EP1009004A1 - Dispositif de commande d'un électro-aimant, avec détection d'un déplacement intempestif du noyau mobile de l'électro-aimant - Google Patents

Dispositif de commande d'un électro-aimant, avec détection d'un déplacement intempestif du noyau mobile de l'électro-aimant Download PDF

Info

Publication number
EP1009004A1
EP1009004A1 EP99410161A EP99410161A EP1009004A1 EP 1009004 A1 EP1009004 A1 EP 1009004A1 EP 99410161 A EP99410161 A EP 99410161A EP 99410161 A EP99410161 A EP 99410161A EP 1009004 A1 EP1009004 A1 EP 1009004A1
Authority
EP
European Patent Office
Prior art keywords
current
phase
during
icm
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99410161A
Other languages
German (de)
English (en)
Other versions
EP1009004B1 (fr
Inventor
Mustapha Chelloug
Ghislain Durif
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP1009004A1 publication Critical patent/EP1009004A1/fr
Application granted granted Critical
Publication of EP1009004B1 publication Critical patent/EP1009004B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • H01H2047/006Detecting unwanted movement of contacts and applying pulses to coil for restoring to normal status
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator

Definitions

  • the invention relates to a device for controlling an electromagnet comprising a core mobile, with at least one call phase, during which the electromagnet receives a inrush current, and a holding phase, during which it receives a holding current lower than the inrush current, device comprising at least one coil connected in series with an electronic switch at the terminals of a supply voltage, means for measuring the current flowing in the coil and the means for controlling the electromagnet, connected to the current measurement means and to a control electrode the electronic switch and comprising means for regulating the current in the coil during the holding phase.
  • FR-A-2 .133.652 For the control of an electromagnet, it is known (FR-A-2 .133.652) to supply it temporarily a relatively high inrush current, followed by a more holding current low. This can be achieved as well with a device comprising a single coil, in which the current is chopped to constitute the holding current, only with a double winding consisting of a take-up coil and a holding coil. he is also known to enslave inrush and holding currents to setpoint levels predetermined (FR-A-2,568,715).
  • An electromagnet conventionally comprises a movable core whose displacement towards a position in which the electromagnet is actuated is caused by the circulation of the inrush current in the inrush coil. It is then held in this position by the passage of the holding current in the holding coil, which can be the same as the call reel.
  • the holding current we seek to reduce the holding current. In certain cases, this reduction in the holding current poses problems due to the existence of shocks, mechanical in particular, likely to cause a untimely displacement of the core towards the rest position of the electromagnet.
  • the search for a reduction in the volumes of the electromagnets leads to a decrease in the power which can be dissipated by the coils and makes the electromagnets more sensitive to shocks.
  • the invention aims to eliminate these drawbacks.
  • control means include detection means, for detecting an untimely movement of the mobile core of the electromagnet during a holding phase depending on the value of the circulating current in the coil when said current is greater than the setpoint during the phase maintenance, and means for controlling the transition to the call phase when a unexpected movement is detected.
  • Rapid shock detection allows you to return to the call phase and pick up the core mobile before its movement had an impact on the device it controls.
  • the detection means include means for detecting the direction of variation of the current flowing in the coil, a untimely displacement being considered as detected when, during the phase of hold, the current is simultaneously greater than the set value and increasing.
  • the means for detecting the direction of variation of the current then preferably comprise means for determining a quantity representative of the derivative of the current by compared to time, an untimely movement being considered as detected when, during the holding phase, the current is greater than the set value and said greatness is positive.
  • the untimely displacement is detected by the detection means when, during the holding phase, the current is greater than the setpoint for a predetermined period.
  • FIG. 1 represents a device for controlling an electromagnet according to the prior art.
  • FIG. 2 shows, schematically, in section, an electromagnet of the type known.
  • FIGS. 3a and 3b respectively represent the variations, as a function of time, during a maintenance phase, signals B and Ib of a device according to FIG. 1 in which regulation is done from current samples.
  • FIGS. 4a and 4b respectively represent the signals B and Ib of a mode of production of a device according to the invention before and after the detection of a shock.
  • FIGS. 5a and 5b respectively represent the signals B and Ib of a device according to the Figure 1, in the case of poor regulation.
  • Figure 6 schematically illustrates additional elements of the device according to the figure 1 in an embodiment comprising a call coil.
  • FIG. 7 represents a particular embodiment of a subroutine corresponding to a maintenance phase in a device according to the invention.
  • FIG. 8 represents a variant of the subroutine of FIG. 7.
  • the device according to FIG. 1, which is of the type described in document FR-A-2,568,715 comprises a coil 1 connected in series with a transistor T1 and a measurement resistor R1 at the terminals of a supply voltage Va.
  • a freewheeling diode D1 is connected in parallel on the coil 1.
  • An output S1 of a control and regulation circuit 2 is connected to a control electrode of the transistor T1 to which it supplies control signals B.
  • An input E1 of circuit 2 receives signals A for controlling the electromagnet.
  • the circuit 2 is also connected to the terminals of the resistor R1 so as to receive, on an input E2, signals Ib i representative of the current Ib flowing in the coil 1 when the transistor T1 is conductive. Circuit 2 thus makes it possible both to control the device and to control the current in the coil to predetermined values, independent of the supply voltage Va.
  • a supply circuit 3, connected to the terminals of the voltage Va supplies the circuit 2 with a stabilized auxiliary supply voltage.
  • the electromagnet of known type, represented in FIG. 2, comprises an armature 4 to the interior of which the coil 1 is disposed.
  • the coil 1 surrounds a fixed core 5, integral with the frame, and a movable core 6.
  • a spring 7 is disposed between the fixed cores and movable so as to separate the movable core 6 from the fixed core.
  • a plunger 8 secured to the movable core made protrusion outside the frame 4.
  • a control command A When a control command A is applied to the input E1 of circuit 2, it passes first by an appeal phase.
  • signals B control the conduction of transistor T1, i.e. closing of the electronic switch constituted by the transistor, so that a relatively high current Ib, or current call, flows in the coil 1.
  • Ib current current
  • the passage of the inrush current in the coil 1 causes the displacement of the movable core 6 towards the fixed core 5, against the action of the spring 7.
  • the plunger 8 no longer projects beyond the armature 4.
  • the position of the plunger 8 makes it possible to control the opening or closing a device, for example a contactor or a circuit breaker.
  • the call phase lasts long enough to allow complete movement of the movable core 6 and its bonding against the fixed core 5. Subsequently, the passage of a current high calling capacity is no longer necessary to maintain the mobile core in position actuation of the electromagnet and, conventionally, the circuit 2 for controlling and regulation goes to a holding phase During the holding phase, the B signals control the conduction of transistor T1 so that a holding current Ib, lower, circulates in coil 1.
  • the holding current Ib is regulated by the circuit 2 so as to be close to a setpoint Icm of the holding current.
  • circuit 2 can be constituted by an analog circuit or by a circuit digital, for example, microprocessor.
  • regulation is carried out by pulse width modulation (PWM) of a frequency control signal B fixed high
  • FIGS. 3a and 3b illustrate the signals B and the current Ib during a holding phase and the consequences of a shock in a device according to FIG. 1 in which the regulation is carried out from samples Ib i of the current taken at a fixed predetermined sampling frequency.
  • the current Ib being lower than the set value Icm
  • the signal B is at a logic value 1
  • the transistor T1 conducts.
  • the current Ib is sampled with a sampling period Te by the circuit 2.
  • the signal B remains at 1 and the current in the coil increases.
  • a sample Ib i of the current Ib reaches or exceeds the set value Icm
  • the signal B goes to 0, thus commanding the passage to an opening phase of the electronic switch constituted by the transistor T1 . The latter being blocked, the current in the coil then begins to decrease.
  • the circuit 2 periodically sends sampling pulses Bi on the base of the transistor T1, so as to make the latter conductive and to allow a measurement across the resistance R1 of a sample Ib i of the current Ib flowing in the coil.
  • These periodic pulses Bi, of period Te have a very short duration, so as not to influence the value of the current Ib in the coil.
  • These pulses are shown in FIGS. 3a, 4a and Sa.
