EP2478121B1 - Verfahren zum vorbehandeln und bereitstellen eines blechteils - Google Patents

Verfahren zum vorbehandeln und bereitstellen eines blechteils Download PDF

Info

Publication number
EP2478121B1
EP2478121B1 EP10757037.6A EP10757037A EP2478121B1 EP 2478121 B1 EP2478121 B1 EP 2478121B1 EP 10757037 A EP10757037 A EP 10757037A EP 2478121 B1 EP2478121 B1 EP 2478121B1
Authority
EP
European Patent Office
Prior art keywords
sheet metal
metal part
temperature range
metallic layer
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10757037.6A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2478121A1 (de
Inventor
Mathias Kotzian
Roland Malek
Mohamed Mekkaoui Alaoui
Dieter Niehues
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP2478121A1 publication Critical patent/EP2478121A1/de
Application granted granted Critical
Publication of EP2478121B1 publication Critical patent/EP2478121B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/005Furnaces in which the charge is moving up or down
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching

Definitions

  • the invention relates to a method for pretreating and providing a sheet-metal part provided with a metallic layer for a subsequent processing step.
  • the DE 201 22 563 U1 relates to a workpiece with very high-quality mechanical properties, consisting of a deep-drawn sheet metal blank coated with an intermetallic alloy compound, which has been produced by cutting a rolled, in particular hot-rolled band steel sheet, wherein the band steel sheet is coated with a metal or a metallic alloy, which provides protection of the Surface and of the steel, the intermetallic alloy compound resulting from transformation of the coating of the metal or metal alloy before or after deep drawing, the surface intermetallic alloy compound is formed by the transformation realized by a temperature elevation above 700 ° C, and protection ensures corrosion and against the decarburization of the steel and causes a lubricating function, wherein the metal or the metallic alloy in the coating zinc or an alloy on the base is of zinc.
  • a method and apparatus for maintaining the temperature of metal plates during transport and treatment pauses is known.
  • the temperature of stacked, continuously cast metal plates is thereby maintained at a desired temperature level of greater than 1000 ° C, that the stack is surrounded by a thermally insulating housing surrounded by an induction heating coil.
  • a coated hot-rolled and cold-rolled steel sheet having very high strength after thermal treatment is known.
  • the coating is based on aluminum or on an aluminum alloy.
  • the object of the invention is to enable an improved pretreatment and provision of a provided with a metallic layer sheet metal part for subsequent processing, in particular to allow a more flexible and / or shorter cycle times having production of the sheet metal part.
  • the object is in a method for pretreating and providing a metal layer provided with a sheet metal part for a subsequent processing step with annealing of the sheet metal part for a first period of time in a first temperature range and thereby transforming the metallic layer by means of annealing, waiting for a second period of time and holding the first temperature range and / or cooling the sheet metal part and / or cooling the sheet metal part to an ambient temperature and / or storage of the sheet metal part, and heating the sheet metal part to a time required for the subsequent processing step second temperature range.
  • the subsequent processing step may be, for example, a forming step and / or curing step. It is advantageously possible to carry out the pretreatment or the preparation and the subsequent processing step separately from one another, for example by means of two different devices.
  • the temporal decoupling can advantageously take place during the waiting of the second period of time. This makes it advantageously possible to make the production of the sheet metal part more flexible.
  • the first time period ends when at least 60% of the mass of the metallic layer has been transformed.
  • the first time period ends when at least 80%, 90% or 95% of the mass of the metallic layer has been transformed.
  • the second period lasts at least 1 minute, but may take days or months.
  • the transformation of the metallic layer by means of the first device and temporally decoupled from the heating of the sheet metal part to the second temperature range for example, austenitization of the sheet metal part can take place, and immediately thereafter the further processing step, such as a forming and / or curing, which can be done by means of the second device.
  • the further processing step such as a forming and / or curing, which can be done by means of the second device.
  • shorter cycle times can be realized.
  • a logistic buffering of the sheet metal parts can take place while waiting for the second period of time, for example by storing the same at the ambient temperature.
  • the sheet metal parts can be logistically buffer the sheet metal parts at an arbitrary temperature level, for example in the preheated state in the first temperature range.
  • there is no further transformation or implementation of the metallic layer but it can be advantageous to dispense with a completely new heating of the sheet metal parts, which can be advantageously saved energy at a comparatively good thermal insulation and comparatively short buffer time.
  • the subsequent processing step can be carried out in the manner of a hardening and / or forming step in any manner, in particular as in the DE 201 22 563 U1 disclosed.
