EP2473836A1 - Procédé de mesure et dispositif de mesure pour la mesure optique du gaz - Google Patents

Procédé de mesure et dispositif de mesure pour la mesure optique du gaz

Info

Publication number
EP2473836A1
EP2473836A1 EP10771361A EP10771361A EP2473836A1 EP 2473836 A1 EP2473836 A1 EP 2473836A1 EP 10771361 A EP10771361 A EP 10771361A EP 10771361 A EP10771361 A EP 10771361A EP 2473836 A1 EP2473836 A1 EP 2473836A1
Authority
EP
European Patent Office
Prior art keywords
light
hollow fiber
hollow
measurement
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10771361A
Other languages
German (de)
English (en)
Inventor
Jia Chen
Andreas Hangauer
Rainer Strzoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2473836A1 publication Critical patent/EP2473836A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/032Optical fibres with cladding with or without a coating with non solid core or cladding

Definitions

  • the invention relates to an optical gas sensor and a method for its operation, being guided from a light source emit light ⁇ patented through a hollow light waveguide.
  • Such optical gas sensors use, for example, a laser diode to emit light into a measurement volume.
  • the measurement volume can be represented by a hollow optical waveguide in one embodiment of such sensors.
  • the hollow optical waveguide passes the light along its extension, possibly also around bends, and discharges or reflects it at its end to a detector.
  • the invention provides an optical gas sensor.
  • the gas sensor has a light source, such as a VCSEL (Vertical Cavity Surface-Emitting Laser) or a Laserdio ⁇ de.
  • the light emitted by this is transmitted through a hollow light Waveguide, so a hollow fiber passed.
  • the optical waveguide is arranged to receive the light emitted by the light source.
  • the hollow fiber may be di rectly ⁇ coupled to the light source or at a distance thereto.
  • the light is preferably infrared light, for example in wavelengths between 2 and 10 ⁇ m or else visible light. For broadband light sources, the light may have a wide range of represented wavelengths.
  • the hollow fiber is preferably a multi-mode fiber. It can for example have a diameter of 0.5 mm. Their specific volume can be for example 1.8 ml / m. It can for example consist of an outer cladding layer of S1O 2 and an inner, reflective coating of silver or silver iodide. Their attenuation can be, for example, 1.5 to 4 dB / m for the wavelength range of 2 to 3 ym, this value depending, inter alia, on the curvature of the fiber.
  • the fiber allows access of gases to be measured in their inner cavity.
  • the access can be made for example by the fiber ends. He can also be done through the fiber coat.
  • the fiber cladding may be gas-permeable. He can also holes, column o.ä. Have openings.
  • a portion of the light is absorbed by existing in the fiber gases. This absorption is detected by a detector after passing through the hollow fiber and analyzed.
  • the hollow fiber is treated in accordance with Inventive ⁇ vibrations.
  • interference effects which can occur in the case of a fixed geometry, for example due to reflections, are advantageously reduced in their influence.
  • a measurement for the signal-to-noise ratio can lead to an improvement in the tion by a factor of 10 or more.
  • 200 Hz can be used as the frequency for the vibrations.
  • the amplitude of the vibrations is preferably several 100 ym.
  • the effect of the vibration is large artifacts that occur, for example, by reflections and a large ⁇ SSE amplitude and frequency extension have to convert to noise with a lower frequency expansion.
  • the additional noise can be eliminated by a curve fit of the measurement results much better than the former artifacts.
  • the hollow fiber is brought directly into contact with the light source.
