EP2466400B1 - Mouvement inertiel d'un organe d'affichage mécanique - Google Patents

Mouvement inertiel d'un organe d'affichage mécanique Download PDF

Info

Publication number
EP2466400B1
EP2466400B1 EP10195412.1A EP10195412A EP2466400B1 EP 2466400 B1 EP2466400 B1 EP 2466400B1 EP 10195412 A EP10195412 A EP 10195412A EP 2466400 B1 EP2466400 B1 EP 2466400B1
Authority
EP
European Patent Office
Prior art keywords
display means
mechanical
activation
mechanical display
coupling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10195412.1A
Other languages
German (de)
English (en)
Other versions
EP2466400A1 (fr
Inventor
David Hoover
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP10195412.1A priority Critical patent/EP2466400B1/fr
Priority to US13/314,433 priority patent/US8737174B2/en
Priority to CN201110425174.9A priority patent/CN102662316B/zh
Priority to JP2011275326A priority patent/JP5475749B2/ja
Priority to KR1020110136823A priority patent/KR101354339B1/ko
Publication of EP2466400A1 publication Critical patent/EP2466400A1/fr
Priority to HK13102984.9A priority patent/HK1175859A1/xx
Application granted granted Critical
Publication of EP2466400B1 publication Critical patent/EP2466400B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/02Back-gearing arrangements between gear train and hands
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/14Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor
    • G04C3/146Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor incorporating two or more stepping motors or rotors
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C17/00Indicating the time optically by electric means

