EP2466607A1 - Actionneur electromagnetique à au moins deux bobines - Google Patents

Actionneur electromagnetique à au moins deux bobines Download PDF

Info

Publication number
EP2466607A1
EP2466607A1 EP11354053A EP11354053A EP2466607A1 EP 2466607 A1 EP2466607 A1 EP 2466607A1 EP 11354053 A EP11354053 A EP 11354053A EP 11354053 A EP11354053 A EP 11354053A EP 2466607 A1 EP2466607 A1 EP 2466607A1
Authority
EP
European Patent Office
Prior art keywords
coil
voltage
threshold
coils
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11354053A
Other languages
German (de)
English (en)
Other versions
EP2466607B1 (fr
Inventor
Charles Blondel
Roland Moussanet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP2466607A1 publication Critical patent/EP2466607A1/fr
Application granted granted Critical
Publication of EP2466607B1 publication Critical patent/EP2466607B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/226Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil for bistable relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1827Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current by changing number of serially-connected turns or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator

Definitions

  • the invention relates to an electromagnetic actuator comprising a magnetic circuit formed of a ferromagnetic yoke and a movable ferromagnetic core and at least two coils respectively comprising a voltage efficiency threshold.
  • Coil switching means allow operation with either one of said coils, or with at least two of said coils connected in series or parallel.
  • a functional block for measuring the operating sinusoidal voltage between a first and a second voltage supply terminal, the voltage varying during a rectified alternation between a minimum voltage and a maximum voltage.
  • the efficiency threshold is directly proportional to the operating voltage of the coil.
  • the efficiency threshold and the operating voltage are intrinsic characteristics of the coil and are generally known. For example, a coil designed to operate at 400V, for example will not be effective below 200 V. As shown on the figure 1 the efficiency threshold of the coil is then equal to 200V.
  • the ratio between the efficiency threshold and the operating voltage depends in particular on the use that is made of the actuator.
  • the efficiency of the coil during a half-wave is reduced compared to the total duration of the half-wave.
  • the efficiency of the coil during a half-wave is reduced compared to the total duration of the half-wave.
  • the invention therefore aims to overcome the disadvantages of the state of the art, so as to provide an electromagnetic actuator with high energy efficiency.
  • the functional block for measuring the electromagnetic actuator comprises means for comparing the operating voltage with at least one predefined voltage threshold.
  • the actuator comprises control means able to act, during a single alternation, on the switching means for connecting at least one first coil when the operating voltage is lower than a first threshold or for connecting at least one second coil when the operating voltage is greater than the first threshold.
  • the measurement functional block comprises means for comparing the operating voltage with at least two predefined voltage thresholds.
  • a third coil is connected in series with the first and second coils between the first and second power supply terminals.
  • a third opening means is connected between the first voltage supply terminal and the first terminal of the third coil.
  • the third coil has a second terminal connected to the second voltage supply terminal.
  • a fourth opening means is connected between the second terminal of the second coil and the second voltage supply terminal.
  • the actuator comprises a first and a second coil connected together in parallel between a first and second supply terminal.
  • a first opening means is connected between a first terminal of the first coil and the first voltage supply terminal A, the second terminal of the first coil is connected to the second voltage supply terminal.
  • a second opening means being connected between the first voltage supply terminal and the first terminal of the second coil, the second terminal of the second coil being connected to the second voltage supply terminal. The first coil is connected when the first opening means is closed and the second coil is connected when the second opening means is closed.
  • the coils comprise identical or distinct voltage efficiency thresholds.
  • the electromagnetic actuator comprises regulating means capable of modulating the voltage supplied to said coils according to PWM type pulse width modulation.
  • the electromagnetic actuator comprises a magnetic circuit formed by a ferromagnetic yoke 2 and a movable ferromagnetic core 3.
  • the actuator comprises at least two coils L1, L2 respectively having their own voltage efficiency threshold U1, U2.
  • the efficiency threshold of a coil of an actuator means a voltage threshold below which the energized coil will no longer provide sufficient magnetic flux to operate the actuator according to the manufacturer's specifications. For example, a coil that has an operating voltage equal to 400 volts has an efficiency threshold substantially equal to 200 volts.
  • the coils L1, L2 may comprise identical or distinct voltage efficiency thresholds.
  • the electromagnetic actuator comprises control means 20 of the coils L1, L2 allowing operation with a single coil or with several coils connected together in a series position or a parallel position. Operation with one or more coils depends on a value of an operating voltage U AB as a function of at least one predefined voltage threshold value S1, S2, S3.
  • the electromagnetic actuator comprises a functional block for measuring the operating voltage U AB .
  • the operating voltage U AB between the first and second voltage supply terminal A, B is a rectified sinusoidal voltage.
  • the voltage measured by said block varies during a rectified alternation between a minimum voltage Umin at a maximum voltage Umax. For example, the minimum voltage Umin is zero.
  • the measurement function block 25 comprises means for comparing the operating voltage U AB with at least one predefined voltage threshold S1, S2, S3.
  • the device operates on the basis of a divider bridge with n resistors R1, R2, R3, Rn, Rp.
  • the bridge makes it possible to measure at least a first input voltage E1.
  • Said first input voltage E1 is compared with an internal reference voltage VRef linked to a comparator C1. If the first input voltage E1 is equal to the reference value VRef, this means that the first threshold S1 is reached and the measurement function block 25 can send information to the control means 20.
  • the electromagnetic actuator comprises at least a first and a second coil L1, L2 connected between they are connected in parallel or in series between a first and a second supply terminal A, B.
  • At least one freewheeling diode DA is connected between the second voltage supply terminal B and the first supply terminal A.
  • the diode DA is not conducting when the first voltage supply terminal A is connected. is powered with a positive voltage.
  • the switching means comprise at least a first opening means T1 and at least a second opening means T2.
  • the opening means are bipolar transistors.
  • Said at least two opening means T1, T2 are connected to the control means 20 and are thus arranged to receive orders and to be placed respectively in an open or closed state.
  • the measurement functional block 25 comprises means for comparing the operating voltage (U AB ) with a predefined voltage threshold S1.
  • the divider bridge has two resistors R1, RP and then makes it possible to measure a first input voltage E1. Said first input voltage E1 is compared with an internal reference voltage VRef linked to a comparator C1.
  • the first predefined voltage threshold S1 is equal to, for example, 200 volts.
  • the two coils L1, L2 then respectively have operating voltages equal to 200 and 400 volts.
  • the efficiency thresholds of said coils are then substantially equal to 100 and 200 volts.
  • the reference voltage VRef can be set at 5 volts.
  • the computation of the resistors R1, RP of the divider bridge has been carried out so that when, for example, an operating voltage U AB is applied between the supply terminals A, B equal to 200 V, a first input voltage is obtained. E1 of 5V. This first input voltage E1 being equal to Vref, the measurement functional block 25 can send information to the control means 20.
  • the electromagnetic actuator comprises at least a first and a second coil L1, L2 connected together in series between a first and a second supply terminal A, B.
  • the first opening means T1 is then connected between a second terminal L1B of the first coil L1 and the second voltage supply terminal B.
  • a first terminal L1A of the first coil L1 is connected to the first voltage supply terminal A.
  • the second opening means T2 is connected between the first voltage supply terminal A and the first terminal L2A of the second coil L2.
  • the first coil L1 is disconnected when the second opening means T2 is closed. Only the second coil L2 is then functional, the first opening means T1 then being open.
  • the second coil L2 is disconnected when the first opening means T1 is closed.
  • a diode D1 is then connected between the second terminal L1B of the first coil L1 and first terminal L2A of the second coil L2. This diode D1 makes it possible to avoid a short circuit between the supply terminals when the first and second opening means T1 and T2 are closed.
  • the control means 20 switch the first opening means T1 into a closed position and switch the second opening means T2 into a closed position. opening position.
  • the second coil L2 is disconnected and only the first coil L1 is then functional.
  • the actuator is then inefficient for a period of time Zpe, especially when the voltage varies between 0 and 100 Volts.
  • the actuator becomes effective for a duration Ze, especially when the voltage has a value greater than the efficiency threshold of the first coil L1.
  • the control means 20 switch the first opening means T1 into an open position and switch the second opening means T2 in a closed position.
  • the first coil L1 is now disconnected and only the second coil L2 is then functional.
  • the operating voltage U AB is then between the efficiency threshold of the operating voltage of the second coil L2.
  • the control means 20 re-switch the first opening means T1 in a closed position and re-switch the second means of opening. opening T2 in an open position.
  • the second coil L2 is disconnected again and only the first coil L1 is then functional.
  • the electromagnetic actuator comprises a first and a second coil L1, L2 connected together in parallel between a first and a second power supply terminal A, B.
  • the first opening means T1 is connected between a first terminal L1A of the first coil L1 and the first voltage supply terminal A.
  • the second terminal L1 B of the first coil L1 is connected to the second voltage supply terminal B.
  • the second opening means T2 is connected between the first terminal of voltage supply A and the first terminal L2A of the second coil L2.
  • the second terminal L2B of the second coil L2 is connected to the second voltage supply terminal B.
  • the first coil L1 is connected when the first opening means T1 is closed.
  • the second coil L2 is connected when the second opening means T2 is closed.
  • the functional block of measurement 25 comprises means for comparing the operating voltage (U AB ) with two predefined voltage thresholds S1 and S2.
  • the divider bridge has three resistors R1, R2, RP and then makes it possible to measure a first and a second input voltage E1 and E2. Said first and second input voltages E1 and E2 are respectively compared with an internal reference voltage VRef linked to comparators C1 and C2.
  • this reference voltage VRef can be set at 5 volts and the two predefined thresholds S1 and S2 are respectively equal to 140V and 260V.