  • the emitted light is not or as little as possible free
  • the hollow fiber is gekop ⁇ pelt directly to the light source. This is particularly advantageous when a VCSEL is USAGE ⁇ det, since the radiation has a small divergence.
  • Figure 2 shows a comparison between measurements with and without vibrations of the hollow fiber
  • FIG. 3 shows a measurement setup
  • FIG. 1 shows a highly schematic structure for a hollow fiber 11, through which the light can be sent, which is used for the measurement.
  • the hollow fiber 11 has a sheath 1 made of silicon dioxide.
  • befin ⁇ det is a layer 2 of Ag and / or AgI.
  • the interior 3 is hollow and filled with air or other gases. Since the light moves essentially in the interior 3 of the hollow fiber 11, the gas located there is measured.
  • FIG. 2 shows a comparison between a first measurement 4 without and a second measurement 5 with vibration of the hollow fiber 11. It is clearly visible that the strongly fluctuating background caused partly by interference in the first measurement 4 without vibration of the hollow fiber 11 is distinct Disturbance of the evaluation can cause.
  • the second measurement 5 with vibration of the hollow fiber 11 there is little disturbance outside the absorption lines due to water (in the second derivative) with a laser current of between 6 and 6.5 mA.
  • the vibration of the hollow fiber 11 advantageously causes a reduction of the interfering interference. It is advantageously measured over a period of time which is at least longer than the vibration period of the hollow fiber, ideally much longer.
  • the vibration can be performed at 200 Hz, while measured values at 10 Hz are generated .
  • the amplitude of the interference is significantly reduced relative to the amplitude of the signals. In the example given in FIG. 2, a reduction by a factor of 10 is achieved.
  • the vibrations may take place in the longitudinal direction of the hollow fiber 11 or transversely to the longitudinal direction.
  • the hollow fiber 11 can also be curved or even coiled, it is also mög ⁇ Lich that the vibrations in different areas of the hollow fiber have 11 different directions relative to the position of the hollow fiber. 11
  • FIG. 3 shows an exemplary test setup 10.
  • a scoring training and control means 14 controls a light source in the form of a ⁇ 2.3 ym emitting Vertical Cavity Surface Emitting Laser (VCSEL) 12.
  • the light from the VCSEL 12 is in the hollow fiber 11 coupled. It runs there along the extent of the hollow fiber 11 to a detector in the form of an InGaAs photodiode 13.
  • the photodiode 13 is in a Ge housed housing 15.
  • the housing 15 is filled with a Gasmi ⁇ research with 10 vol .-% methane (CH 4), which serves as a reference gas.
  • CH 4 gasmi ⁇ research with 10 vol .-% methane
  • the signal of the photodiode 13 is received by the evaluation and control device 14 and evaluated.
  • the hollow fiber 11 has a loop in FIG. In the region of the coupling of the light of the VCSEL 13, the hollow fiber 11 is vibrated.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L'invention concerne une mesure optique du gaz avec un VCSEL (12) et un guide d'ondes (11) associé à celui-ci. Le guide d'ondes contient le gaz à mesurer et guide la lumière. Pour chaque mesure, le guide d'ondes (11) est mis en vibration. La mesure du gaz est effectuée et intégrée sur une période de temps. De ce fait, les influences parasites exercées sur la mesure par des interférences sont sensiblement réduites.
EP10771361A 2009-09-04 2010-09-03 Procédé de mesure et dispositif de mesure pour la mesure optique du gaz Withdrawn EP2473836A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009040122 2009-09-04
PCT/EP2010/062919 WO2011026924A1 (fr) 2009-09-04 2010-09-03 Procédé de mesure et dispositif de mesure pour la mesure optique du gaz

