EP2467730A1 - Procédé d analyse de la résonance magnétique nucléaire dans un échantillon et dispositif permettant de mettre en uvre ledit procédé - Google Patents

Procédé d analyse de la résonance magnétique nucléaire dans un échantillon et dispositif permettant de mettre en uvre ledit procédé

Info

Publication number
EP2467730A1
EP2467730A1 EP10751802A EP10751802A EP2467730A1 EP 2467730 A1 EP2467730 A1 EP 2467730A1 EP 10751802 A EP10751802 A EP 10751802A EP 10751802 A EP10751802 A EP 10751802A EP 2467730 A1 EP2467730 A1 EP 2467730A1
Authority
EP
European Patent Office
Prior art keywords
laser
frequency
magnetic field
laser beam
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP10751802A
Other languages
German (de)
English (en)
Inventor
Raiker Witter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of EP2467730A1 publication Critical patent/EP2467730A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/62Arrangements or instruments for measuring magnetic variables involving magnetic resonance using double resonance

Definitions

  • the invention relates to a method for investigating the interactions between molecules and electromagnetic fields by means of nuclear magnetic resonance (NMR) and an apparatus for carrying out this method.
  • NMR nuclear magnetic resonance
  • Nuclear magnetic resonance spectroscopy and imaging also referred to as MRI (magnetic resonance imaging)
  • MRI magnetic resonance imaging
  • the invention has for its object to provide a method for studying the nuclear magnetic resonance in a sample and an apparatus for performing this method, which allows a high resolution in the study of nuclear magnetic resonance and in imaging.
  • Radiation sources that emit synchronized, monochromatic electromagnetic radiation with high spatial and temporal coherence produce magnetic fields of high flux density and amplitude and magnetic field gradients of high slopes.
  • suitable lasers including here the radiation sources referred to as maser in the microwave range, are available;
  • the process according to the invention comprises the steps a) to c).
  • a laser suitable for this purpose which is referred to as an excitation laser, generates at least one packet of laser pulses, but in practice a whole cascade of packets of laser pulses.
  • the at least one packet of laser pulses is emitted in such a way that it acts on the measurement volume in which the sample volume is located at a time when a quasi-static magnetic field ⁇ 0 (zero) occurs within the measurement volume.
  • This condition ensures that precisely when there is a quasi-static magnetic field in the measurement volume on the time scale of the excitation laser, the sample is exposed approximately simultaneously to a laser pulse producing a time-varying magnetic field with a flux density B ⁇ .
  • h. is the gyromagnetic moment of the atomic nucleus and to respective B 01 denote the Planck constant, / k s, the flux density of a (quasi-) static (external) magnetic field.
  • the resonance condition according to Eq. (1) the sample, which is in the prevailing quasi-static magnetic field, emitting a response signal with the energy .DELTA.E in response to each irradiated excitation laser pulse received according to step c) of at least one detector and preferably forwarded to a data processing system for further processing becomes.
  • the magnetic field occurring within the measurement volume is then quasi-static with respect to the time scale of the frequency of the excitation laser within the measurement volume, if it is at
  • the frequency of the excitation laser changes slowly is ensured in the following manner, that always a value ⁇ 0 for the flux density Boi of the quasi-static magnetic field, in the resonance condition according to Eq. (1) is received
  • a suitable laser which is referred to as a field laser, generates a low-frequency first laser beam for this purpose.
  • the wavelength of the low-frequency first laser beam is selected such that it reduces the wavelength of the excitation laser by at least a factor 10 2 , preferably 10 3 ,
  • a field laser is used for this purpose, which emits a low-frequency first laser beam with a wavelength of 10 7 Hz to 10 13 Hz, while the at least one packet of laser pulses is generated by an excitation laser with a frequency of 10 9 to 10 15 Hz ,
  • the low-frequency first laser beam strikes the measurement volume in which the sample volume to be examined is located.
  • a first, periodically variable magnetic field with a flux density Boi is generated in the measurement volume, and the amplitude of the magnetic field has at least 90%, preferably 95% of its maximum within the measurement volume.
  • the value of the amplitude is determined according to where ⁇ o is the magnetic field constant and c is the speed of light.