  • the transistor T1 is considered to be in an opening phase of the holding phase as long as the signal B remains at 0 outside the instants. sampling. In normal operation, the current Ib again becomes lower than the set value Icm after one or two sampling periods, for example at time t3 in FIG. 3b. This is then detected by the circuit 2 which ends the opening phase by returning to the logic value 1 the signal B, again controlling the conduction of the transistor T1 and the growth of the current Ib during at least one sampling period.
  • a mechanical shock exerted on the electromagnet or on the device it controls can cause the moving core 6 to move away from the fixed core 5 when the current is too low.
  • the microprocessor starts again to control the regulation of the current of holding in the coil. However, this holding current is insufficient to pick up the movable core 6 against the fixed core 5. The shock thus leads to de-excitation nuisance of the electromagnet.
  • the electromagnet can be of the type shown in Figure 2. In the energized position of the electromagnet, cores 5 and 6 glued, the plunger 8 is in the withdrawn position. When the voltage applied to his device the command drops below a predetermined value, the current flow is interrupted in the coil and the movable core 6 moves away from the fixed core 5 under the action of the spring 7.
  • the plunger 8 then projects outwards, causing immediate opening of the circuit breaker. Subsequent closing of the circuit breaker is only possible when the undervoltage release being energized, the movable core 6 is glued against the fixed core 5. An untimely shock as described above, can therefore lead to opening of the circuit breaker.
  • the holding current supplied to the electromagnet after time t5 being insufficient to re-bond the cores, it is then impossible to close the front circuit breaker cut the power supply to the trigger and then re-energize it, which causes a phase call and bonding of the cores.
  • an untimely displacement of the mobile core of the electromagnet during a holding phase and the transition to a phase is controlled as soon as such movement is detected. Thanks to the rapid transition to the call phase, effects of nuisance shock are either completely eliminated or reduced.
  • an undervoltage release MN
  • the untimely shock is detected fairly early in the movement of the mobile core (6) and the call phase occurs before that the plunger 8 could not cause the opening of the circuit breaker, the shock has no result. If the shock is detected later, the circuit breaker may open under the action of the plunger 8.
  • the automatic transition to the call phase upon detection of the shock automatically leads to re-gluing of the core and allows reclosing of the circuit breaker. In this case, the drawbacks related to nuisance shock, if they are not completely deleted, are however reduced.
  • Figures 4a and 4b illustrate the signals B and Ib in a device according to the invention.
  • the device ensures, as before, the regulation of the holding current around the setpoint Icm.
  • the current Ib increases.
  • the control device detects four successive samples Ib i greater than the set value Icm, it considers that this is due to a shock and it causes the transition to the call phase. This variant is illustrated in Figures 4a and 4b.
  • four successive samples greater than Icm have been detected since time t4.
  • the Ica value is much higher than the Icm value (10 to 20 times) and causes the mobile and fixed cores to stick together. Conventionally, after a predetermined time (80 ms for example), the control circuit again goes into the holding phase.
  • this criterion for detecting a shock is however insufficient.
  • the current Ib then goes down to the value of Icm setpoint.
  • the maximum value reached by the current Ib at time t8 being relatively high, it requires a period greater than two sampling periods Te to fall back below Icm.
  • the current Icm again becomes lower than the Icm setpoint at time t9 only, after five successive samples of the current Ib was greater than the set value.
  • this is interpreted by the control circuit 2 as being due to a shock which caused an untimely displacement of the mobile core. However, it is not nothing and it is actually poor regulation.
  • the circuit of command would then go to the call phase, when this is unnecessary. Gold use too frequent of the call phase would lead to significant energy dissipation in the coil, which could lead to the destruction of the device.
  • FIGS. 4b and 5b makes it possible to see that, if in both cases, during the periods t4-t6 and, respectively t8-t9, the current Ib remains above the threshold Icm, by however, the variations in Ib are completely different.
  • the displacement of the mobile nucleus causes the appearance of a force in the coil and, consequently, an increase in current despite the blocking of transistor T1 outside the sampling instants.
  • the current Ib decreases as soon as the transistor T1 is in an opening phase.
  • a shock is detected when, the transistor T1 being in an opening phase, the current Ib is greater than the set value Icm and, simultaneously, the current Ib in the coil is increasing.
  • control device comprises a single coil and on the Figures 4a and 4b, the control circuit 2 regulates the current in the coil either to the value Icm during a hold phase, i.e. at Ica value during a call phase.
  • FIG. 6 illustrates the complementary elements of a double embodiment winding.
  • a call coil 9 is connected in series with a transistor T2 and a measurement resistance R2 across the supply voltage Va.
  • a wheel diode free D2 is connected in parallel on the call coil 9.
  • the control electrode of the transistor T2 is connected to an output S2 of the control and regulation circuit 2. If the current in the call coil 9 must be regulated during the call phase, the common point at R2 and T2 is connected to an input E3 of circuit 2.
  • the control and regulation circuit 2 can be produced by any suitable means, analog or digital.
  • it comprises a microprocessor which performs, with a sampling period Te, the sampling of signals applied to its inputs E2 and E3, their analog / digital conversion, their comparison with the set values Icm and Ica, respectively during the phases of hold and call, and control of transistors T1 and T2.
  • a first step F1 of initialization of the holding phase the signal B is set to 1 (conduction of T1) and an indicator i is set to zero. Then the microprocessor of circuit 2 goes to a step F2 of measuring a sample Ib i of the current flowing in the coil 1. If B is zero, a sampling pulse Bi is applied transiently on the basis of transistor T1, the value of B not changing in the program. In a step F3, the microprocessor compares the sample Ib i with the set value Icm. If Ib i is not greater than the set value (NO output of F3), the microprocessor loops back to the input of step F1. The transistor T1 therefore remains conductive and the current Ib continues to rise.
  • the subroutine described so far corresponds to a regulation of the current Ib at the value Icm during the holding phase.
  • the number of samples retained in step F7 can be modified depending in particular on the desired sampling frequency and reaction speed.
  • the value 4 is a value preferential which gives satisfactory results when the supply voltage Va is a full-wave rectified voltage from an electrical network at 50 or 60Hz and for a sampling period of the order of a few hundred microseconds.
  • FIG. 8 represents a variant of the subroutine of FIG. 7, in the case where the decision criterion retained is no longer the number of successive samples greater than Icm, but the direction of variation of the holding current when Ib> Icm during a phase opening of transistor T1.
  • the quantity ⁇ Ib is representative of the direction of variation of the current Ib after blocking of the transistor T1 at the start of the opening phase, and, more particularly, representative of the derivative of the holding current with respect to time between two successive samples during this phase.
  • the microprocessor checks the sign of ⁇ Ib. If the quantity ⁇ Ib is negative or zero (NO output from F12), it goes to step F10, storing the last sample before measuring the next.
  • the regulation is carried out from a sampling periodic of the current Ib in the coil.
  • the invention is also applicable when the regulation is carried out by modulation of pulse width (PWM) as in the aforementioned prior art.
  • PWM pulse width
  • the transistor T1 works as a chopper with a fixed chopping frequency and a variable duty cycle.
  • Th1 Th1 ⁇ Th
  • the length of the period Thl is a function of the difference between the measured current Ib and the setpoint (Icm during the maintenance phase).
  • the period of conduction Th1 is less than Th1c, and therefore the N at Nc.
  • circuit 2 compares, during each cycle or chopping period Th, the value of the ratio cyclic N to the setpoint duty cycle Nc. If N remains greater than Nc for a predetermined number of successive cycles (at least 2, preferably 4), then circuit 2 considers that there is an untimely displacement of the mobile core and commands the passage into call phase.
  • circuit 2 analogously to the mode of embodiment described in Figure 8, takes into account the direction of variation of the holding current when Ib> Icm. For this it compares the successive duty cycles when N is lower than Nc (Ib> Icm) and considers that there is untimely displacement of the mobile core when the duty cycle N being less than Nc for at least two successive cycles, this duty cycle is decreasing. This means that the current is both increasing and greater than the set value Icm for more than one chopping period. As before, it then controls the transition to the call phase.
  • the detection of an inadvertent displacement of the mobile core during a holding phase is linked to monitoring the current in the coil during a phase of maintaining and detecting such a displacement causes the transition to the call phase.