Publications (1)

Publication Number Publication Date
EP2473836A1 true EP2473836A1 (fr) 2012-07-11

Family

ID=43066760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10771361A Withdrawn EP2473836A1 (fr) 2009-09-04 2010-09-03 Procédé de mesure et dispositif de mesure pour la mesure optique du gaz

Country Status (4)

Country Link
US (1) US20130162979A1 (fr)
EP (1) EP2473836A1 (fr)
CN (1) CN102483377A (fr)
WO (1) WO2011026924A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011078156A1 (de) 2011-06-28 2013-01-03 Siemens Aktiengesellschaft Gaschromatograph und Verfahren zur gaschromatographischen Analyse eines Gasgemischs
FR2981158A1 (fr) * 2011-10-06 2013-04-12 Air Liquide Medical Systems Module d'analyse de gaz pour appareil de ventilation de patient
US9823184B1 (en) * 2016-05-13 2017-11-21 General Electric Company Distributed gas detection system and method
US10161859B2 (en) 2016-10-27 2018-12-25 Honeywell International Inc. Planar reflective ring
CN111290074B (zh) * 2020-02-21 2021-03-02 东北大学 一种中红外布拉格光纤及其气体定性定量检测装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011403A (en) * 1976-03-30 1977-03-08 Northwestern University Fiber optic laser illuminators
DE3921534A1 (de) * 1989-06-30 1991-04-04 Gyulai Maria D Anordnung zum nachweis von gasen durch optische methoden
US5790724A (en) * 1995-05-05 1998-08-04 Ceramoptec Industries Inc. 16 μm infrared region by destruction of speckle patterns
US6603556B2 (en) * 2000-10-12 2003-08-05 World Precision Instruments, Inc. Photometric detection system having multiple path length flow cell
US7046362B2 (en) * 2001-12-12 2006-05-16 Trustees Of Princeton University Fiber-optic based cavity ring-down spectroscopy apparatus
US7110109B2 (en) * 2003-04-18 2006-09-19 Ahura Corporation Raman spectroscopy system and method and specimen holder therefor
DE102006055157B3 (de) * 2006-11-22 2008-04-30 Siemens Ag Optische Messzelle und Gasmonitor
CN101055243B (zh) * 2007-04-04 2010-09-29 南京旭飞光电有限公司 光纤气体传感的方法和传感器
CN101319989A (zh) * 2007-06-08 2008-12-10 派克森公司 气体浓度检测方法及其装置
DE102009008624B4 (de) * 2009-02-12 2012-01-19 Siemens Aktiengesellschaft Anordnung zur Durchführung spektroskopischer Verfahren sowie Verwendung bei spektroskopischen Verfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011026924A1 *

Also Published As

Publication number Publication date
WO2011026924A1 (fr) 2011-03-10
CN102483377A (zh) 2012-05-30
US20130162979A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
DE69631698T2 (de) Sensor,verfahren und vorrichtung für optische blutoxymetrie
EP2260290B1 (fr) Procédé et dispositif de mesure de turbidité
EP2473836A1 (fr) Procédé de mesure et dispositif de mesure pour la mesure optique du gaz
EP2979057B1 (fr) Capteur à fibre optique et son utilisation
DE2949197C2 (de) Integrationskugel-Trübungsmesser
DE60126076T2 (de) Gaszelle
DE19940280A1 (de) Gassensor mit offener optischer Meßstrecke
EP2044399A2 (fr) Dispositif et procede de determination optique continue du niveau de liquides dans des reservoirs a liquide de vehicules ou d'aeronefs
WO2013004664A1 (fr) Dispositif comprenant un système de mesure optique de gaz et de mélanges gazeux compensant les influences de l'environnement
DE112013007716T5 (de) Optischer Fasersensor zur Ölzustandsüberwachung
DE69006648T2 (de) Messvorrichtung und -verfahren.
DE102011075530A1 (de) Fotometer zur In-situ-Messung in Fluiden
DE2240523A1 (de) Infrarotgasanalysator
DE69912525T2 (de) Messung interner Spannungen in einem transparenten Material, wie Fensterscheiben
DE3707622A1 (de) Verfahren und vorrichtung zum messen geringer gaskonzentrationen
DE10041182C2 (de) Optoelektronische Vorrichtung
DE102011078156A1 (de) Gaschromatograph und Verfahren zur gaschromatographischen Analyse eines Gasgemischs
DE102017115661A1 (de) Optischer Sensor
DE3100082C2 (fr)
AT521072B1 (de) Verfahren und Vorrichtung zur Detektion von Gaslecks
DE10302207B4 (de) Vorrichtung zur sensitiven Detektion und Konzentrationsbestimmung der Komponenten eines Gasgemisches
DE4212467C2 (de) Verfahren und Vorrichtung zum Erfassen von Längenungleichmäßigkeiten der einzelnen Garnkomponenten eines Zwirns
EP3163292B1 (fr) Méthode de calibration et d'utilisation d'un spectromètre laser
DE19526943C2 (de) Mehrfachreflexionsvorrichtung zur Erzeugung und Messung von konventionellen Signalen und Sättigungssignalen der Fluoreszenz und der Streuung
DE4338233C2 (de) Verfahren und Anordnung zur abwechselnden Proben- und Untergrundmessung, insbesondere bei der hochempfindlichen absorptionsspektroskopischen, selektiven Spurengasanalyse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 21/03 20060101ALI20140624BHEP

Ipc: G01N 21/35 20140101AFI20140624BHEP

Ipc: G02B 6/032 20060101ALI20140624BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140815

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150106