  • the measuring volume with a high-frequency first laser beam whose frequency exceeds the frequency of the excitation laser by at least a factor of 10 2 , preferably 10 3 , applied. It is crucial that in this case ii) the high-frequency first laser beam is subjected to rectification before the measurement volume is applied, whereby a quasi-static magnetic field is generated in the measurement volume which has an effective mean constant flux density Boieff over at least 10 periods and time average
  • Waveforms required for this can be composed of several frequency components analogously to the Fourier analysis.
  • the at least one packet of laser pulses is generated by an excitation laser with a frequency of 10 7 to 10 9 Hz
  • a field laser is simultaneously used, which generates a high-frequency first laser beam with a wavelength of 10 9 to 10 11 Hz, which is subjected to a conventional and known electronic rectification before it acts on the measuring volume.
  • measure ii) is in principle equally suitable; however, no rectifier for the spectral optical range is currently known.
  • the method according to the invention is configured in such a way that, in addition to the quasi-static magnetic field already present, at least one further quasi-static magnetic field is present in the measurement volume.
  • At least one further laser beam is generated whose wavelength corresponds to the wavelength of the low-frequency first laser beam according to measure i), but the phases of the at least one further laser beam differ from the phase of the low-frequency first laser beam by 90 ° ⁇ 5 °, preferably by 90 °
  • the first laser beam and the existing further laser beams are aligned parallel to one another.
  • existing further laser beams are each aligned orthogonally to the first laser beam. Due to the three-dimensionality of the space, two further orthogonally aligned laser beams can be used to generate gradients in all x and y directions when the z direction is the direction of oscillation of the quasi-static magnetic field generated by the first laser beam.
  • the at least one further laser beam is either from
  • MRI imaging
  • the sample must be at least partially transparent or reflective in the frequency ranges of the laser beams and laser pulses acting on it in order to be able to generate a detectable response signal.
  • the invention further relates to an apparatus for carrying out the method according to the invention and includes at least
  • an excitation laser for generating laser pulses, wherein the frequency of the excitation laser exceeds the frequency of the first laser beam by at least a factor of 10 2 or the wavelength of the excitation laser exceeds the wavelength of the first laser beam by at least a factor of 10 2 ,
  • Beam splitter and a ⁇ / 2 delay line introduced so that the output of a field laser on at least two laser beams, the then have a phase shift of ⁇ / 2, can be divided.
  • the method according to the invention and the device suitable for carrying it out allow the generation of local magnetic fields and magnetic field gradients with very high flux densities.
  • the resulting sensitivity gain allows nuclear magnetic resonance examinations also on individual atomic nuclei.
  • Fig. 1 shows the general measuring principle according to measure i);
  • Fig. 2 is an enlarged view of Fig. 1;
  • Fig. 3 shows a simple means for spectroscopy according to
  • Fig. 6 enlarged view z ⁇ Fig. 5;
  • the principle of the invention using the measure i) is shown schematically in FIG.
  • the first laser beam having a frequency f O i, a period ⁇ oi and a wavelength ⁇ oi radiates on the measurement volume, whereby a quasistatic magnetic field having a flux density Boi is formed over the measurement volume on the time scale of the below-mentioned laser pulses in the z direction.
  • a further laser beam having a frequency f O2 , a period ⁇ o 2 and a wavelength Y 02 is irradiated onto the measuring volume, whereby a further magnetic field in the z-axis of the laser pulses is produced over the measuring volume.
  • Direction with a flux density B 02 forms.
  • the second laser beam is offset with respect to its phase for the first laser beam so that a quasi-static zero crossing of the magnetic field B 02 occurs as closely as possible in the center of the sample or at the location of the maximum of the magnetic field of the first laser beam.
  • the gradient of the superposition at this point has the highest slope in the case of the sinusoidal course of the two magnetic fields. From Fig. 1 it can be seen that depending on the frequency fo ⁇ , period ⁇ 02 and wavelength ⁇ o2, the strength of the magnetic field gradient can be set in the measurement volume.
  • the frequency f ⁇ was so dy dx
  • At least one sample volume located within the measurement volume in response to the application, transmits a nuclear magnetic resonance signal detected with a detector directed to the measurement volume.
  • Fig. 2 shows the situation with the sample volume to be examined and its close environment enlarged.
  • the amplitude- constant input pulse with a frequency f lf a period T 1 , a wavelength ⁇ i causes from the sample volume out the decaying response signal indicated on the right in the image, which is recorded with the detector.
