EP2480709B1 - Anlage und verfahren zur herstellung von faservlies auf der basis von glasfasern und damit hergestelltes faservlies - Google Patents

Anlage und verfahren zur herstellung von faservlies auf der basis von glasfasern und damit hergestelltes faservlies Download PDF

Info

Publication number
EP2480709B1
EP2480709B1 EP10781593.8A EP10781593A EP2480709B1 EP 2480709 B1 EP2480709 B1 EP 2480709B1 EP 10781593 A EP10781593 A EP 10781593A EP 2480709 B1 EP2480709 B1 EP 2480709B1
Authority
EP
European Patent Office
Prior art keywords
unit
fibrous web
nonwoven fabric
fibres
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10781593.8A
Other languages
English (en)
French (fr)
Other versions
EP2480709A1 (de
Inventor
Lutz MÜLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matecs Spz Oo
Original Assignee
Matecs Spz Oo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matecs Spz Oo filed Critical Matecs Spz Oo
Priority to PL10781593T priority Critical patent/PL2480709T3/pl
Publication of EP2480709A1 publication Critical patent/EP2480709A1/de
Application granted granted Critical
Publication of EP2480709B1 publication Critical patent/EP2480709B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7654Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings
    • E04B1/7658Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres
    • E04B1/7662Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres comprising fiber blankets or batts