Landscapes

  • Control Of Linear Motors (AREA)
  • Keying Circuit Devices (AREA)
  • Relay Circuits (AREA)

Abstract

Le dispositif comporte des moyens de détection d'un déplacement intempestif du noyau mobile de l'électro-aimant pendant une phase de maintien. Pour cela, un circuit de commande et de régulation surveille le courant (Ib) circulant dans au moins une bobine de l'électro-aimant. Lorsque, pendant une phase de maintien, le courant (Ib) circulant dans la bobine est supérieur à une valeur de consigne (Icm) et soit le reste pendant une durée prédéterminée (t4-t6) soit est croissant, alors un déplacement intempestif est considéré comme détecté et le dispositif fait passer l'électro-aimant en phase d'appel avec un courant (Ica) beaucoup plus élevé. <IMAGE>

Description

L'invention concerne un dispositif de commande d'un électro-aimant comportant un noyau mobile, avec au moins une phase d'appel, pendant laquelle l'électro-aimant reçoit un courant d'appel, et une phase de maintien, pendant laquelle il reçoit un courant de maintien plus faible que le courant d'appel, dispositif comportant au moins une bobine connectée en série avec un interrupteur électronique aux bornes d'une tension d'alimentation, des moyens de mesure du courant circulant dans la bobine et des moyens de commande de l'électro-aimant, connectés aux moyens de mesure du courant et à une électrode de commande de l'interrupteur électronique et comportant des moyens de régulation du courant dans la bobine pendant la phase de maintien.
Pour la commande d'un électro-aimant, il est connu (FR-A-2 .133.652) de lui fournir temporairement un courant d'appel, relativement élevé, suivi d'un courant de maintien plus faible. Ceci peut être réalisé aussi bien avec un dispositif comportant une seule bobine, dans laquelle le courant est haché pour constituer le courant de maintien, qu'avec un double bobinage constitué par une bobine d'appel et une bobine de maintien. Il est également connu d'asservir les courants d'appel et de maintien à des niveaux de consigne prédéterminés (FR-A-2.568.715).
Un électro-aimant comporte classiquement un noyau mobile dont le déplacement vers une position dans laquelle l'électro-aimant est actionné est provoqué par la circulation du courant d'appel dans la bobine d'appel. Il est ensuite maintenu dans cette position par le passage du courant de maintien dans la bobine de maintien, qui peut être la même que la bobine d'appel. Pour réduire l'échauffement des électro-aimants on cherche à diminuer le courant de maintien. Dans certains cas, cette diminution du courant de maintien pose des problèmes dus à l'existence de chocs, mécaniques notamment, susceptibles de provoquer un déplacement intempestif du noyau vers la position de repos de l'électro-aimant.
Ce type de problème se pose notamment dans les contacteurs ou dans les auxiliaires électriques des disjoncteurs, par exemple avec les électro-aimants d'ouverture (MN ou MX)ou de fermeture (XF) des disjoncteurs.
De manière plus générale, la recherche de la diminution des volumes des électro-aimants conduit à une diminution de la puissance pouvant être dissipée par les bobines et rend les électro-aimants plus sensibles aux chocs.
L'invention a pour but de supprimer ces inconvénients.
Selon l'invention, ce but est atteint par le fait que les moyens de commande comportent des moyens de détection, pour détecter un déplacement intempestif du noyau mobile de l'électro-aimant pendant une phase de maintien en fonction de la valeur du courant circulant dans la bobine lorsque ledit courant est supérieur à la valeur de consigne pendant la phase de maintien ,et des moyens de commande de passage en phase d'appel lorsqu'un déplacement intempestif est détecté.
La détection rapide d'un choc permet de repasser en phase d'appel et de recoller le noyau mobile avant que son déplacement ait eu un impact sur le dispositif qu'il contrôle.
Selon un premier développement de l'invention, les moyens de détection comportent des moyens de détection du sens de variation du courant circulant dans la bobine, un déplacement intempestif étant considéré comme détecté lorsque, pendant la phase de maintien, le courant est simultanément supérieur à la valeur de consigne et croissant.
Les moyens de détection du sens de variation du courant comportent alors, de préférence, des moyens de détermination d'une grandeur représentative de la dérivée du courant par rapport au temps, un déplacement intempestif étant considéré comme détecté lorsque, pendant la phase de maintien, le courant est supérieur à la valeur de consigne et ladite grandeur est positive.
Selon un second développement de l'invention, le déplacement intempestif est détecté par les moyens de détection lorsque, pendant la phase de maintien, le courant est supérieur à la valeur de consigne pendant une durée prédéterminée.
D'autres avantages et caractéristiques ressortiront plus clairement de la description suivante de modes particuliers de réalisation, donnés à titre d'exemples non limitatifs et représentés sur les dessins annexés dans lesquels :
La figure 1 représente un dispositif de commande d'un électro-aimant selon l'art antérieur.
La figure 2 représente, de manière schématique, en coupe, un électro-aimant de type connu.
Les figures 3a et 3b représentent respectivement les variations, en fonction du temps, pendant une phase de maintien, des signaux B et Ib d'un dispositif selon la figure 1 dans lequel la régulation se fait à partir d'échantillons de courant.
Les figures 4a et 4b représentent respectivement les signaux B et Ib d'un mode de réalisation d'un dispositif selon l'invention avant et après la détection d'un choc.
Les figures 5a et 5b représentent respectivement les signaux B et Ib d'un dispositif selon la figure 1, dans le cas où la régulation est mauvaise.
La figure 6 illustre schématiquement des éléments additionnels du dispositif selon la figure 1 dans un mode de réalisation comportant une bobine d'appel.
La figure 7 représente un mode de réalisation particulier d'un sous-programme correspondant à une phase de maintien dans un dispositif selon l'invention.
La figure 8 représente une variante du sous-programme de la figure 7.
Le dispositif selon la figure 1, qui est du type décrit dans le document FR-A-2.568.715 comporte une bobine 1 connectée en série avec un transistor T1 et une résistance de mesure R1 aux bornes d'une tension d'alimentation Va. Classiquement, une diode de roue libre D1 est connectée en parallèle sur la bobine 1. Une sortie S1 d'un circuit 2 de commande et de régulation est connectée à une électrode de commande du transistor T1 à laquelle elle fournit des signaux de commande B. Une entrée E1 du circuit 2 reçoit des signaux A de commande de l'électro-aimant. Le circuit 2 est également connecté aux bornes de la résistance R1 de manière à recevoir, sur une entrée E2, des signaux Ibi représentatifs du courant Ib circulant dans la bobine 1 lorsque le transistor T1 est conducteur. Le circuit 2 permet ainsi à la fois de commander le dispositif et d'asservir le courant dans la bobine à des valeurs prédéterminées, indépendantes de la tension d'alimentation Va. Un circuit 3 d'alimentation, connecté aux bornes de la tension Va fournit au circuit 2 une tension d'alimentation auxiliaire stabilisée.
