EP2471167A2 - Dc-wandlerschaltung und batteriesystem - Google Patents

Dc-wandlerschaltung und batteriesystem

Info

Publication number
EP2471167A2
EP2471167A2 EP10740666A EP10740666A EP2471167A2 EP 2471167 A2 EP2471167 A2 EP 2471167A2 EP 10740666 A EP10740666 A EP 10740666A EP 10740666 A EP10740666 A EP 10740666A EP 2471167 A2 EP2471167 A2 EP 2471167A2
Authority
EP
European Patent Office
Prior art keywords
converter
circuit
battery
branch
converters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP10740666A
Other languages
English (en)
French (fr)
Inventor
Stefan Butzmann
Holger Fink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2471167A2 publication Critical patent/EP2471167A2/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a DC / DC converter circuit with a plurality of DC / DC
  • Converters and a battery system comprising a DC / DC converter circuit.
  • Wind turbines as well as in vehicles, for example in hybrid and electric vehicles, increasingly new battery systems are used, which must meet high reliability requirements. These high requirements are due to the fact that a failure of the battery system can lead to a failure of the entire system (eg leads in an electric vehicle failure of a traction battery to a so-called. "Lying") or even lead to a safety-relevant problem (wind turbines
  • battery systems are used to protect the system from impermissible operating conditions in a strong wind by means of a rotor blade adjustment).
  • the known half-bridge converter 31 comprises a primary circuit 42 and a secondary circuit 43.
  • the primary circuit 42 has a primary-side transformer coil 34a
  • the secondary circuit 43 has a secondary-side transformer coil 34b, wherein the primary-side transformer coil 34a and the secondary-side transformer coil 34b are coupled together to form a transformer.
  • the primary circuit 42 comprises an H-bridge circuit having a first branch and second branch extending from a first node 36 to a second node 37, and a bridge branch located between the first branch and the second branch.
  • the primary-side transformer coil 34a is disposed in the bridge branch.
  • a first switch 35a and a first capacitor 37a in the second branch, a second switch 35b and a second capacitor 37b are arranged.
  • a first resistor 44a is connected in parallel with the first capacitor 38a, and a resistor 44b is connected in parallel with the second capacitor 38b.
  • the first branch connected to a mass 39.
  • the first primary circuit 42 has a first input 50a and a second input 50b, to which a battery 49 is connected.
  • the secondary circuit 43 comprises a rectifier circuit 40 and a low pass 41.
  • the rectifier circuit 40 comprises three diodes 45a, 45b, 45c, by means of which the voltage generated by the secondary-side transformer coil 34b is rectified.
  • the tap of the voltage at the secondary-side transformer coil 34b takes place by means of a center tap.
  • the low-pass filter 41 has a coil 46 and a capacitor 47.
  • the voltage generated in the secondary circuit 43 can be tapped off at a first output 48a and at a second output 48b.
  • the operating principle of the half-bridge converter 1 shown in FIG. 1 is as follows:
  • the battery 49 provides a voltage which charges the capacitors 38a, 38b to half the battery voltage via the balancing resistors 44a, 44b.
  • the switches 35a and 35b are now alternately opened and closed so that across the primary-side transformer coil 34a, an alternating voltage having an amplitude corresponding to half the battery voltage.
  • This alternating voltage is coupled by means of the secondary-side transformer coil 34 b in the secondary circuit 43 and rectified by the rectifier circuit 40.
  • the corresponding to the duty cycle the switch 35a, 35b resulting rectified pulse-shaped output voltage is smoothed through the low-pass filter 41.
  • the invention relates to a DC / DC converter circuit comprising at least two DC / DC converters and a low-pass filter, wherein the DC / DC converters each have an input side and an output side and the DC / DC converters on their output side with each other in Connected in series, and the low-pass filter connected downstream of the DC / DC converters connected in series for smoothing an output voltage generated by the DC / DC converters on its output side.
  • the DC / DC converters make it possible on the input side to connect a multiplicity of energy sources, in particular battery modules, in parallel and / or in series.
  • the terminal voltage of the so-connected battery modules is lower than a circuit of battery modules connected directly in series without a DC / DC converter.
  • a suitable circuit of the DC / DC converters in particular in series and / or in parallel, a desired output voltage or a desired current can be made available on the output side of the DC / DC converters.
  • the device also makes it possible to choose a suitable overall voltage depending on the operating situation, since the output voltage of the individual DC / DC converters can be set in a known manner.
  • the output voltage is independent of the battery modules connected on the input side.
  • the design of the system formed from battery modules and converter circuit can be carried out purely in accordance with energy and power criteria regardless of the total voltage required for the respective application.
  • Another advantage is that expensive circuit breakers for switching off such a system can be omitted, because the voltage can be done on the output side of the DC / DC converter by switching off the DC / DC converter.
  • the downstream low-pass filter makes it possible to smooth the total voltage resulting from the output voltages of the individual DC / DC converters, that is, to eliminate higher-frequency components in the overall voltage.
  • the downstream of the low-pass filter it is in particular possible to dispense with low-pass filters in the individual DC / DC converters, which merely smooth the output voltage for the respective DC / DC converter.
  • the latter is preferred according to the invention.
  • a polyphase control of the individual DC / DC converter it is possible to set the phases of the output voltages of the individual DC / DC converters such that in the sum of the individual output voltages of the DC / DC converter voltage peaks of the individual Output voltages at least partially mittein. This makes it possible to use smaller and less expensive components for the low pass.
  • a “power factor module” is to be understood as meaning a single battery cell or a circuit of several battery cells preferred embodiment of the invention provides that at least one
  • DC / DC converter of the at least two DC / DC converter comprises a primary circuit and a secondary circuit, wherein the primary circuit has a primary-side transformer coil and the secondary circuit has a secondary-side transformer coil, and the primary-side transformer coil and the secondary-side transformer coil are coupled together to form a transformer , This makes it possible to galvanically decouple the secondary circuit and the primary circuit.
  • the primary circuit comprises an H-bridge circuit having a first branch extending from a first node to a second node, a second branch extending from the first node to the second node and one between the first branch and the second node second branch branch lying bridge, wherein the primary-side transformer coil is arranged in the bridge branch, in the first branch, a first switch and a first terminal for the connection of a first battery module is arranged, and in the second th branch, a second switch and a second terminal for the connection of a second battery module is arranged.