Definitions

  • the invention relates to a system and a method for the production of nonwoven fabric, based on glass fibers, in particular as semi-finished or final product, in particular for use for insulation and / or insulation purposes.
  • Such a solution is for example in CH 358736 A1 described.
  • a jet of molten glass is discharged from a melting furnace and centrifuged by means of a drum rotating at 3000 revolutions per minute into fibers of 5 ft thick and several centimeters long.
  • the hot glass fibers thus formed are sprayed with a 4% aqueous solution of a melamine resin.
  • the glass fibers wetted with melamine resin form on a treadmill a nonwoven which passes an oven at such a rate that an air flow of 150 ° C for 105 seconds thereafter acts.
  • the publication DE 699 22 192 T2 relates to the production of artificial vitreous fiber (MMVF) fleeces with which the structure of the fleece is to be optimized.
  • the apparatus comprises two centrifugal spinners having at least one shredding rotor mounted for rotation about a substantially horizontal axis, means for entraining the fibers of each spinner in a stream of air around at least one shredding rotor of each spinner, the stream of air having a flow field and thereby provides a single cloud of air entrained fibers.
  • the fibers are collected as a web and then cross-laid on the web to form the web.
  • fiberglass mats known (eg.
  • Nonwovens are produced which are a mixture of natural fibers, for example cellulose fibers of cotton or loosened, already mechanically and / or chemically treated wood cellulose (fluff pulp), synthetic matrix fibers such as polyester, polypropylene or viscose and synthetic binder fibers such as so-called bicomponent Fibers and, for example, as absorbent so-called superabsorbent polymers in particle (SAP) or fiber form (SAF) comply and are used for example as a semi-finished for the production of diapers and sanitary napkins, absorbent pads for food industry or insulation material.
  • SAP superabsorbent polymers in particle
  • SAF fiber form
  • An important step in the production of such a web is to deposit the fiber mixture as evenly as possible on an air-permeable transport or conveyor belt.
  • This deposition is done by means of a forming head in which the fibers are mixed, wherein in a fiber processing space intermeshing needle rollers are arranged with parallel longitudinal axes, which can rotate about their respective longitudinal axis.
  • the supplied by an air flow fibers enter between the intermeshing needle rollers through into the interior and also leave the interior between the intermeshing needle rollers.
  • the needle rollers should contribute to the homogenization of the fiber distribution.
  • the fibers are deposited on a conveyor belt as a fiber bed, which have a substantially same orientation. Subsequently, the fiber bed can be pressed.
  • EP 0 384 551 B2 a carding machine for the production of randomly or longitudinally oriented nonwoven fabric is described, with at least one feed roller or the like., If necessary, a Vorwalze same in progress and at least three of the roughing rollers downstream, described in the same direction and preferably in opposite directions to the roughing roll working drums same diameter. Two working drums are in mutual engagement and their relative speed and / or mutual distance for controlling the proportion of the fiber material which can be stored back on the respective working drum on the one hand and the fiber material which can be transferred to the downstream working drum on the other hand is adjustable.
  • the working drums are covered with cover boxes and are all arranged successively around the circumference of at least one central roller running in the same direction, which in comparison to the working drums has a larger diameter having.
  • the relative speeds and / or the distance of the working drums on the one hand and the central roller (s) on the other hand are designed adjustable. This device has a complicated structural design.
  • a disadvantage of the aforementioned solutions is that over the width unevenly supplied fiber volume can lead to an irregular fiber fleece.
  • the object of the invention is to develop a system and a method for the production of nonwoven fabric based on glass fibers, which with a simple structural design, a manufacturing process is provided which ensures a uniform distribution of the fibers over the entire width of the nonwoven fabric, said a single layer homogeneous nonwoven fabric is provided which has excellent insulation and / or insulating properties.
  • the fiber opening device is preferably a carding unit for the resolution and oriented orientation of the fibers, wherein the carding unit outputs a batt with longitudinally oriented fibers,
  • the carding unit may be a conventional carding unit and is arranged in front of the first unit.
  • the second unit, in which the nonwoven fabric is formed, is the first unit, in which the reorientation of the fibers of the batt occurs in a random orientation, downstream.
  • the first unit is arranged above the second unit.
  • the carding unit has at least one feed roller for picking up the fibers and at least two spaced-apart work rolls and a discharge roller, wherein the feed roller, the work rolls and the discharge roll are arranged around a central roll. With the work rolls, the fibers are separated and aligned in a defined direction.
  • the diameter of the central roll is preferably greater than the diameter of the feed roller, the work rolls and the discharge roller. Furthermore, the diameter of the discharge roller is larger than the diameter of the feed roller and the Work rolls selected.
  • the delivery roller is also called a transfer roller. It has a pure transport function, ie the fibers should be transported and not compacted or processed in any other way. Since after the feeder begins the processing, ie, the fibers dissolve, singulate and orient, the fiber mass must be distributed over a larger area. That's why we work with increasing speeds.
  • each work roll is advantageously preceded by a roll of smaller diameter.
  • These rollers are also called turners, which have the task of removing the fiber excess on the work rolls and to press this back on the central roll.
  • the smaller diameter is chosen so that not all fibers from the work rolls, but only the excess is withdrawn.
  • the carding unit leaves a batt with oriented fibers at high speed.
  • this carding unit can be replaced by a fiber opening and distribution unit.
  • This fiber opening and distribution unit consists essentially of fiber opening aggregate and fiber distribution plant.
  • the fiber-opening unit is characterized by at least one feed roller and a central roller which is equipped with needles or hook-like elements.
  • Around the central roller at least one smaller roller is arranged, which in turn is equipped with needles or hook-like elements.
  • at least one rigid needle bar is arranged in front of the smaller roller, which is combed through by the central roller.
  • the fibers can be removed by air or mechanically via a delivery roller.
  • the fiber-opening unit can be followed by a single-stage or multi-stage fiber distribution system.
  • This fiber distribution system is characterized by the combination of a fiber storage with a subsequent uniform distribution of the fibers across the working width.
  • the uniform distribution of the fibers over the working width is mainly due to the interaction of a needle or hook-like stocked band with appropriately arranged tee and back wiping rollers, the fibers are also fed via a conveyor belt needle-like or hook-like equipped band.
  • the uniform monolayer batt is transported at a high speed via a feed belt.
  • the first unit there is a reorientation of the uniformly aligned fibers of the batt into a random orientation. This is the volume of the batt increased many times, so that many air pockets are present in the batt.
  • the first unit for reorienting the fibers of the batt in a random position at least two rollers provided with needles and / or hooks.
  • rollers provided with needles and / or hooks and a stream of air to reorient the fibers into a random orientation in the first unit.
  • the batt is transferred after the reorientation of the fibers into a random orientation from the first unit to the second unit, in which the formation of the homogeneous single-ply non-woven fabric is carried out with random fibers.
  • the second unit preferably builds the nonwoven fabric on a storage belt by means of negative pressure.
  • the thickness of the homogeneous nonwoven fabric can be adjusted by changing the advance speed of the storage belt. By reducing the advance speed of the deposit belt, an increase of up to 50 times the pile weight of the produced nonwoven fabric compared to the pile weight of the fiber web which is supplied to the first unit can be achieved.
  • the nonwoven fabric is dispensed from the second unit and can then be supplied to a solidification device.
  • a non-woven fabric mainly of glass fibers can be produced, which is then fed to a thermal consolidation.
  • other fibers or similar substances can be introduced, which then lead to a mixed fiber fleece.
  • the incorporation of these materials can be done with known powder, granular or Faserstreuem on or in the device according to the invention.
  • the nonwoven fabric can be provided with a surface seal on one or both sides. This is done in a coating device by means of water glass, plastic, adhesive or resin.
  • a homogenous single-layer fiber fleece with predominantly glass fibers in random orientation is produced, the fiber fleece consisting of fibers which are reoriented from an oriented or an unoriented layer into a random orientation with an increase in volume / density reduction.
  • the homogeneous fiber fleece contains many air pockets.
  • nonwoven fabric which has a very low basis weight or a low density / bulk density.
  • minimum densities of up to 15 kg / m 3 are possible if thermal bonding of the fiber fleece takes place and bulk densities of up to 50 kg / m 3 for needled nonwoven fabric, which was previously not feasible with conventional systems.
  • the previously possible density / bulk density in generic methods with thermal consolidation is a minimum of about 30 kg / m 3 and a minimum of about 80 kg / m 3 for needled products.
  • the homogeneous single-ply fiber fleece in particular consists of endless drawn fibers (preferably glass fibers) with a uniform filament diameter, it being possible to combine different fibers and also to use natural fibers in combination with synthetic fibers for producing the fiber fleece.
  • the homogeneous monolayer nonwoven fabric may optionally be infiltrated with a binder and formed into a 3-dimensional fiber mat by subsequent reshaping.
  • the nonwoven fabric is advantageously provided on one or both sides with a surface seal.
  • the surface seal is e.g. sprayed on and is curable and consists e.g. made of water glass, plastic, resin or glue.
  • the surface seal eliminates the need for an otherwise required aluminum lining (which must be recycled separately). In contrast, the surface seal is much easier and less expensive to produce.
  • a fiber opening device a resolution and separation of the glass fibers into a batt with an oriented or non-oriented orientation of the glass fibers takes place.
  • the batt is fed via a riser (transport means) of a first unit, in which a reorientation of the fibers of the batt into fibers, which take a random position, whereby the volume of the batt increases / the density of the batt is reduced.
  • the laying of a homogeneous single-layer fiber fleece with fibers in random orientation takes place from the fiber pile of the first unit.
  • the basis weight of the nonwoven fabric produced is a multiple of the basis weight of the batt.
  • the basis weight of the nonwoven fabric is adjustable by the speed of the storage belt. If the speed of the storage belt is reduced compared to the speed of the riser belt, a higher nonwoven fabric with a higher basis weight is produced generated. By reducing the advance speed of the storage belt, it is thus possible to achieve up to a 50-fold increase in the pile weight of the produced nonwoven fabric in comparison to the pile weight of the nonwoven fabric, which is supplied to the first unit, thereby producing a single-layered homogeneous fiber non-woven fabric.
  • the nonwoven fabric which is based on glass fibers as a semi-finished or final product, especially for insulation and / or insulating uses, is a homogeneous single-ply fiber fleece glass fibers, the glass fibers from an oriented or non-oriented layer (in the batt) in a Weir are reoriented by increasing the volume / decreasing the density (of the nonwoven fabric).
  • the nonwoven fabric has a minimum density of up to 15 kg / m 3 , when thermal bonding of the nonwoven fabric takes place. If the fiber fleece was needled, the minimum density is up to 50kg / m 3 . Furthermore, the nonwoven fabric has a uniform filament diameter of the glass fibers (preferably of the same length) and consists of endless drawn glass fiber which has been separated into fibers of preferably equal length, which then form as staple fibers the starting base for the production of the nonwoven fabric.
  • nonwoven fabric on one or both sides with a surface seal which is in particular curable and preferably consists of waterglass, plastic, resin or adhesive.
  • binder, granules or other additional fibers can be infiltrated individually or in their combinations in the nonwoven fabric.
  • the binder makes it possible to produce shaped bodies from the nonwoven fabric by three-dimensional shaping (also in the layer / sandwich construction with other materials).
  • the nonwoven fabric can be used after appropriate cutting as insulating and / or insulating mat and / or as a reinforcing or stiffening application and as already described above three-dimensionally formed.
  • the method and apparatus provide a fibrous web having a very large volume.
  • Made from insulating mats or insulation mats have excellent insulation or insulation properties due to the many air pockets.
  • the fat The insulating mats can be significantly reduced.
  • a conventional insulating mat with aluminum lamination with a thickness of 20mm and a density of 32kg / m 3 replaced.
  • the insulating mats are used for example in domestic or kitchen appliances or in vehicles for insulation and / or insulation purposes.
  • moldings therefrom which serve, for example, as support and / or stiffening or reinforcing elements and are used in particular in the vehicle sector.
  • the thinner insulating mats it is possible, e.g. in cooking stoves to increase the cooking space.
  • the insulating mats from the novel nonwoven fabric which, like the previous insulating mats have a thickness of 20mm, the energy consumption can be significantly reduced.
  • the fibers used are in particular drawn glass fibers with a uniform filament diameter of 0.009 to 0.025 mm and a length of up to 200 mm. However, it is also possible to use or to incorporate other organic or inorganic fibers.
  • the system consists of a fiber opening device in the form of a carding unit 1, which processed and already partially opened fibers are supplied.
  • the starting base thereby form bundle-like continuous glass fibers in the form of staple fibers with a length of up to 200 mm with a diameter of 0.009 to 0.025 mm, which were produced from drawn continuous fibers.
  • the carding unit 1 In the carding unit 1, the singulation into individual fibers and their oriented orientation takes place.
  • the carding unit 1 has for this purpose a pickup roller 1.1 for picking up the fibers, two spaced-apart work rolls 1.2, each associated with a roller 1.3 (Wender), and a discharge roller 1.4.
  • the rollers 1.1 to 1.4 are arranged around a central roller 1.5 around.
  • the single-layer fibrous web F produced therefrom from the glass fibers passes (see FIG. 3 ) is conveyed at a high speed therethrough to the first unit 3, in which the substantially unidirectional fibers of the batt F are reoriented into a random orientation.
  • the volume of the batt F is substantially increased and can be mixed with other materials.
  • the fibrous web F can be infiltrated with a binder, granules G (for example of thermoplastic material) or other fibers from a scattering unit 2.1, which, for example, above the riser 2 (s. FIG. 3 ) or the scattering unit 2.1 is arranged on or in the unit 3 (not shown).
  • a scattering unit 2.1 which, for example, above the riser 2 (s. FIG. 3 ) or the scattering unit 2.1 is arranged on or in the unit 3 (not shown).
  • the second unit 4 into which the batt F (see FIG. 3 ) now passes and in which of the fibers located in a heterogeneous monolayer fiber fleece FL is laid / formed.
  • the first and the second unit 3, 4 are indicated only schematically.
  • the thickness and weight of the nonwoven fabric FL can be varied by different speed settings. It should be emphasized that up to 50-fold increase of the pile weight per unit area can be achieved without the usual crossing or crossing.
  • the non-woven fabric FL is formed on a storage belt 7, which is transported by a conveyor belt 8 and e.g. is wound on a roll (not shown).
  • the homogeneous single-layer fiber fleece FL thus produced can then be coated by means of a coating device 5 for surface sealing with water glass, plastic, adhesive or resin.
  • the non-woven fabric FL is solidified by means of solidification 6, for example by needling or thermally.
  • the sealing of the nonwoven fabric FL can also be done only after solidification.
  • nonwoven FL mats are made or cut, which can be used in a variety of ways for thermal insulation and / or sound insulation.
  • the non-woven fabric FL or the mats produced therefrom have a soft, silk-like surface that no longer resembles glass fibers. Furthermore, in particular by the sealing and the needling no more glass fibers are released undesirable.
  • the fiber opening device is formed by a fiber opening and distribution unit 10 (which replaces the carding unit 1), whereby a more favorable singulation and opening of the fibers is achieved while maintaining a position not oriented here.
  • the fiber opening and distribution unit 10 essentially consists of one or more fiber opening aggregates 11 (here two) and one or more fiber singulation plants 12 (here three) and replaces the entire conventional fiber opening path via pre-opening and carding (carding unit 1 and devices arranged in front of it for partial singulation and carding) Opening the fibers).
  • pre-opening and carding carding unit 1 and devices arranged in front of it for partial singulation and carding
  • Each fiber-opening unit 11 here has two feed rollers 11.1 and a central roller 11.2, which is equipped with needles or hook-like elements (not labeled).
  • a central roller 11.2 Around each central roller 11.2 around two smaller rollers 11.3 are arranged, which in turn are equipped with needles or hook-like elements (not labeled).
  • a rigid needle bar 11.4 is arranged between the feed rollers 11.1 and the following smaller roller 11.3, which is combed by the central roller 11.2.
  • the fibers may be drawn off by air or mechanically via a delivery roller (not shown).
  • the two fiber-opening units 11 are here downstream of the three fiber distribution systems 12, which are arranged directly behind one another.
  • the fiber distribution systems each have a fiber storage 12.1 is provided with a subsequent uniform distribution of fibers over the working width by cooperation of a needle or hook-like equipped band 12.2 with appropriately arranged tee and remindstreifwalzen 12.3, the fibers also on a conveyor belt 12.4 the needle or hook similar equipped band 12.2 are supplied.
  • the single-layer fiber web F which is formed from the separated glass fibers, also passes via a riser 2 into the first unit 3, in which the fibers of the fiber web F are reoriented into a random orientation.
  • the second unit 4 into which the batt F (see FIG. 3 ) now comes and in which the formation / laying of the homogeneous single-layer nonwoven fabric FL with takes place in fibers present.
  • the second unit 4 can also build up the nonwoven fabric by means of negative pressure.
  • the fact that already consists of fiberglass fibers F has a high volume, the volume of the laid with the second unit 4 batt FL is increased from the fibers in dislocated even more, whereby the insulating properties even more than when using a Improve clutter unit.
  • binder / granules e.g., thermoplastic / phenolic material
  • other fibers e.g., polyester / phenolic material
  • thermoplastic / phenolic binder is preferably also on the riser 2 and / or in the first unit 3 by means of a scattering unit, not shown.
  • the admixture of other fibers can be done at the beginning of the processing line and / or in the first unit.
  • other fibers and / or binders in a fiber opening unit 11 and / or a Faseraposzelungsstrom 12 to mix the glass fibers, preferably by sprinkling by means of one or more scattering units, not shown.
  • a fiber opening device in the form of a fiber opening and distribution unit acc. FIG. 4
  • a fiber opening device in the form of a carding unit 1 (FIG. Fig. 1 to 3 ) are combined before the unit 3 with each other.
  • at least one fiber opening and distribution unit and then at least one carding unit can be provided first.
  • the mats produced from the nonwoven fabric are largely elastic and thus return to their original thickness after being compressed.
  • a fiber mat By selectively introducing binder, granules or other fibers, a fiber mat can be produced after appropriate thermal or chemical solidification, which can take a 3-dimensional shape by subsequent forming.
  • the essential field of application are preferably kitchen appliances for private and / or commercial needs, in which a good thermal insulation is required, eg Cookers, microwaves, hot air ovens, washing machines, dryers, etc.
  • the glass fiber mats in vehicles or in the construction industry.
  • simple single-layer glass fiber mats which may be coated on one or both sides (eg with water glass) and which are used, for example, in kitchen ranges or other aforementioned fields of application.
  • the glass fiber mats made from the nonwoven fabric can form the starting base as a semi-finished product for the production of moldings with a lamination or other layer structure.
  • the glass fiber mats are infiltrated with a binder and in particular compressed together with the other materials to form a molding.
  • the non-woven fabric can be used as a continuous product, e.g. Rolls are delivered to a consumer who then cuts and processes them.
  • a fiber fleece FL made of glass fibers which has only one layer and is homogeneous and thereby has a greater thickness than the fibrous web F, which forms the starting base.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Description