  • FIGS. 1, 3 and 4 in each case a laser pulse sequence coming from the left in the image is drawn with three or four laser pulses, wherein the third or fourth laser pulse arrives just at the measuring volume, Fig. 2 shows contrast only highlighted this incident laser pulse.
  • FIG. 3 shows a simplified device for micro / nano-spectroscopy or micro / nanoscopy.
  • the first laser beam (frequency fo, period ⁇ o, wavelength ⁇ o) with the laser pulses (frequency f lr period ⁇ lr pulse duration ⁇ plr wavelength ⁇ i) together, so that in the measurement volume at the same time the quasi-constant Magnetic field Boi, which is aligned here in the z-direction, and centrally affect the laser pulse on the sample.
  • the laser pulse has at least 10 2 lower period duration than the first laser beam.
  • the magnetic field components S 2 of the laser pulses with the respectively associated frequencies f x .
  • Fig. 4 shows the same structure as Fig. 1, but extended to the representation of the beam sources.
  • the two field lasers are shown at the top and bottom for generating the first and second laser beams and in the middle of the excitation laser for generating the laser pulses and four laser pulses, which are on the way to sample.
  • the two light beams and the laser pulses are brought together and directed to the measurement volume.
  • the type of beam deflection is exemplified, with a different arrangement is possible, as long as the merging and localization of the two laser beams and the laser pulses are guaranteed in the volume of the sample to be examined.
  • a model calculation for laser fields should clarify the functionality of the method according to the invention in relation to measure i) quantitatively.
  • the principle of the invention using the measure ii) is shown schematically in Fig. 5.
  • the first laser beam with a frequency foi, a period ⁇ oi and a wavelength ⁇ oi is rectified and radiates to the measurement volume, whereby ü over the measurement volume on the time scale of the below-mentioned laser pulses in the z-direction, a quasi-static magnetic field with a flux density Boieff trains.
  • a further non-rectified laser beam having a frequency Jf 02, a period ⁇ o 2 and a wavelength on the measuring volume, whereby over the measurement volume on the time scale of the laser pulses, a further magnetic field in z-direction with a Flußdich- te B 02 trains.
  • the second laser beam is arranged so that a quasi-static zero crossing of the magnetic field B 02 occurs as accurately as possible in the center of the sample volume.
  • the measurement volume will now lt comprising a sequence of laser pulses with a frequency f wavelength ⁇ lr period Ti, pulse duration ⁇ pl and adjustable polarization p ⁇ applied such that each laser pulse the measurement volume at the location of the quasi-constant magnetic field B O i eff and the strongest magnetic field gra- dB m dB m
  • the frequency f 01 exceeds the frequency f ⁇ by at least a factor 10 2 , preferably 10 3 .
  • At least one sample volume located within the measurement volume in response to the application, transmits a nuclear magnetic resonance signal detected with a detector directed to the measurement volume.
  • Fig. 6 shows the situation with the sample volume to be examined and its close environment enlarged.
  • the magnified highlighted amplitude constant input pulse with a frequency £ ⁇ , a period ⁇ lf a wavelength ⁇ i causes from the sample volume out the decaying response signal indicated on the right in the image, which is recorded with the detector.
  • FIG. 7 shows a simplified device for micro / nano-spectroscopy or micro / nanoscopy.
  • Optical media, deflecting mirrors, rectifiers and semitransparent mirrors make the first te laser beam (frequency fo, period ⁇ o, wavelength ⁇ o) with the
  • Laser pulses (frequency f lr period ⁇ lt pulse duration ⁇ p i, wavelength Yi) together, so that in the measuring volume simultaneously the quasi-constant magnetic field Boi eff , which is aligned here in the z-direction, and centrally the laser pulse acting on the sample.
  • the laser pulse has at least 10 2 longer periods than the first
  • Laser beam Also shown are the magnetic field components B ⁇ the laser pulses with the respective associated frequencies f ⁇ .
  • Fig. 9 shows the same structure as Fig. 5, but extended to the representation of the beam sources.
  • the two field lasers are shown at the top and bottom for generating the first and second laser beams and in the middle of the excitation laser for generating the laser pulses.
  • deflecting mirror, a rectifier and semi-transparent mirror, the two light beams and the laser pulses are brought together and directed to the measurement volume.
  • Beam deflection is exemplified, with a different arrangement being possible as long as the merging and localization of the two laser beams and the laser pulses in the volume of the sample to be examined are ensured.
  • the magnetic field gradient can be measured using B 02 ⁇ 10 -3 B O i and ⁇ o 2