  • the computation of the resistors R1, R2, RP of the divider bridge has been carried out so that when, for example, an operating voltage U AB is applied between the supply terminals A, B equal to 140 V, a first voltage is obtained. E1 input of 5V.
  • This first input voltage E1 being equal to Vref, the measurement functional block 25 can send information to the control means 20.
  • the operating voltage U AB equal to 260 V is applied, a second voltage is obtained.
  • the measurement functional block 25 can send information to the control means 20.
  • the two coils L1, L2 then have respective voltages. operating at 140 and 260 volts.
  • the efficiency thresholds of said coils are then substantially equal to 70 and 130 volts.
  • the electromagnetic actuator then comprises at least a first and a second coil L1, L2 connected together in series between a first and second supply terminals A, B.
  • the first opening means T1 is then connected between a second terminal L1B of the first coil L1 and the second voltage supply terminal B.
  • a first terminal L1A of the first coil L1 is connected to the first voltage supply terminal A.
  • the second opening means T2 is connected between the first voltage supply terminal A and the first terminal L2A of the second coil L2.
  • a second terminal L2B of the second coil L2 is connected to the second voltage supply terminal B.
  • the first coil L1 is disconnected when the second opening means T2 is closed. Only the second coil L2 is then functional, the first opening means T1 then being open.
  • the second coil L2 is disconnected when the first opening means T1 is closed. Only the first coil L1 is then functional, the second opening means T2 then being open. A diode D1 is then connected between the second terminal L1B of the first coil L1 and first terminal L2A of the second coil L2. This diode D1 makes it possible to avoid a short circuit between the supply terminals when the first and second opening means T1 and T2 are closed.
  • the control means 20 switch the first opening means T1 into a closed position and switch the second opening means T2 into a closed position. opening position.
  • the second coil L2 is disconnected and only the first coil L1 is then functional.
  • the actuator is then inefficient between 0 and 70 volts and becomes effective beyond the efficiency threshold of the first coil L1.
  • the control means 20 switch the first opening means T1 into an open position and switch the second opening means T2 in a closed position.
  • the first coil L1 is now disconnected and only the second L2 coil is then functional.
  • the operating voltage U AB is then substantially between the efficiency threshold of the operating voltage of the second coil L2.
  • the control means 20 switch the first and second opening means T1, T2 in an open position so that the two coils L1, L2 are in serial mode.
  • the equivalent operating voltage of the two coils in series is then equal to 400 volts.
  • the actuator is fully effective because the operating voltage U AB is then between the efficiency threshold and the equivalent operating voltage of the coils L1, L2 connected in series (260 - 400 volts).
  • a fourth phase of operation when the operating voltage U AB becomes less than 260 volts, the control means 20 re-switch the first opening means T1 in an open position and re-switch the second means of opening. opening T2 in a closed position.
  • the first coil L1 is now disconnected and only the second coil L2 is then functional. From 260 to 140 volts, the operating voltage U AB is then substantially between the efficiency threshold and the operating voltage of the second coil L2.
  • the control means 20 re-switch the first opening means T1 in a closed position and re-switch the second means of opening T2 in an open position.
  • the second coil L2 is disconnected and only the first coil L1 is then functional.
  • the actuator is effective between 140 and 70 volts.
  • the measurement function block 25 comprises means for comparing the operating voltage (U AB ) with three predefined voltage thresholds S1, S2 and S3.
  • the divider bridge has four resistors R1, R2, R3, Rp and then makes it possible to measure a first, a second and a third input voltage.
  • Said first, second and third input voltages E1, E2 and E3 are respectively compared with an internal reference voltage VRef linked to comparators C1, C2 and C3.
  • this reference voltage VRef can be set at 5 volts and the three predefined thresholds S1, S2 and S3 are respectively equal to 91 V, 140 and 260V.
  • the computation of the resistors R1, R2, R3, RP of the divider bridge has been carried out so that when, for example, an operating voltage U AB is applied between the supply terminals A, B equal to 91 V, a first input voltage E1 of 5V.
  • the measurement functional block 25 can send a control command to the control means 20.
  • the operating voltage U AB equal to 140 V is applied.
  • a second input voltage E2 of 5V is obtained.
  • the measurement function block 25 can send a control command to the switching means 20.
  • the operating voltage U AB equal to 260 is applied.
  • V a third input voltage E3 of 5V is obtained.
  • This third input voltage E3 being equal to the reference voltage Vref, the measurement function block 25 can send a control command to the switching means 20.
  • the two coils L1, L2 then have respectively operating voltages equal to 140 and 260 volts.
  • the efficiency thresholds of said coils are then substantially equal to 70 and 130 volts.
  • the electromagnetic actuator then comprises at least a first and a second coil L1, L2 connected together in series between a first and second supply terminals A, B.
  • the first opening means T1 is then connected between a second terminal L1B of the first coil L1 and the second voltage supply terminal B.
  • a first terminal L1A of the first coil L1 is connected to the first voltage supply terminal A.
  • the second opening means T2 is connected between the first voltage supply terminal A and the first terminal L2A of the second coil L2.
  • a second terminal L2B of the second coil L2 is connected to the second voltage supply terminal B.
  • the first coil L1 is disconnected when the second opening means T2 is closed. Only the second coil L2 is then functional, the first opening means T1 then being open.
  • the second coil L2 is disconnected when the first opening means T1 is closed. Only the first coil L1 is then functional, the second opening means T2 then being open. A diode D1 is then connected between the second terminal L1B of the first coil L1 and first terminal L2A of the second coil L2. This diode D1 makes it possible to avoid a short circuit between the supply terminals when the first and second opening means T1 and T2 are closed.
  • the control means 20 switch the first and second opening means T1, T2 in a closed position so that the two coils L1, L2 are in parallel mode.
  • the equivalent operating voltage of the two coils in parallel is then equal to 91 volts.
  • the actuator is then inefficient between 0 and 45.5 Volts and becomes effective beyond the equivalent efficiency threshold of the coils L1, L2 in parallel.
  • the control means 20 switch the first opening means T1 into a closed position and switch the second opening means T2 in an open position.
  • the second coil L2 is disconnected and only the first coil L1 is then functional.
  • the actuator is then effective because the operating voltage U AB is between the thresholds of efficiency and operation of the first coil L1 (70-140 volts).
  • the control means 20 switch the first opening means T1 into an open position and switch the second means. opening T2 in a closed position.
  • the first coil L1 is now disconnected and only the second coil L2 is then functional.
  • the operating voltage U AB is then between the efficiency threshold and the operating voltage of the second coil L2 (130-260 volts).
  • the control means 20 switch the first and second opening means T1, T2 in an open position so as to the two coils L1, L2 are in serial mode.
  • the equivalent operating voltage of the two coils in series is then equal to 400 volts.
  • the actuator is fully effective because the operating voltage U AB is then between the efficiency threshold and the equivalent operating voltage of the coils L1, L2 connected in series (200 - 400 volts).
  • a fifth phase of operation when the operating voltage U AB falls below the operating voltage of the second coil L2 (260 volts), the control means 20 switch the first opening means T1 into a position of d 'open and switch the second opening means T2 in a closed position. Thus, the first coil L1 is disconnected and only the second coil L2 is then functional. From 260 to 140 volts, the operating voltage U AB is then between the efficiency threshold and the operating voltage of the second coil L2 (130-260 volts).
  • the control means 20 switch the first opening means T1 into a closed position and switch the second opening means T2 into an open position.
  • the second coil L2 is disconnected and only the first coil L1 is then functional.
  • the actuator is then effective because the operating voltage U AB is between the thresholds of efficiency and operation of the first coil L1 (70-140 volts).
  • the control means 20 switch the first and second means opening T1, T2 in a closed position so that the two coils L1, L2 are in parallel mode.
  • the equivalent operating voltage of the two coils in parallel is then equal to 91 volts.
  • the actuator is still efficient between 91 and 45.5 volts.
  • the efficiency of the actuator according to the invention is very satisfactory over a wide voltage range.
  • the solid curve represents what is called the “efficiency” of the voltage applied to a single coil actuator. This "efficiency” is directly proportional to the input voltage.
  • the supply voltage U AB is equal to 50% of the operating voltage of the coil, then the efficiency of the actuator is 50%.
  • the dotted curve represents the two-coil solution operating in a mode as described above. The level has been "normalized” in order to turn the most around the 100% value. This gives for the max value (400V) efficiency at 108% and at 91 V 86%. Overall, between these two values 108%, 86%, some consistency is observed.
  • the efficiency of the actuator is between 86% and 108%.
  • an actuator of known type with a single coil operating on the same voltage range (91 - 400 V) will have an efficiency between 20 and 100%.
  • the electromagnetic actuator comprises a third coil L3 connected in series with the first and second coils L1, L2 between the first and second supply terminals A, B.
  • the switching means then comprise a third opening means T3 connected between the first voltage supply terminal A and the first terminal L3A of the third coil L3.
  • the third coil L3 has a second terminal L3B connected to the second voltage supply terminal B.
  • the switching means comprises a fourth opening means T4 connected between the second terminal L2B of the second coil L2 and the second terminal of voltage supply B.
  • the efficiency of the actuator according to the invention is very satisfactory over a very wide voltage range.
  • the solid curve represents what is called the "efficiency” of the voltage applied to a single coil actuator.
  • the dotted curve represents the three-coil solution operating in a mode as described above. The level has been "normalized” in order to turn the most around the 100% value. This gives the max value (475V) an efficiency of 106% and 39 Volts of 83%. Overall, between these two values 106%, 83%, some consistency is observed. In other words, for actuating voltages between 39 and 475V, the efficiency of the actuator is between 83% and 103%. Comparatively, an actuator of known type with a single coil operating on the same voltage range (39 - 475 V) will have an efficiency between 10 and 100%.
  • the electromagnetic actuator is then able to operate over a wide range of voltage while maintaining optimum efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

