EP2478400B1 - Filtres de modes transversaux pour guide d'onde - Google Patents

Filtres de modes transversaux pour guide d'onde Download PDF

Info

Publication number
EP2478400B1
EP2478400B1 EP10810745.9A EP10810745A EP2478400B1 EP 2478400 B1 EP2478400 B1 EP 2478400B1 EP 10810745 A EP10810745 A EP 10810745A EP 2478400 B1 EP2478400 B1 EP 2478400B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
transverse
fabry
mode
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10810745.9A
Other languages
German (de)
English (en)
Other versions
EP2478400A2 (fr
Inventor
Jens Ulrich Thomas
Christian VOIGTLÄNDER
Stefan Nolte
César JÁUREGUI MISAS
Fabian Stutzki
Jens Limpert
Andreas TÜNNERMANN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Friedrich Schiller Universtaet Jena FSU
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Friedrich Schiller Universtaet Jena FSU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Friedrich Schiller Universtaet Jena FSU filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2478400A2 publication Critical patent/EP2478400A2/fr
Application granted granted Critical
Publication of EP2478400B1 publication Critical patent/EP2478400B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29356Interference cavity within a single light guide, e.g. between two fibre gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/021Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the core or cladding or coating, e.g. materials, radial refractive index profiles, cladding shape