  • This preferred embodiment is based on the knowledge that the battery modules connected to the first connection and to the second connection can assume the function of capacitors and resistors, as used in the primary circuit of such a converter according to the described prior art.
  • the thus formed DC / DC converter thus makes it possible to dispense in the primary circuit on capacitors and resistors.
  • the structure of such a converter can thus be considerably simplified.
  • a further subject matter of the invention is a battery system which comprises at least one DC / DC converter circuit according to the invention and at least two battery modules, the at least two DC / DC converters each having an input side and at least one battery module each on an input side of a DC / DC converter.
  • DC converter is connected to a DC / DC converter.
  • FIG. 1 is a schematic diagram of a DC / DC converter according to the prior art
  • FIG. 2 is a schematic diagram of a first embodiment of a battery system according to the invention with a DC / DC converter circuit according to the invention
  • Fig. 3 is a schematic diagram of a second embodiment of a battery system according to the invention with a DC / DC converter circuit according to the invention.
  • FIG. 1 shows a block diagram of a first embodiment of a battery system according to the invention.
  • the battery system includes a DC / DC converter circuit and three battery modules 3.
  • the DC / DC converter circuit includes three DC / DC converters 1.
  • Each DC / DC converter 1 has an input side to which an input voltage can be applied and an output side at which an output voltage converted by the DC / DC converter 1 can be tapped.
  • a battery module 3 is connected in each case in this exemplary embodiment, which provides the respective DC / DC converter 1 with a constant input voltage.
  • a battery module 3 comprises a plurality of battery cells 2, which are connected in series.
  • the battery cells 2 are in this embodiment accumulator cells, for example Li-ion cells.
  • the battery module 3 may comprise only a single battery cell 2. Furthermore, it is also possible to switch the battery cells 2 at least partially in parallel.
  • the DC / DC converters 1 are connected in series on their output side via first outputs 18a and second outputs 18b. At the first output 18a of the one outer DC / DC converter 1 and at the second output
  • the DC / DC converter circuit comprises a low pass 1 1.
  • Low-pass filter 1 1 is connected to the DC / DC converters 1 which are connected in series with each other. switches and smoothes the resulting from the output voltages of each DC / DC converter total voltage.
  • the low pass 1 1 is designed as LC low pass.
  • the low pass 1 1 comprises an inductance L 16 in the form of a coil and a capacitance C 17 in the form of a capacitor.
  • the total voltage smoothed by the filtering can be tapped at a first tap 14a and a second tap 14b of the battery system.
  • the three DC / DC converters 1 can be designed, for example, as a half-bridge converter, forward converter, push-pull converter and / or full-bridge converter.
  • FIG. 3 shows a block diagram of a second embodiment of a battery system according to the invention.
  • the battery system according to the second embodiment is a variant of the battery system according to the first embodiment.
  • the DC / DC converters 1 of the second battery system are designed in this embodiment as a special HaIf bridge (half-bridge) converter.
  • the half-bridge converter 1 comprises a primary circuit 12 and a secondary circuit 13.
  • the primary circuit 12 has a primary-side transformer coil 4a
  • the secondary circuit 13 has a secondary-side transformer coil 4b, wherein the primary-side transformer coil 4a and the secondary-side transformer coil 4b to form a transformer coupled together.
  • the primary circuit 12 comprises an H-bridge circuit having a first branch extending from a first node 6 to a second node 7, a second branch extending from the first node 6 to the second node 7, and a second branch lying between the first branch and the second branch bridge arm.
  • the primary-side transformer coil 4a is arranged in the bridge branch. In the first branch is a first switch
  • a second switch 5b and a second terminal 7b for the connection of a second battery module 8b is arranged in the second branch.
  • the first branch is also connected to a ground 9 between the first terminal 7a and the first switch 5a.
  • the secondary circuit 13 further includes a rectifier circuit 10 for rectifying the voltage converted by the transformer.
  • the rectifier circuit 10 includes two diodes 15a and 15b.
  • the diodes 15a and 15b are arranged in the manner of a branching rectifier in the secondary circuit.
  • the first battery module 8a and the second battery module 8b are connected to the first terminal 7a or to the second terminal 7b of the primary circuit 12 such that unequal poles of the first battery module 8a and of the second battery module 8b in the circuit are opposite each other.
  • the first battery module 8a and the second battery module 8b may be implemented as a single battery cell.
  • a battery module 8a, 8b may comprise a plurality of battery cells, wherein the battery cells are at least partially in
  • a battery module 8a, 8b can also be formed by a battery.
  • the battery modules 8a, 8b comprise battery cells which are designed as accumulators.
  • a battery cell is designed as a lithium-ion cell.
  • the operating principle of the half-bridge converter 1 is as follows: If the first switch 5a is closed, then the voltage of the first battery module 8a is applied across the primary-side transformer coil 4a. This voltage is transmitted via the secondary-side transformer coil 4 b in the secondary circuit 13. When the first switch 5a is opened again, the energy stored in the primary-side transformer coil 4a is dissipated in the form of a current flowing into the second battery module 8b. When closing the second switch 5b, this process is repeated in the reverse direction. By selecting the duty cycles of the first switch 5a and the second switch 5b, not only the voltage at the outputs 18a, 18b of the half-bridge can be selected in this manner. be set at the same time a charge balancing between the battery modules 8a, 8b are performed.
  • the DC / DC converter circuit comprises a low pass 1 1.
  • the low-pass filter 1 1 is connected downstream of the DC / DC converters 1 connected in series and smoothes the total voltage resulting from the output voltages of the individual DC / DC converters 1.
  • the total voltage smoothed by the filtering can be tapped at the first tap 14a and the second tap 14b of the battery system.
  • the battery system for example, a not dargestelle control device for the control of the DC / DC converter 1, by means of which the switches of the DC / DC converter 1 are controlled in polyphase according to a suitable algorithm.
  • Such battery systems are suitable, for example, as part of a power supply of a motor vehicle, in particular as part of a vehicle electrical system of the motor vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die Erfindung betrifft einen Halbbrücken-Konverter für ein Batteriesystem und ein Batteriesystem. Die erfindungsgemässe DC/DC-Wandlerschaltung umfasst mindestens zwei DC/DC-Wandler (1) und einen Tiefpass (11), wobei die DC/DC-Wandler (1) jeweils eine Eingangsseite und eine Ausgangsseite aufweisen und die DC/DC-Wandler (1) auf ihrer Ausgangsseite miteinander in Reihe geschaltet sind, und der Tiefpass (11) den miteinander in Reihe geschalteten DC/DC-Wandlern (1) nachgeschaltet ist zum Glätten einer von den DC/DC-Wandlern (1) an ihrer Ausgangsseite erzeugten Ausgangsspannung.