  • Die Erfindung betrifft eine Anlage und ein Verfahren zur Herstellung von Faservlies, auf der Basis von Glasfasern, insbesondere als Halbfabrikat oder Finalprodukt, insbesondere zum Einsatz für Dämm- und/oder Isolierzwecke.
  • Es sind zahlreiche Lösungen zur Herstellung eines Glasfaservlieses bekannt. Es ist ebenfalls bekannt, für Dämm- oder Isoliermaterial Glasfasermatten oder Vliese zu verwenden.
  • Eine derartige Lösung wird beispielsweise in CH 358736 A1 beschrieben. Zur Herstellung des Glasfaservlieses wird aus einem Schmelzofen ein Strahl geschmolzenes Glas abgelassen und mittels einer mit 3000 Umdrehungen pro Minute rotierenden Trommel zu Fasern von 5 ft Dicke und etlichen Zentimetern Länge zerschleudert. Die so gebildeten heißen Glasfasern werden mit einer 4% igen wässerigen Lösung eines Melaminharzes besprüht, Die mit Melaminharz benetzten Glasfasern formen auf einem Laufband ein Vlies, welches mit einer solchen Geschwindigkeit einen Ofen passiert, dass ein Luftstrom von 150 °C für 105 Sekunden lang darauf einwirkt.
  • Eine ähnliche Lösung zum Herstellen von Glasfasermatten einheitlicher Beschaffenheit wird in DE 105 77 42 B dargestellt. Auch hier werden die aus einer Düse austretenden Glasfäden unmittelbar auf einem sich bewegenden Förderband abgelegt, auf welchem sich die Fasern in Form einer Matte sammeln. Auf die Fasern wird ein Bindemittel aufgespritzt und die die Matte durch einen Ofen geführt, in dem das Bindemittel trocknet. Anschließend kann die Matte auf eine gewünschte Dicke verdichtet werden. Dieses Herstellungsverfahren ist relativ aufwendig und es wird kein sehr gleichmäßiges Vlies erzeugt.
  • Die Druckschrift DE 699 22 192 T2 betrifft die Herstellung von künstlichen glasartigen Faser(MMVF)-Vliesen mit welcher der Aufbau des Vlieses optimiert werden soll. Die Vorrichtung umfasst zwei Zentrifugalschleudervorrichtungen, die mindestens einen Zerfaserungsrotor aufweisen, der zur Rotation um eine im wesentlichen horizontale Achse montiert ist, eine Einrichtung zum Mitführen der Fasern von jeder Schleudervorrichtung in einem Luftstrom um mindestens einen Zerfaserungsrotor von jeder Schleudervorrichtung, wobei der Luftstrom ein Strömungsfeld aufweist und dadurch eine einzelne Wolke von im Luftstrom mitgeführten Fasern liefert. In einer durchlässigen Fördereinrichtung erfolgt das Sammeln der Fasern als Bahn und anschließend das kreuzweise Aufeinanderlegen der Bahn, um das Vlies zu bilden. Es sind ebenfalls Glasfasermatten bekannt (z.B. aus. DE 37 21 715 A1 ), die auf einer Seite mit einer Aluminiumkaschierung versehen sind. Entsprechende Aluminiumkaschierungen sind jedoch aufwendig und kostenintensiv und können nachteilig bei erforderlichen elektrischen Kontaktierungen sein. Weiterhin muss durch die meist auf nur einer Seite vorhandene Kaschierung die Montagelage besonders beachtet werden.
  • Nach DE 10 2004 021 453 A1 werden Faservliese hergestellt, die ein Gemisch von natürlichen Fasern, z.B. Zellulosefasern aus Baumwolle oder aufgelockerter, bereits mechanisch und/oder chemisch behandelter Holzzellulose (fluff pulp), synthetischen Matrix-Fasern wie z.B. Polyester, Polypropylen oder Viskose sowie synthetischen Bindefasern wie z.B. sogenannten Bikomponenten-Fasern sowie beispielsweise als Absorptionsmittel sogenannte superabsorbierende Polymere in Partikel- (SAP) oder Faserform (SAF) einhalten und beispielsweise als Halbzeug für die Herstellung von Windeln und Damenbinden, Saugeinlagen für Nahrungsmittelindustrie oder für Dämmmaterial verwendet werden. Ein wichtiger Verfahrensschritt beim Herstellen eines derartigen Vlieses besteht darin, das Fasergemisch möglichst gleichmäßig auf einem luftdurchlässigen Transport- oder Förderband abzulegen. Dieses Ablegen geschieht mit Hilfe eines Formkopfes, in dem die Fasern gemischt werden, wobei in einem Faseraufbereitungsraum ineinandergreifende Nadelwalzen mit parallel zueinander ausgerichteten Längsachsen angeordnet sind, die um ihre jeweilige Längsachse rotieren können. Die mittels eines Luftstroms zugeführten Fasern treten zwischen den ineinandergreifenden Nadelwalzen hindurch in den Innenraum ein und verlassen den Innenraum ebenfalls zwischen den ineinandergreifenden Nadelwalzen. Die Nadelwalzen sollen dabei zur Vergleichmäßigung der Faserverteilung beitragen. Die Fasern werden auf einem Transportband als Faserbett abgelegt, wobei diese eine im Wesentlichen gleiche Ausrichtung haben. Anschließend kann das Faserbett verpresst werden.
  • In EP 0 384 551 B2 wird ein Krempel zur Herstellung von wirr- oder längsorientiertem Faservlies beschrieben, mit mindestens einer Einzugswalze oder dgl., ggf. einer hierzu gleichsinnig laufenden Vorwalze und mindestens drei der Vorwalzen nachgeordneten, gleichsinnig miteinander und vorzugsweise gegensinnig zu der Vorwalze laufenden Arbeitstrommeln gleichen Durchmessers beschrieben. Jeweils zwei Arbeitstrommeln stehen in gegenseitigem Eingriff und deren Relativgeschwindigkeit und/oder gegenseitiger Abstand zur Steuerung des Anteils des auf der jeweiligen Arbeitstrommel rückspeicherbaren Fasermaterials einerseits sowie des auf der jeweils nachgeschalteten Arbeitstrommel übertragbaren Fasermaterials andererseits ist einstellbar. Die Arbeitstrommeln sind mit Abdeckkästen verkleidet und sind sämtlich aufeinander folgend um dem Umfang mindestens einer gleichsinnig hiermit laufenden Zentralwalze angeordnet, die im Vergleich zu den Arbeitstrommeln einen größerem Durchmesser aufweist. Die Relativgeschwindigkeiten und/oder der Abstand der Arbeitstrommeln einerseits und der Zentralwalze(n) andererseits sind einstellbar gestaltet. Diese Einrichtung weist einen komplizierten konstruktiven Aufbau auf.
  • Nachteilig bei den vorgenannten Lösungen ist, dass über die Breite ungleichmäßig zugeführtes Faservolumen zu einem unregelmäßigen Faservlies führen kann.
  • Aus den Druckschriften DE 24 36 539 B2 , DE 10 2008 024 943 A1 , DE 103 29 648 A1 ist bekannt, dass der Aufbau eines Faservlieses für textile Anwendungen vorzugsweise durch Schichtung / Täfelung geschieht, unter Zuhilfenahme eines Quer- / Kreuzlegers, der einer Krempel nachgeschaltet ist. Dieser Aufbau ist sehr aufwendig, da der Quer- / Kreuzleger eine Hochleistungsbaugruppe darstellt, die mit sehr hohen Geschwindigkeiten beaufschlagt wird und einen großen Platzbedarf benötigt.
  • Es ist weiterhin aus der Druckschrift DE 69803697 bekannt, dass in einem entsprechenden verfestigten oder unverfestigten Faservlies Bindemittel in Form von Pulver oder ähnliche Materialien über ein Hochfrequenzfeld infiltriert werden, um eine gleichmäßige Bindemittelverteilung zu erzielen. Durch eine nachgeschaltete thermische Verfestigung kann damit eine kompakte Fasermatte hergestellt werden. Dieses Verfahren ist eine sehr aufwendige und kostenintensive Lösung für das gleichmäßige Einbringen von Bindemittel und hat gleichzeitig den Nachteil der sehr hohen Anfälligkeit unter Produktionsbedingungen mit einer relativ hohen Luftfeuchtigkeit.
  • Die Aufgabe der Erfindung besteht darin, eine Anlage und ein Verfahren zur Herstellung von Faservlies auf der Basis von Glasfasern zu entwickeln, womit bei einem einfachen konstruktiven Aufbau ein Herstellungsverfahren geschaffen wird, welches eine gleichmäßige Verteilung der Fasern über die gesamte Breite des Faservlieses gewährleistet, wobei ein einlagiges homogenes Faservlies geschaffen wird, welches hervorragende Dämm- und/oder Isoliereigenschaften aufweist.
  • Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des 1. und 10. Patentanspruchs gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.
  • Die erfindungsgemäße Anlage zur Herstellung von Faservliesmatten auf der Basis von Glasfasern insbesondere zum Einsatz für Dämm- und/oder Isolierzwecke besteht dabei erfindungsgemäß aus
    • einer Faseröffnungseinrichtung zur Auflösung und zur orientierten oder nicht orientierten Ausrichtung der Glasfasern und Bildung eines Faserflors,
    • einer ersten Einheit zur Umorientierung der orientierten oder nicht orientierten Fasern des Faserflors in Fasern, die eine Wirrlage einnehmen, wobei das Volumen des Faserflors erhöht/die Dichte des Faserflors verringert wird,
    • einem Steigband (Transportmittel) welches den Faserflor aus der Faseröffnungseinrichtung zur ersten Einheit fördert,
    • einer zweiten Einheit, auf welcher auf einem Ablageband ein homogenes einlagiges Faservliese mit Fasern in Wirrlage aus dem Faserflor der ersten Einheit gebildet wird, dessen Flächengewicht ein Vielfaches des Flächengewichtes des Faserflors beträgt.
  • Die Faseröffnungseinrichtung ist dabei bevorzugt eine Krempeleinheit zur Auflösung und zur orientierten Ausrichtung der Fasern, wobei aus der Krempeleinheit ein Faserflor mit längsorientierten Fasern ausgegeben wird,
  • Wahlweise kann die Krempeleinheit durch ein neuartiges Aggregat der Faseröffnung ersetzt werden. Dieses Aggregat der Faseröffnung ermöglicht die Ausgabe eines Faserflors mit nicht orientierten Fasern. Je nach Öffnungsgrad der Fasern kann diese Einheit auch mehrstufig ausgeführt werden, so dass zum Beispiel