Actionneur électromagnétique comprenant au moins deux bobines (L1, L2) comportant respectivement un propre seuil d'efficacité en tension (U1, U2). Des moyens de commutation des bobines (L1, L2) autorisent le fonctionnement soit avec une ou plusieurs bobines connectées en série ou une parallèle. Un bloc fonctionnel (25) mesure la tension sinusoïdale de fonctionnement (UAB) entre une première et seconde borne d'alimentation en tension (A, B). Le bloc fonctionnel de mesure (25) comporte des moyens de comparaison de la tension fonctionnement (UAB) à au moins un seuil de tension prédéfini (S1, S2, S3). Des moyens de commande (20) sont aptes à agir, au cours d'une même alternance, sur les moyens de commutation pour connecter au moins une première bobine (L1) lorsque la tension de fonctionnement est inférieure à un premier seuil (S1) ou pour connecter au moins une seconde bobine (L2) lorsque la tension de fonctionnement est supérieur à au premier seuil (S1).

Description

    DOMAINE TECHNIQUE DE L'INVENTION
  • L'invention est relative à un actionneur électromagnétique comprenant un circuit magnétique formé d'une culasse ferromagnétique et d'un noyau ferromagnétique mobile et au moins deux bobines comportant respectivement un seuil d'efficacité en tension. Des moyens de commutation des bobines autorisent le fonctionnement soit avec une seule desdites bobines, ou soit avec au moins deux desdites bobines connectées en série ou une parallèle. Un bloc fonctionnel de mesure de la tension sinusoïdale de fonctionnement (entre une première et seconde borne d'alimentation en tension, la tension variant au cours d'une alternance redressée entre une tension minimale à une tension maximale.
  • ETAT DE LA TECHNIQUE ANTERIEURE
  • L'optimisation du fonctionnement énergétique des actionneurs électromagnétiques est souvent prise en compte au moment de leur conception.
  • Lorsqu'on veut optimiser le fonctionnement d'une bobine d'un actionneur, il est préférable d'alimenter ladite bobine avec une tension supérieure à un seuil d'efficacité de ladite bobine. Le seuil d'efficacité est directement proportionnel à la tension de fonctionnement de la bobine. Le seuil d'efficacité et la tension de fonctionnement sont des caractéristiques intrinsèques de la bobine et sont généralement connues. Par exemple, une bobine conçue pour fonctionner à 400V, ne sera par exemple plus efficace en dessous de 200 V. Comme représenté sur la figure 1, le -seuil d'efficacité de la bobine est alors égal à 200V. Le rapport entre le seuil d'efficacité et la tension de fonctionnement dépend notamment de l'utilisation qui est faite de l'actionneur.
  • Compte tenu de ces caractéristiques intrinsèques, lorsque la bobine est alimentée par une tension alternative, l'efficacité de la bobine au cours d'une demi-alternance est réduite par rapport à la durée totale de la demi-alternance. En effet, comme représenté sur la figure 1, lorsqu'une bobine de 400 Volt est alimentée par une tension réseau de 400V, on observe alors deux périodes Zpe pendant lesquelles la tension réseau est inférieure au seuil d'efficacité de la bobine. La durée Ze pendant laquelle la bobine est pleinement efficace est ainsi réduite par rapport à la durée totale de la demi-alternance.
  • Certaines solutions connues redressent la tension du réseau pour garantir une tension d'alimentation de la bobine supérieur au seuil d'efficacité de la bobine. L'utilisation indispensable de condensateur pour redresser la tension peut cependant présenter certains inconvénients. En outre, la fiabilité des condensateurs dans le temps peut être remise en cause. De plus, lorsque les actionneurs tels que décrits dans les documents FR2568715 , EP1009003 , EP1009004 modulent la tension d'alimentation selon une modulation d'impulsion en largeur de type PWM, alors les variations instantanées de tension dV/dt sont souvent très importantes et peuvent conduire à du rayonnement CEM nuisibles.
  • En outre, le besoin d'utiliser les actionneurs électromagnétiques avec de larges plages de tension d'alimentation devient aussi une priorité. Les solutions des documents FR2568715 , EP1009003 , EP1009004 utilisant des moyens de régulation de type PWM sont alors systématiquement confrontées au problème ci-dessus.
  • Ainsi, la conception d'actionneur électromagnétique dont le fonctionnement est à la fois optimal en termes de consommation électrique et en termes de plage de tension d'utilisation reste très difficile. Les progrès réalisés dans un des deux axes de développement se font généralement au détriment de l'autre. Il y a aussi le volet « fiabilité »qui rentre en jeu.
  • EXPOSE DE L'INVENTION
  • L'invention vise donc à remédier aux inconvénients de l'état de la technique, de manière à proposer un actionneur électromagnétique à haut rendement énergétique.
  • Le bloc fonctionnel de mesure de l'actionneur électromagnétique selon l'invention comporte des moyens de comparaison de la tension fonctionnement à au moins un seuil de tension prédéfini. L'actionneur comporte des moyens de commande aptes à agir, au cours d'une même alternance, sur les moyens de commutation pour connecter au moins une première bobine lorsque la tension de fonctionnement est inférieure à un premier seuil ou pour connecter au moins une seconde bobine lorsque la tension de fonctionnement est supérieur à au premier seuil.
  • Selon un second mode de fonctionnement de l'invention, l'actionneur électromagnétique comporte des moyens de commande aptes à agir, au cours d'une même alternance, sur les moyens de commutation pour
    • connecter au moins une première bobine lorsque la tension de fonctionnement est inférieur à un premier seuil ;
    • connecter au moins une seconde bobine lorsque la tension de fonctionnement est supérieur à un premier seuil et inférieur à un second seuil ;
    • connecter au moins deux bobines en série lorsque la tension de fonctionnement est supérieure au second seuil.
  • Le bloc fonctionnel de mesure comporte des moyens de comparaison de la tension fonctionnement à au moins deux seuils de tension prédéfini.
  • Selon un troisième mode de fonctionnement de l'invention, l'actionneur électromagnétique comporte des moyens de commande aptes à agir, au cours d'une même alternance, sur les moyens de commutation pour
    • connecter au moins deux bobines en parallèle lorsque la tension de fonctionnement est inférieure à un premier seuil de tension ;
    • connecter au moins une première bobine lorsque la tension de fonctionnement est supérieur à un premier seuil et inférieur à un second seuil ;
    • connecter au moins une seconde bobine lorsque la tension de fonctionnement est supérieur à un second seuil et inférieur à un troisième seuil ;
    • connecter au moins deux bobines en série lorsque la tension de fonctionnement est supérieure au troisième seuil ;
      le bloc fonctionnel de mesure comportant des moyens de comparaison de la tension fonctionnement à au moins trois seuils de tension prédéfini.
  • Selon un mode de réalisation de l'invention, l'actionneur comporte au moins une première et une seconde bobine connectées entre elles en série entre une première et seconde borne d'alimentation. Les moyens de commutation comportent un premier moyen d'ouverture connecté entre une seconde borne la première bobine et la seconde borne d'alimentation en tension, une première borne de la première bobine étant connectée à la première borne d'alimentation en tension, Un second moyen d'ouverture est connecté entre la première borne d'alimentation en tension et la première borne de la seconde bobine, une seconde borne de la deuxième bobine étant connectée à la deuxième borne d'alimentation en tension. Au moins une diode de roue libre est connectée entre la second borne d'alimentation en tension et la première borne d'alimentation. Les deux moyens d'ouverture sont disposés pour recevoir des ordres d'une unité de contrôle de manière à se placer respectivement dans un état d'ouverture ou de fermeture ;
    • les bobines étant en mode série lorsque les premier et second moyens d'ouverture sont ouverts,
    • les bobines étant en mode parallèle lorsque les premier et second moyens d'ouverture sont fermés ;
    • le bobine étant déconnecté lorsque le second moyen d'ouverture est fermé et le premier moyen d'ouverture étant ouvert,
    • le bobine étant déconnecté lorsque le premier moyen d'ouverture est fermé et le second moyen d'ouverture étant ouvert.
  • Selon un mode particulier de réalisation de l'invention, une troisième bobine est connectée en série avec les première et seconde bobines entre la première et seconde borne d'alimentation. Un troisième moyen d'ouverture est connecté entre la première borne d'alimentation en tension et la première borne de la troisième bobine. Ladite troisième bobine a une seconde borne reliée à la seconde borne d'alimentation en tension. Un quatrième moyen d'ouverture est connecté entre la seconde borne de la seconde bobine et la seconde borne d'alimentation en tension.
  • Selon une variante de réalisation, l'actionneur comporte une première et une seconde bobine connectées entre elles en parallèle entre une première et seconde borne d'alimentation. Un premier moyen d'ouverture est connecté entre une première borne de la première bobine et la première borne d'alimentation en tension A, la seconde borne de la première bobine est connectée à la seconde borne d'alimentation en tension. Un second moyen d'ouverture étant connecté entre la première borne d'alimentation en tension et la première borne de la seconde bobine, la seconde borne de la deuxième bobine étant connectée à la deuxième borne d'alimentation en tension. La première bobine étant connectée lorsque le premier moyen d'ouverture est fermé et la seconde bobine étant connectée lorsque le deuxième moyen d'ouverture est fermé.
  • Avantageusement, les bobines comportent des seuils d'efficacité en tension identiques ou distincts.