Description

Beschreibung
Titel
DC/DC-Wandlerschaltung und Batteriesystem Die Erfindung betrifft eine DC/DC-Wandlerschaltung mit mehreren DC/DC-
Wandlern und ein Batteriesystem, das eine DC/DC-Wandlerschaltung umfasst.
Stand der Technik In Zukunft werden sowohl bei stationären Anwendungen, beispielsweise bei
Windkraftanlagen, als auch in Fahrzeugen, beispielsweise in Hybrid- und Elektro- fahrzeugen, vermehrt neue Batteriesysteme zum Einsatz kommen, die hohe Anforderungen bzgl. der Zuverlässigkeit erfüllen müssen. Diese hohen Anforderungen begründen sich damit, dass ein Ausfall des Batteriesystems zu einem Ausfall des Gesamtsystems führen kann (z. B. führt bei einem Elektrofahrzeug Ausfall einer Traktionsbatterie zu einem sog.„Liegenbleiber") oder sogar zu einem sicherheitsrelevanten Problem führen kann (bei Windkraftanlagen werden beispielsweise Batteriesysteme eingesetzt, um bei starkem Wind die Anlage durch eine Rotorblattverstellung vor unzulässigen Betriebszuständen zu schützen).
Es ist bekannt, die von einer Batterie zur Verfügung gestellte Spannung mittels eines DC/DC-Wandlers (auch als Gleichstromsteller bezeichnet) in eine andere Spannung umzuwandeln. Die Umwandlung einer durch die Batterie gelieferten konstanten Eingangsspannung in eine sich von dieser unterscheidenden Aus- gangsspannung erfolgt üblicherweise durch periodisches Schalten des DC/DC-
Wandlers. Als gängige DC/DC-Wandler sind beispielsweise Boost-Konverter, Forward-Konverter, Half-Bridge-(Halbbrücken-) Konverter und Full-Bridge- Konverter bekannt. Die Fig. 1 zeigt einen bekannten Halbbrücken-Konverter 31. Der bekannte Halbbrücken-Konverter 31 umfasst einen Primärkreis 42 und einen Sekundärkreis 43. Der Primärkreis 42 weist eine primärseitige Transformatorspule 34a auf, der Sekundärkreis 43 weist eine sekundärseitige Transformatorspule 34b auf, wobei die primärseitige Transformatorspule 34a und die sekundärseitige Transformatorspule 34b unter Ausbildung eines Transformators miteinander gekoppelt sind.
Der Primärkreis 42 umfasst eine H-Brückenschaltung mit einen von einem ersten Knotenpunkt 36 zu einem zweiten Knotenpunkt 37 verlaufenden ersten Zweig und zweiten Zweig und einem zwischen dem ersten Zweig und dem zweiten Zweig liegenden Brückenzweig. Die primärseitige Transformatorspule 34a ist in dem Brückenzweig angeordnet. In dem ersten Zweig ist ein erster Schalter 35a und ein erster Kondensator 37a, in dem zweiten Zweig ein zweiter Schalter 35b und ein zweiter Kondensator 37b angeordnet. Parallel zum ersten Kondensator 38a ist ein erster Widerstand 44a, parallel zum zweiten Kondensator 38b ist ein Widerstand 44b geschaltet. Der erste Zweig mit einer Masse 39 verbunden. Des Weiteren weist der erste Primärkreis 42 einen ersten Eingang 50a und einen zweiten Eingang 50b auf, an dem eine Batterie 49 angeschlossen ist.
Der Sekundärkreis 43 umfasst eine Gleichrichter-Schaltung 40 und einen Tief- pass 41 . Die Gleichrichterschaltung 40 umfasst drei Dioden 45a, 45b, 45c, mit- tels denen die von der sekundärseitigen Transformatorspule 34b erzeugte Spannung gleichgerichtet wird. Der Abgriff der Spannung an der sekundärseitigen Transformatorspule 34b erfolgt dabei mittels einer Mittelpunktanzapfung. Der Tiefpass 41 weist eine Spule 46 und einen Kondensator 47 auf. Die im Sekundärkreis 43 erzeugte Spannung kann an einem ersten Ausgang 48a und an ei- nem zweiten Ausgang 48b abgegriffen werden.
Das Funktionsprinzip des in Fig. 1 gezeigten Halbbrücken-Konverters 1 ist wie folgt: Die Batterie 49 stellt eine Spannung zur Verfügung, die über die Symmetriewiderstände 44a, 44b die Kondensatoren 38a, 38b auf die Hälfte der Batterie- Spannung auflädt. Die Schalter 35a und 35b werden jetzt abwechselnd geöffnet und geschlossen, so dass sich über der primärseitigen Transformatorspule 34a eine Wechselspannung mit einer Amplitude ergibt, die der Hälfte der Batteriespannung entspricht. Diese Wechselspannung wird mittels der sekundärseitigen Transformatorspule 34b in den Sekundärkreis 43 eingekoppelt und über die Gleichrichterschaltung 40 gleichgerichtet. Die entsprechend dem Tastverhältnis der Schalter 35a, 35b so entstandene gleichgerichtete pulsförmige Ausgangsspannung wird über den Tiefpass 41 geglättet.
Offenbarung der Erfindung
Gegenstand der Erfindung ist eine DC/DC-Wandlerschaltung, die mindestens zwei DC/DC-Wandler und einen Tiefpass umfasst, wobei die DC/DC-Wandler jeweils eine Eingangsseite und eine Ausgangsseite aufweisen und die DC/DC- Wandler auf ihrer Ausgangsseite miteinander in Reihe geschaltet sind, und der Tiefpass den miteinander in Reihe geschalteten DC/DC-Wandlern nachgeschaltet ist zum Glätten einer von den DC/DC-Wandlern an ihrer Ausgangsseite erzeugten Ausgangsspannung.
Die DC/DC-Wandler ermöglichen es, eingangsseitig eine Vielzahl von Energie- quellen, insbesondere Batteriemodule, parallel und/oder in Reihe zu schalten.
Die Klemmenspannung der beispielsweise so geschalteten Batteriemodule ist durch eine solche Schaltung geringer als eine Schaltung von ohne DC/DC- Wandler unmittelbar in Serie geschalteten Batteriemodulen. Auf diese Weise kann erreicht werden, dass auf der Eingangsseite eines DC/DC-Wandlers keine Spannung anliegt, die einen besonderen Umgang mit dem Batteriemodul, beispielsweise beim Austausch des Batteriemoduls oder einzelner Batteriezellen des Batteriemoduls, erforderlich machen würde. Durch eine geeignete Schaltung der DC/DC-Wandler, insbesondere in Reihe und/oder parallel, kann auf der Ausgangsseite der DC/DC-Wandler eine gewünschte Ausgangsspannung bezie- hungsweise ein gewünschter Strom zur Verfügung gestellt werden. Die Vorrichtung ermöglicht außerdem die Wahl einer je nach Betriebssituation geeigneten Gesamtspannung, da die Ausgangsspannung der einzelnen DC/DC-Wandler nach bekannter Weise eingestellt werden kann. Zusätzlich ist die Ausgangsspannung unabhängig von den eingangsseitig angeschlossenen Batteriemodu- len. Dadurch kann die Auslegung des aus Batteriemodulen und Wandlerschaltung gebildeten Systems