    • eine erste Einheit zur Umorientierung der ausgerichteten Fasern des Faserflors in Fasern, die eine Wirrlage einnehmen, wobei das Volumen des Faserflors erhöht/die Dichte des Faserflors verringert wird, sowie
    • eine zweite Einheit zur Bildung eines homogenen einlagigen Faservlieses mit Fasern in Wirrlage aus dem Faserflor der ersten Einheit
    miteinander kombiniert werden.
  • Die Krempeleinheit kann eine herkömmliche Krempeleinheit sein und ist vor der ersten Einheit angeordnet. Die zweite Einheit, in welcher das Faservlies gebildet wird, ist der ersten Einheit, in welcher die Umorientierung der Fasern des Faserflors in eine Wirrlage erfolgt, nachgeschaltet. Bevorzugt ist die erste Einheit über der zweiten Einheit angeordnet.
  • Die Krempeleinheit weist mindestens eine Einzugswalze zum Aufnehmen der Fasern und mindestens zwei voneinander beabstandete Arbeitswalzen sowie eine Abgabewalze auf, wobei die Einzugswalze, die Arbeitswalzen und die Abgabewalze um eine Zentralwalze herum angeordnet sind. Mit den Arbeitswalzen werden die Fasern vereinzelt und in eine definierte Richtung ausgerichtet. Der Durchmesser der Zentralwalze ist bevorzugt größer als der Durchmesser der Einzugswalze, der Arbeitswalzen sowie der Abgabewalze. Weiterhin wird der Durchmesser der Abgabewalze größer als der Durchmesser der Einzugswalze und der Arbeitswalzen gewählt. Die Abgabewalze wird auch Übertragungswalze genannt. Sie hat eine reine Transportfunktion, d.h. die Fasern sollen transportiert und nicht verdichtet oder in anderer Weise bearbeitet werden. Da nach dem Einzug die Bearbeitung, d.h. das Fasern auflösen, vereinzeln und orientieren beginnt, muss die Fasermasse auf eine größere Fläche verteilt werden. Deshalb wird mit steigenden Geschwindigkeiten gearbeitet.
  • Um ein gleichmäßiges Vereinzeln und Ausrichten der Fasern zu gewährleisten, ist vorteilhafter Weise jeder Arbeitswalze eine Walze mit kleinerem Durchmesser vorgeschaltet. Diese Walzen werden auch Wender genannt, die die Aufgabe haben, den Faserüberschuss auf den Arbeitswalzen wieder abzunehmen und diesen zurück auf die Zentralwalze zu drücken. Der kleinere Durchmesser wird deswegen gewählt, damit nicht alle Fasern von den Arbeitswalzen, sondern nur der Überschuss zurückgenommen wird. Die Krempeleinheit verlässt ein Faserflor mit orientierten Fasern unter hoher Geschwindigkeit.
  • Wahlweise kann diese Krempeleinheit durch ein Faseröffnungs- und Verteilungseinheit ersetzt werden. Diese Faseröffnungs- und Verteilungseinheit besteht im Wesentlichen aus Faseröffnungsaggregat und Faserverteilungsanlage. Das Faseröffnungsaggregat ist gekennzeichnet durch mindestens eine Einzugeswalze und eine Zentralwalze die mit Nadeln oder hakenähnlichen Elementen bestückt ist. Um die Zentralwalze herum ist mindestens eine kleinere Walze angeordnet, die wiederum mit Nadeln oder hakenähnlichen Elementen bestückt ist. Vorteilhafterweise ist vor der kleineren Walze mindestens eine starre Nadelleiste angeordnet, die von der Zentralwalze durchkämmt wird. Die Fasern können per Luft oder mechanisch über eine Abgabewalze abgezogen werden. Je nach gewünschtem Öffnungsgrad der Fasern können mehrere Aggregate hintereinander betrieben werden. Vorteilhafterweise kann dem Faseröffnungsaggregat eine ein- oder mehrstufige Faserverteilungsanlage nachgeschaltet werden. Diese Faserverteilungsanlage ist gekennzeichnet durch die Verknüpfung eines Faserspeichers mit einer nachfolgenden gleichmäßigen Verteilung der Fasern über die Arbeitsbreite. Die gleichmäßige Verteilung der Fasern über die Arbeitsbreite erfolgt hauptsächlich durch das Zusammenspiel von einem nadel- oder hakenähnlich bestückten Band mit entsprechend angeordneten Abschlag- und Rückstreifwalzen, wobei die Fasern ebenfalls über ein Transportband dem nadel- oder hakenähnlich bestückten Band zugeführt werden.
  • Von der Krempeleinheit oder der beschriebenen Faseröffnungs- und Verteilungseinheit zur ersten Einheit wird der gleichmäßige einschichtige Faserflor mit einer hohen Geschwindigkeit über ein Zuführband transportiert. In der ersten Einheit erfolgt eine Umorientierung der gleichmäßig ausgerichteten Fasern des Faserflors in eine Wirrlage. Dabei wird das Volumen des Faserflors um ein Vielfaches erhöht, so dass viele Lufteinschlüsse im Faserflor vorhanden sind.
  • Dazu weist die erste Einheit zur Umorientierung der Fasern des Faserflors in eine Wirrlage wenigstens zwei mit Nadeln und/oder Haken versehene Walzen auf.
  • Es ist auch möglich, die mit Nadeln und/oder Haken versehenen Walzen und einen Luftstrom zur Umorientierung der Fasern in eine Wirrlage in der ersten Einheit zu kombinieren.
  • Der Faserflor wird nach der Umorientierung der Fasern in eine Wirrlage aus der ersten Einheit in die zweite Einheit überführt, in welcher die Bildung des homogenen einlagigen Faservlieses mit in Wirrlage befindlichen Fasern erfolgt. Dazu baut die zweite Einheit das Faservlies auf einem Ablageband bevorzugt mittels Unterdruck auf. Die Dicke des homogenen Faservlieses kann durch Änderung der Vorlaufgeschwindigkeit des Ablagebandes eingestellt werden. Durch Verringerung der Vorlaufgeschwindigkeit des Ablagebandes kann eine bis zu 50 fache Erhöhung des Florgewichtes des hergestellten Faservlieses im Vergleich zum Florgewicht des Faserflors, welches der ersten Einheit zugeführt wird, erzielt werden.
  • Aus der zweiten Einheit wird das Faservlies ausgegeben und kann anschließend einer Einrichtung zur Verfestigung zugeführt werden.
  • Mit einer zusätzlichen Anordnung eines Aggregates zur Bindemitteleinbringung auf Basis von Pulver, Granulaten und ähnlichen in oder auf der erfindungsgemäßen Einrichtung, wahlweise erste Einheit oder zweite Einheit kann ein Faservlies aus überwiegend Glasfasern hergestellt werden, das anschließend einer thermischen Verfestigung zugeführt wird. Wahlweise können auch andere Fasern oder ähnliche Stoffe eingebracht werden, die dann zu einem Mischfaservlies führen. Die Einbringung dieser Materialien kann mit bekannten Pulver-, Granulat- oder Faserstreuem auf oder in der erfindungsgemäßen Einrichtung erfolgen.
  • Mit oder ohne Verfestigung kann das Faservlies auf einer oder beiden Seiten mit einer Oberflächenversiegelung versehen werden. Dies erfolgt in einer Beschichtungseinrichtung mittels Wasserglas, Kunststoff, Kleber oder Harz.
  • Mit der erfindungsgemäßen Einrichtung wird ein homogenes einlagiges Faservlies mit überwiegend Glasfasern in Wirrlage erzeugt, wobei das Faservlies aus Fasern besteht, die aus einer orientierten oder einer nicht orientierten Lage in eine Wirrlage unter Erhöhung des Volumens/ Verringerung der Dichte umorientiert sind. Das homogene Faservlies enthält dabei viele Lufteinschlüsse.
  • Es ist möglich, ein Faservlies herzustellen, welches ein sehr geringes Flächengewicht bzw. eine geringe Dichte/Rohdichte aufweist. Dabei sind minimale Rohdichten bis 15kg/m3 möglich, wenn eine thermische Verfestigung des Faservlieses erfolgt und Rohdichten bis 50kg/m3 bei vernadeltem Faservlies, was mit herkömmlichen Anlagen bisher nicht realisierbar war. Die bisher mögliche Dichte/Rohdichte bei gattungsgemäßen Verfahren mit thermischer Verfestigung beträgt minimal ca. 30 kg/m3 und bei vernadelten Produkten minimal ca. 80 kg/m3.
  • Das homogene einlagige Faservlies besteht insbesondere aus endlos gezogenen Fasern (vorzugsweise Glasfasern) mit einem einheitlichen Filament - Durchmesser, wobei unterschiedliche Fasern kombiniert werden können und auch Naturfasern in Kombination mit synthetischen Fasern zur Herstellung des Faservlieses Verwendung finden können.
  • Zusätzlich kann das homogene einlagige Faservlies wahlweise mit einem Bindemittel infiltriert werden und durch eine spätere Umformung zu einer 3 dimensionalen Fasermatte geformt werden.
  • Weiterhin ist das Faservlies vorteilhafter Weise ein- oder beidseitig mit einer Oberflächenversiegelung versehen. Die Oberflächenversiegelung wird z.B. aufgesprüht und ist aushärtbar und besteht z.B. aus Wasserglas, Kunststoff, Harz oder Kleber. Durch die Oberflächenversiegelung kann eine sonst erforderliche Aluminiumkaschierung (die separat recycelt werden muss) entfallen. Die Oberflächenversiegelung ist demgegenüber wesentlich einfacher und kostengünstiger herstellbar.
  • Verfahrensgemäß erfolgt die Herstellung des Faservlieses auf der Basis von Glasfasern, insbesondere für Dämm- und/oder Isolierzwecke, aus Glasfasern, die in Form von Stapelfasern vorliegen. In einer Faseröffnungseinrichtung erfolgt eine Auflösung und Vereinzelung der Glasfasern zu einem Faserflor mit einer orientierten oder nicht orientierten Ausrichtung der Glasfasern. Anschließend wird der Faserflor über ein Steigband (Transportmittel) einer ersten Einheit zugeführt, in welcher eine Umorientierung der Fasern des Faserflors in Fasern, die eine Wirrlage einnehmen erfolgt, wobei das Volumen des Faserflors erhöht/die Dichte des Faserflors verringert wird. Anschließend erfolgt in einer zweiten Einheit auf einem Ablageband das Legen eines homogenen einlagigen Faservlieses mit Fasern in Wirrlage aus dem Faserflor der ersten Einheit. Dabei beträgt das Flächengewicht des erzeugten Faservlieses ein Vielfaches des Flächengewichtes des Faserflors.