L'électro-aimant, de type connu, représenté à la figure 2, comporte une armature 4 à l'intérieur de laquelle est disposée la bobine 1. La bobine 1 entoure un noyau fixe 5, solidaire de l'armature, et un noyau mobile 6. Un ressort 7 est disposé entre les noyaux fixe et mobile de manière à écarter le noyau mobile 6 du noyau fixe. Dans la position de repos de l'électro-aimant, représentée à la figure 2, un plongeur 8 solidaire du noyau mobile fait saillie à l'extérieur de l'armature 4.
Lorsqu'un ordre de commande A est appliqué à l'entrée E1 du circuit 2, celui-ci passe d'abord par une phase d'appel. Pendant la phase d'appel, les signaux B commandent la conduction du transistor T1, c'est à dire la fermeture de l'interrupteur électronique constitué par le transistor, de manière à ce qu'un courant Ib relativement élevé, ou courant d'appel, circule dans la bobine 1. Le passage du courant d'appel dans la bobine 1 provoque le déplacement du noyau mobile 6 en direction du noyau fixe 5, à l'encontre de l'action du ressort 7. Lorsque les noyaux sont collés, le plongeur 8 ne fait plus saillie hors de l'armature 4. Classiquement, la position du plongeur 8 permet de contrôler l'ouverture ou la fermeture d'un dispositif, par exemple d'un contacteur ou d'un disjoncteur.
La phase d'appel dure suffisamment longtemps pour permettre un déplacement complet du noyau mobile 6 et son collage contre le noyau fixe 5. Par la suite, le passage d'un courant d'appel élevé n'est plus nécessaire pour assurer le maintien du noyau mobile en position d'actionnement de l'électro-aimant et, classiquement, le circuit 2 de commande et de régulation passe à une phase de maintien Pendant la phase de maintien, les signaux B commandent la conduction du transistor T1 de manière à ce qu'un courant Ib, de maintien, plus faible, circule dans la bobine 1.
Dans un mode de réalisation préférentiel, le courant Ib de maintien est régulé par le circuit 2 de manière à être voisin d'une valeur de consigne Icm du courant de maintien. De manière connue, le circuit 2 peut être constitué par un circuit analogique ou par un circuit numérique, par exemple, à microprocesseur. Dans l'art antérieur la régulation est effectuée par modulation de largeur d'impulsion (PWM) d'un signal B de commande de fréquence fixe élevée
Les figures 3a et 3b illustrent les signaux B et le courant Ib pendant une phase de maintien et les conséquences d'un choc dans un dispositif selon la figure 1 dans lequel la régulation est effectuée à partir d'échantillons Ibi du courant prélevés à une fréquence d'échantillonnage prédéterminée fixe.
A un instant tl, le courant Ib étant inférieur à la valeur de consigne Icm, le signal B est à une valeur logique 1, et le transistor T1 conduit. Sur la figure 3b, le courant Ib est échantillonné avec une période d'échantillonnage Te par le circuit 2. Tant que le courant de maintien Ib est inférieur à la valeur de consigne Icm, le signal B reste à 1 et le courant dans la bobine augmente. Lorsque, à un instant t2, un échantillon Ibi du courant Ib atteint ou dépasse la valeur de consigne Icm, le signal B passe à 0, commandant ainsi le passage à une phase d'ouverture de l'interrupteur électronique constitué par le transistor T1. Celui-ci étant bloqué, le courant dans la bobine commence alors à décroítre. Pendant la phase d'ouverture, le circuit 2 envoie périodiquement des impulsions Bi d'échantillonnage sur la base du transistor T1, de manière à rendre celui-ci conducteur et à permettre une mesure aux bornes de la résistance R1 d'un échantillon Ibi du courant Ib circulant dans la bobine. Ces impulsions périodiques Bi, de période Te, ont une durée très courte, de manière à ne pas influencer la valeur du courant Ib dans la bobine. Ces impulsions sont représentées aux figures 3a, 4a et Sa.. Dans toute la suite de la description le transistor T1 est considéré comme étant dans une phase d'ouverture de la phase de maintien tant que le signal B reste à 0 en dehors des instants d'échantillonnage. En fonctionnement normal, le courant Ib redevient inférieur à la valeur de consigne Icm au bout d'une ou deux périodes d'échantillonnage, par exemple à l'instant t3 sur la figure 3b. Ceci est alors détecté par le circuit 2 qui termine la phase d'ouverture en remettant à la valeur logique 1 le signal B, commandant à nouveau la conduction du transistor T1 et la croissance du courant Ib pendant au moins une période d'échantillonnage.
Un choc mécanique exercé sur l'électro-aimant ou sur le dispositif qu'il contrôle peut provoquer un déplacement du noyau mobile 6 à l'écart du noyau fixe 5 lorsque le courant de maintien est trop faible.
Les conséquences d'un choc de ce type sont représentées aux figures 3a et 3b à un instant t4. Le choc provoque un début de déplacement du noyau mobile. Ce déplacement provoque dans la bobine la production d'une force électromotrice qui se traduit par la génération d'un courant supplémentaire qui s'ajoute au courant de maintien régulé. Il y a, en conséquence, après l'instant t4, augmentation du courant Ib malgré la régulation, c'est-à-dire dans le mode de réalisation particulier représenté, bien que le transistor T1 soit dans une phase d'ouverture (B=0 en dehors des impulsions d'échantillonnage). Si aucune mesure particulière n'est prise, le courant Ib peut prendre la forme représentée à la figure 3b, entre les instants t4 et t5 : croissance, puis passage par un maximum et décroissance jusqu'à ce qu'il passe au-dessous de la valeur de consigne Icm.
A l'instant t5, le microprocesseur recommence à contrôler la régulation du courant de maintien dans la bobine. Cependant, ce courant de maintien est insuffisant pour recoller le noyau mobile 6 contre le noyau fixe 5. Le choc conduit ainsi à une désexcitation intempestive de l'électro-aimant. A titre d'exemple dans le cas où l'électro-aimant fait partie d'un déclencheur à minimum de tension (MN) d'un disjoncteur, l'électro-aimant peut être du type représenté à la figure 2. En position excitée de l'électro-aimant, noyaux 5 et 6 collés, le plongeur 8 est en position de retrait. Lorsque la tension appliquée à son dispositif de commande descend au-dessous d'une valeur prédéterminée, le passage du courant est interrompu dans la bobine et le noyau mobile 6 s'écarte du noyau fixe 5 sous l'action du ressort 7. Le plongeur 8 fait alors saillie vers l'extérieur, provoquant l'ouverture immédiate du disjoncteur. Une fermeture ultérieure du disjoncteur n'est possible que lorsque le déclencheur à minimum de tension étant alimenté, le noyau mobile 6 est recollé contre le noyau fixe 5. Un choc intempestif tel que décrit ci-dessus, peut donc conduire à l'ouverture du disjoncteur. Le courant de maintien fourni à l'électro-aimant après l'instant t5 étant insuffisant pour recoller les noyaux, il est alors impossible de refermer le disjoncteur avant de couper l'alimentation du déclencheur puis de le réalimenter, ce qui provoque une phase d'appel et le recollage des noyaux.
Selon l'invention, on détecte rapidement un déplacement intempestif du noyau mobile de l'électro-aimant au cours d'une phase de maintien et l'on commande le passage à une phase d'appel dès qu'un tel déplacement est détecté. Grâce au passage rapide en phase d'appel, les effets du choc intempestif sont soit complètement supprimés soit réduits. A titre d'exemple, dans le cas d'un déclencheur à minimum de tension (MN), si le choc intempestif est détecté assez tôt lors du déplacement du noyau mobile (6) et que la phase d'appel intervient avant que le plongeur 8 n'ait pu provoquer l'ouverture du disjoncteur, le choc n'a aucune conséquence. Si le choc est détecté plus tard, le disjoncteur peut s'ouvrir sous l'action du plongeur 8. Cependant, le passage automatique en phase d'appel lors de la détection du choc conduit automatiquement au recollage du noyau et permet une refermeture du disjoncteur. Dans ce cas, les inconvénients liés au choc intempestif, s'ils ne sont pas totalement supprimés, sont toutefois réduits.