rein nach Energie- und Leistungskriterien unabhängig von der für die jeweilige Anwendung geforderten Gesamtspannung erfolgen. Ein weiterer Vorteil besteht darin, dass teure Leistungsschalter zum Abschalten eines solchen Systems entfallen können, weil die Spannung auf der Ausgangsseite der DC/DC-Wandler durch Abschalten der DC/DC-Wandler erfolgen kann. Der nachgeschaltete Tiefpass ermöglicht es, die sich aus den Ausgangsspannungen der einzelnen DC/DC-Wandler ergebende Gesamtspannung zu glätten, dass heißt, höherfrequente Anteile in der Gesamtspannung zu eliminieren. Durch die Nachschaltung des Tiefpasses ist es insbesondere möglich, auf Tiefpässe in den einzelnen DC/DC-Wandler, die ledglich für den jeweiligen DC/DC-Wandler die Ausgangsspannung glätten, zu verzichten. Letzteres ist erfindungsgemäß bevorzugt. Durch eine polyphasige Ansteuerung der einzelnen DC/DC-Wandler ist es zu dem möglich, die Phasen der Ausgangsspannungen der einzelnen DC/DC-Wandler derart einzustellen, dass sich in der Summe der einzelnen Aus- gangsspannungen der DC/DC-Wandler Spannungsspitzen der einzelnen Ausgangsspannungen zumindest teilweise heraus mittein. Dies ermöglicht es, für den Tiefpass kleinere und kostengünstigere Komponenten zu verwenden.
Unter einem„Bstteriemodul" ist im Rahmen dieser Erfindung eine einzelne Batte- riezelle oder eine Schaltung von mehreren Batteriezellen zu verstehen. Die mehren Batteriezellen können insbesondere in Reihe und/oder parallel geschaltet sein. Eine Batteriezelle kann insbesondere als ein wiederaufladbarer Akkumulatorzelle ausgeführt sein. Eine bevorzugte Ausführungsform der Erfindung sieht vor, dass zumindest ein
DC/DC-Wandler der mindestens zwei DC/DC-Wandler einen Primärkreis und einen Sekundärkreis umfasst, wobei der Primärkreis eine primärseitige Transformatorspule aufweist und der Sekundärkreis eine sekundärseitige Transformatorspule aufweist, und die primärseitige Transformatorspule und die sekundärseitige Transformatorspule unter Ausbildung eines Transformators miteinander gekoppelt sind. Dies ermöglicht es, Sekundärkreis und Primärkreis galvanisch zu entkoppeln.
Eine weitere weitere bevorzugte Ausführungsform der Erfindung sieht vor, dass der Primärkreis eine H-Brückenschaltung mit einem von einem ersten Knotenpunkt zu einem zweiten Knotenpunkt verlaufenden ersten Zweig, einem von dem ersten Knotenpunkt zum zweiten Knotenpunkt verlaufenden zweiten Zweig und einen zwischen dem ersten Zweig und dem zweiten Zweig liegenden Brückenzweig umfasst, wobei die primärseitige Transformatorspule in dem Brückenzweig angeordnet ist, in dem ersten Zweig ein erster Schalter und ein erster Anschluss für den Anschluss eines ersten Batteriemoduls angeordnet ist, und in dem zwei- ten Zweig ein zweiter Schalter und ein zweiter Anschluss für den Anschluss eines zweiten Batteriemoduls angeordnet ist.
Dieser bevorzugten Ausführungsform liegt die Erkenntnis zugrunde, dass die an dem ersten Anschluss und an dem zweiten Anschluss angeschlossenen Batteriemodule die Funktion von Kondensatoren und Widerständen, wie sie gemäß dem beschriebenen Stand der Technik im Primärkreis eines derartigen Wandlers eingesetzt werden, übernehmen können. Der so ausgebildete DC/DC-Wandler ermöglicht es damit, im Primärkreis auf Kondensatoren und Widerständen zu verzichten. Der Aufbau eines solchen Wandlers kann damit erheblich vereinfacht werden.
Ein weiterer Gegenstand der Erfindung ist ein Batteriesystem, das mindestens eine erfindungsgemäße DC/DC-Wandlerschaltung und mindestens zwei Batte- riemodule umfasst, wobei die mindestens zwei DC/DC-Wandler jeweils eine Eingangsseite aufweisen und jeweils mindestens ein Batteriemodul auf einer Eingangsseite eines DC/DC-Wandlers an einen DC/DC-Wandler angeschlossen ist.
Weitere vorteilhafte Ausführungsformen der Erfindung sind Gegenstände der ab- hängigen Ansprüche.
Die Erfindung wird im Folgenden anhand von Ausführungsformen, die durch Zeichnungen dargestellt sind, näher erläutert. Kurze Beschreibung der Zeichnungen
Es zeigen
Fig. 1 ein Prinzipschaltbild eines DC/DC-Wandlers gemäß Stand der Technik,
Fig. 2 ein Prinzipschaltbild einer ersten Ausführungsform eines erfindungsgemäßen Batteriesystems mit einer erfindungsgemäßen DC/DC- Wandlerschaltung, und Fig. 3 ein Prinzipschaltbild einer zweiten Ausführungsform eines erfindungsgemäßen Batteriesystems mit einer erfindungsgemäßen DC/DC- Wandlerschaltung. Ausführungsformen der Erfindung
Gleiche oder einander entsprechende Bauteile sind in den Figuren mit den selben Bezugszeichen versehen. Die Figur 1 zeigt in einem Prinzipschaltbild eine erste Ausführungsform eines erfindungsgemäßen Batteriesystems. Das Batteriesystem umfasst eine DC/DC- Wandlerschaltung und drei Batteriemodule 3.
Die DC/DC-Wandlerschaltung umfasst drei DC/DC-Wandler 1 . Jeder DC/DC- Wandler 1 weist eine Eingangsseite auf, an der eine Eingangsspannung angelegt werden kann, und eine Ausgangsseite auf, an der eine durch den DC/DC- Wandler 1 umgewandelte Ausgangsspannung abgegriffen werden kann. Auf der Eingangsseite jedes DC/DC-Wandlers 1 ist in diesem Ausführungsbeispiel jeweils ein Batteriemodul 3 angeschlossen, dass dem jeweiligen DC/DC-Wandler 1 eine konstante Eingangsspannung zur Verfügung stellt.
Ein Batteriemodul 3 umfasst mehrere Batteriezellen 2, die in Reihe geschaltet sind. Die Batteriezellen 2 sind in diesem Ausführungsbeispiel Akkumulatorzellen, beispielsweise Li-Ionen-Zellen. Alternativ kann das Batteriemodul 3 nur eine ein- zige Batteriezelle 2 umfassen. Des Weiteren ist es ebenfalls möglich, die Batteriezellen 2 zumindest teilweise parallel zu schalten.
Die DC/DC-Wandler 1 sind auf ihrer Ausgangsseite über erste Ausgänge 18a und zweite Ausgänge 18b miteinander in Reihe geschaltet. An dem ersten Aus- gang 18a des einen äußeren DC/DC-Wandlers 1 und an dem zweiten Ausgang
18b des anderen äußeren DC/DC-Wandlers 1 liegt eine Gesamtspannung an, die sich aus der Summe der Ausgangsspannungen der einzelnen DC/DC- Wandler 1 ergibt. Des Weiteren umfasst die DC/DC-Wandlerschaltung einen Tiefpass 1 1 . Der