  • Vorteilhafter Weise ist das Flächengewichte des Faservlieses durch die Geschwindigkeit des Ablagebandes einstellbar. Wird die Geschwindigkeit des Ablagebandes im Vergleich zur Geschwindigkeit des Steigbandes verringert, wird ein höheres Faservlies mit einem höheren Flächengewicht erzeugt. Durch Verringerung der Vorlaufgeschwindigkeit des Ablagebandes ist es damit möglich, eine bis zu 50 fache Erhöhung des Florgewichtes des hergestellten Faservlieses im Vergleich zum Florgewicht des Faserflors, welches der ersten Einheit zugeführt wird, zu erzielen und dabei ein einlagiges homogenes Faservlies aus Glasfasern herzustellen.
  • Es ist weiterhin möglich, in das Faserflor Bindemittel, Granulat oder andere zusätzliche Fasern einzeln oder in Kombinationen zu infiltrieren. Dies erfolgt mit einer Zuführanordnung, die über dem Steigband und/oder über oder in der ersten Einheit angeordnet ist und aus welcher die insbesondere rieselfähigen Substanzen auf das Faserflor gestreut werden. In der ersten Einheit werden die Substanzen dann in das Faserflor eingearbeitet/infiltriert, so dass das aus der zweiten Einheit gelangende Faservlies damit gleichmäßig durchsetzt ist.
  • Das Faservlies, welches auf der Basis von Glasfasern als Halbfabrikat oder Finalprodukt, insbesondere für Dämm- und/oder Isolierzwecke, Verwendung findet, ist ein homogenes einlagiges Faservlies aus Glasfasern, wobei die Glasfasern aus einer orientierten oder nicht orientierten Lage (im Faserflor) in eine Wirrlage bei Erhöhung des Volumens/ Verringerung der Dichte (des Faservlieses) umorientiert sind.
  • Das Faservlies weist eine minimale Rohdichte bis 15kg/m3 auf, wenn eine thermische Verfestigung des Faservlieses erfolgt. Wurde das Faservlies vernadelt, beträgt die minimale Rohdichte bis 50kg/m3. Weiterhin weist das Faservlies einen einheitlichen Filament - Durchmesser der Glasfasern (bevorzugt bei einer gleichen Länge).auf und besteht aus endlos gezogener Glasfaser, die in Fasern bevorzugt gleicher Länge getrennt wurde, die dann als Stapelfasern die Ausgangsbasis für die Herstellung des Faservlieses bilden.
  • Es ist möglich, das Faservlies ein- oder beidseitig mit einer Oberflächenversiegelung zu versehen, die insbesondere aushärtbar ist und bevorzugt aus Wasserglas, Kunststoff, Harz oder Kleber besteht. Weiterhin kann in das Faservlies Bindemittel, Granulat oder andere zusätzlichen Fasern einzeln oder in deren Kombinationen infiltriert sein. Durch das Bindemittel besteht die Möglichkeit, aus dem Faservlies durch dreidimensionale Umformung Formkörper (auch im Schicht/Sandwichaufbau mit anderen Materialien) herzustellen.
  • Das Faservlies kann nach entsprechendem Zuschneiden als Dämm- und/oder Isoliermatte und/oder als Verstärkungs- oder Versteifungsteil Anwendung finden und wie bereits vorgenannt beschrieben dreidimensional umgeformt sein.
  • Mit dem Verfahren und der Vorrichtungwird ein Faservlies geschaffen, welches ein sehr großes Volumen aufweist. Daraus hergestellte Dämmmatten oder Isolationsmatten, weisen durch die vielen Lufteinschlüsse hervorragende Dämm- bzw. Isolationseigenschaften auf. Die Dicke der Dämmmatten kann dadurch wesentlich reduziert werden. So kann z.B. mit einer Dämmmatte aus Glasfasern, die eine Dicke von 16mm aufweist und ein Raumgewicht von 65kg/m3 besitzt, eine herkömmliche Dämmmatte (mit Aluminiumkaschierung) mit einer Dicke von 20mm und einem Raumgewicht von 32kg/m3 ersetzt werden.
  • Die Dämmmatten werden beispielsweise bei Haus- oder Küchengeräten oder auch in Fahrzeugen für Dämm- und/oder Isolierzwecke eingesetzt.
  • Weiterhin ist es möglich daraus Formteile herzustellen, die beispielsweise als Stütz- und/oder Versteifungs- bzw. Verstärkungselemente dienen und insbesondere im Fahrzeugbereich Anwendung finden.
  • Durch die Verwendung der dünneren Dämmmatten ist es möglich, z.B. in Küchenherden den Garraum zu vergrößern. Bei einer Verwendung der Dämmmatten aus dem neuartigen Faservlies, die wie die bisherigen Dämmmatten eine Dicke von 20mm aufweisen, kann der Energieverbrauch wesentlich verringert werden. Als Fasern werden insbesondere gezogene Glasfasern mit einem einheitlichen Filamentedurchmesser von 0,009 bis 0,025 mm und einer Länge bis 200 mm eingesetzt. Es ist jedoch auch möglich, andere organische oder anorganische Fasern zu verwenden bzw. beizumengen.
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispieles und zugehöriger Zeichnungen näher erläutert. Es zeigen:
  • Figur 1
    die Prinzipdarstellung einer Anlage zur Herstellung von Faservlies unter Verwendung einer Krempeleinheit 1 in dreidimensionaler Darstellung,
    Figur 2
    die Seitenansicht gemäß Fig. 1.
    Figur 3
    die Prinzipdarstellung einer Anlage zur Herstellung von Faservlies unter Verwendung einer Krempeleinheit 1 und mit einer nachfolgenden Beschichtungseinrichtung und einer Verfestigungseinrichtung in der Seitenansicht,
    Figur 4
    die Prinzipdarstellung einer Anlage zur Herstellung von Faservlies unter Verwendung einer Faseröffnungs- und Verteilungseinheit 10 in der Vorderansicht.
  • Gemäß Figur 1 bis 3 besteht die Anlage aus einer Faseröffnungseinrichtung in Form einer Krempeleinheit 1, welcher aufbereitete und bereits teilweise geöffnete Fasern zugeführt werden. Die Ausgangsbasis bilden dabei bündelartige zusammenhängende Glasfasern in Form von Stapelfasern mit einer Länge bis 200mm bei einem Durchmesser von 0,009 bis 0,025 mm, die aus gezogenen Endlosfasern hergestellt wurden.
  • In der Krempeleinheit 1 erfolgt das Vereinzeln in einzelne Fasern und deren orientierte Ausrichtung. Die Krempeleinheit 1 weist dazu eine Aufnahmewalze 1.1 zum Aufnehmen der Fasern, zwei voneinander beabstandete Arbeitswalzen 1.2, denen jeweils eine Walze 1.3 (Wender) zugeordnet ist, und eine Abgabewalze 1.4 auf. Die Walzen 1.1 bis 1.4 sind um eine Zentralwalze 1.5 herum angeordnet.
  • Aus der Krempeleinheit 1 gelangt der dort aus den Glasfasern erzeugte einlagige Faserflor F (siehe Figur 3) auf ein Zuführband/Steigband 2 und wird mit einer hohen Geschwindigkeit durch dieses zu der ersten Einheit 3 transportiert, in welcher die im Wesentlichen in eine Richtung ausgerichteten Fasern des Faserflors F in eine Wirrlage umorientiert werden.
  • Dabei wird das Volumen des Faserflors F wesentlich erhöht und kann mit anderen Materialien gemischt werden.
  • Während des Transportes des Faserflors F kann das Faserflor F mit einem Bindemittel, Granulat G (z.B. aus thermoplastischem Werkstoff) oder anderen Fasern aus einem Streuaggregat 2.1 infiltriert werden, das beispielsweise über dem Steigband 2 (s. Figur 3) angeordnet ist oder das Streuaggregat 2.1 wird auf oder in der Einheit 3 angeordnet (nicht dargestellt). Dadurch ist es möglich, die Fasern thermisch zu binden, was für eine spätere dreidimensionale Umformung wichtig ist. Weiterhin können auch mehrere Streuaggregate Verwendung finden, z.B. ein Streuaggregat zum Einbringen von Bindemittel, ein weiters zum Einbringen anderer Fasern usw..
  • Unter der ersten Einheit 3 befindet sich die zweite Einheit 4, in die das Faserflor F (siehe Figur 3) nun gelangt und in welcher aus den sich in Wirrlage befindlichen Fasern ein homogenes einlagiges Faservlies FL gelegt/gebildet wird. Die erste und die zweite Einheit 3, 4 sind dabei nur schematisch angedeutet. Die Dicke und das Gewicht des Faservlieses FL kann durch unterschiedliche Geschwindigkeitseinstellungen variiert werden. Dabei ist hervorzuheben, dass ohne übliche Querlegung oder Kreuzlegung eine bis zu 50 fache Erhöhung des Florgewichtes pro Flächeneinheit erzielbar ist.
  • In der Einheit 4 wird auf einem Ablageband 7 das Faservlies FL gebildet, welches durch ein Transportband 8 weitertransportiert wird und z.B. auf eine Rolle gewickelt wird (nicht dargestellt).
  • Gemäß Figur 3 kann das so erzeugte homogene einlagige Faservlies FL anschließend mittels einer Beschichtungseinrichtung 5 zur Oberflächenversiegelung mit Wasserglas, Kunststoff, Kleber oder Harz beschichtet werden. Nach dem Beschichten wird das Faservlies FL mittels einer Einrichtung zur Verfestigung 6 verfestigt, z.B. durch Vernadeln oder thermisch.
  • Das Versiegeln des Faservlieses FL kann auch erst nach dem Verfestigen erfolgen.
  • Aus dem Faservlies FL werden Matten hergestellt bzw. zugeschnitten, die in vielfältigster Weise zur Wärmedämmung und/oder zur Schalldämmung einsetzbar sind.
  • Das Faservlies FL bzw. die daraus hergestellten Matten besitzen eine weiche seidenartige Oberfläche, die nicht mehr an Glasfasern erinnert. Weiterhin werden insbesondere durch das Versiegeln und das Vernadeln keine Glasfasern mehr unerwünscht freigesetzt.