Definitions

  • the present invention relates to the field of analog display devices. It relates in particular to timepieces provided with a display made using mechanical devices.
  • time-setting devices actuated by a ring connected kinematically to the watchwheel of the watch in its axial position corresponding to the setting mode are known.
  • time with gear gear ratios determined to move the minute hand quickly and easily without having to rotate the crown either too long or often.
  • correction devices for digital display using a corona equipped with sensors as an actuating element and an electronic coupling device for making a correction at a speed which is a function of that of rotation of the crown, as for example.
  • the electronic circuit described in the patent GB 2019049 the correction speeds are constant between different bearings corresponding to rotational speeds of the crown, but can change abruptly with each increment.
  • no correction takes place between two successive movements of the ring, and no mechanism is provided to slow the scrolling of the counter used for the correction.
  • a fine adjustment involves a repetition of low amplitude operations by the user, in order to generate the lowest correction speed possible. This proves on the one hand inconvenient, and on the other hand does not allow to overcome a jerky movement of needles.
  • the Swiss patent CH 641630 describes an electronic device for scrolling symbols at a variable speed in response to the activation of a sensor (movement of a finger on a touch sensor, pressure on a pusher).
  • the number of activations of the sensors and the duration of these activations have the effect of incrementing or decrementing values contained in a register, which in turn determine a proportional scrolling speed. Decrementing the values of the register after a prolonged inactivation of the sensors makes it possible to progressively reduce the speed of scrolling; however, this slowing down of the scrolling speed still lacks fluidity since the relative variations of the scrolling speed are even greater than the values of the register are close to zero.
  • This solution has the advantage of using sensors without mechanical parts; the disadvantage is that the use is less intuitive than a traditional crown. Moreover, this solution only concerns digital displays and does not apply to watches comprising analog display devices.
  • the document US4261048 discloses a quartz watch provided with an electronic circuit capable of making rapid corrections without the aid of a dedicated mechanical adjustment train, for which two predetermined correction speeds are possible: a first at 64 Hz for a coarse adjustment, and a second at 2Hz for fine tuning.
  • the speed of correction of the needles is however not variable, and it is necessary to activate the crown a second time, while the needles are moving during the rough adjustment, to stop them and then to be able to make a fine adjustment.
  • the document US4470707 an electronic watch with an alarm mode and which has an electronic circuit for quickly switching from the display mode of the current time to that of the display of the alarm schedule at an accelerated speed after having chosen the minimum trajectory to be made for the needles.
  • No acceleration or deceleration phase is however provided for the hands during the change of display mode, which is performed at a fast but constant speed, and the hands are immediately stopped when a value match is found in registers associated with the positioning of the needles.
  • the document EP0361015 which relates to a quartz watch provided with a Lavet type bipolar stepper motor, discloses an integrated circuit and a low impedance control coil arranged to make corrections faster than in conventional quartz watches, for which the speed of correction is limited to 60Hz for questions of stability of the rotor. However, the correction speed is still constant here and no phase of acceleration or deceleration can be controlled for the hands, the control push button being only intended to actuate the fast-forward or fast-return mode, for which the rotational speeds are predetermined.
  • An object of the present invention is therefore to provide a solution free from the drawbacks of the prior art evoked.
  • an object of the present invention is to provide a device and a correction method faster and more intuitive for the user while preserving the approach of a completely mechanical solution.
  • Another advantage of the proposed solution is to minimize the manipulations necessary for the adjustment, only sporadic activations of the control member being necessary to adjust the position of the display members.
  • the control of the adjustment operations is improved thanks to the possibility of acting not only to accelerate the speed of correction but also to decelerate this same speed.
  • An additional advantage of the proposed solution is to allow simultaneous adjustment of several display parameters, contrary to the usual sequential settings for electronic watches.
  • the time saved by the invention for the correction by a continuous movement of the display means between the activation periods of the activation means gives the ability to move for example the hour and minute hands at the same time , according to the intuitive approach of a classic mechanical watch, without a large correction taking a long time to the eyes of the user.
  • the proposed solution does not require any particular resolution of sensors to increment the display values.
  • the fluidity of the adjustment is ensured in particular by the fact that it is not a correction speed which is deduced from the movements of the control member, or detected by a sensor, but the acceleration of the display member. This therefore makes it possible to generate a continuous speed of the display member, in accordance with the movement of a mechanical member according to Newtonian laws of physics. This speed has only slight variations between different periods of actuation of the control member, and the proposed solution therefore undergoes no threshold effect at the sensor resulting in jerks for the movements of the organs d display.
  • the present invention relates to a coupling device between two parts, at least one of which is mechanical and the other is mechanical or linked to a sensor.
  • the coupling device creates an interdependent relationship for the mutual operation of these parts; it is thus possible to generate the movement of a part, unilaterally or bilaterally from that of the other.
  • the invention relates both to a coupling device comprising electronic elements, as well as a totally mechanical coupling device, that is to say without any electronic circuit.
  • a kinematic connection between activation means in the form of a mechanical control member and the display means, typically a crown and needles in the context of a conventional timepiece.
  • activation means in the form of a mechanical control member and the display means, typically a crown and needles in the context of a conventional timepiece.
  • a kinematic connection of freewheel type can be obtained thanks to an inverting wheel whose one gear is engaged with a gear actuated by the crown, while the other gear is secured to a mass disk on which is fixed the minute hand, the hour hand being actuated then via a conventional timer train.
  • the mass disk rotates freely around its axis of rotation and that of the pinion which is integral with it as soon as the crown is no longer actuated, and the friction forces gradually reduce the speed of rotation of the disk and therefore that of the minute hand when the crown is no longer actuated.
  • FIGS. Figures 1A and 1B respectively show the logical structure of the coupling device 3 as well as the various parameters used and the different calculation steps performed by various elements of the coupling device 3 to transform the movement of the control means 1 into a non-proportional movement of the means of display, unlike a traditional mechanical wheel.
  • the Figure 1A shows the preferred structure of the activation means 1, in the form of a ring 11, whose actuation can be effected in two opposite directions of rotation S1 and S2, and that of the display means 2, in the form
  • the coupling device 3 according to the invention to other types of mechanical display members 2, such as rings or drums.
  • the invention therefore makes it possible to transform a first angular velocity 111 corresponding to that of driving the ring 11 in a given direction of rotation, for example S1, at another angular speed 211 of the minute hand 21.
  • the two angular speeds 111 and 211 are not proportional, since the minute hand 211 is progressively accelerated following the activation of the ring 11 in the direction S1 according to a Newtonian equation movement 700 described later, which also allows to confer a continuous character to the movement of the needles.
  • the coupling device 3 according to the preferred embodiment of the invention illustrated in FIG. Figure 1A comprises an electronic circuit 31 preferably in the form of an integrated circuit comprising a processing unit 5, comprising for example a microcontroller, and a motor control circuit 6.
  • the microcontroller transforms digital input parameters, provided by a counter module 44 at the output of a sensor 4 of movements of the activation means 1, for example the rotation of the ring 11, information for the control circuit of the motors 6, such as a number of steps engines.
  • the counter module 44 makes it possible to transform the electrical signals produced by the sensor 4 into discrete digital values, and thus manipulated by a software processing unit such as the microcontroller. The latter is however not described in detail because known to those skilled in the art.
  • the control circuit 6 controls two separate motors, a first motor 61 being dedicated to controlling the movements of the minute hand 21, and a second motor 62 being dedicated to controlling the hour hand 22.
  • the coupling device 3 thus simultaneously actuates a plurality of motors 61, 62 each dedicated to separate mechanical display means.
  • the dissociation of the engines makes it possible to quickly change the display mode, by indicating, for example, the time of an alarm, or the direction of the terrestrial magnetic field.
  • the preferred embodiment carries out the coupling between the activation means 1, preferably mechanical, but which can also take the form of, for example, a capacitive sensor, such as a touch screen, and a display 2 by means of a sensor module 4. which makes it possible to characterize the movement of the activation means 1, preferably a ring 11, by numerical values, namely a number of pulses.
  • This step of determining a pulse frequency 4001 is a digitization process necessary to provide an input parameter that can be manipulated by the electronic circuit 31, which can then simulate the movement of the mechanical display means as if it were determined by the application of a torque 401 'proportional to the pulse frequency 401.
  • this fluid friction torque 703 "is however fictitious, and simulated by the microcontroller 5 in the context of the Newtonian equation 700 above, it is also not applied directly to the minute hand 21, but at the simulated speed of the minute hand 703 also used to solve the Newtonian equation 700 above.
  • the actual angular speed of the needles and according to the preferred embodiment chosen the angular speed of the minute hand 211, is necessarily limited because of the constraints of system in terms of processing capabilities.
  • the first and second motors 61, 62 can only implement a predetermined maximum number of steps per second, and therefore there is always a maximum frequency 611 'of no motors from which no further acceleration is possible. possible.
  • the maximum frequency of motor nozzles 611 'of the first motor 61 controlling the minute hand 21 is preferably between 200 and 1000 Hz, which corresponds to a maximum speed of rotation of the minute hand 21 between approximately one and five turns per second when a complete dial turn corresponds to 180 engine pitch. It may be noted that whatever the embodiment chosen for the invention involving the use of an electronic circuit 31, a maximum running speed of the mechanical display means 2 must always be defined according to the processing capabilities of the device. motor control circuit 6.
  • the Figure 2A shows a preferred embodiment of the sensor 4 according to the invention, which makes it possible to relatively simply determine a pulse frequency 401 used by the electronic circuit 31 to calculate the values of acceleration and deceleration of the mechanical display means 1 by solving the Newtonian equation 700 applied to this input parameter.
  • the sensor 4 is mounted on a rod 41, integral in rotation with the ring 11, and which can be rotated in two opposite directions S1 and S2.
  • a plurality of electrical contactors 41a, 41b, 41c, 41d, 4 are mounted at the periphery of electrical contactors 41a, 41b, 41c, 41d, 4 in number according to a preferred embodiment, as shown in FIG. Figure 2A .
  • the sensor 4 furthermore comprises two electrical contacts 42, 43 mounted on a fixed structure, a first contact 42 on the terminals of which the value of an output signal 412 is measured and a second contact 43 on the terminals of which the value of an output signal 413 when a voltage is applied to the electrical contactors 41a, 41b, 41c, 41d.
  • the Figure 2B shows, in the upper part (a) the first and second signals 412 and 413 obtained during a rotation of the ring 11 in the direction of rotation S1, corresponding to the direction of clockwise.
  • the first period 401a corresponding to the duration during which each signal 412, 413 is positive
  • the second period 401b during which each signal 412, 413 is zero
  • the third total period 401c corresponding to the sum of the first and second periods 401a, 401b are identical for each of the first and second output signals 412, 413, which are simply offset in time by an amount corresponding to the path of one of the electrical contacts 41a, 41b, 41c, 41d of the first contact 42 to contact 43 e 2 external.
  • the diagram is inverted in the lower part (b) of the figure, in which the ring 11 is rotated counterclockwise S2, and the slot of the first output signal 412 is formed before that of the second signal
  • These signals 412, 413 and their periods 401a, 401b, 401c are then transmitted to the counter module 44 to be converted into digital values.
  • the use of such a contactor to determine the pulse frequency 401 applied to the Newtonian equation 700 has the further advantage of not requiring any fine resolution of the sensor 4 to guarantee the fluidity of the correction, since the speed determined by solving this equation is always continuous even if the acceleration is not.
  • a less fine resolution of the granularity of the torque values, proportional to the pulse frequency 401 will not have the consequence of advancing the display means 2 in jerks, but simply to generate more frank accelerations. following the detection of each additional pulse.
  • the figure 3 shows a state diagram for different sequences of time setting operations using needles according to a preferred embodiment of the invention applied to a timepiece.
  • Those skilled in the art will understand that it is however possible to adjust other types of parameters that are not necessarily temporal (that is to say, all types of symbols) and that the needles could be replaced by others.
  • analog display devices are not necessarily temporal (that is to say, all types of symbols) and that the needles could be replaced by others.
  • Step 1001 corresponds to a first activation of the ring 11, which makes it possible to generate the movement of the minute hand 21.
  • the sensor 4 detects a number of pulses 401 "positive" corresponding to a positive angular velocity 111 for the ring 11 and simulates the application of a torque applied to the needle in the same direction.
  • the rotation of the ring 11 in the direction S1 of the clockwise allows to advance the minute hand 21 on the dial. Repeated rotation of the ring 11 in the same direction S1 makes it possible to keep the pulse frequency 401 positive during the successive sampling periods used by the counter module 44, and thus to further accelerate the movement of the needle 21.
  • a maximum simulated angular velocity 7031 is determined as a function of the maximum engine pitch frequency 611 '. Since the algorithm solving the Newtonian equation reaches this upper velocity limit, it saturates, that is to say stops increasing the simulated angular velocity 703 even if the algorithm were to give a result of a value higher.
  • the diagram of the figure 3 illustrates the comparison step 5003 performed by the microcontroller 5 to determine if the speed saturates, in which case the simulated angular velocity 703 is limited to the maximum value 7031 and the angular acceleration 703 'is zero for the sampling period on which the calculation was done.
  • the feedback loop starting from the comparison step 5003 to a positive acceleration value 703 ' indicates that no saturation occurs until the maximum simulated angular velocity 7031 has been reached.
  • step 1001 has been described in the context of activation of the ring 11 in the direction of rotation S1 of the clockwise to preferably advance the minute hand 21 in the same direction, it is possible to also to ensure that activation of the ring 11 in the opposite direction S2 similarly turn the hands of minutes 21 and hours 22 in the opposite direction, the number of pulses 401 being calculated identically for each period of sampling but the information on the direction of rotation determined by the sensor 4 makes it possible to choose the direction of rotation applied to the hands by the first and second motors 61, 62.
  • the solution proposed here that the movement applied to the mechanical display means is the result of an acceleration that depends on the speed of the crown, is very robust against a low resolution crown.
  • the movement remains fluid, even if the user advances the crown by blows. If a user rotates the crown by successive strokes, the corrections continue between shots. This brings a significant time saving in the case where the mechanical display means are not very efficient.
  • a simultaneous adjustment of the hour hand 22 and minutes 21 according to a fully mechanical approach, in which the minute hand rotates completely for each time change, is made possible at an acceptable speed for the user even for a relatively slow system.
  • the activation step 1001 therefore makes it possible to simultaneously adjust the hour hand 22 and the minute hand 21, which is particularly advantageous for watches where each parameter is usually set sequentially for performance reasons.
  • Step 1001 ' is a step subordinate to step 1001, or more generally any activation step, which it follows immediately.
  • This is a step during which the ring 11, or more generally the control means 1, ceases to be activated.
  • the modeling of the invention makes that no external torque is applied to the system since the detected pulse frequency 401 is zero, which depends inter alia on the sampling period chosen at the level of the electronic sensor interface, formed here by the counter module 44 to determine the pulse frequency 401.
  • the resolution of this Newtonian equation 700 determines the slowdown of the inertial type of the display member, for example the minute hand 21 in the embodiment described above, since the deceleration is only proportional to the simulated angular velocity 703. During this slowdown of the inertial type, the system is in the first deceleration phase B1 illustrated on FIG. figure 3 .
  • the ring 11 is turned in the opposite direction S2 during an additional actuating step 1002, the angular acceleration 703 'is always negative, but the deceleration B2, illustrated on the figure 3 , is more pronounced because the sign of the fictitious torque 401 'becomes negative, acting with the angular acceleration 703' to slow down the system more quickly.
  • Actuation of the ring 11 in the opposite direction makes it possible to further refine the adjustment by means of the additional activation step 1002 when approaching a desired value while the angular velocity is at that moment. there relatively high, because the second phase of deceleration B2 which is generated is more pronounced than the first deceleration phase B1 which occurs only during a prolonged inactivation of the crown 11.
  • the first activation step 1001 is therefore always followed by an acceleration phase A of mechanical means of display 2, and first of all the minute hand 21 for which the acceleration is most noticeable.
  • This acceleration phase A ends when the motor control circuit 6 detects that a maximum frequency has been reached, in this case that of step 611 'of the first motor 61, in which case it follows a phase C during which the simulated angular velocity 703 is limited to the maximum angular velocity value 7031.
  • the minute hand 21 is therefore constant, bounded by the maximum frequency 611 'of pitch of the first motor 61.
  • the proportionality coefficients defining the moments applied to the system in the Newtonian equation of the motion 700 may preferably be chosen, together with the maximum value of motor steps 611 'of the first motor 61, so that the angular acceleration value 703 is always positive as soon as at least one pulse 401 is detected per second, or the value chosen for the lapse of time respectively. of time above, so that the effective angular velocity 211 always remains constant if the ring 11 is activated at least once per second as soon as the maximum angular velocity 21 has been reached.
  • the acceleration phase A means display 1 is followed most of the time by a phase C during which the speed of scrolling means display 2 is constant when the deviation of the display value displayed when the setting is undertaken and the value that is desired to achieve is important. If the control means are not activated during a determined period of time, the first deceleration phase B1 of the display means 2 takes place following this prolonged inactivation; otherwise a second phase of deceleration B2 more pronounced can be actuated during an additional activation step 1002 of the control means in the opposite direction to that used during the initial activation step 1001.
  • a second activation step 1002 depends on the user's preferences of the display device in terms of the scrolling speed and the moment from which he wishes to make a finer adjustment of or display elements. analog.
  • the coupling solution of mechanical display and control means according to the invention therefore allows increased control throughout the adjustment operations by being able to accelerate and / or decelerate at any time the scrolling or mechanical display elements. Moreover, the speed variations are much more progressive than according to the solutions of the prior art where the speeds are directly deduced from sensor values.
  • the determination of an acceleration in place of a speed from the magnitudes of a sensor makes it possible to fluidize the movement of the mechanical display elements.