Tiefpass 1 1 ist den miteinander in Reihe geschalteten DC/DC-Wandlern 1 nach- geschaltet und glättet die sich aus den Ausgangsspannungen der einzelnen DC/DC-Wandler ergebende Gesamtspannung.
Der Tiefpass 1 1 ist als LC-Tiefpass ausgebildet. Der Tiefpass 1 1 umfasst eine Induktivität L 16 in Form einer Spule und eine Kapazität C 17 in Form eines Kondensators.
Nach dem Filtern der Gesamtspannung durch den Tiefpass 11 kann die durch das Filtern geglättete Gesamtspannung an einem ersten Abgriff 14a und einem zweiten Abgriff 14b des Batteriesystems abgegriffen werden.
Die drei DC/DC-Wandler 1 können beispielsweise als Half-Bridge-Konverter, Forward-Konverter, Push-Pull Konverter und/oder Full-Bridge-Konverter ausgeführt sein.
Die Figur 3 zeigt in einem Prinzipschaltbild eine zweite Ausführungsform eines erfindungsgemäßen Batteriesystems.
Das Batteriesystem gemäß der zweiten Ausführungsform ist eine Variante des Batteriesystems gemäß der ersten Ausführungform. Die DC/DC-Wandler 1 des zweiten Batteriesystems sind in dieser Ausführungsform als spezieller HaIf- Bridge(Halbbrücken)-Wandler ausgebildet.
Der Halbbrücken-Wandler 1 umfasst einen Primärkreis 12 und einen Sekundär- kreis 13. Der Primärkreis 12 weist eine primärseitige Transformatorspule 4a auf, der Sekundärkreis 13 weist eine sekundärseitige Transformatorspule 4b auf, wobei die primärseitige Transformatorspule 4a und die sekundärseitige Transformatorspule 4b unter Ausbildung eines Transformators miteinander gekoppelt sind. Des Weiteren umfasst der Primärkreis 12 eine H-Brückenschaltung mit einem von einem ersten Knotenpunkt 6 zu einem zweiten Knotenpunkt 7 verlaufenden ersten Zweig, einem von dem ersten Knotenpunkt 6 zum zweiten Knotenpunkt 7 verlaufenden zweiten Zweig und einem zwischen dem ersten Zweig und dem zweiten Zweig liegenden Brückenzweig. Die primärseitige Transformatorspule 4a ist in dem Brückenzweig angeordnet. In dem ersten Zweig ist ein erster Schalter
5a und ein erster Anschluss 7a für den Anschluss eines ersten Batteriemoduls 8a angeordnet, in dem zweiten Zweig ist ein zweiter Schalter 5b und ein zweiter An- schluss 7b für den Anschluss eines zweiten Batteriemoduls 8b angeordnet. Der erste Zweig ist zudem zwischen dem ersten Anschluss 7a und dem ersten Schalter 5a mit einer Masse 9 verbunden.
Der Sekundärkreis 13 umfasst des Weiteren eine Gleichrichterschaltung 10 zum Gleichrichten der durch den Transformator umgewandelten Spannung. Die Gleichrichterschaltung 10 umfasst zwei Dioden 15a und 15b. Die Dioden 15a und 15b sind in der Art eines Zweigweggleichrichters im Sekundärkreis angeordnet. Der Abgriff der Spannung an der sekundärseitigen Transformatorspule 4b erfolgt über eine Mittelpunktanzapfung.
Das erste Batteriemodul 8a und das zweite Batteriemodul 8b sind derart an dem ersten Anschluss 7a beziehungsweise an dem zweiten Anschluss 7b des Pri- märkreises 12 angeschlossen, dass sich ungleiche Pole des ersten Batteriemoduls 8a und des zweiten Batteriemoduls 8b in der Schaltung gegenüberliegen.
Das erste Batteriemodul 8a und das zweite Batteriemodul 8b können als eine einzelne Batteriezelle ausgeführt sein. Alternativ kann ein Batteriemodul 8a, 8b mehrere Batteriezellen umfassen, wobei die Batteriezellen zumindest teilweise in
Reihe und/oder parallel geschaltet sind. Ein Batteriemodul 8a, 8b kann auch durch eine Batterie gebildet werden. Vorzugsweise umfassen die Batteriemodule 8a, 8b Batteriezellen, die als Akkumulator ausgeführt sind. Vorzugsweise ist eine Batteriezelle als Lithium-Ionen-Zelle ausgeführt.
Das Funktionsprinzip der Halbbrücken-Wandler 1 ist wie folgt: Wird der erste Schalter 5a geschlossen, so liegt über der primärseitigen Transformatorspule 4a die Spannung des ersten Batteriemoduls 8a an. Diese Spannung wird über die sekundärseitige Transformatorspule 4b in den Sekundärkreis 13 übertragen. Wenn der erste Schalter 5a wieder geöffnet wird, so wird die in der primärseitigen Transformatorspule 4a gespeicherte Energie in Form eines Stromes abgebaut, die in das zweite Batteriemodul 8b fließt. Bei Schließen des zweiten Schalters 5b wiederholt sich dieser Vorgang in umgekehrter Richtung. Durch Wahl der Tastverhältnisse des ersten Schalters 5a und des zweiten Schalters 5b kann auf diese Weise nicht nur die Spannung an den Ausgängen 18a, 18b des Halbbrü- cken-Wandlers 1 eingestellt werden, sondern gleichzeitig auch ein Ladungs- Balancing zwischen den Batteriemodulen 8a, 8b durchgeführt werden.
Des Weiteren umfasst die DC/DC-Wandlerschaltung einen Tiefpass 1 1 . Der Tiefpass 1 1 ist den miteinander in Reihe geschalteten DC/DC-Wandlern 1 nachgeschaltet und glättet die sich aus den Ausgangsspannungen der einzelnen DC/DC-Wandler 1 ergebende Gesamtspannung.
Entsprechend der ersten Ausführungsform kann nach dem Filtern der Gesamt- Spannung durch den Tiefpass 1 1 die durch das Filtern geglättete Gesamtspannung an dem ersten Abgriff 14a und dem zweiten Abgriff 14b des Batteriesystems abgegriffen werden.
Bei den beschriebenen Ausführungsformen der Batteriesysteme ist es möglich, durch eine polyphasige Ansteuerung der einzelnen DC/DC-Wandler 1 die Phasen der Ausgangsspannungen der einzelnen DC/DC-Wandler 1 derart einzustellen, dass sich in der Summe der einzelnen Ausgangsspannungen der DC/DC- Wandler Spannungsspitzen der einzelnen Ausgangsspannungen zumindest teilweise heraus mittein. Dies ermöglicht es beispielsweise, für den Tiefpass 1 1 kleine und kostengünstige Komponenten für die Induktivität 16 und die Kapazität
17 zu verwenden. Für die Umsetzung einer derartigen Steuerung weist das Batteriesystem beispielsweise eine nicht näher dargestelle Steuereinrichtung für die Steuerung der DC/DC-Wandler 1 auf, mittels der die Schalter der DC/DC- Wandler 1 nach einem geeigneten Algorithmus polyphasig angesteuert werden.
Derartige Batteriesysteme eignen sich beispielsweise als Teil einer Energieversorgung eines Kraftfahrzeuges, insbesondere alsTeil eines Fahrzeugbordnetzes des Kraftfahrzeugs.