Definitions

  • the invention relates to a transversal mode filter in an optical waveguide.
  • Transverse mode filters in optical waveguides play an important role in the improvement of fiber lasers, among other things.
  • Fiber lasers have been developed in recent years a wide range of applications by their compactness, temperature stability and high efficiency. They are used, for example, in medicine or material processing.
  • an optical fiber as the active medium, a monolithic structure of the fiber laser is made possible.
  • a monolithic construction avoids the typical weak points of other laser types, in particular a complex adjustment of the input and output coupling mirrors, which, if not correctly implemented, can result in considerable power losses of the resonator.
  • LMA fibers Large Mode Area
  • LMA fibers have a larger core diameter than ordinary single mode fibers, with a small numerical aperture making them only one as small as possible a number of transversal modes.
  • the larger core area in LMA fibers now ensures a lower power density within the fiber core, which, in addition to the fundamental mode, thereby also leads to several transverse modes. The transverse modes in turn affect the stability and beam quality of the laser beam.
  • the US 5 048 913 describes a transversal mode filter with an optical waveguide with an elongate multimode core. At least one Bragg grating is embedded in the core. The grating pitch of the Bragg grating is tuned such that the light reflected from the grating constructively interferes with one mode while the light from any other mode traverses the grating in the original propagation direction without attenuation.
  • the invention proposes a transversal mode filter with the features of claim 1.
  • the spectral plies i. the wavelengths of the individual resonances of the Fabry-Perot cavity depend on the length of the cavity and the effective refractive index of the corresponding transverse mode within the cavity.
  • the filter is designed such that different optical path lengths are generated within the cavity depending on the mode. This leads to a mode-dependent shift of the resonances of the Fabry-Perot cavity. Those modes of the optical waveguide in which the Fabry-Perot cavity is non-resonant are reflected, others transmitted. This results in a filter mechanism for certain modes of the optical waveguide.
  • the Fabry-Perot cavity is configured so that at least the wavelength of a first mode of the optical waveguide differs from the resonant wavelengths of the Fabry-Perot cavity.
  • This first mode can not pass the Fabry-Perot cavity, so it is strongly reflected at this.
  • the wavelength of at least one second mode substantially coincides with one of the resonant wavelengths of the Fabry-Perot cavity. This means that the spectral lines of the corresponding resonance of the Fabry-Perot cavity and the second mode must overlap at least partially.
  • the second mode thus passes the Fabry-Perot cavity and is correspondingly only weakly reflected at this. If one uses the arrangement in the reflection direction, the first mode is selected accordingly and the second mode is suppressed. This results in the filter effect according to the invention.
  • the waveguide in the region of the Fabry-Perot cavity and / or in the region of the reflective elements is modified with respect to the effective refractive index of at least one mode of the waveguide with respect to the remaining regions of the waveguide.
  • the reflection spectra of the reflective elements of the inventive filter have multiple resonances (e.g., one for each transverse mode), e.g. by, as described below, the reflective elements are formed as Bragg gratings in a multi-mode waveguide.
  • the different effective refractive indices of the transverse modes lead to different Bragg wavelengths for the different modes.
  • the transverse modes thus show different wavelengths and are spectrally separated from each other.
  • the optical waveguide is a light-conducting fiber with fiber core and fiber cladding.
  • the fiber core may have a refractive index variation running transversely to the fiber axis within the Fabry-Perot cavity. Due to the refractive index variation, the above-described filter effect according to the invention is realized, namely, within the fiber depending on the mode, different optical path lengths are generated. It can be z. B. increase the optical path length in the vicinity of the fiber axis, while in the manteleln areas a smaller optical path length occurs. The refractive index variation across the cross-section of the fiber will affect the geometrically different Field distribution of the modes differently on their respective optical path length.
  • the fiber cladding within the Fabry-Perot cavity can have a refractive index variation running transversely to the fiber axis in order to achieve the described effect.
  • the refractive index variation of the fiber cladding may be provided individually or in addition to the refractive index variation of the fiber core.
  • the fiber core and / or the fiber cladding in the region of at least one of the reflective elements have a refractive index variation running transversely to the fiber axis or another transverse inhomogeneity. This also makes it possible to realize the desired filter effect.
  • the transverse refractive index variation described above can have a step progression or a gradient curve. Possible are e.g. transversely to the longitudinal axis of the waveguide circular, annular, cross-shaped or square refractive index variation geometries. It is also possible that the refractive index variation is different in the direction of two orthogonal transverse axes of the waveguide. In this case, a polarization-dependent filter effect results.
  • the Fabry-Perot cavity according to the invention can be completely inscribed by conventional laser methods in an optical waveguide.
  • pulsed fs laser are used, which specifically the local properties such.
  • the reflective elements are waveguide Bragg gratings.
  • Such reflective elements have a narrow band spectrum and can be easily and inexpensively, e.g. as a fiber Bragg grating.
  • the reflective elements can have both identical reflection spectra and different reflection spectra. It is crucial for the function of the Fabry-Perot cavity that the reflection spectra overlap in the region of the waveguide modes to be filtered.
  • the transverse mode filter according to the invention is particularly suitable for use in a laser, in particular in a high-power fiber laser. There is the possibility of realizing a substantially monolithic structure, which is characterized by a high stability and beam quality due to the transversal mode filtering.