Description

  • La présente invention se rapporte au domaine des dispositifs à affichage de type analogique. Elle concerne en particulier des pièces d'horlogerie munies d'un affichage effectué à l'aide d'organes mécaniques.
  • Dans des pièces d'horlogerie mécaniques, en particulier des montres bracelet à aiguilles, on connaît des dispositifs de mise à l'heure actionnés par une couronne reliée cinématiquement au rouage de minuterie de la montre dans sa position axiale correspondant au mode de mise à l'heure, avec des rapports de rouage d'engrenage déterminés pour déplacer l'aiguille des minutes de manière simple et rapide sans devoir actionner en rotation la couronne ni trop longtemps ni souvent.
  • Dans des pièces d'horlogerie électroniques à affichage digital, en particulier à cristaux liquides, il est connu de pouvoir accélérer la vitesse de défilement de symboles numériques en fonction d'une activation prolongée ou répétée d'un capteur lorsqu'on se trouve dans un mode de réglage spécifique. Par exemple, une pression prolongée sur un bouton poussoir permet d'accélérer le défilement jusqu'à une vitesse maximale pour la valeur d'affichage à corriger. Le réglage s'effectue alors séquentiellement pour chaque paramètre d'affichage.
  • On connaît par ailleurs des dispositifs de correction pour affichage digital utilisant une couronne munie de capteurs comme élément d'actionnement, et un dispositif électronique de couplage pour effectuer une correction à une vitesse qui est une fonction de celle de rotation de la couronne, comme par exemple le circuit électronique décrit dans le brevet GB 2019049 . Dans ce cas, les vitesses de correction sont constantes entre différents paliers correspondant à des vitesses de rotation de la couronne, mais peuvent toutefois changer brusquement lors de chaque incrémentation. Par ailleurs, aucune correction n'a lieu entre deux mouvements successifs de la couronne, et aucun mécanisme n'est prévu pour ralentir le défilement du compteur utilisé pour la correction. Ainsi un réglage fin implique une répétition d'actionnements de faible amplitude par l'utilisateur, afin de générer une vitesse de correction la plus faible possible. Ceci s'avère d'une part peu commode, et ne permet pas d'autre part de pallier un mouvement saccadé des aiguilles.
  • Le brevet suisse CH 641630 décrit un dispositif électronique pour le défilement de symboles à une vitesse variable en réponse à l'activation d'un capteur (mouvement d'un doigt sur un capteur tactile, pression sur un poussoir). Le nombre d'activations des capteurs et la durée de ces activations ont pour effet d'incrémenter ou de décrémenter des valeurs contenues dans un registre, qui déterminent à leur tour une vitesse de défilement proportionnelle. La décrémentation des valeurs du registre après une inactivation prolongée des capteurs permet de diminuer progressivement la vitesse de défilement; toutefois, ce ralentissement de la vitesse de défilement manque toujours de fluidité puisque les variations relatives de la vitesse de défilement sont d'autant plus grandes que les valeurs du registre sont proches de zéro. Cette solution possède l'avantage d'utiliser des capteurs sans pièces mécaniques ; l'inconvénient est que l'utilisation est moins intuitive qu'une couronne traditionnelle. Par ailleurs, cette solution ne concerne que des affichages digitaux et ne s'applique pas à des montres comportant des organes d'affichage analogiques.
  • Par ailleurs, le document US4261048 divulgue une montre à quartz pourvue d'un circuit électronique capable d'effectuer des corrections rapides sans l'aide d'un rouage de réglage mécanique dédié, pour lesquelles deux vitesses de correction prédéterminées sont possibles: une première à 64Hz pour un réglage grossier, et une deuxième à 2Hz pour un réglage fin. La vitesse de correction des aiguilles n'est toutefois pas variable, et il est nécessaire d'activer la couronne une deuxième fois, alors que les aiguilles sont en mouvement lors du réglage grossier, pour les stopper et pouvoir ensuite effectuer un réglage fin.
  • Le document US4470707 concerne une montre électronique avec un mode alarme et qui possède un circuit électronique permettant de passer rapidement du mode d'affichage de l'heure courante à celui de l'affichage de l'horaire de l'alarme à une vitesse accélérée après avoir choisi la trajectoire minimale à effectuer pour les aiguilles. Aucune phase d'accélération ni de décélération ne sont toutefois prévues pour les aiguilles lors du changement de mode d'affichage, qui est effectué à une vitesse rapide mais constante, et les aiguilles sont immédiatement stoppées lorsqu'une concordance de valeurs est constatée dans des registres associés au positionnement des aiguilles.
  • Le document EP0361015 , qui concerne une montre à quartz pourvue d'un moteur pas-à-pas bipolaire de type Lavet, décrit un circuit intégré et une bobine de commande à basse impédance agencés pour effectuer des corrections plus rapidement que dans les montres à quartz conventionnelles, pour lesquelles la vitesse de correction est limitée à 60Hz pour des questions de stabilité du rotor. La vitesse de correction est toutefois ici encore constante et aucune phase d'accélération ni de décélération ne peuvent être commandées pour les aiguilles, le bouton poussoir de commande étant seulement prévu pour actionner le mode d'avance rapide ou de retour rapide, pour lesquels les vitesses de rotation sont prédéterminées.
  • Un but de la présente invention est par conséquent de proposer une solution exempte des inconvénients de l'art antérieur suscités.
  • En particulier, un but de la présente invention est de proposer un dispositif et une méthode de correction plus rapide et plus intuitive pour l'utilisateur tout en préservant l'approche d'une solution totalement mécanique.
  • Ces buts sont atteints grâce à un dispositif tel que défini dans la revendication indépendante 1 et grâce à une methode telle que définie dans la revendication indépendante 10.
  • Un autre avantage de la solution proposée est de minimiser les manipulations nécessaires au réglage, seules quelques activations sporadiques de l'organe de commande étant nécessaires pour ajuster la position des organes d'affichage. Par ailleurs le contrôle des opérations de réglage est amélioré grâce à la possibilité d'agir non seulement pour accélérer la vitesse de correction mais également pour décélérer cette même vitesse.
  • Un avantage additionnel de la solution proposée est de permettre un réglage simultané de plusieurs paramètres d'affichage, contrairement aux réglages séquentiels usuels pour des montres électroniques. Le gain de temps procuré par l'invention pour la correction grâce à un mouvement continu des moyens d'affichage entre les périodes d'actionnement des moyens d'activation donne la faculté de déplacer par exemple les aiguilles des heures et des minutes en même temps, selon l'approche intuitive d'une montre mécanique classique, sans qu'une correction de grande ampleur ne prenne un temps trop long aux yeux de l'utilisateur.
  • Enfin, selon un mode de réalisation préférentiel décrit ci-après, la solution proposée ne requiert aucune résolution particulière de capteurs pour incrémenter les valeurs d'affichage. La fluidité du réglage est assurée notamment par le fait que ce n'est pas une vitesse de correction qui est déduite des mouvements de l'organe de commande, ou détectés par un capteur, mais l'accélération de l'organe d'affichage. Ceci permet donc de générer une vitesse continue de l'organe d'affichage, conformément au mouvement d'un organe mécanique suivant des lois newtoniennes de physique. Cette vitesse ne présente que de faibles variations entre différentes périodes d'actionnement de l'organe de commande, et la solution proposée ne subit par conséquent aucun effet de seuil au niveau du capteur se traduisant par des à-coups pour les mouvements des organes d'affichage.
  • D'autres caractéristiques et avantages ressortiront plus clairement de la description détaillée de divers modes de réalisation et des dessins annexés, sur lesquels:
    • la figure 1A illustre une vue schématique du dispositif de couplage selon un mode de réalisation préférentiel de l'invention;
    • la figure 1B montre les différents paramètres utilisés et les différentes étapes de calcul effectuées par divers éléments du dispositif de couplage selon le mode de réalisation préférentiel illustré à la figure 1A;
    • la figure 2A illustre une structure de capteur selon un mode de réalisation préférentiel de l'invention;
    • la figure 2B montre le fonctionnement du capteur selon le mode de réalisation préférentiel illustré par la figure 2A;
    • la figure 3 montre un diagramme d'état pour les différentes séquences d'opérations de réglage selon un mode de réalisation préférentiel de l'invention.
  • La présente invention concerne un dispositif de couplage entre deux pièces, dont l'une au moins est mécanique et l'autre soit mécanique soit liée à un capteur. Le dispositif de couplage crée une relation d'interdépendance pour le fonctionnement mutuel de ces pièces ; il est ainsi possible de générer le mouvement d'une pièce, unilatéralement ou bilatéralement à partir de celui de l'autre. L'invention concerne à la fois un dispositif de couplage comprenant des éléments électroniques, ainsi qu'un dispositif de couplage totalement mécanique, c'est-à-dire dépourvu de tout circuit électronique. Bien que la variante préférentielle de l'invention décrite ci-après à l'aide des figures utilise un microcontrôleur pour simuler et implémenter l'effet d'inertie souhaité pour le défilement des moyens d'affichage analogiques, il est tout à fait envisageable d'établir une liaison cinématique entre des moyens d'activation, sous la forme d'un organe de commande mécanique et les moyens d'affichage, comme typiquement une couronne et des aiguilles dans le cadre d'une pièce d'horlogerie classique. Par exemple, une liaison cinématique de type roue libre peut être obtenue grâce à une roue inverseuse dont un des pignons est en prise avec un rouage actionné par la couronne, tandis que l'autre pignon est solidaire d'un disque massique sur lequel est fixée l'aiguille des minutes, l'aiguille des heures étant actionnée ensuite par l'intermédiaire d'un rouage de minuterie classique. Dans cette configuration, le disque massique tourne en roue libre autour de son axe de rotation et celui du pignon qui lui est solidaire dès que la couronne n'est plus actionnée, et les forces de frottement diminuent progressivement la vitesse de rotation du disque et donc celle de l'aiguille des minutes dès lors que la couronne n'est plus actionnée.