  • Transforming the metallic ones Layer and / or their chemical composition can be done in any manner, in particular as in the DE 699 07 816 T2 disclosed.
  • the annealing and / or heating and / or keeping warm of the sheet metal part, in particular in the first and / or second temperature range, can be carried out in any manner, for example by means of a furnace, a hot air blower, by means of inductive heating and / or by means of radiation and / or similar. In particular, this may be as in the DE 31 02 638 A1 respectively.
  • the first temperature range is below a transformation point for austenitizing the sheet metal part.
  • the transformation of the metallic layer can first take place in a comparatively small temperature range.
  • the transformation point of the sheet metal part is dependent on its composition, in particular of a carbon content.
  • the first temperature range is below a melting temperature of the metallic layer.
  • the metallic layer changes adversely, for example drips off, whereby nevertheless the transformation of the metallic layer into an alloy-like layer can advantageously take place by means of diffusion.
  • the first temperature range is slightly above a melting temperature of the metallic layer, without the metallic layer being adversely affected, for example dripping off, whereby the transformation of the metallic layer into an alloy-like layer nevertheless takes place advantageously by means of diffusion can. It is understood that the first temperature range can vary depending on the chemical composition of the metallic layer.
  • the second temperature range is above the transformation point.
  • the austenitization of the sheet metal part can take place above the forming temperature. Subsequently, advantageously, a hot forming process and a curing process by rapid cooling, such as quenching and / or a tool cooling done.
  • the first temperature range comprises a temperature value of 873 K to 1,003 K.
  • a particularly good transformation of the metallic layer can be achieved with this value.
  • the second temperature range comprises a temperature value of 1.223 K.
  • a particularly good austenitization and / or hot forming of the sheet metal part can take place in this area.
  • a tempering of the sheet metal part in the second temperature range is provided for a third period of time.
  • the austenitization can take place during the third period of time, which can be selected such that it can take place to a sufficient extent.
  • the metallic layer has a mixture with an aluminum weight fraction of at least 90% and also portions of silicon and iron.
  • a particularly high surface quality, good corrosion protection, a sliding action for the subsequent treatment step and / or a particularly good transformation can be achieved.
  • the first temperature range comprises a temperature value of 1,003 K, since at this value, a particularly good transformation of the metallic layer can be achieved.
  • the object is also achieved in a device for pretreating and providing a metal layer provided with a sheet metal part for a subsequent processing step, which is designed, set up and / or constructed in particular for performing a method described above.
  • the device has an insulation housing for enclosing and keeping warm a plurality of the sheet metal parts, a heat source for tempering the sheet metal parts in the first and / or second temperature range and a separating device for separating and providing the sheet metal parts for the subsequent processing step.
  • the separating device has a lifting table and a pawl feed.
  • the lifting table By means of the lifting table, the sheet metal parts, in particular in stacked form, the latch feed can be supplied.
  • the pawl feed By means of the pawl feed the separated sheet metal parts can be supplied to the subsequent processing step.
  • the heat source has a field inductor, for example a transverse or longitudinal field inductor for heating the sheet metal part to the first temperature range.
  • a field inductor for example a transverse or longitudinal field inductor for heating the sheet metal part to the first temperature range.
  • the longitudinal field inductor by means of the longitudinal field inductor, a field directed in the longitudinal direction of the sheet-metal part for introducing heat-convertible energy into the sheet-metal part can be induced.
  • the transverse field inductor a field running in a transverse direction of the sheet metal part can be built up, by means of which energy convertible into heat energy can be introduced into the sheet metal part.
  • the heat source has a field inductor, for example a transverse or longitudinal field inductor for heating the sheet metal part to the second temperature range.
  • a field inductor for example a transverse or longitudinal field inductor for heating the sheet metal part to the second temperature range.
  • Fig. 1 shows a device 1 for pretreating and providing a provided with a metallic layer 3 sheet metal part 5 for subsequent processing.
  • the subsequent processing can be carried out by means of a further device, not shown, for example by means of a forming device and / or a device for hardening the sheet metal part. 5
  • a plurality of sheet metal parts 5 is shown, which are in the form of a stack 7 in an interior of an insulating housing 9.
  • the stack 7 can be moved by means of a lifting table 11 in the direction of a double arrow 13 up and down.
  • the device 1 has a separating device 15, by means of which the sheet-metal parts 5 can be singulated.