Les figures 4a et 4b illustrent les signaux B et Ib dans un dispositif selon l'invention. Jusqu'à l'instant t4, le dispositif assure comme précédemment la régulation du courant de maintien autour de la valeur de consigne Icm. A l'instant t4, où se produit un choc intempestif, le courant Ib augmente. Dans une première variante, si, pendant une phase d'ouverture de la phase de maintien, le dispositif de commande détecte quatre échantillons Ibi successifs supérieurs à la valeur de consigne Icm, il considère que cela est dû à un choc et il provoque le passage en phase d'appel. Cette variante est illustrée sur les figures 4a et 4b. A l'instant t6, quatre échantillons successifs supérieurs à Icm ont été détectés depuis l'instant t4. Le circuit de commande et de régulation 2 provoque alors la conduction du transistor T1 (B=1) jusqu'à ce que le courant Ib dans la bobine 1 atteigne une valeur Ica de consigne d'appel. Il régule ensuite le courant dans la bobine pour qu'il soit égal à la valeur Ica pendant la phase d'appel. La valeur Ica est très supérieure à la valeur Icm (10 à 20 fois) et provoque le recollement des noyaux mobile et fixe. Classiquement, après un temps prédéterminé (80ms par exemple), le circuit de commande passe de nouveau en phase de maintien.
Dans certains cas, ce critère de détection d'un choc s'avère cependant insuffisant. Un tel cas est illustré sur les figures 5a et 5b. Sur ces figures, l'électro-aimant est en phase de maintien, avec une régulation du courant Ib dans la bobine à la valeur de consigne Icm. Il peut arriver, comme représenté entre des instants t7 et t8, que lors de la fermeture du transistor T1 (B=1), le courant Ib dans la bobine augmente rapidement. Ceci peut notamment être le cas si la tension d'alimentation Va, qui est généralement une tension alternative redressée double alternance, a ponctuellement une tension crête trop élevée. Après avoir détecté, à l'instant t8, un premier échantillon supérieur à la valeur de consigne Icm, le circuit de commande provoque, normalement, le blocage du transistor T1 (B=0) et le passage en phase d'ouverture. Le courant Ib redescend alors jusqu'à la valeur de consigne Icm. Cependant, la valeur maximum atteinte par le courant Ib à l'instant t8 étant relativement élevée, il lui faut une période supérieure à deux périodes d'échantillonnage Te pour redevenir inférieure à Icm. Sur la figure 5b, le courant Icm redevient inférieur à la valeur de consigne Icm à un instant t9 seulement, après que cinq échantillons successifs du courant Ib ait été supérieurs à la valeur de consigne. Dans la variante décrite ci-dessus, en référence aux figures 4a et 4b, ceci est interprété par le circuit de commande 2 comme étant dû à un choc ayant provoqué un déplacement intempestif du noyau mobile. Or, il n'en est rien et il s'agit en réalité d'une mauvaise régulation. Dans la première variante, le circuit de commande passerait alors en phase d'appel, alors que ceci est inutile. Or l'utilisation trop fréquente de la phase d'appel conduirait à une dissipation d'énergie importante dans la bobine, ce qui pourrait engendrer la destruction du dispositif.
Selon un développement de l'invention, on cherche à éliminer de tels passages intempestifs en phase d'appel. Pour cela, il est possible d'augmenter la durée de la fenêtre d'observation minimum pendant laquelle le courant Ib doit être supérieur à la valeur de consigne pour conclure à l'existence d'un déplacement intempestif du noyau mobile. A fréquence d échantillonnage fixe, ceci revient à augmenter le nombre d'échantillons successifs supérieurs à Icm nécessaires pour conclure à l'existence d'un choc. Mais ceci conduit à diminuer la vitesse de réaction du dispositif et à permettre un déplacement plus important du noyau mobile avant de réagir.
La comparaison des figures 4b et 5b permet de voir que, si dans les deux cas, pendant les périodes t4-t6 et, respectivement t8-t9, le courant Ib reste supérieur au seuil Icm, par contre, les variations de Ib sont totalement différentes. Dans le cas d'un choc (fig. 3b et 4b, à partir de t4), le déplacement du noyau mobile provoque l'apparition d'une force électromotrice dans la bobine et, en conséquence, une augmentation du courant malgré le blocage du transistor T1 en dehors des instants d'échantillonnage. Par contre, dans le cas d'une mauvaise régulation (fig. 5b, à partir de t8), le courant Ib diminue dès que le transistor T1 est dans une phase d'ouverture.
Dans un mode de réalisation préférentiel, un choc est détecté lorsque, le transistor T1 étant dans une phase d'ouverture, le courant Ib est supérieur à la valeur de consigne Icm et, simultanément, le courant Ib dans la bobine est croissant. Pour détecter une telle croissance, le circuit de commande 2 peut déterminer une grandeur représentative de la dérivée du courant de maintien par rapport au temps, dIb/dt. Lorsque cette grandeur est positive, cela signifie que le courant Ib croít et cette croissance, lorsque B=0 en dehors des instants d'échantillonnage et Ib > Icm, est interprétée comme correspondant à un déplacement intempestif du noyau qui doit conduire au passage en phase d'appel.
Sur les figures 1 et 2, le dispositif de commande comporte une seule bobine et sur les figures 4a et 4b, le circuit de commande 2 régule le courant dans la bobine soit à la valeur Icm pendant une phase de maintien, soit à la valeur Ica pendant une phase d'appel.
L'invention s'applique de la même manière si le courant n'est pas régulé pendant la phase d'appel. Alors, le transistor T1 reste conducteur (B=1) pendant toute la phase d'appel. Elle s'applique également si le dispositif comporte un double bobinage, la bobine 1 constituant alors la bobine de maintien et une autre bobine constituant la bobine d'appel qui n'est parcourue par un courant, régulé ou non, que pendant la phase d'appel.
La figure 6 illustre les éléments complémentaires d'un mode de réalisation à double bobinage. Une bobine d'appel 9 est connectée en série avec un transistor T2 et une résistance de mesure R2 aux bornes de la tension d'alimentation Va. Une diode de roue libre D2 est connectée en parallèle sur la bobine d'appel 9. L'électrode de commande du transistor T2 est connectée à une sortie S2 du circuit 2 de commande et de régulation. Si le courant dans la bobine d'appel 9 doit être régulé pendant la phase d'appel, le point commun à R2 et T2 est connecté à une entrée E3 du circuit 2.
Le circuit 2 de commande et de régulation peut être réalisé par tout moyen approprié, analogique ou numérique. Dans un mode de réalisation préférentiel, il comporte un microprocesseur qui réalise, avec une période d'échantillonnage Te, l'échantillonnage des signaux appliqués sur ses entrées E2 et E3, leur conversion analogique/numérique, leur comparaison aux valeurs de consigne Icm et Ica, respectivement pendant les phases de maintien et d'appel, et la commande des transistors T1 et T2.
La figure 7 illustre un sous-programme particulier correspondant à une phase de maintien et mettant en oeuvre la variante de l'invention décrite en référence aux figures 4a et 4b, c'est à dire détectant un choc lorsque Ib est supérieur à Icm pendant au moins 4 échantillons successifs d'une phase d'ouverture du transistor T1 (B=0 en dehors des instants d'échantillonnage).