  • Un mode de réalisation préférentiel du dispositif de couplage de l'invention est destiné à des pièces d'horlogerie et est illustré aux figures 1A et 1B, qui montrent respectivement la structure logique du dispositif de couplage 3 ainsi que les différents paramètres utilisés et les différentes étapes de calcul effectuées par divers éléments du dispositif de couplage 3 pour transformer le mouvement des moyens de commande 1 en un mouvement non proportionnel des moyens d'affichage, contrairement à un rouage mécanique traditionnel. La figure 1A montre la structure préférentielle des moyens d'activation 1, sous la forme d'une couronne 11, dont l'actionnement peut être effectué dans deux sens de rotation inverses S1 et S2, ainsi que celle des moyens d'affichage 2, sous la forme d'une aiguille des heures 22 et des minutes 21. On pourrait toutefois imaginer appliquer le dispositif de couplage 3 selon l'invention à d'autres types d'organes d'affichage mécaniques 2, comme par exemple des anneaux ou des tambours. L'invention permet par conséquent de transformer une première vitesse angulaire 111, correspondant à celle de l'entraînement de la couronne 11 dans un sens de rotation donné, par exemple S1, en une autre vitesse angulaire 211 de l'aiguille des minutes 21. Les deux vitesses angulaires 111 et 211 ne sont pas proportionnelles, puisque l'aiguille des minutes 211 est progressivement accélérée suite à l'activation de la couronne 11 dans le sens S1 conformément à une équation newtonienne du mouvement 700 décrite plus loin, qui permet par ailleurs de conférer un caractère continu au déplacement des aiguilles.
  • Le dispositif de couplage 3 selon la variante préférentielle de l'invention illustré à la figure 1A comprend un circuit électronique 31 se présentant de préférence sous la forme d'un circuit intégré comportant une unité de traitement 5, comprenant par exemple un microcontrôleur, et un circuit de commande des moteurs 6. Le microcontrôleur transforme des paramètres d'entrée numériques, fournis par un module compteur 44 en sortie d'un capteur 4 de mouvements des moyens d'activation 1, soit par exemple la rotation de la couronne 11, en des informations pour le circuit de commande des moteurs 6, comme par exemple un nombre de pas moteurs. Le module compteur 44 permet de transformer les signaux électriques produits par le capteur 4 en des valeurs numériques discrètes, et donc manipulables par une unité de traitement logicielle telle que le microcontrôleur. Ce dernier n'est toutefois pas décrit en détail car connu de l'homme du métier. Selon la variante préférentielle illustrée, le circuit de commande 6 commande deux moteurs distincts, un premier moteur 61 étant dédié au contrôle des mouvements de l'aiguille des minutes 21, et un deuxième moteur 62 étant dédié au contrôle de l'aiguille des heures 22. Le dispositif de couplage 3 actionne ainsi simultanément une pluralité de moteurs 61,62 dédiés chacun à des moyens d'affichage mécaniques distincts. La dissociation des moteurs permet de rapidement changer de mode d'affichage, en indiquant, par exemple, l'heure d'une alarme, ou la direction du champ magnétique terrestre.
  • Le microcontrôleur utilise, pour effectuer ses calculs, différents paramètres sauvegardés dans une unité de mémoire 7, afin de pouvoir déterminer un nombre de pas moteurs, ou encore une fréquence de pas moteurs 611, 622 lorsque ces derniers sont rapportés à une unité temporelle comme la minute ou l'heure. Ces fréquences de pas moteurs 611, 622 correspondent respectivement aux fréquences d'activation du premier moteur 61 et du deuxième moteur 62 selon l'équation newtonienne du mouvement 700, décrite ci-dessous. La figure 1B illustre les différentes étapes de transformation de la vitesse angulaire 111 de rotation de la couronne 11 en un nombre de pas moteurs, ainsi que les paramètres de calcul:
    • l'étape 4001 consiste en la détermination d'une fréquence d'impulsions 401, utilisée en sortie du module compteur 44 par le microcontrôleur de l'unité de traitement 5 pour calculer le nombre de pas moteurs et en déduire la fréquence de pas moteurs 611, 622. Une structure préférentielle pour le capteur 4 utilisé pour réaliser cette étape 4001 est détaillée plus loin à l'aide des illustrations des figures 2A et 2B;
    • lors de l'étape 5000, un coefficient de proportionnalité 701 est multiplié à la fréquence d'impulsions 401 pour déterminer une valeur de couple 401', fictif, et qui est censé être appliqué, selon la modélisation choisie dans le cadre de l'invention, à l'aiguille des minutes 21 autour de son axe de rotation.
    • l'étape 5001 est l'étape de calcul principale réalisée par le microcontrôleur. Elle vise à déterminer la fréquence de pas moteurs 611 du premier moteur 61 en fonction de la fréquence d'impulsions 401, afin d'en déduire la vitesse angulaire 211 effective de l'aiguille des minutes. Pour ce faire, le microcontrôleur résout une équation newtonienne 700, modélisant ici le mouvement de l'aiguille des minutes 21 comme celui d'un système tournant selon le principe fondamental de la dynamique, qui stipule que l'accélération angulaire d'un corps en rotation est proportionnelle à la somme des couples mécaniques qui lui sont appliqués. Avec les paramètres de simulation choisis dans le cadre du mode de réalisation préférentiel de l'invention, l'équation newtonienne 700 se lit 704 * 703 = 401 703 " ,
      Figure imgb0001
      où dans la partie gauche de l'équation le coefficient 704 correspond au moment d'inertie du système tournant simulé (usuellement représenté par la lettre J dans des équations physiques) et la référence 703' correspond à l'accélération des moyens d'affichage utilisée dans le cadre de l'invention, comme par exemple ici l'aiguille des minutes 21 autour de son axe de rotation. Afin de conférer un maximum d'inertie au mouvement de l'aiguille des minutes 21, c'est-à-dire pour qu'elle continue de tourner le plus longtemps possible entre les activations de l'organe de commande, on pourra noter que le coefficient 704 du moment d'inertie du système tournant simulé est choisi de préférence beaucoup plus grand que le moment d'inertie réel de l'aiguille des minutes 21, ce qui lui donne le comportement d'un système plus massif, comme si elle était par exemple solidaire en rotation d'un disque en métal. Dans la partie droite de l'équation newtonienne 700 ci-dessus, la valeur 401' correspond à une valeur de couple mécanique fictive appliquée au système tournant qui est simulé pour l'aiguille des minutes 21. Le couple fictif 401', qui dépend de la fréquence d'impulsions 401, est différent de zéro lors de la rotation de la couronne 11. Un autre couple fictif 703", proportionnel à la vitesse angulaire 703 simulée des moyens d'affichage, en l'occurrence celle de l'aiguille des minutes 21, modélise un frottement fluide qui ralentit progressivement le mouvement de l'aiguille des minutes 21. Ce couple mécanique est le seul appliqué lorsque la couronne 11 n'est plus activée. Similairement à la valeur de couple fictif 401', la valeur de couple fictif 703" est obtenue en multipliant la vitesse angulaire simulée 703 par un coefficient de proportionnalité 702, appelé coefficient de frottement fluide. Cette modélisation de frottement fluide fait prendre dans ce cas à l'équation newtonienne 700 la forme d'une équation différentielle pour la vitesse angulaire simulée 703 de l'aiguille 21, qui est résolue par le microcontrôleur. Selon le mode de réalisation préférentiel décrit, la résolution de cette équation newtonienne du mouvement 700, permet ainsi d'émuler un mouvement d'aiguilles fluide et continu puisque la vitesse angulaire de cette dernière est déterminée comme s'il s'agissait de celle d'un système tournant soumis à un couple mécanique lorsque la couronne est actionnée, et un couple de ralentissement fluide. Selon le mode de réalisation préférentiel décrit ici, le paramètre d'entrée choisi pour cette équation est un couple fictif 401' proportionnel à la vitesse de rotation de la couronne 11, et comme résultat en sortie une vitesse de rotation 703 simulée de l'aiguille des minutes 21.
  • La vitesse de rotation simulée 703 permet de déduire ensuite proportionnellement le nombre de pas moteurs par seconde, c'est-à-dire la fréquence de pas moteurs 611. La vitesse angulaire effective de l'aiguille des minutes 211 est réciproquement proportionnelle à la fréquence de pas moteurs 611 ainsi établie. Selon une variante préférentielle de l'invention, chaque pas moteur provoque un mouvement de l'aiguille 21 d'un secteur angulaire correspondant à une indication de durée inférieure à une minute. Afin de rendre le défilement des aiguilles le plus fluide possible, on choisit la valeur angulaire d'incrémentation angulaire de chaque pas de préférence égale à 2 degrés. Autrement dit, chaque pas moteur fait tourner l'aiguille des minutes 21 d'une valeur angulaire correspondant à un tiers de celui correspondant à une minute. Une résolution plus fine serait également envisageable mais nécessiterait un usage accru du moteur 61 qui devrait incrémenter plus de pas et consommerait dans ce cas d'autant plus d'énergie.