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

La présente invention concerne un procédé d’analyse de la résonance magnétique nucléaire dans un volume d’échantillon qui se trouve dans un volume de mesure et un dispositif permettant de mettre en œuvre ledit procédé. Un paquet d’impulsions laser auquel est exposé le volume de mesure, lorsqu’un champ magnétique quasi-statique apparaît dans ce dernier, est produit au moyen d’un laser d’excitation. Si les conditions de résonance des spins nucléaires dans ledit champ sont remplies, le volume d’échantillon envoie un signal de réponse qui est reçu par un détecteur. Le champ magnétique quasi-statique apparaissant dans le volume de mesure est produit comme suit : i) le volume de mesure est exposé à un faisceau laser basse fréquence dont la longueur d’onde dépasse d’au moins 102 la longueur d’onde du laser d’excitation, ce qui génère dans le volume de mesure un champ magnétique variable périodiquement dont l’amplitude dans le volume de mesure atteint au moins 90 % de sa valeur maximale ; ou ii) le volume de mesure est exposé à un faisceau laser haute fréquence dont la fréquence dépasse d’au moins 102 la fréquence du laser d’excitation, le faisceau laser étant soumis à un redressement avant l’exposition du volume de mesure. On génère ainsi, dans le volume de mesure, un champ magnétique quasi-statique qui présente sur au moins 10 périodes une densité de flux moyenne effective constante dont la moyenne dans le temps et dans l’espace est différente de zéro.
EP10751802A 2009-08-21 2010-08-17 Procédé d analyse de la résonance magnétique nucléaire dans un échantillon et dispositif permettant de mettre en uvre ledit procédé Ceased EP2467730A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910038472 DE102009038472A1 (de) 2009-08-21 2009-08-21 LASER-Feld-NMR/MRI sehr großer Magnetfelder und Gradienten
PCT/EP2010/005034 WO2011020590A1 (fr) 2009-08-21 2010-08-17 Procédé d’analyse de la résonance magnétique nucléaire dans un échantillon et dispositif permettant de mettre en œuvre ledit procédé

Publications (1)

Publication Number Publication Date
EP2467730A1 true EP2467730A1 (fr) 2012-06-27

Family

ID=42983590

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10751802A Ceased EP2467730A1 (fr) 2009-08-21 2010-08-17 Procédé d analyse de la résonance magnétique nucléaire dans un échantillon et dispositif permettant de mettre en uvre ledit procédé

Country Status (4)

Country Link
US (1) US8890520B2 (fr)
EP (1) EP2467730A1 (fr)
DE (1) DE102009038472A1 (fr)
WO (1) WO2011020590A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009038472A1 (de) * 2009-08-21 2011-02-24 Karlsruher Institut für Technologie LASER-Feld-NMR/MRI sehr großer Magnetfelder und Gradienten
US10773092B2 (en) * 2017-05-29 2020-09-15 Elegant Mathematics LLC Real-time methods for magnetic resonance spectra acquisition

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3427565A (en) * 1963-01-18 1969-02-11 Aerospace Corp Laser arrangement
US5189368A (en) * 1976-09-24 1993-02-23 Lockheed Sanders, Inc. Magnetometer
DE4023571A1 (de) * 1990-07-25 1992-02-06 Uranit Gmbh Verfahren zur erzeugung von laserstrahlung mit anteilen verschiedener wellenlaengen synchronisierter und raeumlich ueberlappter strahlenausbreitung und mehrwellenlaengen co(pfeil abwaerts)2(pfeil abwaerts)-laser zur durchfuehrung des verfahrens
US6911646B1 (en) * 1999-05-21 2005-06-28 California Institute Of Technology Measurements of electromagnetic properties and interactions based on radiation-excited polarizations
US6816266B2 (en) * 2000-02-08 2004-11-09 Deepak Varshneya Fiber optic interferometric vital sign monitor for use in magnetic resonance imaging, confined care facilities and in-hospital
WO2002061799A2 (fr) * 2001-01-30 2002-08-08 Board Of Trustees Operating Michigan State University Systeme et appareil de commande a utiliser avec une excitation ou une ionisation laser
US7450618B2 (en) * 2001-01-30 2008-11-11 Board Of Trustees Operating Michigan State University Laser system using ultrashort laser pulses
US7973936B2 (en) * 2001-01-30 2011-07-05 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
US7567596B2 (en) * 2001-01-30 2009-07-28 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
US7609731B2 (en) * 2001-01-30 2009-10-27 Board Of Trustees Operating Michigan State University Laser system using ultra-short laser pulses
US7109706B2 (en) * 2004-08-31 2006-09-19 Intematix Corporation Integrated EWP-STM spin resonance microscope
US7388498B2 (en) * 2005-09-30 2008-06-17 Weyerhaeuser Company Method and system for producing and reading labels based on magnetic resonance techniques
EP2235510A1 (fr) 2008-01-18 2010-10-06 Koninklijke Philips Electronics N.V. Analyse d'échantillon à base de micro-spectroscopie rmn
DE102009038472A1 (de) * 2009-08-21 2011-02-24 Karlsruher Institut für Technologie LASER-Feld-NMR/MRI sehr großer Magnetfelder und Gradienten
US20110142316A1 (en) * 2009-10-29 2011-06-16 Ge Wang Tomography-Based and MRI-Based Imaging Systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011020590A1 *