  • Avantageusement, l'actionneur électromagnétique comporte des moyens de régulation aptes à moduler la tension fournie aux dits bobines selon une modulation d'impulsion en largeur de type PWM.
  • BREVE DESCRIPTION DES FIGURES
  • D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, et représentés aux dessins annexés sur lesquels :
    • les figures 1 à 3 représentent des courbes traçant l'évolution de la tension d'alimentation de différentes bobines selon des modes de réalisation connus ;
    • la figure 4 représente un schéma électrique d'un actionneur électromagnétique à au moins deux bobines selon un premier mode préférentiel de réalisation de l'invention ;
    • la figure 5 représente un courbe traçant l'évolution de la tension d'alimentation de l'actionneur électromagnétique selon la figure 4 ;
    • la figure 6 représente un schéma électrique d'un variante du premier mode de réalisation de l'actionneur électromagnétique selon la figure 4 ;
    • la figure 7 représente une vue en perspective d'un mode particulier de réalisation d'un actionneur selon un mode de réalisation de l'invention ;
    • la figure 8 représente un schéma électrique d'un actionneur électromagnétique à au moins deux bobines selon un second mode préférentiel de réalisation de l'invention ;
    • la figure 9 représente un courbe traçant l'évolution de la tension d'alimentation de l'actionneur électromagnétique selon la figure 8 ;
    • la figure 10 représente un schéma électrique d'un actionneur électromagnétique à au moins deux bobines selon un troisième mode préférentiel de réalisation de l'invention ;
    • la figure 11 représente un courbe traçant l'évolution de la tension d'alimentation de l'actionneur électromagnétique selon la figure 10 ;
    • la figure 12 représente une mesure comparative de l'efficacité d'un actionneur à deux bobines selon l'invention et d'un actionneur connu à une bobine ;
    • la figure 13 représente une mesure comparative de l'efficacité d'un actionneur à trois bobines selon l'invention et d'un actionneur connu à une bobine ;
    • la figure 14 représente un schéma électrique d'un actionneur électromagnétique à au moins trois bobines selon un autre mode de réalisation de l'invention.
    DESCRIPTION DETAILLEE D'UN MODE DE REALISATION
  • Selon un mode préférentiel de réalisation de l'invention tel que représenté sur la figure 4, l'actionneur électromagnétique comprend un circuit magnétique formé d'une culasse ferromagnétique 2 et d'un noyau ferromagnétique mobile 3. L'actionneur comporte au moins deux bobines L1, L2 comportant respectivement leur propre seuil d'efficacité en tension U1, U2.
  • On entend par seuil d'efficacité d'une bobine d'un actionneur un seuil de tension en dessous duquel la bobine alimentée ne fournira plus un flux magnétique suffisant pour faire fonctionner l'actionneur selon les spécifications du constructeur. A titre d'exemple, une bobine qui a une tension de fonctionnement égale à 400 volts a un seuil d'efficacité sensiblement égal à 200 Volts.
  • Les bobines L1, L2 peuvent comporter des seuils d'efficacité en tension identiques ou distincts.
  • Comme représenté sur les figures 4, 6, 8 et 10, l'actionneur électromagnétique comprend des moyens de commande 20 des bobines L1, L2 autorisant le fonctionnement avec une seule bobine ou avec plusieurs bobines connectées entre elles dans une position série ou une position parallèle. Le fonctionnement avec une ou plusieurs bobines dépend d'une valeur d'une tension fonctionnement UAB en fonction d'au moins une valeur de seuil de tension prédéfini S1, S2, S3.
  • L'actionneur électromagnétique comprend un bloc fonctionnel de mesure 25 de la tension de fonctionnement UAB. La tension de fonctionnement UAB entre la première et seconde borne d'alimentation en tension A, B est une tension sinusoïdale redressée. La tension mesurée par ledit bloc varie au cours d'une alternance redressée entre une tension minimale Umin à une tension maximale Umax. A titre d'exemple, la tension minimale Umin est nulle.
  • Le bloc fonctionnel de mesure 25 comporte des moyens de comparaison de la tension fonctionnement UAB à au moins un seuil de tension prédéfini S1, S2, S3. Le dispositif fonctionne à base d'un pont diviseur à n résistances R1, R2, R3, Rn, Rp. Le pont permet de mesurer au moins une première tension d'entrée E1. Ladite première tension d'entrée E1 est comparée à une tension de référence interne VRef liée à un comparateur C1. Si la première tension d'entrée E1 est égale à la valeur de référence VRef, cela signifie que le premier seuil S1 est atteint et le bloc fonctionnel de mesure 25 peut envoyer une information aux moyens de commande 20.
  • Selon les modes de réalisation de l'invention, L'actionneur électromagnétique comporte au moins une première et une seconde bobine L1, L2 connectées entre elles en parallèle ou en série entre une première et seconde borne d'alimentation A, B.
  • Au moins une diode de roue libre DA est connectée entre la seconde borne d'alimentation en tension B et la première borne d'alimentation A. Autrement dit la diode DA n'est donc pas passante lorsque la première borne d'alimentation en tension A est alimentée avec une tension positive.
  • Les moyens de commutation comportent au moins un premier moyen d'ouverture T1 et au moins un second moyen d'ouverture T2. A titre d'exemple de réalisation non représenté les moyens d'ouvertures sont des transistors bipolaires. Lesdits au moins deux moyens d'ouverture T1, T2 sont connecté au moyens de commande 20 et sont ainsi disposés pour recevoir des ordres et se placer respectivement dans un état d'ouverture ou de fermeture.
  • Selon un premier mode de réalisation de l'invention, le bloc fonctionnel de mesure 25 comporte des moyens de comparaison de la tension de fonctionnement (UAB) à un seuil de tension prédéfini S1.
  • A titre d'exemple, le pont diviseur comporte deux résistances R1, RP et permet alors de mesurer une première tension d'entrée E1. Ladite première tension d'entrée E1 est comparée à une tension de référence interne VRef liée à un comparateur C1.
  • A titre d'exemple, le premier seuil de tension prédéfini S1 est égal par exemple à 200 Volts. Selon ce même exemple de fonctionnement, les deux bobines L1, L2 ont alors respectivement des tensions de fonctionnement égales à 200 et 400 Volts. Les seuils d'efficacité desdits bobines sont alors sensiblement égaux à 100 et 200 Volts. Enfin, La tension de référence VRef peut être fixée à 5 Volts. Le calcul des résistances R1, RP du pont diviseur a été réalisé de telle sorte que lorsqu'on applique par exemple une tension fonctionnement UAB entre les bornes d'alimentation A, B égale à 200 V, on obtient une première tension d'entrée E1 de 5V. Cette première tension d'entrée E1 étant égale à Vref, le bloc fonctionnel de mesure 25 peut envoyer une information aux moyens de commande 20.
  • Selon ce mode de réalisation de l'invention tel que représenté sur la figure 4, les moyens de commande 20 aptes à agir sur les moyens de commutation pour :
    • connecter au moins une première bobine L1 lorsque la tension de fonctionnement UAB est inférieure à un premier seuil S1 ;
    • connecter au moins une seconde bobine L2 lorsque la tension de fonctionnement UAB est supérieur audit premier seuil S1.
  • Au titre d'un premier exemple de réalisation tel que représenté sur la figure 4, l'actionneur électromagnétique comporte au moins une première et une seconde bobine L1, L2 connectées entre elles en série entre une première et seconde borne d'alimentation A, B. Le premier moyen d'ouverture T1 est alors connecté entre une seconde borne L1B de la première bobine L1 et la seconde borne d'alimentation en tension B. Une première borne L1A de la première bobine L1 est connectée à la première borne d'alimentation en tension A. Le second moyen d'ouverture T2 est connecté entre la première borne d'alimentation en tension A et la première borne L2A de la seconde bobine L2. Selon ce mode de réalisation, la première bobine L1 est déconnectée lorsque le second moyen d'ouverture T2 est fermé. Seule la seconde bobine L2 est alors fonctionnelle, le premier moyen d'ouverture T1 étant alors ouvert. La seconde bobine L2 est déconnectée lorsque le premier moyen d'ouverture T1 est fermé. Seule la première bobine L1 est alors fonctionnelle, le second moyen d'ouverture T2 étant alors ouvert. Une diode D1 est alors connectée entre la seconde borne L1B de la première bobine L1 et première borne L2A de la seconde bobine L2. Cette diode D1 permet d'éviter un court-circuit entre les bornes d'alimentation lorsque les premier et second moyen d'ouverture T1 et T2 sont fermés.
  • Dans une première phase de fonctionnement, lorsque la tension de fonctionnement UAB varie de 0 à 200 Volts, les moyens de commande 20 commutent le premier moyen d'ouverture T1 dans une position de fermeture et commutent le second moyen d'ouverture T2 dans une position d'ouverture. Ainsi, la seconde bobine L2 est déconnectée et seule la première bobine L1 est alors fonctionnelle. Globalement, l'actionneur est alors peu efficace pendant une durée Zpe, notamment quand la tension varie entre 0 et 100 Volts. L'actionneur devient efficace pendant une durée Ze, notamment quand la tension a une valeur supérieure au seuil d'efficacité de la première bobine L1.
  • Dans une seconde phase de fonctionnement, au-delà au delà de la tension de fonctionnement de la première bobine L1 (200 Volts), les moyens de commande 20 commutent le premier moyen d'ouverture T1 dans une position de d'ouverture et commutent le second moyen d'ouverture T2 dans une position de fermeture. Ainsi, la première bobine L1 est à présent déconnectée et seule la seconde bobine L2 est alors fonctionnelle. De 200 à 400 Volts, la tension de fonctionnement UAB est alors comprise entre le seuil d'efficacité de la tension de fonctionnement de la seconde bobine L2.