    • l'étape 5002 déduit la valeur de fréquence 622 du deuxième moteur 622 en fonction de la valeur de fréquence du premier moteur 611 trouvée en sortie de l'étape 5001. En effet le rapport des vitesses de rotation entre l'aiguille des minutes 21 et celle des heures 22 est de 12, dans le cadre d'un affichage analogique standard selon lequel une révolution complète de l'aiguille des minutes 21 correspond à l'avancement d'une heure de celle de l'aiguille des heures 22, soit d'un douzième de cadran pour une graduation des heures de 1 à 12. Il est ainsi relativement aisé de déduire la valeur de fréquence 622 du deuxième moteur 62 sans devoir effectuer de calcul intrinsèque, ni d'opération de division, mais simplement en implémentant au niveau du circuit de commande des moteurs 6 un ordre d'implémentation d'un pas du 2e moteur 62 après chaque 12e pas du premier moteur 61. Les exigences en termes de calcul sont ainsi minimisées tout en procurant un effet visuel intuitif de mouvement coordonné de plusieurs organes d'affichage, à savoir l'aiguille des minutes 21 et celle des heures 22, lors de leur réglage. La subordination de cette étape additionnelle de calcul 5002 à l'étape de calcul précédente 5001 selon le mode de réalisation préférentiel décrit permet par ailleurs de coordonner simplement le mouvement des deux aiguilles 21, 22.
  • Le mode de réalisation préférentiel réalise le couplage entre les moyens d'activation 1, de préférence mécaniques mais qui peuvent aussi prendre la forme par exemple d'un capteur capacitif, comme un écran tactile, et d'affichage 2 grâce à un module capteur 4 qui permet de caractériser le mouvement des moyens d'activation 1, de préférence une couronne 11, par des valeurs numériques, à savoir un nombre d'impulsions. Cette étape de détermination d'une fréquence d'impulsions 4001 est un processus de numérisation nécessaire pour fournir un paramètre d'entrée manipulable par le circuit électronique 31, qui peut alors simuler le mouvement des moyens d'affichage mécaniques comme s'il était déterminé par l'application d'un couple 401' proportionnel à la fréquence d'impulsions 401. Le mouvement effectif des aiguilles est considéré comme inertiel car il correspond à celui d'un solide en rotation qui n'est plus soumis, dès que la couronne 11 n'est plus activée, qu'à un couple dit de frottement fluide, proportionnel à sa vitesse de rotation elle-même, provoquant leur ralentissement progressif. Selon le mode de réalisation préférentiel décrit, ce couple de frottement fluide 703" est toutefois fictif, et simulé par le microcontrôleur 5 dans le cadre de l'équation newtonienne 700 ci-dessus; il n'est par ailleurs pas appliqué directement à l'aiguille des minutes 21, mais à la vitesse simulée de l'aiguille des minutes 703 utilisée également pour résoudre l'équation newtonienne 700 ci-dessus.
  • Une des spécificités de la modélisation proposée par rapport à une « réalité physique » est que la vitesse angulaire réelle des aiguilles, et selon le mode de réalisation préférentiel choisi la vitesse angulaire de l'aiguille des minutes 211, est nécessairement bornée en raison des contraintes du système en termes de capacités de traitement. En effet, les premiers et deuxièmes moteurs 61, 62 ne peuvent implémenter qu'un nombre maximal prédéterminé de pas par seconde, et il existe ainsi par conséquent toujours une fréquence maximale 611' de pas moteurs à partir de laquelle plus aucune accélération n'est possible. La fréquence maximale de pas moteurs 611' du premier moteur 61 commandant l'aiguille des minutes 21 se situe de préférence entre 200 et 1000 Hz, ce qui correspond à une vitesse de rotation maximale de l'aiguille des minutes 21 entre environ un et cinq tours par seconde lorsqu'un tour complet de cadran correspond à 180 pas moteur. On pourra noter que quel que soit le mode de réalisation choisi pour l'invention impliquant l'usage d'un circuit électronique 31, une vitesse de défilement maximale des moyens d'affichage mécaniques 2 devra toujours être définie en fonction des capacités de traitement du circuit de commande des moteurs 6.
  • La figure 2A montre un mode de réalisation préférentiel du capteur 4 selon l'invention, qui permet de déterminer relativement simplement une fréquence d'impulsions 401 utilisée par le circuit électronique 31 afin de calculer les valeurs d'accélération et ou de décélération des moyens mécaniques d'affichage 1 en résolvant l'équation newtonienne 700 appliquée à ce paramètre d'entrée. Le capteur 4 est monté sur une tige 41, solidaire en rotation de la couronne 11, et qui peut être entraînée en rotation dans deux sens opposés S1 et S2. En périphérie de cette tige 41 sont montés une pluralité de contacteurs électriques 41a, 41b, 41c, 41d, au nombre de 4 selon un mode de réalisation préférentiel, comme illustré sur la figure 2A. Le capteur 4 comprend par ailleurs deux contacts électriques 42, 43 montés sur une structure fixe, un premier contact 42 aux bornes duquel est mesurée la valeur d'un signal 412 de sortie et un deuxième contact 43 aux bornes duquel est mesurée la valeur d'un signal 413 de sortie lorsqu'une tension est appliquée aux contacteurs électriques 41a, 41 b, 41c, 41d.
  • La figure 2B montre, dans la partie haute (a) les premier et deuxième signaux 412 et 413 obtenus lors d'une rotation de la couronne 11 dans le sens de rotation S1, correspondant au sens des aiguilles d'une montre. La première période 401a, correspondant à la durée pendant laquelle chaque signal 412, 413 est positif, la deuxième période 401b durant lequel chaque signal 412, 413 est nul et la troisième période totale 401c, correspondant à la somme des première et deuxième périodes 401a, 401b sont identiques pour chacun des premier et deuxième signaux de sortie 412, 413, qui sont simplement décalés temporellement d'une valeur correspondant au trajet d'un des contacts électriques 41a, 41b, 41c, 41d du premier contact 42 au 2e contact 43 externe. Le schéma est inversé dans la partie basse (b) de la figure, où la couronne 11 est tournée dans le sens inverse des aiguilles d'une montre S2, et où le créneau du premier signal de sortie 412 est formé avant celui du deuxième signal de sortie 413. Ces signaux 412, 413 et leurs périodes 401a, 401b, 401c sont ensuite transmis au module compteur 44 pour être convertis en valeurs numériques.
  • S'il a été établi précédemment que le mode de réalisation préférentiel de l'invention utilisant le capteur 4 de la figure 2A comporte pour des raisons pratiques de préférence un nombre relativement restreint de contacteurs, l'emploi d'un tel contacteur pour déterminer la fréquence d'impulsions 401 appliquée à l'équation Newtonienne 700 présente en outre l'avantage de ne nécessiter aucune résolution fine du capteur 4 pour garantir la fluidité de la correction, puisque la vitesse déterminée en résolvant cette équation est toujours continue même si l'accélération ne l'est pas. Ainsi une résolution moins fine de la granularité des valeurs de couple, proportionnelles à la fréquence d'impulsions 401, n'aura pas pour conséquence de faire avancer les moyens d'affichage 2 par à-coups, mais simplement de générer des accélérations plus franches suite à la détection de chaque impulsion supplémentaire. Il est par ailleurs possible d'ajuster le coefficient de proportionnalité 701 par rapport à la fréquence d'impulsions détectées en fonction de la sensibilité du capteur.
  • On peut aussi envisager, selon un mode de réalisation alternatif, d'utiliser un ou plusieurs contacteurs associés à un ou plusieurs boutons poussoirs (non représentés) et d'incrémenter la fréquence d'impulsions 401 à chaque pression sur un premier bouton poussoir, et respectivement décrémenter la fréquence d'impulsions 401 à chaque pression sur un deuxième bouton poussoir. Selon ce mode de réalisation alternatif, on utilisera donc deux capteurs dédiés chacun à l'augmentation et respectivement de la diminution de la fréquence d'impulsions 401, ce qui correspond selon la modélisation de l'invention à appliquer un couple mécanique dans un sens ou dans le sens opposé pour accélérer et respectivement décélérer le mouvement des aiguilles 21, 22.
  • La figure 3 montre un diagramme d'état pour différentes séquences d'opérations de réglage horaire à l'aide d'aiguilles selon un mode de réalisation préférentiel de l'invention appliqué à une pièce d'horlogerie. L'homme du métier comprendra qu'il est toutefois possible d'effectuer le réglage d'autres types de paramètres pas nécessairement temporels (c'est-à-dire tout type de symboles) et que les aiguilles pourraient être remplacées par d'autres organes d'affichage analogiques.
  • L'étape 1001 correspond à une première activation de la couronne 11, qui permet de générer le mouvement de l'aiguille des minutes 21. Lorsque la couronne est actionnée dans un sens de rotation donné, par exemple dans le sens S1, le capteur 4 détecte un nombre d'impulsions 401 « positif » correspondant à une vitesse angulaire 111 positive pour la couronne 11 et simule l'application d'un couple, appliqué à l'aiguille dans le même sens. Ainsi la rotation de la couronne 11 dans le sens S1 des aiguilles d'une montre permet de faire avancer l'aiguille des minutes 21 sur le cadran. Une rotation répétée de la couronne 11 dans le même sens S1 permet de maintenir positive la fréquence d'impulsions 401 lors des périodes d'échantillonnage successives utilisées par le module compteur 44, et donc d'accélérer encore davantage le mouvement de l'aiguille 21 selon l'équation newtonienne 700, jusqu'à obtenir un mouvement fluide et continu pour lequel il n'est plus possible d'observer visuellement le saut de l'aiguille lors de chaque pas. Le mouvement de l'aiguille des minutes 21 ne pouvant toutefois pas excéder une vitesse angulaire maximale, qui est observée dès lors que la fréquence de pas moteurs maximale 611' est atteinte, la rotation de la couronne 11 n'a toutefois plus aucun effet dès que cette vitesse maximale est atteinte. Selon un mode de réalisation préférentiel, on détermine une vitesse angulaire simulée maximale 7031 en fonction de la fréquence de pas moteurs maximale 611'. Dès lors que l'algorithme résolvant l'équation newtonienne atteint cette limite supérieure de vitesse, il sature, c'est-à-dire arrête d'augmenter la vitesse angulaire simulée 703 même si l'algorithme devait donner un résultat d'une valeur supérieure.
  • Le diagramme de la figure 3 illustre l'étape de comparaison 5003 effectuée par le microcontrôleur 5 pour déterminer si la vitesse sature, auquel cas la vitesse angulaire simulée 703 est limitée à la valeur maximale 7031 et l'accélération angulaire 703' est nulle pour la période d'échantillonnage sur laquelle le calcul a été effectué. La boucle de rétroaction partant depuis l'étape de comparaison 5003 vers une valeur d'accélération 703' positive indique qu'aucune saturation n'a lieu tant que la vitesse angulaire simulée maximale 7031 n'a pas été atteinte.