  • the transversal mode filter is expediently used directly in the active fiber of the laser.
  • FIG. 1 two cross sections of a fiber core 2 of a photoconductive fiber are shown.
  • the fiber carries two modes LP01 and LP11, their respective different field characteristics 1a and 1b on the basis of in the FIG. 1 shown contour lines is visible. Along each contour line the amplitude of the electric field of the respective mode is constant.
  • Each of these modes is assigned an effective refractive index.
  • the mode with the highest effective refractive index (LP01) is normally the fundamental mode, while the remaining modes (LP11) are called higher order modes.
  • the higher order modes are usually undesirable because they reduce the useful power of the particular optical system. Therefore, there is a need for devices capable of reducing the intensity of the higher order modes relative to the intensity of the fundamental mode.
  • Such devices are transversal mode filters in the sense of the invention.
  • an optical step index fiber 3 is shown. This consists of a fiber core 2 and a surrounding the core fiber cladding 4. A portion of the fiber is shown enlarged.
  • a Fabry-Perot cavity is introduced, which has two reflective elements 5 and a refractive index variation 6.
  • the reflective ones Elements 5 are formed as fiber Bragg gratings. These structures are periodic modifications of the refractive index of the fiber core in the fiber longitudinal direction, which act as a monochromatic mirror.
  • the transverse refractive index modification 6 within the Fabry-Perot cavity is designed as a step index variation.
  • the refractive index within the volume 6 differs to form a sharp index jump in the transverse direction from the refractive index within the remainder of the fiber core 2.
  • the transverse refractive index variation is as in FIG. 2 to be limited to the area of the Fabry-Perot cavity. Outside the reflective elements and the Fabry-Perot cavity, the fiber core 2 is unchanged in refractive index.
  • FIG. 3 illustrates the reflectivity of the Fabry-Perot cavity with fiber Bragg gratings without transverse refractive index variation. If the length of the Fabry-Perot cavity is chosen such that one of its resonances coincides or substantially coincides with the wavelength of a mode of the fiber and simultaneously with the Bragg wavelength of the reflective elements 5, then the wavelengths of all modes falling from the fiber Bragg gratings are combined with the resonances of the Fabry-Perot cavity. In FIG. 3a this situation is shown.
  • the reflection spectrum of the Fabry-Perot cavity is shown as a dashed curve for two transverse modes: the fundamental mode 7 and a higher order mode 9.
  • the reflection spectrum of the Fabry-Perot cavity has a high reflectivity for those wavelengths in which the Fabry-Perot cavity is non-resonant, ie outside the resonance lines 7 and 9. At the resonant wavelengths, the Fabry-Perot cavity is approximately transparent and the light can pass through them.
  • the reflection spectrum of the reflective elements 5 is shown as a solid curve.
  • the overall reflection spectrum of the structure is a combination of the reflection spectra of the cavity and the reflective elements.
  • the resonances 8, 10 of the reflective elements 5 and the resonances 7, 9 of the Fabry-Perot cavity coincide for the two modes.
  • the result is how the total reflection spectrum in FIG. 3b shows that the light as a whole essentially passes the Fabry-Perot cavity.
  • the Total reflectivity is equally reduced for both modes 11, 12. Transverse mode filtering does not take place.
  • FIG. 4 shows the cross section of a fiber core 2 with the inventive refractive index variation 6 within the Fabry-Perot cavity.
  • This structure causes a mode-dependent variation of the optical path length within the fiber core 2.
  • a circular geometry step index variation is shown in the core 2 of an LMA fiber.
  • the field profiles 1a, 1b of the different transverse modes LP01 and LP11 in which the light propagates in the fiber have, like the FIG. 4 shows different regions of overlap with the index-modified region 6.
  • the field profile 1a of the fundamental mode LP01 has a larger overlap with the index-modified region 6 than the field profile 1b of the higher-order mode LP11. This results in a greater change in the optical path length for the fundamental mode LP01 than for the higher order mode LP11.
  • FIG. 5 the reflection spectra of the reflective elements 5 and the Fabry-Perot cavity are shown with fiber Bragg gratings for the case with refractive index variation 6 according to the invention.
  • the index variation 6 within the cavity shifts the optical path length of the different modes to varying degrees. Therefore, the reflection spectra of the reflective elements and the Fabry-Perot cavity are shifted from each other. It turns out, as in FIG. 5a 4, an offset of the wavelengths of the resonance 8 of the reflective elements 5 to the corresponding resonance 7 of the Fabry-Perot cavity for the fundamental mode.
  • the transmission peak 9 in the reflection spectrum of the Fabry-Perot cavity for the higher-order mode remains at the wavelength of the reflection peak 10 of the reflective elements 5.
  • the invention is suitable for separating the fundamental mode from the higher-order mode. With the refractive index modification within the Fabry-Perot cavity, therefore, the desired transverse mode filtering takes place.
  • FIGS. 6 and 7 show different possible geometries of the transverse refractive index modification 6 within the fiber core 2.
  • the invention makes it possible to adapt and optimize the operation of the structure according to the field distribution of the occurring modes.
  • FIG. 6 For example, some possible geometries centered on the waveguide axis are shown. Each of these geometries has a different effect on transversal mode filtering.
  • the geometry in FIG. 6b causes the geometry of the Figures 6a and 6c a polarization dependence of the filtering.
  • the index-modified region 6 can also be arranged according to the invention at the edge of the fiber core 2. In the FIGS.
  • index modifications are shown in the outer region of the fiber core, which do not cause polarization dependence of the filtering, while in geometry FIG. 7b the filtering is polarization dependent.
  • the index modification can also be done in the fiber cladding (not shown).
  • FIG. 8 a transversal mode filter according to the invention is shown in which the fiber core 2 has a transverse refractive index variation 6 in the region of the reflective elements 5.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Integrated Circuits (AREA)