  • Enfin, Dans une troisième phase de fonctionnement, lorsque la tension de fonctionnement UAB redevient inférieure à 200 Volts, les moyens de commande 20 re-commutent le premier moyen d'ouverture T1 dans une position de fermeture et re-commutent le second moyen d'ouverture T2 dans une position d'ouverture. Ainsi, la seconde bobine L2 est de nouveau déconnectée et seule la première bobine L1 est alors fonctionnelle.
  • A titre d'un second exemple de réalisation tel que représenté sur la figure 6, l'actionneur électromagnétique comporte une première et une seconde bobine L1, L2 connectées entre elles en parallèle entre une première et seconde borne d'alimentation A, B. Le premier moyen d'ouverture T1 est connecté entre une première borne L1A de la première bobine L1 et la première borne d'alimentation en tension A. La seconde borne L1 B de la première bobine L1 est connectée à la seconde borne d'alimentation en tension B. Le second moyen d'ouverture T2 est connecté entre la première borne d'alimentation en tension A et la première borne L2A de la seconde bobine L2. La seconde borne L2B de la deuxième bobine L2 est connectée à la seconde borne d'alimentation en tension B. La première bobine L1 est connectée lorsque le premier moyen d'ouverture T1 est fermé. La seconde bobine L2 est connectée lorsque le deuxième moyen d'ouverture T2 est fermé.
  • Selon un second mode de réalisation de l'invention, le bloc fonctionnel de mesure 25 comporte des moyens de comparaison de la tension de fonctionnement (UAB) à deux seuils de tension prédéfinis S1 et S2. A titre d'exemple, le pont diviseur comporte trois résistances R1, R2, RP et permet alors de mesurer une première et une seconde tension d'entrée E1 et E2. Lesdites première et seconde tensions d'entrée E1 et E2 sont respectivement comparées à une tension de référence interne VRef liée à des comparateurs C1 et C2.
  • A titre d'exemple de réalisation, cette tension de référence VRef peut être fixée à 5 Volts et les deux seuils prédéfinis S1 et S2 sont respectivement égaux à 140V et 260V. Le calcul des résistances R1, R2, RP du pont diviseur a été réalisé de telle sorte que lorsqu'on applique par exemple une tension de fonctionnement UAB entre les bornes d'alimentation A, B égale à 140 V, on obtient une première tension d'entrée E1 de 5V. Cette première tension d'entrée E1 étant égale à Vref, le bloc fonctionnel de mesure 25 peut envoyer une information aux moyens de commande 20. Lorsqu'on applique par exemple la tension de fonctionnement UAB égale à 260 V, on obtient une seconde tension E2 d'entrée de 5V. Cette seconde tension d'entrée E2 étant égale à la tension de référence Vref, le bloc fonctionnel de mesure 25 peut envoyer une information aux moyens de commande 20. Selon ce même exemple de réalisation, les deux bobines L1, L2 ont alors respectivement des tensions de fonctionnement égales à 140 et 260 Volts. Les seuils d'efficacité desdits bobines sont alors sensiblement égaux à 70 et 130 Volts.
  • Selon ce mode de réalisation de l'invention tel que représenté sur la figure 8, les moyens de commande 20 aptes à agir sur les moyens de commutation pour :
    • connecter au moins une première bobine L1 lorsque la tension de fonctionnement UAB est inférieur à un premier seuil S1 ;
    • connecter au moins une seconde bobine L2 lorsque la tension de fonctionnement UAB est supérieur à un premier seuil S1 et inférieur à un second seuil S2 ;
    • connecter au moins deux bobines en série L1, L2 lorsque la tension de fonctionnement UAB est supérieure au second seuil S2.
  • Au titre d'un exemple de réalisation tel que représenté sur la figure 8, l'actionneur électromagnétique comporte alors au moins une première et un seconde bobine L1, L2 connectées entre elles en série entre une première et seconde bornes d'alimentation A, B. Le premier moyen d'ouverture T1 est alors connecté entre une seconde borne L1B de la première bobine L1 et la seconde borne d'alimentation en tension B. Une première borne L1A de la première bobine L1 est connectée à la première borne d'alimentation en tension A. Le second moyen d'ouverture T2 est connecté entre la première borne d'alimentation en tension A et la première borne L2A de la seconde bobine L2. Une seconde borne L2B de la deuxième bobine L2 est connectée à la deuxième borne d'alimentation en tension B. Selon ce mode de réalisation, la première bobine L1 est déconnectée lorsque le second moyen d'ouverture T2 est fermé. Seule la seconde bobine L2 est alors fonctionnelle, le premier moyen d'ouverture T1 étant alors ouvert. La seconde bobine L2 est déconnectée lorsque le premier moyen d'ouverture T1 est fermé. Seule la première bobine L1 est alors fonctionnelle, le second moyen d'ouverture T2 étant alors ouvert. Une diode D1 est alors connectée entre la seconde borne L1B de la première bobine L1 et première borne L2A de la seconde bobine L2. Cette diode D1 permet d'éviter un court-circuit entre les bornes d'alimentation lorsque les premier et second moyen d'ouverture T1 et T2 sont fermés.
  • Dans une première phase de fonctionnement, lorsque la tension de fonctionnement UAB varie de 0 à 140 Volts, les moyens de commande 20 commutent le premier moyen d'ouverture T1 dans une position de fermeture et commutent le second moyen d'ouverture T2 dans une position d'ouverture. Ainsi, la seconde bobine L2 est déconnectée et seule la première bobine L1 est alors fonctionnelle. Globalement, l'actionneur est alors peu efficace entre 0 et 70 Volts et devient efficace au-delà du seuil d'efficacité de la première bobine L1.
  • Dans une seconde phase de fonctionnement, au-delà au delà de la tension de fonctionnement de la première bobine L1 (140 Volts), les moyens de commande 20 commutent le premier moyen d'ouverture T1 dans une position de d'ouverture et commutent le second moyen d'ouverture T2 dans une position de fermeture. Ainsi, la première bobine L1 est à présent déconnectée et seule la seconde bobine L2 est alors fonctionnelle. De 140 à 260 Volts, la tension de fonctionnement UAB est alors sensiblement comprise entre le seuil d'efficacité de la tension de fonctionnement de la seconde bobine L2.
  • Dans une troisième phase de fonctionnement, au-delà au delà de la tension de fonctionnement de la seconde bobine L2 (260 Volts), les moyens de commande 20 commutent les premier et second moyens d'ouverture T1, T2 dans une position d'ouverture de manière à ce que les deux bobines L1, L2 soient en mode série. La tension de fonctionnement équivalente des deux bobines en série est alors égale à 400 Volts. Globalement, l'actionneur est pleinement efficace car la tension de fonctionnement UAB est alors comprise entre le seuil d'efficacité et la tension de fonctionnement équivalent des bobines L1, L2 connectés en série (260 - 400 Volts).
  • Dans une quatrième phase de fonctionnement, lorsque la tension de fonctionnement UAB redevient inférieure à 260 Volts, les moyens de commande 20 re-commutent le premier moyen d'ouverture T1 dans une position de d'ouverture et re-commutent le second moyen d'ouverture T2 dans une position de fermeture. Ainsi, la première bobine L1 est à présent déconnectée et seule la seconde bobine L2 est alors fonctionnelle. De 260 à 140 Volts, la tension de fonctionnement UAB est alors sensiblement comprise entre le seuil d'efficacité et la tension de fonctionnement de la seconde bobine L2.
  • Dans une dernière phase de fonctionnement, lorsque la tension de fonctionnement UAB varie de 140 à 0 Volts, les moyens de commande 20 re-commutent le premier moyen d'ouverture T1 dans une position de fermeture et re-commutent le second moyen d'ouverture T2 dans une position d'ouverture. Ainsi, la seconde bobine L2 est déconnectée et seule la première bobine L1 est alors fonctionnelle. Globalement, l'actionneur est efficace entre 140 et 70 Volts.
  • Selon un troisième mode de réalisation de l'invention, le bloc fonctionnel de mesure 25 comporte des moyens de comparaison de la tension de fonctionnement (UAB) à trois seuils de tension prédéfinis S1, S2 et S3. A titre d'exemple, le pont diviseur comporte quatre résistances R1, R2, R3, Rp et permet alors de mesurer une première, une seconde et une troisième tension d'entrée E1, E2 et E3. Lesdites première, seconde et troisième tensions d'entrée E1, E2 et E3 sont respectivement comparées à une tension de référence interne VRef liée à des comparateurs C1, C2 et C3.
  • A titre d'exemple de réalisation, cette tension de référence VRef peut être fixée à 5 Volts et les trois seuils prédéfinis S1, S2 et S3 sont respectivement égaux à 91 V, 140 et 260V. Le calcul des résistances R1, R2, R3, RP du pont diviseur a été réalisé de telle sorte que lorsqu'on applique par exemple une tension fonctionnement UAB entre les bornes d'alimentation A, B égale à 91 V, on obtient une première tension d'entrée E1 de 5V. Cette première tension d'entrée E1 étant égale à la tension de référence Vref, le bloc fonctionnel de mesure 25 peut envoyer un ordre de commande aux moyens de commande 20. Lorsqu'on applique par exemple la tension de fonctionnement UAB égale à 140 V, on obtient une seconde tension d'entrée E2 de 5V. Cette seconde tension d'entrée E2 étant égale à la tension de référence Vref, le bloc fonctionnel ,de mesure 25 peut envoyer un ordre de commande aux moyens de commutation 20. Lorsqu'on applique par exemple la tension de fonctionnement UAB égale à 260 V, on obtient une troisième tension d'entrée E3 de 5V. Cette troisième tension d'entrée E3 étant égale à la tension de référence Vref, le bloc fonctionnel de mesure 25 peut envoyer un ordre de commande aux moyens de commutation 20. Selon ce même exemple de réalisation,, les deux bobines L1, L2 ont alors respectivement des tensions de fonctionnement égales à 140 et 260 Volts. Les seuils d'efficacité desdits bobines sont alors sensiblement égaux à 70 et 130 Volts.
  • Selon un mode de réalisation de l'invention tel que représenté sur la figure 11, les moyens de commande 20 aptes à agir sur les moyens de commutation pour :