Also Published As

Publication number Publication date
US8890520B2 (en) 2014-11-18
US20120146635A1 (en) 2012-06-14
WO2011020590A1 (fr) 2011-02-24
DE102009038472A1 (de) 2011-02-24

Similar Documents

Publication Publication Date Title
EP0184840B1 (fr) Arrangement pour l'examen par résolution spatiale d'un échantillon à l'aide de la résonnance magnétique des moments de spin
DE2540436C2 (fr)
DE4437575C2 (de) Spektrometer mit kohärenter und periodisch gepulster Strahlung
WO2008145109A1 (fr) Procédé et dispositif pour l'examen d'un échantillon au microscope à sonde locale par microscopie de force photonique
DE1423462B2 (de) Verfahren und anordnung zur bestimmung eines magnetfeldes sowie deren anwendung als frequenznormal
DE3233050C2 (de) Verfahren der hochauflösenden Impuls-Kernresonanzspektroskopie
EP2281185B1 (fr) Spectroscopie thz pompe-sonde avec une temporisation ajustable par l intermédiaire du taux de répétition
DE102017210309A1 (de) Verfahren und Vorrichtung zum Erzeugen eines Kernspinresonanz-Spektrums von Kernspinmomenten einer Probe
DE112017008194T5 (de) Quantensensor auf Basis eines mit Seltenerd-Ionen dotierten optischen Kristalls und dessen Verwendung
DE4024834C2 (fr)
DE102016206965B4 (de) Verfahren zur Messung und Bestimmung eines THz-Spektrums einer Probe
EP0404794A1 (fr) Spectrometre d'absorption atomique.
EP0425611B1 (fr) Procede d'enregistrement de spectres de resonance magnetique et resolution graphique
EP2467730A1 (fr) Procédé d analyse de la résonance magnétique nucléaire dans un échantillon et dispositif permettant de mettre en uvre ledit procédé
EP0422170B1 (fr) Procede d'enregistrement de spectres de resonance de spins
WO2009040055A1 (fr) Dispositif de mesure pour un spectromètre optique
DE102018000118B4 (de) Quantenchaotischer Magnetfeldsensor und Verfahren zur Messung eines Magnetfeldes
DE102007011820B4 (de) Verfahren zum schnellen Messen von Proben mit geringem optischen Wegunterschied mittels elektromagnetischer Strahlung im Terahertz-Bereich
EP0158965A2 (fr) Procédé d'excitation d'un échantillon pour la tomographie par résonance magnétique nucléaire
DE1299444B (de) Vorrichtung zum Messen gyromagnetischer Resonanzsignale
DE102014017006A1 (de) Verfahren zur Bestimmung und Auswertung zeitaufgelöster Fluoreszenz- oder Reflexionsbilder an ausgedehnten dreidimensionalen Oberflächen
EP2577341B1 (fr) Relaxométrie par rmn à cyclage de champ
EP0038549A1 (fr) Procédé et dispositif pour la détection spectroscopique d'éléments présents à la surface d'un solide
DE102012202237B4 (de) Vorrichtung und Verfahren zur Magnetfeldmessung und -regelung
DE102021125657B4 (de) Phasensensitive Terahertzdetektion mit nichtlinearer Frequenzkonversion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20150525