  • Bien que l'étape 1001 ait été décrite dans le cadre d'une activation de la couronne 11 dans le sens de rotation S1 des aiguilles d'une montre pour faire de préférence avancer l'aiguille des minutes 21 dans le même sens, on peut également faire en sorte qu'une activation de la couronne 11 dans le sens inverse S2 fasse similairement tourner les aiguilles des minutes 21 et des heures 22 dans le sens inverse, le nombre d'impulsions 401 étant calculé de manière identique pour chaque période d'échantillonnage mais l'information sur le sens de rotation déterminé par le capteur 4 permet de choisir le sens de rotation appliqué aux aiguilles par les premiers et deuxièmes moteurs 61, 62.
  • Par ailleurs, la solution proposée ici selon laquelle le mouvement appliqué aux moyens d'affichage mécaniques est le résultat d'une accélération qui dépend de la vitesse de la couronne, est très robuste face à une couronne de faible résolution. De plus, le mouvement reste fluide, même si l'utilisateur fait avancer la couronne par coups. Si un utilisateur fait tourner la couronne par coups successifs, les corrections continuent entre les coups. Ceci apporte un gain de temps important dans le cas où les moyens d'affichage mécaniques ne sont pas très performants. Ainsi un réglage simultané de l'aiguille des heures 22 et des minutes 21 conformément à une approche totalement mécanique, selon laquelle l'aiguille des minutes effectue une rotation complète pour chaque changement d'heure, est rendu possible à une vitesse acceptable pour l'utilisateur même pour un système relativement lent. En effet, pour conserver cette approche très intuitive pour l'utilisateur, une correction de quelques heures pour des pièces d'horlogerie électroniques à affichage analogique nécessite que l'aiguille des minutes fasse un grand nombre de pas moteur, dont l'exécution peut s'avérer beaucoup trop longue pour l'utilisateur si les moteurs sont peu performants. Or le gain de temps significatif procuré par l'invention grâce au mouvement continu des aiguilles entre les périodes d'activation de la couronne 11 permet d'effectuer ces réglages simultanément, indépendamment des performances de l'électronique et des moteurs.
  • Quel que soit le sens de rotation S1 ou S2 de la couronne 11, l'étape d'activation 1001 permet par conséquent de régler simultanément l'aiguille des heures 22 et l'aiguille de minutes 21, ce qui est particulièrement avantageux pour des montres électroniques où chaque paramètre est en général réglé séquentiellement pour des raisons de performance.
  • L'étape 1001' est une étape subordonnée à l'étape 1001, ou plus généralement n'importe quelle étape d'activation, qu'elle suit immédiatement. Il s'agit d'une étape durant laquelle la couronne 11, ou plus généralement le moyen de commande 1, cesse d'être activé. Durant cette étape, la modélisation de l'invention fait que plus aucun couple externe n'est appliqué au système dès lors que la fréquence d'impulsions détectée 401 est nulle, ce qui dépend entre autres de la période d'échantillonnage choisie au niveau de l'interface électronique du capteur, formé ici par le module compteur 44 pour déterminer la fréquence d'impulsions 401. Dès que la valeur 401 s'annule, l'accélération angulaire 703' est déterminée par le seul frottement fluide modélisé, à savoir selon l'équation newtonienne 700: 703 = 703 " / 704
    Figure imgb0002
  • La résolution de cette équation newtonienne 700 détermine le ralentissement de type inertiel de l'organe d'affichage, comme par exemple l'aiguille des minutes 21 dans le mode de réalisation décrit précédemment, car la décélération est uniquement proportionnelle à la vitesse angulaire simulée 703. Lors de ce ralentissement de type inertiel, le système se trouve dans la première phase de décélération B1 illustrée sur la figure 3.
  • Si par contre, après avoir tourné la couronne 11 par exemple dans le sens S1, la couronne 11 est tournée dans le sens inverse S2 lors d'une étape d'actionnement additionnelle 1002, l'accélération angulaire 703' est toujours négative, mais la décélération B2, illustrée sur la figure 3, est plus prononcée car le signe du couple fictif 401' devient négatif, agissant avec l'accélération angulaire 703' pour ralentir le système plus rapidement.
  • L'actionnement de la couronne 11 en sens inverse permet d'affiner encore le réglage à l'aide de l'étape d'activation additionnelle 1002 lorsqu'on se rapproche d'une valeur souhaitée alors que la vitesse angulaire est à ce moment-là relativement élevée, car la deuxième phase de décélération B2 qui est générée est plus prononcée que la première phase de décélération B1 qui survient uniquement lors d'une inactivation prolongée de la couronne 11.
  • Comme on peut le constater sur la figure 3, la première étape d'activation 1001 est donc toujours suivie d'une phase d'accélération A des moyens mécaniques d'affichage 2, et en premier lieu l'aiguille des minutes 21 pour laquelle l'accélération est la plus perceptible. Cette phase d'accélération A se termine dès lors que le circuit de contrôle des moteurs 6 détecte qu'une fréquence maximale a été atteinte, en l'occurrence celle de pas 611' du premier moteur 61, auquel cas il s'ensuit une phase C durant laquelle la vitesse angulaire simulée 703 est bornée à la valeur de vitesse angulaire maximale 7031. Durant cette phase C, l'aiguille des minutes 21 est donc constante, bornée par la fréquence maximale 611' de pas du premier moteur 61. Toute activation additionnelle de la couronne 11 dans le même sens de rotation S1 y est donc sans impact sur la vitesse angulaire 211 réelle de l'aiguille des minutes; toutefois, de telles activations permettent de maintenir la vitesse angulaire 211 réelle à ce niveau constant en évitant à la valeur d'accélération angulaire 703' de devenir négative après une inactivation trop prolongée, correspondant selon le mode de réalisation préférentiel décrit à un période d'échantillonnage, et qui peut être étalonnée par exemple à une seconde. Par ailleurs, les coefficients de proportionnalité définissant les moments appliqués au système dans l'équation newtonienne du mouvement 700, à savoir le coefficient 701 de proportionnalité par rapport à la fréquence d'impulsions 401 et celui de frottement fluide 702 peuvent de préférence être choisis, conjointement à la valeur maximale de pas moteurs 611' du premier moteur 61, de telle sorte que la valeur d'accélération angulaire 703 soit toujours positive dès qu'au moins une impulsion 401 est détectée par seconde, ou respectivement la valeur choisie pour le laps de temps ci-dessus, de telle sorte que la vitesse angulaire 211 effective reste toujours constante si la couronne 11 est activée au moins une fois par seconde dès que la vitesse angulaire 21 maximale a été atteinte.
  • On comprend donc à la lecture de ce qui précède que, quels que soient les moyens d'activation, de préférence mécaniques 1 et les moyens mécaniques d'affichage 2 utilisés dans le cadre de l'invention, la phase d'accélération A des moyens d'affichage 1 est suivie la plupart du temps d'une phase C durant laquelle la vitesse de défilement des moyens d'affichage 2 est constante dès lors que l'écart de la valeur d'affichage affichée lorsque le réglage est entrepris et la valeur que l'on souhaite atteindre est importante. Si les moyens de commande ne sont pas activés durant une durée déterminée, la première phase de décélération B1 des moyens d'affichage 2 a lieu suite à cette inactivation prolongée; sinon une deuxième phase de décélération B2 plus prononcée peut être actionnée lors d'une étape d'activation additionnelle 1002 des moyens de commande dans le sens inverse de celui utilisé lors de l'étape d'activation initiale 1001. Dans le cas d'une couronne 11 il s'agit de sens de rotation opposés S2 si S1 était le premier sens de rotation, et S1 si S2 était le premier sens de rotation. L'emploi d'une deuxième étape d'activation 1002 dépend des préférences de l'utilisateur du dispositif d'affichage en termes de vitesse de défilement et du moment à partir duquel il souhaite effectuer un réglage plus fin de ou des éléments d'affichage analogiques.
  • La solution de couplage de moyens mécaniques d'affichage et de commande selon l'invention permet donc un contrôle accru tout au long des opérations de réglage en pouvant accélérer et/ou décélérer à tout moment le défilement de ou des éléments d'affichage mécaniques. Par ailleurs, les variations de vitesse sont beaucoup plus progressives que selon les solutions de l'art antérieur où les vitesses sont directement déduites de valeurs du capteur. La détermination d'une accélération en lieu et place d'une vitesse à partir des grandeurs d'un capteur permet de fluidifier le mouvement des éléments d'affichage mécaniques. Bien que la solution préférentielle décrite transforme une grandeur physique en une grandeur physique du même ordre, à savoir une vitesse angulaire - celle de la couronne 11 - en une autre vitesse angulaire - celles des aiguilles 21 des minutes et 22 des heures - on peut toutefois également envisager répliquer le dispositif de couplage 3 à n'importe quel autre type de moyens d'affichage mécaniques 2 et n'importe quels moyens d'activation 1, pour autant qu'un effet d'inertie soit procuré pour le mouvement des moyens d'affichage mécaniques 2. Dans le cas de pièces d'horlogerie, on pourra privilégier la génération d'un mouvement rotatif de moyens d'affichage 2 qui sont le plus fréquemment utilisés pour des montres mécaniques, et ce quel que soit le mode d'activation utilisé (rotation d'une couronne, pression sur un bouton poussoir, défilement d'un doigt sur un écran tactile etc.); toutefois, des déplacements d'indicateurs linéaires sont aussi envisageables, auquel cas l'équation fondamentale du mouvement ne mettra plus en relation un couple et une accélération angulaire, mais une force et une accélération linéaire. Similairement le ralentissement du mouvement inertiel n'est dans ce cas plus causé par un couple modélisant des frottements fluides, mais par une force de frottement.