    • connecter au moins deux bobines en parallèle L1, L2 lorsque la tension de fonctionnement UAB est inférieure à un premier seuil S1 de tension [UlxU2 / (U 1+U2)] ;
    • connecter au moins une première bobine L1 lorsque la tension de fonctionnement UAB est supérieur à un premier seuil S1 et inférieur à un second seuil S2 [U1] ;
    • connecter au moins une seconde bobine L2 lorsque la tension de fonctionnement UAB est supérieur à un second seuils S2 et inférieur à un troisième seuil S3 [U2];
    • connecter au moins deux bobines en série L1, L2 lorsque la tension de fonctionnement UAB est supérieure au troisième seuil S3 .
  • Au titre d'un exemple de réalisation tel que représenté sur la figure 10, l'actionneur électromagnétique comporte alors au moins une première et un seconde bobine L1, L2 connectées entre elles en série entre une première et seconde bornes d'alimentation A, B. Le premier moyen d'ouverture T1 est alors connecté entre une seconde borne L1B de la première bobine L1 et la seconde borne d'alimentation en tension B. Une première borne L1 A de la première bobine L1 est connectée à la première borne d'alimentation en tension A. Le second moyen d'ouverture T2 est connecté entre la première borne d'alimentation en tension A et la première borne L2A de la seconde bobine L2. Une seconde borne L2B de la deuxième bobine L2 est connectée à la deuxième borne d'alimentation en tension B. Selon ce mode de réalisation, la première bobine L1 est déconnectée lorsque le second moyen d'ouverture T2 est fermé. Seule la seconde bobine L2 est alors fonctionnelle, le premier moyen d'ouverture T1 étant alors ouvert. La seconde bobine L2 est déconnectée lorsque le premier moyen d'ouverture T1 est fermé. Seule la première bobine L1 est alors fonctionnelle, le second moyen d'ouverture T2 étant alors ouvert. Une diode D1 est alors connectée entre la seconde borne L1B de la première bobine L1 et première borne L2A de la seconde bobine L2. Cette diode D1 permet d'éviter un court-circuit entre les bornes d'alimentation lorsque les premier et second moyen d'ouverture T1 et T2 sont fermés.
  • Dans une première phase de fonctionnement, lorsque la tension de fonctionnement UAB varie de 0 à 91 Volts, les moyens de commande 20 commutent les premier et second moyens d'ouverture T1, T2 dans une position de fermeture de manière à ce que les deux bobines L1, L2 soient en mode parallèle. La tension de fonctionnement équivalente des deux bobines en parallèle est alors égale à 91 Volts. Globalement, l'actionneur est alors peu efficace entre 0 et 45,5 Volts et devient efficace au-delà du seuil d'efficacité équivalent des bobines L1, L2 en parallèle.
  • Dans une seconde phase de fonctionnement, au-delà de la tension de fonctionnement équivalente des deux bobines L1, L2 en parallèle (91 Volts), les moyens de commande 20 commutent le premier moyen d'ouverture T1 dans une position de fermeture et commutent le second moyen d'ouverture T2 dans une position d'ouverture. Ainsi, la seconde bobine L2 est déconnectée et seule la première bobine L1 est alors fonctionnelle. Globalement, l'actionneur est alors efficace car la tension de fonctionnement UAB est comprise entre les seuils d'efficacité et de fonctionnement de la première bobine L1 (70-140 Volts).
  • Dans une troisième phase de fonctionnement, au-delà de la tension de fonctionnement de la première bobine L1 (140 Volts), les moyens de commande 20 commutent le premier moyen d'ouverture T1 dans une position de d'ouverture et commutent le second moyen d'ouverture T2 dans une position de fermeture. Ainsi, la première bobine L1 est à présent déconnectée et seule la seconde bobine L2 est alors fonctionnelle. De 140 à 260 Volts, la tension de fonctionnement UAB est alors comprise entre le seuil d'efficacité et la tension de fonctionnement de la seconde bobine L2 (130-260 Volts).
  • Dans une quatrième phase de fonctionnement, au-delà de la tension de fonctionnement de la seconde bobine L2 (260 Volts), les moyens de commande 20 commutent les premier et second moyens d'ouverture T1, T2 dans une position d'ouverture de manière à ce que les deux bobines L1, L2 soient en mode série. La tension de fonctionnement équivalente des deux bobines en série est alors égale à 400 Volts. Globalement, l'actionneur est pleinement efficace car la tension de fonctionnement UAB est alors comprise entre le seuil d'efficacité et la tension de fonctionnement équivalent des bobines L1, L2 connectés en série (200 - 400 Volts).
  • Dans une cinquième phase de fonctionnement, lorsque la tension de fonctionnement UAB passe en dessous de la tension de fonctionnement de la seconde bobine L2 (260 Volts), les moyens de commande 20 commutent le premier moyen d'ouverture T1 dans une position de d'ouverture et commutent le second moyen d'ouverture T2 dans une position de fermeture. Ainsi, la première bobine L1 est déconnectée et seule la seconde bobine L2 est alors fonctionnelle. De 260 à 140 Volts, la tension de fonctionnement UAB est alors comprise entre le seuil d'efficacité et la tension de fonctionnement de la seconde bobine L2 (130-260 Volts).
  • Dans une sixième phase de fonctionnement, lorsque la tension de fonctionnement UAB passe en dessous de la tension de fonctionnement de la première bobine L1 (140 Volts), les moyens de commande 20 commutent le premier moyen d'ouverture T1 dans une position de fermeture et commutent le second moyen d'ouverture T2 dans une position d'ouverture. Ainsi, la seconde bobine L2 est déconnectée et seule la première bobine L1 est alors fonctionnelle. Globalement, l'actionneur est alors efficace car la tension de fonctionnement UAB est comprise entre les seuils d'efficacité et de fonctionnement de la première bobine L1 (70-140 Volts).
  • Enfin, dans une septième et dernière phase de fonctionnement, lorsque la tension de fonctionnement UAB passe en dessous de la tension de fonctionnement des deux bobines L1 et L2 en parallèle (91 Volts), les moyens de commande 20 commutent les premier et second moyens d'ouverture T1, T2 dans une position de fermeture de manière à ce que les deux bobines L1, L2 soient en mode parallèle. La tension de fonctionnement équivalente des deux bobines en parallèle est alors égale à 91 Volts. Globalement, l'actionneur reste encore efficace entre 91 et 45,5 Volts.
  • Comme représenté sur le graphique de la figure 12, l'efficacité de l'actionneur selon l'invention est très satisfaisante sur une large plage de tension. En effet, la courbe en trait plein représente ce que l'on appelle « l'efficacité » de la tension appliquée à un actionneur à une seule bobine. Cette « efficacité » est directement proportionnelle à la tension d'entrée. Ainsi si la tension d'alimentation UAB est égale à 50% de la tension de fonctionnement de la bobine, alors l'efficacité de l'actionneur est à 50%. La courbe en trait pointillé représente la solution à deux bobines fonctionnant selon un mode tel que décrit ci-dessus. Le niveau à été « normalisé »afin de tourner le plus autour de la valeur 100%. Ceci donne pour la valeur max (400V) une efficacité à 108% et à 91 V de 86%. Globalement, entre ces deux valeurs 108%, 86%, une certaine constance est observée. Autrement dit pour des tensions d'actionnement comprises entre 91 V et 400V, l'efficacité de l'actionneur est comprise entre 86% et 108%. Comparativement, un actionneur de type connu avec une seule bobine fonctionnant sur la même plage de tension (91 - 400 V) aura une efficacité comprise entre 20 et 100%.
  • Selon un mode particulier de réalisation de l'invention, tel que représenté sur la figure 14, l'actionneur électromagnétique comporte une troisième bobine L3 connecté en série avec les premier et second bobines L1, L2 entre la première et seconde borne d'alimentation A, B. Les moyens de commutation comportent alors un troisième moyen d'ouverture T3 connecté entre la première borne d'alimentation en tension A et la première borne L3A du troisième bobine L3. La troisième bobine L3 a une seconde borne L3B reliée à la seconde borne d'alimentation en tension B. Les moyens de commutation comportent un quatrième moyen d'ouverture T4 connecté entre la seconde borne L2B de la seconde bobine L2 et la seconde borne d'alimentation en tension B. Comme représenté sur le graphique de la figure 13, l'efficacité de l'actionneur selon l'invention est très satisfaisante sur une très large plage de tension. En effet, la courbe en trait plein représente ce que l'on appelle « l'efficacité »de la tension appliquée à un actionneur à une seule bobine. La courbe en trait pointillé représente la solution à trois bobines fonctionnant selon un mode tel que décrit ci-dessus. Le niveau à été « normalisé » afin de tourner le plus autour de la valeur 100%. Ceci donne pour la valeur max (475V) une efficacité à 106% et à 39 Volts de 83%. Globalement, entre ces deux valeurs 106%, 83%, une certaine constance est observée. Autrement dit, pour des tensions d'actionnement comprises entre 39 et 475V, l'efficacité de l'actionneur est comprise entre 83% et 103%. Comparativement, un actionneur de type connu avec une seule bobine fonctionnant sur la même plage de tension (39 - 475 V) aura une efficacité comprise entre 10 et 100%.
  • En outre, selon les modes de fonctionnement de l'invention, l'actionneur électromagnétique est alors apte à fonctionner sur une large plage de tension tout en gardant une efficacité optimale.
  • Selon un mode particulier de réalisation de l'invention, l'actionneur électromagnétique comporte des moyens de régulation 22 aptes à moduler la tension fournie auxdits au moins deux bobines L1, L2 selon une modulation d'impulsion en largeur de type PWM. L'actionneur comporte ainsi des moyens de commande 20 apte à commuter les bobines L1, L2 dans différentes configurations :
    • lesdites au moins deux bobines (L1, L2) en mode série,
    • lesdites au moins deux bobines (L1, L2) étant en mode parallèle,
    • une seule desdites bobines (L1 ou L2) connectée.