Claims (12)

  1. Filtre à mode transversal prévu dans un guide d'ondes optiques (3),
    le filtre comportant une cavité de Fabry-Perot intégrée dans le guide d'ondes optiques (3) et présentant deux éléments réfléchissants (5) disposés à distance mutuelle,
    le spectre de réflexion des éléments réfléchissants (5) présentant une première longueur d'onde de résonance (8) à laquelle la réflexion est maximale pour un premier mode du guide d'ondes optiques (3) et une deuxième longueur d'onde de résonance (10) à laquelle la réflexion est maximale pour un deuxième mode du guide d'ondes optiques (3), la première longueur d'onde de résonance (8) se distinguant des longueurs d'onde de résonance (7, 9) de la cavité de Fabry-Perot pour le premier mode alors que la deuxième longueur d'onde de résonance (10) coïncide essentiellement avec une longueur d'onde de résonance (9) de la cavité de Fabry-Perot pour le deuxième mode.
  2. Filtre à mode transversal selon la revendication 1, dans lequel le guide d'ondes (3) est modifié au niveau de la cavité de Fabry-Perot et/ou au niveau des éléments réfléchissants (5) en termes d'indice de réfraction efficace d'au moins un mode du guide d'ondes par rapport aux autres parties du guide d'ondes.
  3. Filtre à mode transversal selon les revendications 1 ou 2, dans lequel le guide d'ondes optiques (3) présente à l'intérieur de la cavité de Fabry-Perot une variation d'indice de réfraction qui s'étend transversalement par rapport à l'axe du guide d'onde.
  4. Filtre à mode transversal selon l'une des revendications 1 à 3, dans lequel le guide d'ondes (3) présente au niveau d'au moins l'un des éléments réfléchissants (5) une variation (6) d'indice de réfraction qui s'étend transversalement par rapport à l'axe du guide d'ondes, ou une inhomogénéité transversale.
  5. Filtre à mode transversal selon l'une des revendications 1 à 4, dans lequel les éléments réfléchissants (5) sont des grilles de Bragg de guide d'ondes.
  6. Filtre à mode transversal selon l'une des revendications 1 à 5, dans lequel les éléments réfléchissants (5) présentent le même spectre de réflexion.
  7. Filtre à mode transversal selon l'une des revendications 3 à 6, dans lequel la variation (6) de l'indice de réfraction présente une évolution en gradins ou une évolution en gradient.
  8. Filtre à mode transversal selon l'une des revendications 3 à 7, dans lequel la géométrie de la variation (6) de l'indice de réfraction est circulaire, elliptique, annulaire, en croix, en rectangle ou en carré.
  9. Filtre à mode transversal selon l'une des revendications 3 à 8, dans lequel la variation (6) de l'indice de réfraction est différente dans la direction de deux axes transversaux mutuellement perpendiculaires du guide d'onde.
  10. Filtre à mode transversal selon l'une des revendications 1 à 9, dans lequel le guide d'ondes optiques (3) est une fibre conduisant la lumière.
  11. Laser, en particulier laser à fibres, doté d'un filtre à mode transversal selon l'une des revendications 1 à 10.
  12. Utilisation comme filtre à mode transversal d'une cavité de Fabry-Perot intégrée dans un guide d'ondes optiques (3) et présentant deux éléments réfléchissants (5) disposés à distance mutuelle,
    le spectre de réflexion des éléments réfléchissants (5) présentant une première longueur d'onde de résonance (8) à laquelle la réflexion est maximale pour un premier mode du guide d'ondes optiques (3) et une deuxième longueur d'onde de résonance (10) à laquelle la réflexion est maximale pour un deuxième mode du guide d'ondes optiques (3), la première longueur d'onde de résonance (8) se distinguant des longueurs d'onde de résonance (7, 9) de la cavité de Fabry-Perot pour le premier mode alors que la deuxième longueur d'onde de résonance (10) coïncide essentiellement avec une longueur d'onde de résonance (9) de la cavité de Fabry-Perot pour le deuxième mode.
EP10810745.9A 2009-09-18 2010-09-15 Filtres de modes transversaux pour guide d'onde Not-in-force EP2478400B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009041891A DE102009041891A1 (de) 2009-09-18 2009-09-18 Transversalmodenfilter für Wellenleiter
PCT/EP2010/005646 WO2011032684A2 (fr) 2009-09-18 2010-09-15 Filtres de modes transversaux pour guide d'onde

Publications (2)

Publication Number Publication Date
EP2478400A2 EP2478400A2 (fr) 2012-07-25
EP2478400B1 true EP2478400B1 (fr) 2018-05-23

Family

ID=43629560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10810745.9A Not-in-force EP2478400B1 (fr) 2009-09-18 2010-09-15 Filtres de modes transversaux pour guide d'onde

Country Status (4)

