsgemäß die Abwehrdistanz zum Begegnungspunkt 16 größenordnungsmäßig etwa verdreifacht und dafür eine mit einem Sensor 18 zum Ermitteln der polaren Azimutrichtung 19 des abzuwehrenden Flugkörpers 15 und mit einer Querschubsteuerung ausgestattete, rollstabilisiert angetriebene Abwehrgranate 13 unter Aufrechterhalten einer Datenstrecke 17 zur Trackeinrichtung 14 verschossen. Über diese Datenstrecke 17 erfährt die Abwehrgranate 13 mittels eines quer orientierten Korrekturimpulses 29 durch nach Maßgabe eines Auswanderns des Begegnungspunktes 16-16' veränderten Raumvektor 21 eine Bahnkorrektur zum aktualisierten Begegnungspunkt 16' hin.
  • Bezugszeichenliste
  • 11
    Schutzsystem
    12
    Werfer
    13
    Abwehrgranate
    14
    Trackeinrichtung
    15
    Flugkörper (Bedrohung)
    16
    Begegnungspunkt
    17
    Datenstrecke
    18
    IR-Sensor
    19
    Azimutrichtung
    20
    FK-Raumvektor
    21
    AG-Raumvektor
    22, 22'
    FK-Trajektorien
    23
    Referenzrichtung des Granaten-Koordinatensystems
    24
    AG-FK-Sichtlinie
    25
    Roll-Lage
    26
    Vertikale
    27
    Ablagevektor
    28
    Impulsrichtung
    29
    Korrekturimpuls
    30
    AG-Trajektorie
    30'
    neue AG-Trajektorie nach Ablenkung

Claims (5)

  1. Schutzsystem (11) mit einer gegen einen, von einer rechnerbasierten Trackeinrichtung (14) als bedrohend ausgemachten, anfliegenden Flugkörper (15) aus einem richtbaren Werfer (12) mit vorgegebenem Zündzeitpunkt für Annäherung an einen Begegnungspunkt (16) mit dem Flugkörper (15) abzuschießenden Abwehrgranate (13),
    dadurch gekennzeichnet,
    dass für eine vergrößerte Abwehrdistanz eine mit einem Sensor (18) zum Ermitteln der Azimutrichtung (19) des abzuwehrenden Flugkörpers (15) ausgestattete, rollstabilisiert angetriebene Abwehrgranate (13) unter Aufrechterhalten einer Datenstrecke (17) zur Trackeinrichtung (14) verschossen wird und über die Datenstrecke (17) nach Maßgabe eines Auswanderns des Begegnungspunktes (16-16') mittels eines quer orientierten Korrekturimpulses (29) durch veränderten Raumvektor (21) eine Bahnkorrektur zum aktualisierten Begegnungspunkt (16') hin erfährt.
  2. Schutzsystem nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Abwehrgranate (13) mit einem mehrsektoriellen oder mit einem Array-Sensor (18) ausgestattet ist, der auf Wärmeabstrahlung des Flugkörpers (15) anspricht.
  3. Schutzsystem nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass von der Trackeinrichtung (14) aus über den jeweils aktuellen Raumvektor (20) zum Flugkörper (15) und über den jeweils aktuellen Raumvektor (21) zur Abwehrgranate (13) ein Auswandern des Begegnungspunktes (16') erfasst und über eine daraus abgeleitete Impulsrichtung (28) im Raum, ergänzt um die aktuelle Roll-Lage (25) der Abwehrgranate (13), eine Querschubsteuerung an Bord der Abwehrgranate (13) ausgelöst wird.
  4. Schutzsystem nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Abwehrgranate (13) rundum mit individuell auslösbaren, radial orientierten Impulsgebern ausgestattet ist.
  5. Schutzsystem nach einem der vorangehenden Ansprüche ohne Anspruch 2,
    dadurch gekennzeichnet,
    dass die Abwehrgranate (13) mit einem zweifeldrigen Sensor (18) für vom Abschussgerät oder der Trackeinrichtung ausgesandte polarisierte Bestrahlung ausgestattet ist.
EP12000645A 2011-02-10 2012-02-02 Schutzsystem Withdrawn EP2487450A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011010902A DE102011010902A1 (de) 2011-02-10 2011-02-10 Schutzsystem

Publications (1)

Publication Number Publication Date
EP2487450A1 true EP2487450A1 (de) 2012-08-15

Family

ID=45606941

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12000645A Withdrawn EP2487450A1 (de) 2011-02-10 2012-02-02 Schutzsystem

Country Status (4)

Country Link
EP (1) EP2487450A1 (de)
DE (1) DE102011010902A1 (de)
IL (1) IL217148A0 (de)
ZA (1) ZA201200932B (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013007229A1 (de) 2013-04-26 2014-10-30 Rheinmetall Waffe Munition Gmbh Verfahren zum Betrieb eines Waffensystems