Claims (8)

  1. Actionneur électromagnétique comprenant :
    - un circuit magnétique formé d'une culasse ferromagnétique (2) et d'un noyau ferromagnétique mobile (3) ;
    - au moins deux bobines (L1, L2) comportant respectivement un seuil d'efficacité en tension (U1, U2) ;
    - des moyens de commutation des bobines (L1, L2) autorisant le fonctionnement
    - soit avec une seule desdites bobines, ou
    - soit avec au moins deux desdites bobines connectées en série ou une parallèle ;
    - un bloc fonctionnel de mesure (25) de la tension sinusoïdale de fonctionnement (UAB) entre une première et seconde borne d'alimentation en tension (A, B), tension variant au cours d'une alternance redressée entre une tension minimale (Umin) à une tension maximale (Umax), caractérisé en ce que le bloc fonctionnel de mesure (25) comporte des moyens de comparaison de la tension fonctionnement (UAB) à au moins un seuil de tension prédéfini (S1, S2, S3) et caractérisé en ce qu'il comporte des moyens de commande (20) aptes à agir, au cours d'une même alternance, sur les moyens de commutation pour :
    - connecter au moins une première bobine (L1) lorsque la tension de fonctionnement est inférieure à un premier seuil (S1);
    - connecter au moins une seconde bobine (L2) lorsque la tension de fonctionnement est supérieur à au premier seuil (S1).
  2. Actionneur électromagnétique selon la revendication 1, caractérisé en ce qu'il comporte des moyens de commande (20) aptes à agir, au cours d'une même alternance, sur les moyens de commutation pour
    - connecter au moins une première bobine (L1) lorsque la tension de fonctionnement (UAB) est inférieur à un premier seuil (S1) ;
    - connecter au moins une seconde bobine (L2) lorsque la tension de fonctionnement (UAB) est supérieur à un premier seuil (S1) et inférieur à un second seuil (S2 ;
    - connecter au moins deux bobines en série (L1, L2) lorsque la tension de fonctionnement (UAB est supérieure au second seuil (S2) ;
    le bloc fonctionnel de mesure (25) comportant des moyens de comparaison de la tension fonctionnement (UAB) à au moins deux seuils de tension prédéfini (S1, S2).
  3. Actionneur électromagnétique selon les revendications 1 ou 2, caractérisé en ce qu'il comporte des moyens de commande (20) aptes à agir, au cours d'une même alternance, sur les moyens de commutation pour
    - connecter au moins deux bobines en parallèle (L1, L2) lorsque la tension de fonctionnement (UAB) est inférieure à un premier seuil S1 de tension ;
    - connecter au moins une première bobine L1 lorsque la tension de fonctionnement UAB est supérieur à un premier seuil S1 et inférieur à un second seuil S2 ;
    - connecter au moins une seconde bobine L2 lorsque la tension de fonctionnement UAB est supérieur à un second seuil S2 et inférieur à un troisième seuil S3;
    - connecter au moins deux bobines en série L1, L2 lorsque la tension de fonctionnement UAB est supérieure au troisième seuil S3 ;
    le bloc fonctionnel de mesure (25) comportant des moyens de comparaison de la tension fonctionnement (UAB) à au moins trois seuils de tension prédéfini (S1, S2, S3).
  4. Actionneur électromagnétique selon l'une des revendications 1 à 3, caractérisé en ce qu'il comporte au moins une première et une seconde bobine (L1, L2) connectées entre elles en série entre une première et seconde bornes d'alimentation (A, B) ; les moyens de commutation comportant :
    - un premier moyen d'ouverture (T1) connecté entre une seconde borne (L1 B) de la première bobine (L1) et la seconde borne d'alimentation en tension (B), une première borne (L1A) de la première bobine (L1) étant connectée à la première borne d'alimentation en tension (A),
    - un second moyen d'ouverture (T2) connecté entre la première borne d'alimentation en tension (A) et la première borne (L2A) de la seconde bobine (L2), une seconde borne L2B de la deuxième bobine (L2) étant connectée à la deuxième borne d'alimentation en tension (B),
    - au moins une diode de roue libre (DA) connectée entre la second borne d'alimentation en tension (B) et la première borne d'alimentation (A) ;
    les deux moyens d'ouverture (T1, T2) étant disposés pour recevoir des ordres d'une unité de contrôle (20) de manière à se placer respectivement dans un état d'ouverture ou de fermeture ;
    - les bobines (L1, L2) étant en mode série lorsque les premier et second moyens d'ouverture (T1, T2) sont ouverts,
    - les bobines (L1, L2) étant en mode parallèle lorsque les premier et second moyens d'ouverture (T1, T2) sont fermés ;
    - le bobine (L1) étant déconnecté lorsque le second moyen d'ouverture (T2) est fermé et le premier moyen d'ouverture (T1) étant ouvert,
    - le bobine (L2) étant déconnecté lorsque le premier moyen d'ouverture (T1) est fermé et le second moyen d'ouverture (T2) étant ouvert.
  5. Actionneur électromagnétique selon la revendication 4, caractérisé en ce qu'il comporte :
    - une troisième bobine (L3) connectée en série avec les première et seconde bobines (L1, L2) entre la première et seconde borne d'alimentation (A, B),
    - un troisième moyen d'ouverture (T3) connecté entre la première borne d'alimentation en tension (A) et la première borne (L3A) de la troisième bobine (L3), ladite troisième bobine (L3) ayant une seconde borne (L3B) reliée à la seconde borne d'alimentation en tension (B),
    - un quatrième moyen d'ouverture (T4) connecté entre la seconde borne (L2B) de la seconde bobine (L2) et la seconde borne d'alimentation en tension (B).
  6. Actionneur électromagnétique selon la revendication 1, caractérisé en ce qu'il comporte une première et une seconde bobine (L1, L2) connectées entre elles en parallèle entre une première et seconde borne d'alimentation (A, B) ;
    - un premier moyen d'ouverture (T1) étant connecté entre une première borne (L1A) de la première bobine (L1) et la première borne d'alimentation en tension (A), la seconde borne (L1 B) de la première bobine (L1) étant connectée à la seconde borne d'alimentation en tension (A),
    - un second moyen d'ouverture (T2) étant connecté entre la première borne d'alimentation en tension (A) et la première borne (L2A) de la seconde bobine (L2, la seconde borne (L2B) de la deuxième bobine (L2) étant connectée à la deuxième borne d'alimentation en tension (B) ;
    la première bobine (L1) étant connectée lorsque le premier moyen d'ouverture (T1) est fermé et la seconde bobine (L2) étant connectée lorsque le deuxième moyen d'ouverture (T2) est fermé.
  7. Actionneur électromagnétique selon l'une quelconque des revendications précédentes, caractérisé en ce que les bobines (L1, L2, L3) comportent des seuils d'efficacité en tension identiques ou distincts.
  8. Actionneur électromagnétique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte des moyens de régulation (22) aptes à moduler la tension fournie aux dits bobines (L1, L2, L3) selon une modulation d'impulsion en largeur de type PWM.
EP20110354053 2010-12-17 2011-10-13 Actionneur electromagnetique à au moins deux bobines Not-in-force EP2466607B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1004930A FR2969368B1 (fr) 2010-12-17 2010-12-17 Actionneur electromagnetique a au moins deux bobines