  • Alternativ ist es möglich, gemäß Figur 4 die Faseröffnungseinrichtung durch eine Faseröffnungs- und Verteilungseinheit 10 (die die Krempeleinheit 1 ersetzt) zu bilden, wodurch eine günstigere Vereinzelung und Öffnung der Fasern unter Beibehaltung einer hier nicht orientierten Lage erzielt wird. Die Faseröffnungs- und Verteilungseinheit 10 besteht im Wesentlichen aus einem oder mehreren Faseröffnungsaggregaten 11 (hier zwei) sowie einer oder mehreren Faservereinzelungsanlagen 12 (hier drei) und ersetzt die gesamte herkömmliche Faseröffnungsstrecke über Voröffnung und Krempelung (Krempeleinheit 1 und davor angeordnete Einrichtungen zum teilweise Vereinzeln und Öffnen der Fasern). Gleichzeitig wird durch die unmittelbar hintereinander angeordneten Faservereinzelungsanlagen 12 eine gleichmäßige Verteilung über die gesamte Arbeitsbreite realisiert. Es ist damit möglich, ein noch höheres Volumen des Faserflors F zu erzeugen.
  • Jedes Faseröffnungsaggregat 11 weist hier zwei Einzugswalzen 11.1 und eine Zentralwalze 11.2, die mit Nadeln oder hakenähnlichen Elementen bestückt ist (nicht bezeichnet) auf. Um jede Zentralwalze 11.2 herum sind jeweils zwei kleinere Walzen 11.3 angeordnet, die wiederum mit Nadeln oder hakenähnlichen Elementen (nicht bezeichnet) bestückt sind. Vorteilhafterweise ist zwischen den Einzugswalzen 11.1 und der folgenden kleineren Walze 11.3 eine starre Nadelleiste 11.4 angeordnet, die von der Zentralwalze 11.2 durchkämmt wird. Die Fasern können per Luft oder mechanisch über eine Abgabewalze (nicht dargestellt) abgezogen werden.
  • Den beiden Faseröffnungsaggregaten 11 sind hier die drei Faserverteilungsanlagen 12 nachgeschaltet, die unmittelbar hintereinander angeordnet sind. Den Faserverteilungsanlagen ist jeweils ein Faserspeicher 12.1 mit einer nachfolgenden gleichmäßigen Verteilung der Fasern über die Arbeitsbreite durch Zusammenwirken eines nadel- oder hakenähnlich bestückten Bandes 12.2 mit entsprechend angeordneten Abschlag- und Rückstreifwalzen 12.3 vorgesehen, wobei die Fasern ebenfalls über ein Transportband 12.4 dem nadel- oder hakenähnlich bestückten Band 12.2 zugeführt werden.
  • Aus der Faseröffnungs- und Verteilungseinheit 10 gelangt das einlagige Faserflor F, welches aus den vereinzelten Glasfasern gebildet wird, ebenfalls über ein Steigband 2 in die erste Einheit 3, in welcher die Fasern des Faserflors F in eine Wirrlage umorientiert werden. Unter der ersten Einheit 3 befindet sich die zweite Einheit 4, in die das Faserflor F (siehe Figur 3) nun gelangt und in welcher die Bildung/das Legen des homogenen einlagigen Faservlieses FL mit in Wirrlage befindlichen Fasern erfolgt. Dazu kann die zweite Einheit 4 das Faservlies auch mittels Unterdruck aufbauen. Dadurch, dass bereits das aus Glasfasern bestehende Faserflor F ein hohes Volumen aufweist, wird das Volumen des mit der zweiten Einheit 4 gelegten Faserflors FL aus den sich in Wirrlage befindlichen Fasern noch mehr erhöht, wodurch sich die dämmenden Eigenschaften noch mehr als bei der Verwendung einer Krempeleinheit verbessern.
  • Auch hier ist es möglich, dem Faserflor F oder dem Faservlies FL Bindemittel/Granulat (z.B. aus thermoplastisch- / phenoplastischem Werkstoff) oder andere Fasern beizufügen.
  • Das Infiltrieren mit thermoplastisch- / phenoplastischem Bindemittel erfolgt bevorzugt ebenfalls über dem Steigband 2 und/oder in der ersten Einheit 3 mittels eines nicht dargestellten Streuaggregates. Die Beimengung anderer Fasern kann am Beginn der Verarbeitungsstrecke und/oder oder in der ersten Einheit erfolgen. Bei der Variante gemäß Figur 4 ist es auch möglich, andere Fasern und/oder Bindemittel in einem Faseröffnungsaggregat 11 und/oder einer Faservereinzelungsanlage 12 den Glasfasern beizumengen, bevorzugt durch Einstreuen mittels eines oder mehrerer nicht dargestellten Streuaggregate.
  • Gemäß einem nicht dargestellten Ausführungsbeispiel ist es auch möglich, mehrere Faseröffnungseinrichtungen, die gleich oder unterschiedlich konfiguriert sein können, zu verwenden. Beispielsweise kann eine Faseröffnungseinrichtung in Form einer Faseröffnungs- und Verteilungseinheit (gem. Figur 4) und eine Faseröffnungseinrichtung in Form einer Krempeleinheit 1 (Fig. 1 bis 3) vor der Einheit 3 miteinander kombiniert werden. Es kann beispielsweise zuerst wenigstens eine Faseröffnungs- und Verteilungseinheit und danach wenigstens eine Krempeleinheit vorgesehen werden.
  • Die aus dem Faservlies hergestellten Matten sind weitestgehend elastisch und gehen dadurch nach dem Zusammendrücken auf ihre ursprüngliche Dicke zurück.
  • Es sind keine störenden Aluminiumkaschierungen vorhanden, die sich insbesondere bei notwendigen elektrischen Kontaktierungen negativ auswirken können. Weiterhin ist keine spezielle Vorder- beziehungsweise Rückseite vorhanden, wodurch sich der Einbau der Matten aus dem erfindungsgemäßen Faservlies einfacher gestaltet.
  • Durch das wahlweise Einbringen von Bindemittel, Granulat oder anderen Fasern kann nach entsprechender thermischer oder chemischer Verfestigung eine Fasermatte hergestellt werden, die durch anschließende Umformung eine 3-dimensionale Gestalt annehmen kann.
  • Das wesentliche Anwendungsgebiet sind dabei bevorzugt Küchengeräte für den privaten und/oder gewerblichen Bedarf, bei welchen eine gute Wärmedämmung erforderlich ist, z.B. Kochherde, Mikrowellen, Heißluftgargeräte, Waschmaschinen, Wäschetrockner usw. Es ist jedoch auch möglich, die Glasfasermatten in Fahrzeugen oder in der Bauindustrie einzusetzen. Dabei sind je nach Anwendungsgebiet einfache einschichtige Glasfasermatten einsetzbar, die auf einer oder beiden Seiten beschichtet sein können (z.B. mit Wasserglas) und die beispielsweise in Küchenherden oder anderen vorgenannten Anwendungsgebieten eingesetzt werden. Weiterhin ist es möglich Formteile aus thermoverfestigten einschichtigen Glasfasermatten herzustellen, die beispielsweise als Stütz- und/oder Versteifungs- bzw. Verstärkungselemente dienen und insbesondere im Fahrzeugbereich Anwendung finden.
  • Alternativ können die Glasfasermatten, die aus dem Faservlies hergestellt werden, die Ausgangsbasis als Halbzeug für die Herstellung von Formkörpern mit einer Kaschierung oder einem anderen Schichtaufbau bilden. In diesem Fall werden die Glasfasermatten mit einem Bindemittel infiltriert und insbesondere gemeinsam mit den anderen Materialien zu einem Formteil verpresst.
  • Das Faservlies kann als ununterbrochene Ware z.B. auf Rollen an einen Verbraucher geliefert werden, der diese dann Zuschneidet und weiterverarbeitet.
  • Es ist auch möglich, das Faservlies bei dessen Hersteller zu Halbzeugen oder Finalprodukten zu verarbeiten.
  • Durch die Verwendung von Glasfasern aus gezogenen Endlosfasern mit einem einheitlichen Filamentedurchmesser, die in eine einheitlichen Länge getrennt wurden und als Stapelfasern vorliegen, kann durch die nur zweistufige Verarbeitung in der
    • Faseröffnungseinrichtung (Krempeleinheit 1 und/oder Faseröffnungs- und Verteilungseinheit 10) in welcher eine Vereinzelung und Verteilung der Glasfasern zu einem Faserflor F aus losen Glasfasern erfolgt
      und der
    • ersten Einheit, in welcher die Glasfasern des Faserflors Fin eine Wirrlage bei einer Volumenvergrößerung umorientiert werden,
  • in Verbindung mit der zweiten Einheit 4, in welcher der Aufbau des Faservlieses FL mit einem größeren Flächengewicht im Vergleich zum Faserflor F erfolgt, ein Faservlies FL aus Glasfasern erzeugt werden, welches nur eine Lage aufweist und homogen ist und dabei eine größere Dicke hat, als das Faserflor F, welches die Ausgangsbasis bildet.
  • Dies war bisher nur mit einer aufwendigen Legetechnik möglich, bei welcher unter Anwendung eines Kreuzlegers mehrere Bahren des Faserflors übereinander gelegt wurden. Dadurch, dass auf den Kreuzleger verzichtet werden kann, der teuer ist und einen großen Platzbedarf benötigt, wird eine einfache, kostengünstige und einen geringen Bauraum benötigende Anlage zur Herstellung von Faservlies aus Glasfasern geschaffen, die im Vergleich zu herkömmlichen Lösungen auch wesentlich störunanfälliger arbeitet und wartungsarm ist.
  • Bezugszeichenliste
  • 1
    Krempeleinheit
    1.1
    Aufnahmewalze
    1.2
    Arbeitswalzen
    1.3
    Wender
    1.4
    Abgabewalze
    1.5
    Zentralwalze
    2
    Steigband
    2.1
    Streuaggregat
    3
    erste Einheit
    4
    zweite Einheit
    5
    Beschichtungseinheit
    6
    Einrichtung zur Verfestigung
    7
    Ablageband
    8
    Transportband
    10
    Faseröffnungs- und Verteilungseinheit
    11
    Faseröffnungsaggregat
    11.1
    Einzugswalzen
    11.2
    Zentralwalze
    11.3
    kleine Walzen
    11.4
    Nadelleiste
    12
    Faservereinzelungsanlagen
    12.1
    Faserspeicher
    12.2
    Band
    12.3
    Abschlag- und Rückstreifwalzen
    F
    Faserflor
    FL
    Faservlies
    G
    Granulat