Country Link
US (1) US8891917B2 (fr)
EP (1) EP2478400B1 (fr)
DE (1) DE102009041891A1 (fr)
WO (1) WO2011032684A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011114586A1 (de) * 2011-09-30 2013-04-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Modenfilter mit Brechzahlmodifikation
CN103162722A (zh) * 2013-03-13 2013-06-19 南开大学 微光纤法-珀微腔传感器及制作方法
EP3005496B1 (fr) * 2013-06-03 2018-05-30 IPG Photonics Corporation Laser à fibre fabry-perot multimodal
CN106571581B (zh) * 2015-10-13 2019-02-15 中国科学院理化技术研究所 一种光横向模式控制系统及控制光横向模式转换的方法
EP3515651B1 (fr) 2016-09-23 2024-05-08 IPG Photonics Corporation Analyse de présoudage et procédés de soudage au laser associés utilisant des largeurs de bandes spectrales présélectionnées évitant le spectre d'une transition électronique d'une vapeur de métal/alliage
FR3068486B1 (fr) * 2017-07-03 2021-10-15 Centre Nat Rech Scient Fibre amplificatrice legerement multimode
CN111487724B (zh) * 2020-04-27 2021-06-01 重庆大学 在纤透射带通回音壁微腔滤波器及其制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048913A (en) 1989-12-26 1991-09-17 United Technologies Corporation Optical waveguide embedded transverse spatial mode discrimination filter
FR2728975A1 (fr) * 1994-12-28 1996-07-05 Alcatel Submarcom Filtre pour lumiere guidee et liaison optique incluant ce filtre
US5892582A (en) * 1996-10-18 1999-04-06 Micron Optics, Inc. Fabry Perot/fiber Bragg grating multi-wavelength reference
DE19727125A1 (de) * 1997-06-26 1999-01-07 Dietmar Johlen Fabry-Perot Resonator ohne Reflexion in einem optischen Wellenleiter bestehend aus zwei Modenkonvertern
US20030123827A1 (en) * 2001-12-28 2003-07-03 Xtalight, Inc. Systems and methods of manufacturing integrated photonic circuit devices
US8149073B2 (en) * 2007-08-03 2012-04-03 Murata Manufacturing Co., Ltd. Band-pass filter and method for making photonic crystal for the band-pass filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2011032684A2 (fr) 2011-03-24
US8891917B2 (en) 2014-11-18
WO2011032684A3 (fr) 2011-07-14
DE102009041891A1 (de) 2011-03-31
US20120237162A1 (en) 2012-09-20
EP2478400A2 (fr) 2012-07-25

Similar Documents

Publication Publication Date Title
DE69800007T2 (de) Vorrichtung mit kaskadiertem Ramanfaserlaser
EP2478400B1 (fr) Filtres de modes transversaux pour guide d'onde
DE69119708T2 (de) Laser mit Longitudinalmoden-Selektion
DE69307404T2 (de) Laser mit Longitudinalmoden-Selektion
DE69736265T2 (de) Gitter zur Modenkopplung im optischem Wellenleiter
DE69511166T2 (de) Faserlaser mit linearer Polarisation
DE69026227T2 (de) Gepumpte Laser mit eingebetteter Bragg-Gitterstruktur
EP2478599B1 (fr) Source lumineuse accordable en longueur d'onde
DE69900360T2 (de) Vorrichtung mit kaskadiertem Ramanfaserresonator
EP3046191B1 (fr) Laser a fibres a impulsions ultracourtes
DE69900082T2 (de) Vorrichtung mit einem verbesserten kaskadiertem Ramanfaserlaser
DE60024002T2 (de) Anordnung mit faseroptischer Ramanvorrichtung
EP1929594B1 (fr) Laser a fibre
DE10211352A1 (de) Einfachpolarisations-Hochleistungsfaserlaser und -verstärker
DE19828154A1 (de) Auf Multimodefasern basierende Einzelmodenverstärker und -kompressoren
DE60212003T2 (de) Gitter mit grosser Gitterperiode aufweisender optischer Bandpassfilter
EP3206830B1 (fr) Système optique muni d'un dispositif de couplage et d'un système de laser à fibre, ainsi que procédé d'usinage d'une pièce au moyen d'un tel système optique
DE602004012123T2 (de) Unterdrückung unerwünschter signalausbreitungsmode(n) signalabwärts eines modus-umsetzers
DE60036345T2 (de) Halbleiterlasermodul mit externem Resonator und doppelbrechenden Glasfasern
DE602004001038T2 (de) Kaskadierter Ramanlaser mit ungepaartem Reflektor
EP0216212A2 (fr) Résonateur optique extérieur pour un laser à semi-conducteur
EP2697874A1 (fr) Production de rayonnement à polarisation azimutale ou radiale dans des guides d'ondes optiques
DE69421251T2 (de) Resonanz-Filter für optische Übertragungssysteme mit Wellenlängemultiplexierung
DE60100877T2 (de) Optische Anordnung zum Auskoppeln von Licht
EP2592704B1 (fr) Dispositif laser comprenant un guide d'onde optique multimodes présentant un matériau optique actif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120418

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JAUREGUI MISAS, CESAR

Inventor name: STUTZKI, FABIAN

Inventor name: THOMAS, JENS, ULRICH

Inventor name: LIMPERT, JENS

Inventor name: NOLTE, STEFAN

Inventor name: VOIGTLAENDER, CHRISTIAN

Inventor name: TUENNERMANN, ANDREAS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1001964

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015007

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180523

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180823

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180824

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010015007

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190923

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1001964

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190924

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100915

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180523

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200924

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010015007

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401