Claims

Ansprüche
1 . DC/DC-Wandlerschaltung, umfassend mindestens zwei DC/DC-Wandler (1 ) und einen Tiefpass (1 1 ), wobei die DC/DC-Wandler (1 ) jeweils eine Eingangsseite und eine Ausgangsseite aufweisen und die DC/DC-Wandler (1 ) auf ihrer Ausgangsseite miteinander in Reihe geschaltet sind, und der Tiefpass (1 1 ) den miteinander in Reihe geschalteten DC/DC-Wandlern (1 ) nachgeschaltet ist zum Glätten einer von den DC/DC-Wandlern (1 ) an ihrer Ausgangsseite erzeugten Ausgangsspannung.
2. DC/DC-Wandlerschaltung nach Anspruch 1 , wobei der Tiefpass (1 1 ) ein LC-
Tiefpass (1 1 ) ist und eine Induktivität L (16) und eine Kapazität C (17) um- fasst.
3. DC/DC-Wandlerschaltung nach einem der vorhergehenden Ansprüche, wo- bei zumindest ein DC/DC-Wandler (1 ) der mindestens zwei DC/DC-Wandler
(1 ) einen Primärkreis (12) und einen Sekundärkreis (13) umfasst, wobei der Primärkreis (12) eine primärseitige Transformatorspule (4a) aufweist und der Sekundärkreis (13) eine sekundärseitige Transformatorspule (4b) aufweist, und die primärseitige Transformatorspule (4a) und die sekundärseitige Transformatorspule (4b) unter Ausbildung eines Transformators miteinander gekoppelt sind.
4. DC/DC-Wandlerschaltung nach Anspruch 3, wobei der Primärkreis (12) eine H-Brückenschaltung mit einem von einem ersten Knotenpunkt (6) zu einem zweiten Knotenpunkt (7) verlaufenden ersten Zweig, einem von dem ersten
Knotenpunkt (6) zu dem zweiten Knotenpunkt (7) verlaufenden zweiten Zweig und einem zwischen dem ersten Zweig und dem zweiten Zweig liegenden Brückenzweig umfasst, wobei die primärseitige Transformatorspule (4a) in dem Brückenzweig angeordnet ist, in dem ersten Zweig ein erster Schalter (5a) und ein erster Anschluss (7a) für den Anschluss eines ersten
Batteriemoduls (8a) angeordnet ist, und in dem zweiten Zweig ein zweiter Schalter (5b) und ein zweiter Anschluss (7b) für den Anschluss eines zweiten Batteriemoduls (8b) angeordnet ist.
5. DC/DC-Wandlerschaltung nach Anspruch 4, wobei der erste Zweig und/oder der zweite Zweig mit einer Masse (9) verbunden ist.
6. DC/DC-Wandlerschaltung nach einem der Ansprüche 3 bis 5, wobei die Sekundärkreis (13) eine Gleichrichterschaltung (10) zum Gleichrichten der durch den Transformator umgewandelten Spannung aufweist.
7. DC/DC-Wandlerschaltung nach einem der vorhergehenden Ansprüche, wobei die mindestens zwei DC/DC-Wandler (1 ) als Halbbrücken-Konverter, Forward-Konverter, Push-Pull Konverter und/oder Full-Bridge-Konverter ausgeführt ist.
8. Batteriesystem, mindestens umfassend eine DC/DC-Wandlerschaltung nach einem der Ansprüche 1 bis 7 und mindestens zwei Batteriemodule (3, 8a, 8b), wobei jeweils mindestens ein Batteriemodul (3, 8a, 8b) auf einer Eingangsseite eines DC/DC-Wandlers (1 ) an einem DC/DC-Wandler (1 ) ange- schlössen ist.
9. Batteriesystem nach Anspruch 8 in Verbindung mit Anspruch 4, wobei ein erstes Batteriemodul (8a) der mindestens zwei Batteriemodule (8a, 8b) an dem ersten Anschluss (7a) des DC/DC-Wandlers (1 ) und ein zweites Batte- riemodul (8b) der mindestens zwei Batteriemodule (8a, 8b) an dem zweiten
Anschluss (7b) des DC/DC-Wandlers (1 ) angeschlossen ist.
10. Batteriesystem nach Anspruch 9, wobei das erste Batteriemodul (8a) und das zweite Batteriemodul (8b) derart angeschlossen sind, dass sich unglei- che Pole des ersten Batteriemoduls (8a) und des zweiten Batteriemoduls
(8b) in der Schaltung gegenüberliegen.
1 1 . Batteriesystem nach einem der Ansprüche 8 bis 10, wobei das Batteriemodul (3, 8a, 8b) zumindest eine einzelne Batteriezelle (2) umfasst.
EP10740666A 2009-08-28 2010-08-10 Dc-wandlerschaltung und batteriesystem Ceased EP2471167A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009028973A DE102009028973A1 (de) 2009-08-28 2009-08-28 DC/DC-Wandlerschaltung und Batteriesystem
PCT/EP2010/061582 WO2011023529A2 (de) 2009-08-28 2010-08-10 Dc/dc-wandlerschaltung und batteriesystem

Publications (1)

Publication Number Publication Date
EP2471167A2 true EP2471167A2 (de) 2012-07-04

Family

ID=43524798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10740666A Ceased EP2471167A2 (de) 2009-08-28 2010-08-10 Dc-wandlerschaltung und batteriesystem

Country Status (5)

Country Link
US (1) US9214819B2 (de)
EP (1) EP2471167A2 (de)
CN (1) CN102577063B (de)
DE (1) DE102009028973A1 (de)