  • each of the sheet metal parts 5 can be lifted from the remaining stack 7 so that it can be brought into engagement with a pawl 17 of a pawl feed device 19.
  • the individual sheet metal part 5 can be pushed out in the direction of an arrow 21 through an opening of the insulating housing 9.
  • the insulating housing 9 For heating the stack 7 or at least the respectively separated sheet metal part 5 in a first temperature range, the insulating housing 9 has a Lssensfeldinduktor 23.
  • a field can be generated by the sheet metal part 5 in a longitudinal direction, by means of which the necessary energy for heating in the first temperature range in the sheet metal part 5 can be introduced.
  • the longitudinal field inductor 23 can for this purpose have a coil through which a current flows which extends in a circumferential direction around the sheet metal part 5 and / or the stack 7.
  • the sheet metal parts 5 have a metallic layer 3, which preferably has a 90% proportion of aluminum and iron and silicon.
  • the first temperature range is advantageously chosen so that the metallic layer 3 is not melted. In this case, it is advantageous to a transformation of the layer 3, in particular by means of diffusion, wherein an alloy-like outer skin of the sheet metal part 5 is formed.
  • the sheet-metal part 5 tempered by means of the longitudinal field inductor 23 in the first temperature range can be pushed through the opening in the insulating housing 9 after a first period of time has passed by means of the pawl feed device 19.
  • a Querfeldinduktor 25 Adjacent to the opening of the insulating housing 9, a Querfeldinduktor 25 is arranged, which may also have an electrical current-carrying winding for generating a transverse to the sheet metal part 5 extending field.
  • the corresponding sheet metal part 5 can be pushed in a simple manner by means of the pawl feed device 19 under the Querfeldinduktor 25. Exemplary is on one, in alignment of Fig. 1 seen on the right side of Querfeldinduktors 25 a heated to the second temperature range sheet metal part 5 located.
  • the sheet metal part 5, which has been heated to the second temperature range by means of the transverse field inductor 25, can be austenitized by means of an allotropic transformation and is thus prepared for further processing, in particular hardening by means of quenching and / or hot working.
  • the first temperature range can have a value between 873 K and 1,003 K.
  • the second temperature range may have a value of 1.223 K.
  • Fig. 2 shows a schematic plan view in a half-sided view of the in Fig. 1
  • a lid of the insulating housing 9 is shown transparent for simplicity, so that the running around the respective sheet metal part 5 around L Lucassfeldinduktor 23 is visible.
  • the longitudinal field inductor 23 extends within the insulating housing 3.
  • the longitudinal field inductor 23 is arranged outside of the insulating housing 9.
  • the further device may be, for example, a press for a forming process, for example by deep drawing.
  • the further device may for example have a stroke rate of 8 of the sheet metal parts 5 per minute.
  • the stack 7 passes through the longitudinal field inductor 23 and is preferably heated to the value between 873 K and 1,003 K.
  • the diffusion layer is advantageously formed from the metallic layer 3.
  • the separating device 15 or a platinum spreader of the separating device 15 separates the sheet metal part 5 or the boards stacked on the stack 7.
  • the pawl feed device 19 pushes the sheet metal parts 5 out of the insulating housing 9 in the direction of the arrow 21 under the transverse field inductor 25.
  • the Querfeldinduktor 25 heats the corresponding sheet metal part 5 to the value of about 1.223 K.
  • the sheet metal part 5 and the board is inserted into the further device, not shown, which may be, for example, a hot forming tool.
  • the further device which may be, for example, a hot forming tool.
  • the entire stack 7 can be heated, wherein the stack 7 can be dimensioned so large that due to the cycle times of the downstream device for further processing, the first period of time for transforming the metallic layer elapses and then can be waited during the second period until the corresponding sheet metal part 5 on the stack 7 has reached an uppermost position and separated by means of the separating device 15 and can be pushed out by means of the pawl feed device 19.
  • the diffusion time that is, the first period, may be, for example, about 10 minutes.
  • the stack 7 can be slowly heated by means of the Lssensfeldinduktors 23 until it has reached the first temperature range.
  • the longitudinal field inductor 23 can advantageously be designed as a low-frequency inductor.
  • the heating of the sheet metal part to the second temperature range can be carried out in a short time, advantageously in a short time the corresponding individual sheet metal part 5 reaches and / or exceeds an austenitizing temperature.
  • the Querfeldinduktor 25 may be designed as a high-frequency inductor.
  • any heat source for heating and / or tempering the sheet metal parts 5 or the separated sheet metal part 5, for example a hot air blower, an oven, heat radiation and / or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
EP10757037.6A 2009-09-17 2010-09-15 Verfahren zum vorbehandeln und bereitstellen eines blechteils Not-in-force EP2478121B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009042026A DE102009042026A1 (de) 2009-09-17 2009-09-17 Verfahren zum Vorbehandeln und Bereitstellen eines Blechteils
PCT/EP2010/005647 WO2011032685A1 (de) 2009-09-17 2010-09-15 Verfahren zum vorbehandeln und bereitstellen eines blechteils