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142695A (en) * 1971-10-27 1979-03-06 Raytheon Company Vehicle guidance system
DE3521204A1 (de) 1985-06-13 1986-12-18 Diehl GmbH & Co, 8500 Nürnberg Impulstriebwerk
US4641801A (en) * 1982-04-21 1987-02-10 Lynch Jr David D Terminally guided weapon delivery system
FR2597589A1 (fr) * 1986-04-18 1987-10-23 Thomson Csf Dispositif de defense
DE4036166A1 (de) 1990-11-14 1992-05-21 Diehl Gmbh & Co Bahnkorrigierbares projektil
DE19951915A1 (de) 1999-10-28 2001-05-10 Diehl Munitionssysteme Gmbh Richtantrieb
US6717543B2 (en) * 2000-05-17 2004-04-06 Diehl Munitionssysteme Gmbh & Co. Kg Radar device for object self-protection
DE102004037235A1 (de) * 2004-07-31 2006-03-23 Diehl Bgt Defence Gmbh & Co. Kg Verfahren zum Schützen einer Immobilie gegen ein angreifendes Projektil
DE102008005100A1 (de) 2008-01-18 2009-07-30 Diehl Bgt Defence Gmbh & Co. Kg Verfahren zur Ermittlung der Rollwinkellage eines rotierenden Flugkörpers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142695A (en) * 1971-10-27 1979-03-06 Raytheon Company Vehicle guidance system
US4641801A (en) * 1982-04-21 1987-02-10 Lynch Jr David D Terminally guided weapon delivery system
DE3521204A1 (de) 1985-06-13 1986-12-18 Diehl GmbH & Co, 8500 Nürnberg Impulstriebwerk
FR2597589A1 (fr) * 1986-04-18 1987-10-23 Thomson Csf Dispositif de defense
DE4036166A1 (de) 1990-11-14 1992-05-21 Diehl Gmbh & Co Bahnkorrigierbares projektil
DE19951915A1 (de) 1999-10-28 2001-05-10 Diehl Munitionssysteme Gmbh Richtantrieb
US6717543B2 (en) * 2000-05-17 2004-04-06 Diehl Munitionssysteme Gmbh & Co. Kg Radar device for object self-protection
DE102004037235A1 (de) * 2004-07-31 2006-03-23 Diehl Bgt Defence Gmbh & Co. Kg Verfahren zum Schützen einer Immobilie gegen ein angreifendes Projektil
DE102008005100A1 (de) 2008-01-18 2009-07-30 Diehl Bgt Defence Gmbh & Co. Kg Verfahren zur Ermittlung der Rollwinkellage eines rotierenden Flugkörpers

Also Published As

Publication number Publication date
IL217148A0 (en) 2012-06-28
ZA201200932B (en) 2012-10-31
DE102011010902A1 (de) 2012-08-16

Similar Documents

Publication Publication Date Title
EP1668310B1 (de) Verfahren und vorrichtung zum schützen von schiffen vor endphasengelenkten flugkörpern
EP3341674B1 (de) System zur abwehr von bedrohungen
US20140102288A1 (en) Active protection system
EP1946035A1 (de) Selbstschutzanlage für gefechtsfahrzeuge oder andere zu schützende objekte
DE10117007A1 (de) Verfahren und Vorrichtung zum Schutz von mobilen militärischen Einrichtungen
DE10229273B4 (de) Objekt-Selbstschutzvorrichtung
DE10050479A1 (de) Schutzsystem für Objekte, insbesondere für Kampfpanzer
EP3538835A1 (de) Verfahren und abwehrsystem zur bekämpfung von bedrohungen
DE102007049438B4 (de) Verfahren zur Abwehr von ballistischen Geschossen mit Hilfe von Lenkflugkörpern
DE102012002043C5 (de) Waffenbasierte Schutzeinrichtung für Fahrzeuge
EP3150956A1 (de) Feuerleitvorrichtung für eine handfeuerwaffe sowie handfeuerwaffe
EP1983294B1 (de) Verfahren und Vorrichtung zur Bekämpfung des Abschussortes eines Angriffsmunitionskörpers
EP2594891B1 (de) Verfahren zum Abwehren einer anfliegenden ballistischen Rakete und Abfangsystem
EP2487450A1 (de) Schutzsystem
DE3543769A1 (de) Mine zur abwehr von bewegten objekten
US9671200B1 (en) Kinetic air defense
RU133918U1 (ru) Противотанковая выпрыгивающая мина-ловушка
RU2271510C2 (ru) Способ и комплекс защиты подвижного объекта наземной военной техники
DE102010027584B4 (de) Objektschutz-Verfahren und -Einrichtung
RU2755951C1 (ru) Способ активной защиты объекта со стороны верхней полусферы
RU2499218C1 (ru) Способ защиты объекта от средств воздушного нападения и система для его осуществления
DE102004037235A1 (de) Verfahren zum Schützen einer Immobilie gegen ein angreifendes Projektil
Sanders-Zakre China Advances Ballistic Missile Defense
Sudiro Regulating Ballistic Missile Usage for Ensuring Civil Aviation Safety: As a Matter of Urgency
DE2244826A1 (de) Mobiles, schnell reagierendes abwehrsystem gegen tiefafnliegende flugobjekte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130216