Claims (14)

  1. Dispositif de couplage (3) entre des moyens d'activation (1) et des moyens d'affichage mécaniques (2) d'un mécanisme d'affichage, ledit dispositif de couplage (3) étant adapté pour appliquer un mouvement de vitesse variable auxdits moyens d'affichage mécaniques (2) en réponse à l'actionnement desdits moyens d'activation (1), caractérisé en ce qu'il génère un mouvement de type inertiel desdits moyens d'affichage mécaniques (2), la décélération desdits moyens d'affichage mécaniques étant proportionnelle à la vitesse desdits moyens d'affichage mécaniques, après que les moyens d'activation ne soient plus actionnés.
  2. Dispositif de couplage (3) selon la revendication 1, caractérisé en ce qu'il comprend au moins un module capteur (4) dédié auxdits moyens d'activation (1) ainsi qu'un circuit électronique (31) pour la simulation et la commande d'un mouvement inertiel des moyens d'affichage mécaniques (2), déterminé à partir d'une équation newtonienne du mouvement (700) avec modélisation de frottements fluides.
  3. Dispositif de couplage (3) selon l'une des revendications précédentes, caractérisé en ce qu'il actionne au moins un moteur (61) entraînant lesdits moyens d'affichage mécaniques (2), ledit moteur (61) déterminant par ailleurs une vitesse de défilement maximale (611') pour lesdits moyens d'affichage mécaniques (2).
  4. Dispositif de couplage (3) selon l'une des revendications précédentes, caractérisé en ce qu'il actionne simultanément une pluralité de moteurs (61,62) dédiés chacun à des moyens d'affichage mécaniques (21, 22) distincts.
  5. Dispositif de couplage (3) selon l'une des revendications précédentes, caractérisé en ce que l'accélération et/ou la décélération desdits moyens de commande mécaniques (1) est calculée en fonction d'une fréquence d'impulsions (401) détectées par un capteur (4) monté sur une tige (41) d'une couronne (11).
  6. Dispositif de couplage (3) selon la revendication 5, lesdits moyens d'activation (1) étant une couronne (11), lesdits moyens d'affichage mécaniques étant des aiguilles (21, 22), caractérisée en ce que l'accélération angulaire (703') d'au moins une desdites aiguilles (21, 22) est calculée en fonction de ladite fréquence d'impulsions (401), et d'une vitesse angulaire simulée (703) pour ladite aiguille (21).
  7. Dispositif de couplage (3) selon l'une des revendications 6, chaque pas moteur indexant ladite aiguille (21) d'un secteur angulaire correspondant à une indication de durée inférieure à une minute.
  8. Dispositif de couplage (3) selon l'une des revendications précédentes, lesdits moyens d'activation (1) étant une couronne (11), caractérisé en ce que l'actionnement de ladite couronne (11) dans un premier sens de rotation (S1) provoque une première phase d'accélération (A) desdits moyens d'affichage mécaniques (2), tandis que l'actionnement de ladite couronne (11) dans un deuxième sens de rotation (S2) opposé audit premier sens de rotation provoque une deuxième phase de décélération (B2) desdits moyens d'affichage mécaniques (2).
  9. Dispositif de couplage (3) selon la revendication 1, caractérisé en ce qu'il relie cinématiquement lesdits moyens d'activation (1), constitués par au moins un organe de commande mécanique, auxdits moyens d'affichage mécaniques (2).
  10. Méthode pour le réglage de paramètres d'affichage visualisés à l'aide de moyens d'affichage mécaniques (2), lesdits moyens d'affichage mécaniques (2) pouvant être actionnés par des moyens d'activation (1), ladite méthode comprenant une étape d'actionnement desdits moyens d'activation (1) pour appliquer un mouvement de vitesse variable auxdits moyens d'affichage mécaniques (2), et étant caractérisée par la séquence d'étapes suivantes suite à ladite étape d'actionnement:
    - une première phase d'accélération (A1) desdits moyens d'affichage mécaniques (2);
    - une première phase de décélération (B1) de type inertiel desdits moyens d'affichage (2) suite à une inactivation desdits moyens de commande (2) pendant une période de temps donnée, la décélération desdits moyens d'affichage mécaniques étant proportionnelle à la vitesse desdits moyens d'affichage mécaniques.
  11. Méthode pour le réglage de paramètres d'affichage selon la revendication 10, caractérisée en ce qu'elle comporte une étape supplémentaire d'actionnement desdits moyens de commande mécaniques (2) pour provoquer une deuxième phase de décélération (B2) plus prononcée que ladite première phase de décélération (B1) de type inertiel.
  12. Méthode pour le réglage de paramètres d'affichage selon la revendication 10 ou 11, caractérisé en ce le mouvement desdits moyens d'affichage (2) est déterminé à partir d'une équation newtonienne du mouvement (700).
  13. Méthode pour le réglage de paramètres d'affichage selon l'une des revendications 10 à 12, caractérisée en ce qu'elle comprend une phase additionnelle (C) durant laquelle la vitesse desdits moyens d'affichage (2) est constante.
  14. Méthode pour le réglage de paramètres d'affichage selon l'une des revendications 10 à 13, caractérisée en ce que lesdits moyens d'affichage (2) comprennent deux organes distincts réglés simultanément.
EP10195412.1A 2010-12-16 2010-12-16 Mouvement inertiel d'un organe d'affichage mécanique Active EP2466400B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10195412.1A EP2466400B1 (fr) 2010-12-16 2010-12-16 Mouvement inertiel d'un organe d'affichage mécanique
US13/314,433 US8737174B2 (en) 2010-12-16 2011-12-08 Inertial motion of a mechanical display member
CN201110425174.9A CN102662316B (zh) 2010-12-16 2011-12-16 机械显示部件的惯性运动
JP2011275326A JP5475749B2 (ja) 2010-12-16 2011-12-16 結合デバイス
KR1020110136823A KR101354339B1 (ko) 2010-12-16 2011-12-16 기계적 디스플레이 부재의 관성 운동
HK13102984.9A HK1175859A1 (en) 2010-12-16 2013-03-11 Inertial motion of a mechanical display member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10195412.1A EP2466400B1 (fr) 2010-12-16 2010-12-16 Mouvement inertiel d'un organe d'affichage mécanique