Publications (2)

Publication Number Publication Date
EP2478121A1 EP2478121A1 (de) 2012-07-25
EP2478121B1 true EP2478121B1 (de) 2016-07-06

Family

ID=43402062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10757037.6A Not-in-force EP2478121B1 (de) 2009-09-17 2010-09-15 Verfahren zum vorbehandeln und bereitstellen eines blechteils

Country Status (4)

Country Link
EP (1) EP2478121B1 (zh)
CN (1) CN102695809A (zh)
DE (1) DE102009042026A1 (zh)
WO (1) WO2011032685A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011103269A1 (de) * 2011-05-26 2012-11-29 Thyssenkrupp System Engineering Gmbh Glühvorrichtunng und Verfahren zum Glühen von Metallplatten
EP2602334A1 (en) * 2011-12-08 2013-06-12 Linde Aktiengesellschaft Plant and method for hot forming blanks
DE102011120679A1 (de) * 2011-12-08 2013-06-13 Linde Aktiengesellschaft Anlage und Verfahren zum Warmumformen von Platinen
DE102012001742A1 (de) 2012-01-28 2013-08-01 Volkswagen Aktiengesellschaft Vorrichtung zum Erwärmen von Blechwerkstücken für ein nachfolgendes Warmumformen und insbesondere Presshärten
DE102012218159B4 (de) * 2012-10-04 2018-02-08 Ebner Industrieofenbau Gmbh Handhabungseinrichtung
DE102012221152A1 (de) * 2012-11-20 2014-06-05 Thyssenkrupp System Engineering Gmbh System zum Temperieren von Werkstücken
DE102012221154B4 (de) * 2012-11-20 2017-05-11 Thyssenkrupp System Engineering Gmbh System zum Aufwärmen von Werkstücken
US9222729B2 (en) 2012-12-07 2015-12-29 Linde Aktiengesellschaft Plant and method for hot forming blanks
DE102013008853A1 (de) * 2013-05-23 2014-11-27 Linde Aktiengesellschaft Anlage und Verfahren zum Warmumformen von Platinen
DE102014211241A1 (de) * 2014-06-12 2015-12-17 Sms Elotherm Gmbh Verfahren und Erwärmungsanlage für das serienmäßige Erwärmen von Blechplatinen mit Ausbildung unterschiedlicher Temperaturzonen
DE102015016656A1 (de) 2015-12-19 2017-06-22 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zur Herstellung eines beschichteten, durch Warmumformung gehärteten Körpers sowie ein nach dem Verfahren hergestellter Körper

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3102638A1 (de) 1980-01-29 1981-11-26 Mitsubishi Denki K.K., Tokyo Verfahren und vorrichtung zum aufrechterhalten der temperatur von metallplatten waehrend des transportes und behandlungspausen
FR2780984B1 (fr) 1998-07-09 2001-06-22 Lorraine Laminage Tole d'acier laminee a chaud et a froid revetue et comportant une tres haute resistance apres traitement thermique
FR2807447B1 (fr) 2000-04-07 2002-10-11 Usinor Procede de realisation d'une piece a tres hautes caracteristiques mecaniques, mise en forme par emboutissage, a partir d'une bande de tole d'acier laminee et notamment laminee a chaud et revetue
DE102004007071B4 (de) * 2004-02-13 2006-01-05 Audi Ag Verfahren zur Herstellung eines Bauteils durch Umformen einer Platine und Vorrichtung zur Durchführung des Verfahrens
DE102008006771B3 (de) * 2008-01-30 2009-09-10 Thyssenkrupp Steel Ag Verfahren zur Herstellung eines Bauteils aus einem mit einem Al-Si-Überzug versehenen Stahlprodukt und Zwischenprodukt eines solchen Verfahrens
DE102009019496A1 (de) * 2009-05-04 2010-11-18 Braun, Elisabeth Vorrichtung und Verfahren zur Erwärmung warm umzuformender Werkstücke