Claims (11)

  1. Anlage zur Herstellung von Faservlies auf der Basis von Glasfasern, für Dämm- und/oder Isolierzwecke und/oder als Verstärkungs- oder Versteifungsteil bestehend aus
    - wenigstens einer Faseröffnungseinrichtung zur Auflösung und zur orientierten oder nicht orientierten Ausrichtung der Glasfasern und Bildung eines Faserflors (F), einer ersten Einheit (3) zur Umorientierung der orientierten oder nicht orientierten Fasern des Faserflors (F) in Fasern, die eine Wirrlage einnehmen, wobei das Volumen des Faserflors erhöht/die Dichte des Faserflors (F) verringert wird, so dass viele Lufteinschlüsse im Faserflor vorhanden sind, einem Steigband (2) welches den Faserflor (F) aus der Faseröffnungseinrichtung mit einer Geschwindigkeit zur ersten Einheit (3) fördert,
    - einer zweiten Einheit (4) auf welcher auf einem Ablageband (7) ein homogenes einlagiges Faservlies (FL) mit Fasern in Wirrlage aus dem Faserflor (F) der ersten Einheit (3) gebildet wird, dessen Flächengewicht ein Vielfaches des Flächengewichtes des Faserflors (F) beträgt,
    - wobei die Vorlaufgeschwindigkeit des Ablagebandes (7) zur Erhöhung des Flächengewichtes des homogenen Faservlieses (FL) im Vergleich zur Geschwindigkeit des Steigbandes (2) verringerbar ist derart,
    - dass die zweite Einheit (4) das homogene einlagige Faservlies (FL) mit einer bis zu 50-fachen Erhöhung des Florgewichtes aus den in Wirrlage befindlichen Fasern mittels Unterdruck auf dem Ablageband (7) aufbaut.
  2. Anlage nach Anspruch 1, dadurch gekennzeichnet, dass die Faseröffnungseinrichtung durch eine Krempeleinheit (1) und/oder oder wenigstens eine Faseröffnungs- und Verteilungseinheit (10) gebildet wird.
  3. Anlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Faseröffnungseinrichtung (1, 10) vor der ersten Einheit (3) angeordnet ist und dass die zweite Einheit (4) der ersten Einheit (3) nachgeschaltet ist.
  4. Anlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die erste Einheit (3) und die zweite Einheit (4) übereinander angeordnet sind.
  5. Anlage nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass über dem Steigband (2) und/oder über/in der ersten Einheit (3) wenigstens ein Streuaggregat (2.1) zur Einbringung von Bindemittel, Granulat (G) oder anderen Fasern auf/in das Faserflor (F) angeordnet ist.
  6. Anlage nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die erste Einheit (3) zur Umorientierung der Fasern des Faserflors (F) in eine Wirrlage wenigstens zwei mit Nadeln und/oder Haken versehene Walzen aufweist.
  7. Anlage nach Anspruch 6, dadurch gekennzeichnet, dass in der ersten Einheit (3) die Walzen und ein Luftstrom zur Umorientierung der Fasern in eine Wirrlage kombiniert sind.
  8. Anlage nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sich an die zweite Einheit (4) eine Einrichtung zur Verfestigung (5) (thermische Verfestigung oder mechanische Verfestigung/Vernadeln) des Faservlieses (FL) anschließt.
  9. Anlage nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sie eine Beschichtungseinrichtung (6) zur Oberflächenversiegelung des Faservlieses (FL) an einer oder beiden Seiten mittels Wasserglas oder Kunststoff oder Kleber oder Harz aufweist.
  10. Verfahren zur Herstellung von Faservlies auf der Basis von Glasfasern für Dämm- und/oder Isolierzwecke und/oder als Verstärkungs- oder Versteifungsteil
    - wobei aus Glasfasern, die in Form von Stapelfasern vorliegen, in einer Faseröffnungseinrichtung eine Auflösung und Vereinzelung der Glasfasern zu einem Faserflor (F) mit einer orientierten oder nicht orientierten Ausrichtung der Glasfasern erfolgt, der Faserflor (F) über ein Steigband (2) mit einer Geschwindigkeit einer ersten Einheit (3) zugeführt wird, in welcher eine Umorientierung der Fasern des Faserflors (F) in Fasern, die eine Wirrlage einnehmen erfolgt, wobei das Volumen des Faserflors (F) erhöht/die Dichte des Faserflors (F) verringert wird, so dass viele Lufteinschlüsse im Faserflor (F) vorhanden sind
    - und anschließend in einer zweiten Einheit (4) auf einem Ablageband (7) ein homogenes einlagiges Faservlies (FL) mit Fasern in Wirrlage aus dem Faserflor (F) der ersten Einheit (3) erzeugt wird, dessen Flächengewicht ein Vielfaches des Flächengewichtes des Faserflors (F) beträgt, wobei zur Erhöhung des Flächengewichtes des homogenen Faservlieses (FL) die Vorlaufgeschwindigkeit des Ablagebandes (7) im Vergleich zur Geschwindigkeit des Transportmittels/des Steigbandes (2) verringert wird derart,
    - dass durch die Verringerung der Vorlaufgeschwindigkeit des Ablagebandes (7) eine bis zu 50 fache Erhöhung des Florgewichtes des hergestellten Faservlieses (FL) im Vergleich zum Florgewicht des Faserflors (F) erzeugt und dabei ein einlagiges homogenes Faservlies (FL) aus Glasfasern mittels Unterdruck auf dem Ablageband (7) aufgebaut wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass in das Faserflor (F) Bindemittel, Granulat oder andere zusätzliche Fasern einzeln oder in Kombinationen infiltriert werden.
EP10781593.8A 2009-09-24 2010-09-23 Anlage und verfahren zur herstellung von faservlies auf der basis von glasfasern und damit hergestelltes faservlies Active EP2480709B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10781593T PL2480709T3 (pl) 2009-09-24 2010-09-23 Linia produkcyjna i sposób produkcji włókniny na bazie włókien szklanych oraz wyprodukowana w ten sposób włóknina