Publications (2)

Publication Number Publication Date
EP2466400A1 EP2466400A1 (fr) 2012-06-20
EP2466400B1 true EP2466400B1 (fr) 2019-01-16

Family

ID=43838103

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10195412.1A Active EP2466400B1 (fr) 2010-12-16 2010-12-16 Mouvement inertiel d'un organe d'affichage mécanique

Country Status (6)

Country Link
US (1) US8737174B2 (fr)
EP (1) EP2466400B1 (fr)
JP (1) JP5475749B2 (fr)
KR (1) KR101354339B1 (fr)
CN (1) CN102662316B (fr)
HK (1) HK1175859A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11513675B2 (en) * 2012-12-29 2022-11-29 Apple Inc. User interface for manipulating user interface objects
CN110850705B (zh) 2013-09-03 2021-06-29 苹果公司 用于可穿戴电子设备的表冠输入
US10545657B2 (en) 2013-09-03 2020-01-28 Apple Inc. User interface for manipulating user interface objects
US11068128B2 (en) 2013-09-03 2021-07-20 Apple Inc. User interface object manipulations in a user interface
WO2015200890A2 (fr) 2014-06-27 2015-12-30 Apple Inc. Interface utilisateur de taille réduite
WO2016036509A1 (fr) 2014-09-02 2016-03-10 Apple Inc. Interface utilisateur de courrier électronique
WO2016036416A1 (fr) 2014-09-02 2016-03-10 Apple Inc. Fonctionnalité de boutons
CN106797493A (zh) 2014-09-02 2017-05-31 苹果公司 音乐用户界面
US20160062571A1 (en) 2014-09-02 2016-03-03 Apple Inc. Reduced size user interface
CN112199000A (zh) 2014-09-02 2021-01-08 苹果公司 多维对象重排
EP3012692A1 (fr) * 2014-10-20 2016-04-27 The Swatch Group Research and Development Ltd. Capteur de position et procédé pour déterminer une position d'une tige de réglage de pièce d'horlogerie
US10365807B2 (en) 2015-03-02 2019-07-30 Apple Inc. Control of system zoom magnification using a rotatable input mechanism
DK201670595A1 (en) 2016-06-11 2018-01-22 Apple Inc Configuring context-specific user interfaces
US10712824B2 (en) 2018-09-11 2020-07-14 Apple Inc. Content-based tactile outputs
US11435830B2 (en) 2018-09-11 2022-09-06 Apple Inc. Content-based tactile outputs
JP7110886B2 (ja) 2018-10-02 2022-08-02 カシオ計算機株式会社 回転検出装置及び電子時計
CN112213940B (zh) * 2020-09-30 2021-09-28 西安易朴通讯技术有限公司 可穿戴设备
CN112051980B (zh) * 2020-10-13 2022-06-21 浙江大学 一种基于牛顿迭代法的非线性激活函数计算装置
US11893212B2 (en) 2021-06-06 2024-02-06 Apple Inc. User interfaces for managing application widgets

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261048A (en) * 1975-12-25 1981-04-07 Citizen Watch Company Limited Analog quartz timepiece
JPS5386284A (en) * 1976-12-13 1978-07-29 Citizen Watch Co Ltd Crystal timepiece
JPS54135573A (en) * 1978-03-13 1979-10-20 Seiko Epson Corp Time correction system
CH641630B (fr) * 1980-03-14 Centre Electron Horloger Dispositif d'entree de donnees.
JPS57211086A (en) * 1981-06-19 1982-12-24 Citizen Watch Co Ltd Electronic timepiece
JPS5868685A (ja) * 1981-10-20 1983-04-23 Citizen Watch Co Ltd 電子腕時計の指針修正装置
US4445785A (en) * 1982-07-12 1984-05-01 William C. Crutcher Electronic time setting for a quartz analog watch
US4470707A (en) * 1983-02-17 1984-09-11 Timex Corporation Electronic setting for analog timepiece
JP3052311B2 (ja) * 1988-04-19 2000-06-12 セイコーエプソン株式会社 電子修正機能付電子時計
US4912692A (en) * 1988-09-29 1990-03-27 Timex Corporation High rate, bidirectional drive for a bipole stepping motor watch
JPH08234842A (ja) * 1995-02-23 1996-09-13 Matsushita Electric Works Ltd 操舵装置
TW464829B (en) * 1997-07-31 2001-11-21 Asulab Sa Ballistic effect data selection method, intended to be implemented in electronic devices, in particular in electronic timepieces
EP1394640B1 (fr) * 2002-08-30 2010-03-24 Asulab S.A. Pièce d'horlogerie à lecture et commande tactiles des informations horaires
US6998805B2 (en) * 2003-05-09 2006-02-14 Aruze Corp. Motor stop control device
CN2646744Y (zh) * 2003-08-22 2004-10-06 高德平 一种指针式石英表芯的调时机构
US20070238519A1 (en) * 2006-03-29 2007-10-11 Aruze Corp. Gaming machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US8737174B2 (en) 2014-05-27
CN102662316B (zh) 2015-06-10
KR101354339B1 (ko) 2014-01-22
US20120155223A1 (en) 2012-06-21
EP2466400A1 (fr) 2012-06-20
CN102662316A (zh) 2012-09-12
JP5475749B2 (ja) 2014-04-16
HK1175859A1 (en) 2013-07-12
JP2012127967A (ja) 2012-07-05
KR20120067972A (ko) 2012-06-26

Similar Documents

Publication Publication Date Title
EP2466400B1 (fr) Mouvement inertiel d'un organe d'affichage mécanique
EP2652563B1 (fr) Methode et dispositif pour l'obtention d'un mouvement continu d'un moyen d'affichage
EP2553534B1 (fr) Montre bracelet à affichage électronique
EP1716462A1 (fr) Montre chronographe a affichage retrograde
CH706208A2 (fr) Mouvement de montre bracelet avec un mécanisme de compensation de couple.
EP0064023B1 (fr) Dispositif de mise à l'heure pour montre électronique
EP2689300B1 (fr) Instrument de comptage de durée de phases différenciées
CH684862B5 (fr) Pièce d'horlogerie analogique comportant des moyens d'avertissement d'un changement de mode.
CH704229A2 (fr) Mouvement inertiel d'un organe d'affichage mecanique.
CH704230A2 (fr) Methode et dispositif pour l'obtention d'un mouvement continu d'un moyen d'affichage.
EP3495898B2 (fr) Mécanisme pour mouvement de montre chronographe
CH706204B1 (fr) Mécanisme et mouvement de montre-bracelet pouvant fonctionner dans deux modes.
CH704705B1 (fr) Chronographe compte à rebours à sonnerie.
CH706203A2 (fr) Mouvement de montre-bracelet comportant un affichage de compte à rebours.
EP4105738A1 (fr) Montre comprenant une fonction auxiliaire permettant l'indication des secondes
WO2001096966A1 (fr) Montre munie d'un indicateur de cycles hebdomadaires
CH709562A2 (fr) Dispositif d'entraînement d'un affichage analogique d'une pièce d'horlogerie.
CH704683B1 (fr) Instrument de comptage de durée de phases différenciées.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121220

17Q First examination report despatched

Effective date: 20130222

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180803

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010056557

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1090169

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1090169

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190516

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190416

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190416

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010056557

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

26N No opposition filed

Effective date: 20191017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191216

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191216

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101216

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230101

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 14

Ref country code: DE

Payment date: 20231121

Year of fee payment: 14