Pendant une première étape F1 d'initialisation de la phase de maintien, le signal B est mis à 1 (mise en conduction de T1) et un indicateur i est mis à zéro. Puis le microprocesseur du circuit 2 passe à une étape F2 de mesure d'un échantillon Ibi du courant circulant dans la bobine 1. Si B est nul, une impulsion d'échantillonnage Bi est appliquée transitoirement sur la base du transistor T1, la valeur de B ne changeant pas dans le programme. Dans une étape F3, le microprocesseur compare l'échantillon Ibi à la valeur de consigne Icm. Si Ibi n'est pas supérieur à la valeur de consigne (sortie NON de F3), le microprocesseur se reboucle sur l'entrée de l'étape F1. Le transistor T1 reste donc conducteur et le courant Ib continue à monter. Ceci se passe, par exemple, entre les instants tl et t2 de la figure 3b. Par contre, si, en F3, Ibi est supérieur à Icm (sortie OUI de F3), alors le microprocesseur vérifie, dans une étape F4, si B=1. Si B=1 (instants t2 ou t3 de la figure 3b), alors le microprocesseur passe à une étape F5 où B est mis à zéro, commandant le passage à une phase d'ouverture du transistor T1, avant de revenir à l'entrée de l'étape F2. Le sous-programme décrit jusqu'ici correspond à une régulation du courant Ib à la valeur Icm pendant la phase de maintien. Si, en F4, B=0 (sortie NON de F4), alors l'indicateur i est incrémenté (i=i+1), dans une étape F6. Puis dans une étape F7, le microprocesseur vérifie si i=4. Si ce n'est pas le cas (sortie NON de F7), il repasse à l'entrée de l'étape F2. Par contre, si i=4, cela signifie que quatre échantillons Ibi successifs ont été supérieurs à Icm pendant la phase d'ouverture du transistor T1. Ceci est considéré comme représentatif d'un choc intempestif ayant conduit à un début de déplacement intempestif du noyau mobile 6 de l'électro-aimant. Le microprocesseur passe alors (sortie OUI de F7) à une étape F8 correspondant à une phase d'appel.
Le nombre d'échantillons retenu dans l'étape F7 peut être modifié en fonction notamment de la fréquence d'échantillonnage et de la vitesse de réaction désirée. Le nombre d'échantillons supérieurs à Icm alors que B=0 doit au minimum être supérieur ou égal à 2. Ceci correspond à plus de deux échantillons successifs supérieurs à Icm pendant la phase de maintien, le premier échantillon conduisant au blocage de T1. La valeur 4 est une valeur préférentielle qui donne des résultats satisfaisants lorsque la tension d'alimentation Va est une tension redressée double alternance à partir d'un réseau électrique à 50 ou 60Hz et pour une période d'échantillonnage de l'ordre de quelques centaines de microsecondes.
La figure 8 représente une variante du sous-programme de la figure 7, dans le cas où le critère de décision retenu n'est plus le nombre d'échantillons successifs supérieurs à Icm, mais le sens de variation du courant de maintien lorsque Ib > Icm pendant une phase d'ouverture du transistor T1.
Le sous-programme correspondant à la phase de maintien reste identique jusqu'à l'étape F6. Dans la variante de la figure 8, à la sortie de l'étape F6, le microprocesseur, dans une étape F9, vérifie si l'indicateur i est égal ou supérieur à 2. Si ce n'est pas le cas, (sortie NON de F9), soit si i=1, c'est à dire si un seul échantillon Ibi supérieur à Icm a été mesuré pendant une phase d'ouverture du transistor T1, cet échantillon est mis en mémoire, dans une étape F10 dans un emplacement Ibi-1 (Ibi-1=Ibi). Puis, le microprocesseur repasse à l'entrée de l'étape F2 pour la mesure de l'échantillon Ibi suivant. Par contre, si, en F9, i est supérieur ou égal à 2, alors (sortie OUI de F2), le microprocesseur passe à une étape F11 de détermination d'une grandeur ΔIb=Ibi-Ibi-1. La grandeur ΔIb est représentative du sens de variation du courant Ib après le blocage du transistor T1 au début de la phase d'ouverture, et, plus particulièrement, représentative de la dérivée du courant de maintien par rapport au temps entre deux échantillons successifs pendant cette phase. Puis, dans une étape F12, le microprocesseur vérifie le signe de ΔIb. Si la grandeur ΔIb est négative ou nulle (sortie NON du F12), il passe à l'étape F10, mettant en mémoire le dernier échantillon avant de mesurer le suivant. Par contre, si en F12, la grandeur ΔIb est positive (sortie OUI de F12), alors, le courant étant croissant, le microprocesseur considère qu'il y a eu un choc intempestif entraínant le déplacement du noyau mobile et passe à la phase d'appel (F8).
Dans la description ci-dessus la régulation est réalisée à partir d'un échantillonnage périodique du courant Ib dans la bobine.
L'invention est également applicable lorsque la régulation est réalisée par modulation de largeur d'impulsion (PWM) comme dans l'art antérieur précité. Dans ce cas le transistor T1 fonctionne en hacheur avec une fréquence de hachage fixe et un rapport cyclique, variable. Pendant une période Th correspondant à la fréquence de hachage, le transistor T1 est rendu conducteur (B=1) pendant une période Th1 (Th1 < Th) variable. La durée de la période Thl est fonction de la différence entre le courant Ib mesuré et la valeur de consigne (Icm pendant la phase de maintien). Lorsque le courant est égal à la valeur de consigne, la période de conduction Th1 prend une valeur prédéterminée Th1c correspondant à un rapport cyclique de consigne Nc = Th1c/Th, qui est par exemple égal à 0,5. Lorsque le courant Ib dans la bobine est inférieur à la valeur de consigne Icm, la période de conduction Thl augmente et, en conséquence, le rapport cyclique N = Th1/Th est supérieur à Nc.
Lorsque le courant Ib dans la bobine est supérieur à la valeur de consigne, la période de conduction Th1 est inférieure à Th1c, et, en conséquence, le rapport cylique N est inférieur à Nc.
Pour détecter un déplacement intempestif du noyau mobile, il est possible, de manière analogue au mode de réalisation décrit à la figure 7, de déterminer si le courant Ib reste supérieur à la valeur de consigne Icm pendant une période prédéterminée. Pour cela le circuit 2 compare, pendant chaque cycle ou période de hachage Th, la valeur du rapport cyclique N au rapport cyclique de consigne Nc. Si N reste supérieur à Nc pendant un nombre pédéterminé de cycles successifs (au moins 2, de préférence 4), alors le circuit 2 considère qu'il y a déplacement intempestif du noyau mobile et commande le passage en phase d'appel.
Dans un mode de réalisation préférentiel, le circuit 2, de manière analogue au mode de réalisation décrit à la figure 8, tient compte du sens de variation du courant de maintien lorsque Ib > Icm. Pour cela il compare les rapports cycliques successifs lorsque N est inférieur à Nc (Ib > Icm) et considère qu'il y a déplacement intempestif du noyau mobile lorsque le rapport cyclique N étant inférieur à Nc pendant au moins deux cycles successifs, ce rapport cyclique est décroissant. Ceci signifie en effet que le courant est à la fois croissant et supérieur à la valeur de consigne Icm pendant plus d'une période de hachage. Comme précédemment, il commande alors le passage en phase d'appel.
Dans tous les cas, la détection d'un déplacement intempestif du noyau mobile pendant une phase de maintien est liée à la surveillance du courant dans la bobine pendant une phase de maintien et la détection d'un tel déplacement provoque le passage en phase d'appel.