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202009012819U DE202009012819U1 (de) 2009-09-24 2009-09-24 Anlage zur Herstellung von Faservliesmatten und damit hergestelltes Faservlies
PCT/DE2010/075094 WO2011035782A1 (de) 2009-09-24 2010-09-23 Anlage und verfahren zur herstellung von faservlies auf der basis von glasfasern und damit hergestelltes faservlies

Publications (2)

Publication Number Publication Date
EP2480709A1 EP2480709A1 (de) 2012-08-01
EP2480709B1 true EP2480709B1 (de) 2015-09-30

Family

ID=43417102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10781593.8A Active EP2480709B1 (de) 2009-09-24 2010-09-23 Anlage und verfahren zur herstellung von faservlies auf der basis von glasfasern und damit hergestelltes faservlies

Country Status (4)

Country Link
EP (1) EP2480709B1 (de)
DE (2) DE202009012819U1 (de)
PL (1) PL2480709T3 (de)
WO (1) WO2011035782A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012008931B4 (de) * 2012-05-04 2014-08-21 Trützschler GmbH & Co Kommanditgesellschaft Verfahren und Vorrichtung zur Einstellung der Faserorientierung an Krempelanlagen
DE202014100908U1 (de) 2014-02-27 2015-05-28 Autefa Solutions Germany Gmbh Kardiereinrichtung
CN107287767A (zh) * 2017-06-15 2017-10-24 唐新雄 改进型吸液无纺布及其制备方法
DE102020001262A1 (de) 2020-02-27 2021-09-02 Hubert Hergeth Verfahren zur Herstellung eines Faservlieses mit unterschiedlicher Faserorientierung
CN114261113B (zh) * 2021-12-28 2023-12-05 北新建材(天津)有限公司 一种净醛玻毡板生产装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338777A (en) * 1966-05-11 1967-08-29 Pittsburgh Plate Glass Co Fiber glass mat and method of making same
US20030208891A1 (en) * 2002-05-08 2003-11-13 Massoud Mohammadi Insulative non-woven fabric and method for forming same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2702069A (en) * 1951-01-30 1955-02-15 Owens Corning Fiberglass Corp Method for forming fibrous mats
NL107696C (de) 1956-02-16
CH358736A (de) 1959-08-05 1961-11-30 Saint Gobain Verfahren zur Herstellung von Isoliermaterial, welches aus Glasfasermatten oder -vliesen besteht
GB1154324A (en) * 1965-08-27 1969-06-04 Cape Insulation Ltd Heat Insulating Materials
DE2436539B2 (de) * 1974-07-30 1976-09-02 Nichtgewebtes textiles flaechengebilde und verfahren zu seiner herstellung
DE2511945A1 (de) * 1975-03-19 1976-09-30 Krupp Gmbh Verfahren zur bildung eines wirrfaservlieses mit annaehernd gleicher laengsund querfestigkeit und vorrichtung zur durchfuehrung des verfahrens
FR2316364A1 (fr) * 1975-06-30 1977-01-28 Rudloff Bernard Procede de nappage de non-tisses et dispositif pour la mise en oeuvre de ce procede
DD218913B1 (de) * 1983-03-25 1988-06-15 Univ Dresden Tech Verfahren und einrichtung zur herstellung von faservlies
DD256880A1 (de) * 1986-12-31 1988-05-25 Univ Dresden Tech Einrichtung zum umorientieren
DD262142A3 (de) * 1986-12-31 1988-11-23 Univ Dresden Tech Einrichtung zur musterung, strukturierung und veraenderung der flaechenmasse
DE3701745A1 (de) * 1987-01-22 1988-08-04 Hollingsworth Gmbh Verfahren und vorrichtung zur herstellung von faserfloren aus uebereinander liegenden florlagen
DE3721715A1 (de) 1987-07-01 1989-01-12 Vaw Ver Aluminium Werke Ag Verbundwerkstoff aus aluminium und glasfasermatten und verfahren zu seiner herstellung
FI83888C (fi) * 1988-02-17 1991-09-10 Pargro Oy Ab Foerfarande och apparatur foer framstaellning av en fiberprodukt.
DE3905541A1 (de) 1989-02-23 1990-08-30 Spinnbau Gmbh Krempel zur herstellung von wirr- oder laengsorientiertem faservlies
EP0914916A1 (de) 1997-11-04 1999-05-12 Materials Technics Société Anonyme Holding Verfahren zur Herstellung eines Verbundmaterials
HU228317B1 (en) 1998-04-06 2013-03-28 Rockwool Int Man-made vitreous fibre batts and their production
DE10329648B4 (de) * 2003-07-01 2005-06-16 Oskar Dilo Maschinenfabrik Kg Vorrichtung zur Vliesbildung
DE102004021453A1 (de) 2004-04-29 2005-11-17 Concert Gmbh Formkopf und Verfahren zum Herstellen eines Faservlieses
DE102008024943B4 (de) * 2007-08-22 2017-10-26 Eswegee Vliesstoff Gmbh Verfahren zur Herstellung eines Grundvliesstoffes als Beschichtungsträger
PL2205838T3 (pl) * 2007-10-09 2014-10-31 3M Innovative Properties Co Maty mocujące zawierające nieorganiczne nanocząstki i sposób ich wytwarzania

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338777A (en) * 1966-05-11 1967-08-29 Pittsburgh Plate Glass Co Fiber glass mat and method of making same
US20030208891A1 (en) * 2002-05-08 2003-11-13 Massoud Mohammadi Insulative non-woven fabric and method for forming same

Also Published As

Publication number Publication date
EP2480709A1 (de) 2012-08-01
WO2011035782A1 (de) 2011-03-31
DE202009012819U1 (de) 2011-02-10
PL2480709T3 (pl) 2016-03-31
DE102010037731A1 (de) 2011-03-31

Similar Documents

Publication Publication Date Title
EP2536545B1 (de) Verfahren zur herstellung von pellets aus faserverbundwerkstoffen
EP2536546B1 (de) Verfahren zur herstellung eines plattenförmigen halbzeugs aus faserverbundwerkstoff, und das so erhaltene halbzeug
DE69302744T2 (de) Verfahren zur Herstellung von vliesstoffähnlichem Material das Mineralfasern und Bindemittel enthält und daraus erhaltene Produkte
EP1776496A1 (de) Formkopf und verfahren zum herstellen eines faservlieses
EP2630287B1 (de) Verfahren und vorrichtung zur herstellung eines verbundvlieses
EP2480709B1 (de) Anlage und verfahren zur herstellung von faservlies auf der basis von glasfasern und damit hergestelltes faservlies
DE2756503A1 (de) Verfahren und vorrichtung zur herstellung von mineralwolle-faserplatten
EP3009551B1 (de) Verfahren zum ausbilden eines textilen materials unter verwendung von hanf und faserverbundwerkstoff aus diesem textilen material
DD283660A5 (de) Faservlies aus waermebestaendigem material, sowie ein verfahren und eine vorrichtung zu seiner herstellung
EP2963167B1 (de) Verfahren zur Herstellung von Faservliesmatten, insbesondere Dämmstoffmatten, sowie die nach diesem Verfahren erhältlichen Faservliesmatten
EP1056892B1 (de) Vorrichtung und verfahren zur herstellung eines faserverbundes
EP2125438B1 (de) Verfahren und vorrichtung zur herstellung eines formteils sowie formteil als wärme- und/oder schalldämmelement
WO2003033226A1 (de) Fasermatte, daraus hergestelltes formteil und verfahren zu dessen herstellung
DE3325643C2 (de) Bauplatte sowie Verfahren und Vorrichtung zu ihrer Herstellung
DE1510427B1 (de) Verfahren und Vorrichtung zum Herstellen von Faserstoff-Formkoerpern,insbesondere Saugkoerpern fuer Damenbinden
EP0392983B1 (de) Verfahren zum Herstellen eines geformten Bauelements
DE102004053131A1 (de) Flächiges Halbzeug aus einem Faserverbundwerkstoff und Verfahren zur Herstellung eines Formteils
EP4168616B1 (de) Kontinuierliches faservlies-herstellungsverfahren sowie zugehörige faservlies-herstellungsanordnung und faservliesplatine
AT410552B (de) Vorrichtung zum thermischen verfestigen eines faservlieses aus mit bindefasern gemischten naturfasern, insbesondere hanffasern
DE69937842T2 (de) Verfahren zur herstellung einer matte sowie daraus hergestellte gegenstände
WO2021152163A1 (de) Mischvorrichtung zur erzeugung einer mischung aus mineralfasern und bindemitteln, anlage zur erzeugung einer mineralfasermatte und verfahren zur erzeugung einer mischung aus mineralfasern und bindemitteln
DE1510427C (de) Verfahren und Vorrichtung zum Herstel len von Faserstoff Formkorpern, msbeson dere Saugkorpern fur Damenbinden
WO2023104365A1 (de) Anlage und verfahren zur herstellung eines ein- oder mehrlagigen vlieses
WO2013102592A1 (de) Vorrichtung und verfahren zur herstellung eines mineralwollefaserteils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130506

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150708

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 752488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010010393

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151231

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010010393

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

26N No opposition filed

Effective date: 20160701

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160923

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 752488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160923

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190924

Year of fee payment: 10

Ref country code: NL

Payment date: 20190923

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190924

Year of fee payment: 10

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20201001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230911

Year of fee payment: 14

Ref country code: DE

Payment date: 20230608

Year of fee payment: 14