Publications (2)

Publication Number Publication Date
EP2466607A1 true EP2466607A1 (fr) 2012-06-20
EP2466607B1 EP2466607B1 (fr) 2013-04-17

Family

ID=44310305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110354053 Not-in-force EP2466607B1 (fr) 2010-12-17 2011-10-13 Actionneur electromagnetique à au moins deux bobines

Country Status (3)

Country Link
EP (1) EP2466607B1 (fr)
CN (1) CN102543577B (fr)
FR (1) FR2969368B1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104021990A (zh) * 2014-05-27 2014-09-03 国网新疆伊犁供电有限责任公司 一种匹配于磁保持继电器线圈的一位两值转换电路
CN104021985A (zh) * 2014-05-27 2014-09-03 国网新疆伊犁供电有限责任公司 低压线路自动节能的单线圈磁保持继电装置
CN104021986A (zh) * 2014-05-27 2014-09-03 国网新疆伊犁供电有限责任公司 具有微分驱动电路的节能型双线圈磁保持继电装置
CN104021989A (zh) * 2014-05-27 2014-09-03 国网新疆伊犁供电有限责任公司 一种具有一位两值转换电路的单线圈磁保持继电装置
FR3054369B1 (fr) * 2016-07-20 2022-05-27 Zodiac Aero Electric Contacteur electromagnetique dote de moyens de detection de la position ouverte ou fermee de commutateurs commandes
FR3065110B1 (fr) * 2017-04-11 2019-04-19 Schneider Electric Industries Sas Procede et dispositif de commande d'un actionneur, et appareil de protection electrique comportant un tel dispositif

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2156156A (en) * 1984-03-15 1985-10-02 Hager Electro Gmbh & Co Electromagnetic switch arrangement
FR2568715A1 (fr) 1984-08-03 1986-02-07 Telemecanique Electrique Dispositif de commande d'une bobine d'electroaimant et appareil electrique de commutation equipe d'un tel dispositif
EP0184940A2 (fr) * 1984-12-12 1986-06-18 Technological Research Association Of Highly Reliable Marine Propulsion Plant Méthode et dispositif de commande d'actionneurs électromagnétiques
EP1009004A1 (fr) 1998-12-07 2000-06-14 Schneider Electric Industries SA Dispositif de commande d'un électro-aimant, avec détection d'un déplacement intempestif du noyau mobile de l'électro-aimant
EP1009003A1 (fr) 1998-12-07 2000-06-14 Schneider Electric Industries SA Dispositif de commande d'un électro-aimant, avec un circuit d'alimentation alimenté par le courant de maintien de l'électro-aimant
DE102004013900A1 (de) * 2004-01-26 2005-10-20 Lin Tzo Ing Geräuschloses Gleich- und Wechselstromschütz mit geringer Verlustleistung für einen großen Spannungsbereich
FR2923936A1 (fr) * 2007-11-19 2009-05-22 Schneider Electric Ind Sas Circuit de commande d'un actionneur electromagnetique a double bobines et actionneur electromagnetique a double bobines comportant un tel circuit de commande.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3631662B2 (ja) * 2000-05-22 2005-03-23 日本電気通信システム株式会社 ラッチングリレー駆動回路
FR2919421B1 (fr) * 2007-07-23 2018-02-16 Schneider Electric Industries Sas Actionneur electromagnetique a au moins deux bobinages
CN101752143A (zh) * 2010-01-18 2010-06-23 浙江大学 一种用于交流接触器的节能器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2156156A (en) * 1984-03-15 1985-10-02 Hager Electro Gmbh & Co Electromagnetic switch arrangement
FR2568715A1 (fr) 1984-08-03 1986-02-07 Telemecanique Electrique Dispositif de commande d'une bobine d'electroaimant et appareil electrique de commutation equipe d'un tel dispositif
EP0184940A2 (fr) * 1984-12-12 1986-06-18 Technological Research Association Of Highly Reliable Marine Propulsion Plant Méthode et dispositif de commande d'actionneurs électromagnétiques
EP1009004A1 (fr) 1998-12-07 2000-06-14 Schneider Electric Industries SA Dispositif de commande d'un électro-aimant, avec détection d'un déplacement intempestif du noyau mobile de l'électro-aimant
EP1009003A1 (fr) 1998-12-07 2000-06-14 Schneider Electric Industries SA Dispositif de commande d'un électro-aimant, avec un circuit d'alimentation alimenté par le courant de maintien de l'électro-aimant
DE102004013900A1 (de) * 2004-01-26 2005-10-20 Lin Tzo Ing Geräuschloses Gleich- und Wechselstromschütz mit geringer Verlustleistung für einen großen Spannungsbereich
FR2923936A1 (fr) * 2007-11-19 2009-05-22 Schneider Electric Ind Sas Circuit de commande d'un actionneur electromagnetique a double bobines et actionneur electromagnetique a double bobines comportant un tel circuit de commande.

Also Published As

Publication number Publication date
CN102543577B (zh) 2016-03-09
EP2466607B1 (fr) 2013-04-17
FR2969368B1 (fr) 2012-12-28
FR2969368A1 (fr) 2012-06-22
CN102543577A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
EP2466607B1 (fr) Actionneur electromagnetique à au moins deux bobines
EP3105845B1 (fr) Systeme d'alimentation a tension continue configure pour precharger un condensateur de filtrage avant l'alimentation d'une charge
FR3001089A1 (fr) Equilibrage de charge dans une batterie electrique
EP2019396A1 (fr) Actionneur électromagnétique à au moins deux bobinages
FR3000323A1 (fr) Systeme d'alimentation a decoupage et aeronef comprenant un tel systeme
EP3072231A1 (fr) Boucle de regulation proportionnelle integrale pour un dispositif regulateur numerique de machine electrique tournante a excitation de vehicule automobile
EP3028356B1 (fr) Système de gestion d'une tension d'alimentation d'un réseau électrique de bord de véhicule automobile
EP2992585B1 (fr) Systeme et procede de charge de la batterie d'un vehicule electrique ou hybride
FR2923331B1 (fr) Appareil electrique rotatif pour automobile
WO2012136330A1 (fr) Circuit electronique comportant deux convertisseurs statiques fonctionnant en mode quasi-resonnant par commutation a zero de tension et procede de fonctionnement d'un tel circuit
FR3043862A1 (fr) Dispositif de charge d'une batterie de traction d'un vehicule automobile a traction au moins partiellement electrique
FR2904469A1 (fr) Dispositif de commande electronique d'un sectionneur
EP2638632B1 (fr) Circuit d'alimentation pour un aeronef incluant une machine asynchrone
FR2952469A1 (fr) Actionneur electromagnetique et contacteur electrique comportant un tel actionneur.
EP2595296B1 (fr) Système de commande comportant un module onduleur employé comme redresseur actif
FR3020523A1 (fr) Alimentation electrique et procede de commande d'une alimentation electrique
EP4145160B1 (fr) Dispositif de vérification du fonctionnement d'un module de puissance
EP4036950B1 (fr) Actionneur électromagnétique et procédé de commande d'un actionneur électromagnétique
WO2000008743A1 (fr) Convertisseur de tension continu-continu, susceptible d'une protection contre les courts-circuits
EP3347987B1 (fr) Dispositif électronique de contrôle d'un commutateur, notamment pour véhicule automobile
WO2017072113A1 (fr) Dispositif de commande pour transistors
EP1657759B1 (fr) Procédé de commande d'un actionneur magnétostrictif, dispositif commandable en position mettant en oeuvre le procédé
EP1414147B1 (fr) Procédé de mesure de la puissance fournie par un moteur
EP4327444A1 (fr) Convertisseur de tension comprenant un dispositif de protection
EP4068601A1 (fr) Convertisseur de tension isolé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120802

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 47/32 20060101ALI20120924BHEP

Ipc: H01H 47/22 20060101AFI20120924BHEP

Ipc: H01F 7/16 20060101ALI20120924BHEP

Ipc: H01F 7/18 20060101ALI20120924BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 607760

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011001400

Country of ref document: DE

Effective date: 20130613

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 607760

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130417

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130718

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130819

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130817

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

26N No opposition filed

Effective date: 20140120

BERE Be: lapsed

Owner name: SCHNEIDER ELECTRIC INDUSTRIES SAS

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011001400

Country of ref document: DE

Effective date: 20140120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111013

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151013

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181024

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181024

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011001400

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031