Claims (10)

  1. Dispositif de commande d'un électro-aimant comportant un noyau mobile (6), avec au moins une phase d'appel, pendant laquelle l'électro-aimant reçoit un courant d'appel, et une phase de maintien, pendant laquelle il reçoit un courant de maintien plus faible que le courant d'appel, dispositif comportant au moins une bobine (1) connectée en série avec un interrupteur électronique (T1) aux bornes d'une tension d'alimentation (Va), des moyens de mesure du courant (Ib) circulant dans la bobine et des moyens (2) de commande de l'électro-aimant, connectés aux moyens de mesure du courant (Ib) et à une électrode de commande de l'interrupteur électronique (T1) et comportant des moyens de régulation du courant dans la bobine (1) à une valeur de consigne prédéterminée (Icm) pendant la phase de maintien, dispositif caractérisé en ce que les moyens de commande comportent des moyens de détection, pour détecter un déplacement intempestif du noyau mobile (6) de l'électro-aimant pendant une phase de maintien en fonction de la valeur du courant (Ib) circulant dans la bobine (1) lorsque ledit courant est supérieur à la valeur de consigne (Icm) pendant la phase de maintien, et des moyens de commande de passage en phase d'appel lorsqu'un déplacement intempestif est détecté.
  2. Dispositif selon la revendication 1, caractérisé en ce que les moyens de détection comportent des moyens de détection du sens de variation du courant (Ib) circulant dans la bobine, un déplacement intempestif étant considéré comme détecté lorsque, pendant la phase de maintien, le courant (Ib) est simultanément supérieur à la valeur de consigne (Icm) et croissant.
  3. Dispositif selon la revendication 2, caractérisé en ce que les moyens de détection du sens de variation du courant (Ib) comportent des moyens de détermination d'une grandeur (ΔIb) représentative de la dérivée du courant par rapport au temps, un déplacement intempestif étant considéré comme détecté lorsque pendant la phase de maintien, le courant (Ib) est supérieur à la valeur de consigne (Icm) et ladite grandeur est positive.
  4. Dispositif selon la revendication 1, caractérisé en ce qu'un déplacement intempestif est détecté par les moyens de détection lorsque, pendant la phase de maintien, le courant (Ib) est supérieur à la valeur de consigne (Icm) pendant une durée prédéterminée.
  5. Dispositif selon la revendication 4, caractérisé en ce que les moyens de mesure du courant comportent des moyens d'échantillonnage du courant, avec une période d'échantillonnage (Te) prédéterminée, et en ce qu'un déplacement intempestif est détecté si plus de deux échantillons successifs (Ibi) du courant sont supérieurs à la valeur de consigne (Icm) pendant la phase de maintien.
  6. Dispositif selon la revendication 5, caractérisé en ce qu'un déplacement intempestif est détecté lorsque plus de quatre échantillons successifs du courant sont supérieurs à la valeur de consigne (Icm) pendant la phase de maintien.
  7. Dispositif selon l'une des revendications 5 à 6, caractérisé en ce que la période d'échantillonnage (Te) est de l'ordre de quelques centaines de microsecondes.
  8. Dispositif selon l'une quelconque des revendications 1, 2 et 4, caractérisé en ce que, les moyens de régulation commandant la conduction de l'interrupteur électronique (T1) avec une période de hachage fixe et un rapport cyclique variable (N) fonction de la différence entre la valeur du courant (Ib) circulant dans la bobine et la valeur de consigne (Icm), les moyens de détection comparent à chaque période de hachage le rapport cyclique (N) à un rapport cyclique de consigne (Nc).
  9. Dispositif selon la revendication 8, caractérisé en ce qu'un déplacement intempestif est considéré comme détecté lorsque, pendant une phase de maintien, le rapport cyclique (N) est inférieur au rapport cyclique de consigne (Nc) pendant au moins deux périodes de hachage successives.
  10. Dispositif selon la revendication 8, caractérisé en ce qu'un déplacement intempestif est considéré comme détecté lorsque, pendant la phase de maintien, le rapport cyclique (N) est simultanément décroissant et inférieur au rapport cyclique de consigne Nc pendant au moins deux périodes de hachage successives.
EP99410161A 1998-12-07 1999-11-16 Dispositif de commande d'un électro-aimant, avec détection d'un déplacement intempestif du noyau mobile de l'électro-aimant Expired - Lifetime EP1009004B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9815554 1998-12-07
FR9815554A FR2786915B1 (fr) 1998-12-07 1998-12-07 Dispositif de commande d'un electro-aimant, avec detection d'un deplacement intempestif du noyau mobile de l'electro-aimant

Publications (2)

Publication Number Publication Date
EP1009004A1 true EP1009004A1 (fr) 2000-06-14
EP1009004B1 EP1009004B1 (fr) 2004-01-07

Family

ID=9533780

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99410161A Expired - Lifetime EP1009004B1 (fr) 1998-12-07 1999-11-16 Dispositif de commande d'un électro-aimant, avec détection d'un déplacement intempestif du noyau mobile de l'électro-aimant

Country Status (4)