WO (1) WO2011023529A2 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8640799B2 (en) 2009-06-11 2014-02-04 Illinois Tool Works Inc. Welding systems powered by hybrid vehicles
EP2437386A1 (de) * 2010-10-04 2012-04-04 PL Technologies AG Stabilisierte Hochspannungsstromversorgung
CA2746304A1 (fr) * 2011-07-15 2013-01-15 Hydro-Quebec Systeme de recharge rapide multi-niveaux avec batteries de puissance imbriquees
DE102011082648A1 (de) * 2011-09-14 2013-03-14 Sb Limotive Company Ltd. Verfahren und Vorrichtung zum Ausgleichen von Ladungsdifferenzen zwischen den Batteriemodulen eines Batteriesystems mit stufig einstellbarer Ausgangsspannung
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
US9041288B2 (en) 2012-10-09 2015-05-26 Ampegon Ag Stabilized high-voltage power supply
US10144083B2 (en) 2013-02-22 2018-12-04 Illinois Tool Works Inc. Multi-operator engine driven welder system
DE102013208583A1 (de) * 2013-05-08 2014-11-13 Robert Bosch Gmbh Antriebsbatterie für den n-phasigen Betrieb eines Elektromotors sowie ein Antriebssystem und ein Verfahren zum Betrieb des Antriebssystems
US9520613B2 (en) 2013-07-23 2016-12-13 Infineon Technologies Ag Battery control with block selection
US9438113B2 (en) 2013-07-30 2016-09-06 Johnson Controls Technology Company DC-DC convertor for batteries having multiple positive terminals
DE102014200205A1 (de) * 2014-01-09 2015-07-09 Robert Bosch Gmbh Verfahren zur Bereitstellung einer elektrischen Spannung und Batterie
DE102014201225A1 (de) * 2014-01-23 2015-07-23 Robert Bosch Gmbh Batteriesystem und elektrische Anordnung mit einem Elektromotor und einem Batteriesystem
DE102015200442A1 (de) * 2015-01-14 2016-07-14 Robert Bosch Gmbh Einschaltverzögerung für eigensichere Batteriezellen
CN104701943B (zh) * 2015-03-10 2019-02-12 北京百度网讯科技有限公司 电池系统、电池单元组、电池控制系统及方法
DE102015210922A1 (de) * 2015-06-15 2016-12-15 TRUMPF Hüttinger GmbH + Co. KG Wechselrichter, Flussbatteriesystem und Verfahren zum Laden und Entladen einer Flussbatterie
DE102015224437B4 (de) * 2015-12-07 2019-05-02 Conti Temic Microelectronic Gmbh Fahrzeugbordnetz-Spannungswandler, Fahrzeugbordnetz mit einem Fahrzeugbordnetz-Spannungswandler
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
DE102017106436A1 (de) 2017-03-24 2018-09-27 Wobben Properties Gmbh Windpark mit mehreren Windenergieanlagen
CN108377007A (zh) * 2017-11-23 2018-08-07 全球能源互联网欧洲研究院 一种电动汽车直流充电系统
CN108718100A (zh) * 2017-11-23 2018-10-30 全球能源互联网欧洲研究院 一种集中式快速充电电路及系统
DE102019214824A1 (de) * 2019-09-27 2021-04-01 Robert Bosch Gmbh Elektrische Schaltungsanordnung für ein Energiespeichersystem und Verfahren zum Betreiben der elektrischen Schaltungsanordnung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080042493A1 (en) * 2004-03-08 2008-02-21 Jacobs James K Battery controller and method for controlling a battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623398A (en) * 1995-10-30 1997-04-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Series connected converter for control of multi-bus spacecraft power utility
GB9820643D0 (en) * 1998-09-22 1998-11-18 Cit Alcatel A power feed for a submarine communications system
US6154383A (en) 1999-07-12 2000-11-28 Hughes Electronics Corporation Power supply circuit for an ion engine sequentially operated power inverters
CA2369060C (en) * 2001-01-24 2005-10-04 Nissin Electric Co., Ltd. Dc-dc-converter and bi-directional dc-dc converter and method of controlling the same
DE102005036806A1 (de) * 2005-08-02 2007-02-08 Lorch Schweißtechnik GmbH Elektrische Stromquelle, insbesondere Schweißstromquelle
TWI332742B (en) 2006-04-21 2010-11-01 Delta Electronics Inc Uninterruptible power supply capable of providing sinusoidal-wave ouput ac voltage and method thereof
CN101064438B (zh) 2006-04-26 2010-12-01 台达电子工业股份有限公司 能够提供正弦波输出交流电压的不断电电源供应器
DE102007035329A1 (de) * 2007-07-27 2009-01-29 Robert Bosch Gmbh Ladungsverteilung durch Ladungsübertragung innerhalb Batteriepacks
US8946937B2 (en) * 2010-08-18 2015-02-03 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080042493A1 (en) * 2004-03-08 2008-02-21 Jacobs James K Battery controller and method for controlling a battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOHAN, UNDELAND, ROBBINS: "Power Electronics, Converters, Applications, and Design", part 3rd Edition 31 December 2003, JOHN WILEY & SONS, ISBN: 978-0-471-22693-2, article "Chapter 10", pages: 301 - 307 *