Also Published As

Publication number Publication date
EP2478121A1 (de) 2012-07-25
DE102009042026A1 (de) 2011-03-24
CN102695809A (zh) 2012-09-26
WO2011032685A1 (de) 2011-03-24

Similar Documents

Publication Publication Date Title
EP2478121B1 (de) Verfahren zum vorbehandeln und bereitstellen eines blechteils
EP2227570B1 (de) Verfahren zur herstellung eines formbauteils mit mindestens zwei gefügebereichen unterschiedlicher duktilität
DE102004007071B4 (de) Verfahren zur Herstellung eines Bauteils durch Umformen einer Platine und Vorrichtung zur Durchführung des Verfahrens
DE102011057007B4 (de) Verfahren zum Herstellen eines Kraftfahrzeugbauteils sowie Kraftfahrzeugbauteil
EP2518173B1 (de) Verfahren zur Herstellung eines Blechstrukturbauteils sowie Blechstrukturbauteil
DE102013100682B3 (de) Verfahren zum Erzeugen gehärteter Bauteile und ein Strukturbauteil, welches nach dem Verfahren hergestellt ist
EP2655672A2 (de) Verfahren zum erzeugen gehärteter bauteile mit bereichen unterschiedlicher härte und/oder duktilität
DE102016100648B4 (de) Wärmebehandlungsofen sowie Verfahren zur Wärmebehandlung einer vorbeschichteten Stahlblechplatine und Verfahren zur Herstellung eines Kraftfahrzeugbauteils
DE102009016027A1 (de) Verfahren zur Herstellung eines Bauteils, insbesondere eines Karosserieteiles, sowie Fertigungsstraße zur Durchführung des Verfahrens
DE102011053939A1 (de) Verfahren zum Erzeugen gehärteter Bauteile
DE102014112448B4 (de) Herstellverfahren für Al-Si-beschichtete Stahlblechteile und Al-Si-beschichtetes Stahlblechband
DE102012214274A1 (de) Vordiffundierte Al-Si-Beschichtungen zur Verwendung bei einer schnellen Induktionsaufheizung von pressgehärtetem Stahl
DE102011053941A1 (de) Verfahren zum Erzeugen gehärteter Bauteile mit Bereichen unterschiedlicher Härte und/oder Duktilität
DE102010056264A1 (de) Verfahren zum Erzeugen gehärteter Bauteile
DE102009050879B3 (de) Verfahren und Vorrichtung zur Erwärmung von Platinen
DE102007039013B3 (de) Verfahren zum Herstellen eines oberflächenentkohlten Warmbands
DE102018128131A1 (de) Gehärtetes Bauteil umfassend ein Stahlsubstrat und eine Korrosionsschutzbeschichtung, entsprechendes Bauteil zur Herstellung des gehärteten Bauteils sowie Herstellverfahren und Verwendung
AT506727B1 (de) Verfahren zur wärmebehandlung eines walzguts aus einer aushärtbaren aluminiumlegierung
EP3925716B1 (de) Verfahren zum presshärten von warmumformbaren platinen
EP3184655A1 (de) Wärmebehandlungsofen sowie verfahren zur wärmebehandlung einer vorbeschichteten stahlblechplatine und verfahren zur herstellung eines kraftfahrzeugbauteils
DE102011114992B4 (de) Verfahren zum Herstellen eines gehärteten Stahlbauteils
DE102019118884A1 (de) Verfahren zur Herstellung eines partiell pressgehärteten und mit einer Zinkbeschichtung versehenen Blechformteils
EP3221474B1 (de) Verfahren zum warm- oder halbwarmumformen eines werkstücks und fertigungsanlage zum warm- oder halbwarmumformen eines werkstücks
DE102014104922A1 (de) Vorrichtung und Verfahren zum Kühlen von Stahlblechplatinen
AT508101B1 (de) Verarbeitungsweise eines stahlhalbzeuges über die ac1-temperatur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120417

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160309

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 810748

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011964

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160706

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161106

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161006

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161007

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161107

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011964

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161006

26N No opposition filed

Effective date: 20170407

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160915

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 810748

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160915

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100915

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210927

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210927

Year of fee payment: 12

Ref country code: DE

Payment date: 20210930

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010011964

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220915