Country Link
US (1) US6317308B1 (fr)
EP (1) EP1009004B1 (fr)
DE (1) DE69914053T2 (fr)
FR (1) FR2786915B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2019396A1 (fr) 2007-07-23 2009-01-28 Schneider Electric Industries SAS Actionneur électromagnétique à au moins deux bobinages
KR100884436B1 (ko) * 2001-06-06 2009-02-19 이스트맨 코닥 캄파니 정공 수송층 및/또는 전자 수송층 내에 색상 중립도펀트를 포함하는 유기 발광 장치
EP2200055A1 (fr) * 2008-12-19 2010-06-23 Schneider Electric Industries SAS Appareil électrique interrupteur à fonctionnement optimisé
EP2466607A1 (fr) 2010-12-17 2012-06-20 Schneider Electric Industries SAS Actionneur electromagnetique à au moins deux bobines

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2367962B (en) * 2000-10-14 2004-07-21 Trw Ltd Multiple channel solenoid current monitor
US6934140B1 (en) * 2004-02-13 2005-08-23 Motorola, Inc. Frequency-controlled load driver for an electromechanical system
US7382400B2 (en) * 2004-02-19 2008-06-03 Robert Bosch Gmbh Image stabilization system and method for a video camera
US8264810B2 (en) 2009-10-01 2012-09-11 Drs Power & Control Technologies, Inc. Electrically assisted safing of a linear actuator to provide shock tolerance
JP6077511B2 (ja) * 2014-10-03 2017-02-08 株式会社鷺宮製作所 電磁弁駆動制御装置、および、電磁弁駆動制御装置を備えた電磁弁
US20170149379A1 (en) * 2015-11-20 2017-05-25 Enphase Energy, Inc. Interconnect device for use in islanding a microgrid
FR3055736B1 (fr) * 2016-09-02 2018-09-28 Schneider Electric Industries Sas Procede de commande d'un dispositif d'actionnement, dispositif d'actionnement et appareil de commutation associes
DE102017102637A1 (de) * 2017-02-10 2018-08-16 Pilz Gmbh & Co. Kg Schaltungsanordnung zum Betreiben mindestens eines Relais
CN110767502B (zh) 2018-07-27 2021-10-08 施耐德电气工业公司 用于调节线圈的电流的方法、控制器和系统
CN113012981A (zh) * 2019-12-20 2021-06-22 施耐德电气工业公司 接触器及其控制设备和控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0411903A2 (fr) * 1989-07-31 1991-02-06 Nec Corporation Dispositif pour remettre automatiquement un relais verrouillé dans sa position normale
EP0779631A2 (fr) * 1995-12-13 1997-06-18 Sumitomo Electric Industries, Ltd. Appareil et méthode de commande de courant à modulation de largeur d'impulsion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539608A (en) * 1993-02-25 1996-07-23 Eaton Corporation Electronic interlock for electromagnetic contactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0411903A2 (fr) * 1989-07-31 1991-02-06 Nec Corporation Dispositif pour remettre automatiquement un relais verrouillé dans sa position normale
EP0779631A2 (fr) * 1995-12-13 1997-06-18 Sumitomo Electric Industries, Ltd. Appareil et méthode de commande de courant à modulation de largeur d'impulsion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100884436B1 (ko) * 2001-06-06 2009-02-19 이스트맨 코닥 캄파니 정공 수송층 및/또는 전자 수송층 내에 색상 중립도펀트를 포함하는 유기 발광 장치
EP2019396A1 (fr) 2007-07-23 2009-01-28 Schneider Electric Industries SAS Actionneur électromagnétique à au moins deux bobinages
EP2200055A1 (fr) * 2008-12-19 2010-06-23 Schneider Electric Industries SAS Appareil électrique interrupteur à fonctionnement optimisé
FR2940509A1 (fr) * 2008-12-19 2010-06-25 Schneider Electric Ind Sas Appareil electrique interrupteur a fonctionnement optimise
EP2466607A1 (fr) 2010-12-17 2012-06-20 Schneider Electric Industries SAS Actionneur electromagnetique à au moins deux bobines

Also Published As

Publication number Publication date
EP1009004B1 (fr) 2004-01-07
FR2786915B1 (fr) 2001-01-12
US6317308B1 (en) 2001-11-13
DE69914053T2 (de) 2004-10-14
DE69914053D1 (de) 2004-02-12
FR2786915A1 (fr) 2000-06-09

Similar Documents

Publication Publication Date Title
EP1009004B1 (fr) Dispositif de commande d&#39;un électro-aimant, avec détection d&#39;un déplacement intempestif du noyau mobile de l&#39;électro-aimant
EP1009006B1 (fr) Dispositif de commande standard d&#39;un electro-aimant d&#39;ouverture ou de fermeture d&#39;un disjoncteur
EP0462023B1 (fr) Commutateur statique
FR2742013A1 (fr) Procede et dispositif de limitation d&#39;appel de courant d&#39;un condensateur associe a un redresseur
EP0204624B1 (fr) Dispositif de surveillance d&#39;état d&#39;un commutateur électrique et relais électrique comportant application
FR2812476A1 (fr) Convertisseur alternatif-continu
EP3288059B1 (fr) Déclencheur commandable pour un disjoncteur électrique
EP0562908A1 (fr) Circuit d&#39;alimentation pour relais électromagnétique
FR2601811A1 (fr) Circuit de commande pour la bobine excitatrice d&#39;un electro-aimant
EP0252808B1 (fr) Dispositif de commande et de contrôle d&#39;un contacteur et procédé de contrôle correspondant
EP0526307A1 (fr) Dispositif de commande d&#39;un démarreur de véhicule automobile
EP1376843A2 (fr) Commande d&#39;un thyristor d&#39;un pont redresseur
EP1139361B1 (fr) Circuit électrique pour la transmission d&#39;une information d&#39;état, notamment d&#39;un organe de matériel ferroviaire roulant, et système électrique incorporant un tel circuit
FR2538631A1 (fr) Procede et dispositif de charge d&#39;un condensateur de blocage dans un circuit de commande d&#39;un moteur electrique de traction
FR2828668A1 (fr) Retracteur de ceinture de securite
FR2501899A1 (fr) Circuit de commande du fonctionnement d&#39;un dispositif electromagnetique comportant un solenoide et un induit
EP0021867B1 (fr) Dispositif d&#39;alimentation à découpage régulé contre les variations de tension d&#39;entrée et de puissance de sortie, notamment pour récepteur de télévision
FR2535551A1 (fr) Dispositif de commutation electronique a faible dissipation de puissance
EP3291271B1 (fr) Procédé de commande d&#39;un dispositif d&#39;actionnement, dispositif d&#39;actionnement et appareil de commutation associés
EP0768683B1 (fr) Circuit d&#39;alimentation d&#39;une bobine d&#39;excitation d&#39;un électro-aimant
CA2124630C (fr) Dispositif de commande du fonctionnement d&#39;un contacteur
FR2831986A1 (fr) Procede et dispositif pour reduire le bruit de commutation d&#39;un appareil de commutation electromagnetique
FR2803956A1 (fr) Dispositif et procede pour alimenter une bobine de commande d&#39;un contacteur electrique, notamment d&#39;un contacteur de puissance
EP1570503A1 (fr) Commande de relais electromagnetiques
FR2601190A1 (fr) Procede et dispositif de commande d&#39;un contacteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000708

AKX Designation fees paid

Free format text: DE GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHNEIDER ELECTRIC INDUSTRIES SAS

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69914053

Country of ref document: DE

Date of ref document: 20040212

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041008

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101120

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161115

Year of fee payment: 18

Ref country code: GB

Payment date: 20161116

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69914053

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171116