Also Published As

Publication number Publication date
CN102577063A (zh) 2012-07-11
US9214819B2 (en) 2015-12-15
DE102009028973A1 (de) 2011-03-03
WO2011023529A2 (de) 2011-03-03
WO2011023529A3 (de) 2011-09-09
US20120242156A1 (en) 2012-09-27
CN102577063B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
EP2471167A2 (de) Dc-wandlerschaltung und batteriesystem
DE102007028077B4 (de) Vorrichtung zur Einspeisung elektrischer Energie in ein Energieversorgungsnetz und Gleichspannungswandler für eine solche Vorrichtung
EP3014725B1 (de) Energiespeichereinrichtung mit gleichspannungsversorgungsschaltung und verfahren zum bereitstellen einer gleichspannung aus einer energiespeichereinrichtung
DE102013212682B4 (de) Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung und Verfahren zum Bereitstellen einer Gleichspannung aus einer Energiespeichereinrichtung
EP2493062B1 (de) DC-DC Wandlerzelle, hieraus aufgebaute rückspeisefähige DC-DC Wandlerschaltung und Verfahren zu deren Betrieb
DE102011075927A1 (de) Multifunktionaler stromrichter von gleichspannung zu gleichspannung, von gleichspannung zu wechselspannung und von wechselspannung zu gleichspannung
DE102009000096A1 (de) Verfahren für die Steuerung einer Stromversorgungseinrichtung mit einem Wechselrichter
DE102007028078A1 (de) Vorrichtung zur Einspeisung elektrischer Energie in ein Energieversorgungsnetz und Gleichspannungswandler für eine solche Vorrichtung
DE102006028503A1 (de) Vorrichtung und Verfahren zum Laden eines Energiespeichers
EP2362522A2 (de) Ladegerät für ein Elektrofahrzeug
DE102018008603A1 (de) Schaltungsanordnung und Verfahren zum Laden einer Batterieanordnung mit mehreren Batteriemodulen
DE102017107355A1 (de) Stromrichteranordnung zur Speisung von Fahrzeugen und Anlage hiermit
DE102011003859A1 (de) System zum Laden eines Energiespeichers und Verfahren zum Betrieb des Ladesystems
DE102009046553A1 (de) Schaltungsanordnung zur Umwandlung einer Spannung von einem ersten auf ein zweites Spannungsniveau und Bordnetz für ein Kraftfahrzeug
EP2471169A1 (de) Halbbrücken-konverter für ein batteriesystem und batteriesystem
DE4426017C2 (de) Stromversorgungsgerät, insbesondere Batterie-Ladegerät für Elektrofahrzeuge oder dergleichen
WO2020064429A1 (de) Ladeschaltung für einen fahrzeugseitigen elektrischen energiespeicher
EP3290254A1 (de) Bidirektionaler bordnetzumrichter und verfahren zu dessen betrieb
DE102012206801A1 (de) Schaltung mit einer stromrichterschaltung und verfahren zur leistungsanpassung
DE102020113907A1 (de) Modulare Ladesäule zum elektrischen Gleichstromladen einer Batterie eines Elektrofahrzeugs
DE102013212692A1 (de) Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung
DE102013105098A1 (de) Integrierter Solar-/Batteriewechselrichter
DE102018221195A1 (de) Bidirektionaler DC/DC-Wandler und Verfahren zum Betreiben des DC/DC Wandlers
DE102014013039A1 (de) Vorrichtung für ein Kraftfahrzeug zum galvanisch entkoppelten Übertragen einer elektrischen Spannung
WO2014170059A1 (de) Gleichspannungswandleranordnung mit modularen komponenten zur einfachen konfigurierbarkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120328

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20190413