EP2465145A2 - Procédé de réalisation d'une électrode émetteur destinée à une pile solaire cristalline au silicium et pile solaire au silicium correspondante - Google Patents

Procédé de réalisation d'une électrode émetteur destinée à une pile solaire cristalline au silicium et pile solaire au silicium correspondante

Info

Publication number
EP2465145A2
EP2465145A2 EP10741995A EP10741995A EP2465145A2 EP 2465145 A2 EP2465145 A2 EP 2465145A2 EP 10741995 A EP10741995 A EP 10741995A EP 10741995 A EP10741995 A EP 10741995A EP 2465145 A2 EP2465145 A2 EP 2465145A2
Authority
EP
European Patent Office
Prior art keywords
paste
front contact
solar cell
recess
silicon solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10741995A
Other languages
German (de)
English (en)
Inventor
Helge Haverkamp
Petra Mitzinneck
Kay Kieninger
Jürgen SOLLNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gebrueder Schmid GmbH and Co
Original Assignee
Gebrueder Schmid GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebrueder Schmid GmbH and Co filed Critical Gebrueder Schmid GmbH and Co
Publication of EP2465145A2 publication Critical patent/EP2465145A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the invention relates to a method for producing a front-side emitter electrode as a front contact for a crystalline silicon solar cell on a silicon wafer and a silicon solar cell produced by such a method.
  • a printed conductor is usually printed by screen printing on a front-side n-doped silicon layer with an antireflection layer thereon.
  • This can currently be printed with a width of about 120 ⁇ m to 150 ⁇ m, so that the front contact has approximately this width. With this width, it then shields the solar cell, which has a clear and negative effect on the usual number of front contacts.
  • the production of narrower tracks by screen printing is currently very difficult technically possible, since screen printing process have a certain limited resolution and thus very difficult to make narrower tracks can be applied.
  • the invention has for its object to provide an aforementioned method and a silicon solar cell made therewith, with which problems of the prior art can be avoided and in particular the smallest possible front contacts can be made.
  • a recess for the front contact is generated in the front side of the silicon wafer.
  • a front-side n-doped silicon layer is produced in a known manner and applied thereon to a conventional antireflection layer.
  • the recess can thus have the shape that will later specify the shape for the front contact, ie in particular as an elongated narrow line.
  • a paste is introduced into the depression, which contains electrically conductive metal particles and corrosive glass frit. This paste is then briefly heated or tempered, in particular for a few seconds, which can be done, for example, with a temperature of about 800 0 C.
  • the paste in particular through the glass frit, etches through the antireflection layer through up to the n-doped silicon layer and can contact it electrically via the metal particles.
  • another Step is then galvanically deposited or applied in the recess on the annealed paste or the electrically conductive layer formed by it.
  • the thickness of the front contact metal is then advantageously significantly higher than that of the annealed paste or the electrically conductive layer formed by it, so that then this front contact metal as a front contact or front emitter electrode takes over the actual task of electrical conductivity.
  • the width of the then resulting front contact can be specified by the depression, which is advantageously designed as a kind of trench, or whose width. If the depression is produced with a width of between 50 ⁇ m and 100 ⁇ m, advantageously between 60 ⁇ m and 80 ⁇ m, this is also the maximum width of the resulting front contact. So it can be half as wide as it used to be. As a result, just a much lower shading is achieved than before.
  • a depression can be produced with a depth of, for example, 15 ⁇ m to 40 ⁇ m, so that its width is greater than its depth.
  • An effect of the depression is namely that the paste, if it is rather thin, can not run as desired on a flat surface as in screen printing. It can also be used very low viscosity pastes or inks. This, in turn, simplifies the application of the paste or ink, advantageously by an ink jet method known per se to the person skilled in the art or by an ink jet method with a so-called ink jet printer. This can be done in particular with relatively high accuracy or high resolution in the narrow recesses or trenches into it. This is generally not so good with screen printing and above all not without problems over a longer period of time without clogging the screens and thus having to wait frequently.
  • the paste or ink which may be a kind of standard paste for such an electrically conductive contact per se, may be contained as electrically conductive particles nanoparticles with silver. This may be, for example, silver provided with a thin coating. These nanoparticles may constitute about 30% to 70% of the solids content of the paste, preferably about 40% to 60% or about half.
  • the etching glass frit in the paste may be formed as usual, for example with lead and / or cadmium oxide.
  • the depression can on the one hand mechanically by scoring or the like. be generated.
  • lasers have proved to be advantageous, which works quickly and accurately and results in depressions with the desired dimensions.
  • the recess does not have to be completely filled by the front contact metal, in particular it should even be avoided to completely fill it. If, after all, there should still be some front-contact metal deposited over the depression, there is a risk that this would accumulate with a conventional attachment characteristic with a width beyond the depressions. Then, in turn, the shading would become undesirably large. Therefore, it is also considered sufficient to fill the deepening to about half, possibly a little more.
  • a finished metallic front contact of the silicon solar cell can then have a height of about 10 .mu.m to 20 .mu.m, which results in a sufficient electrical conductivity.
  • Fig. 1 to 5 different processing steps of a silicon wafer for generating a front contact.
  • a crystalline silicon wafer 11 is shown in lateral section. It has an upwardly facing front side 12. The wafer is to be processed into a silicon solar cell.
  • a depression 14 in the manner of a trench is introduced into the front side 12 by means of a laser 15.
  • the recess 14 may have a width of 60 ⁇ m to 80 ⁇ m and a depth of 20 ⁇ m to 30 ⁇ m.
  • the special design of the recess 14 is not always quite rectangular as shown here, but this does not bother. It is important that there is a depression or a kind of ditch.
  • an n-doped silicon layer 16 is produced on the front side 12 in a known manner. Then, a conventional antireflection coating 17 is applied in a known manner. These two layers then have just the recess 14 and the recess 14 is still present.
  • a previously described paste 19 is introduced into the depression 14 by means of an inkjet printer 18.
  • the paste 19 may be composed according to the criteria mentioned above and has, as a solids content, nanoparticles with silver, for example about 50% by weight. of the solids content. Furthermore, the paste still has corrosive glass frit, in particular lead or cadmium oxide, which is also known per se.
  • the amount of applied paste 19 in the recess 14 may vary.
  • Fig. 5 is then shown how, advantageously supported by illumination in the manner described above, galvanically front contact metal 21 has been applied.
  • This front contact metal 21 is significantly thicker than the paste 19 and due to its composition also much better electrically conductive. It can accumulate very well on the conductive layer formed by the tempered paste.
  • the front contact metal 21 may consist of or comprise the above-described metals nickel, copper and tin, which are then applied successively in three galvanic steps.
  • the thus formed in total front contact 22 can fill the recess 14 about half, but possibly also a little more. It should only be taken to ensure that the front contact metal 21 does not get on the flat front side 12 and spreads there. On the one hand, copper could once again enter the silicon, which should be avoided for the aforementioned reasons. In addition, shadowing of the front side 12 of a silicon wafer 11 would then again be produced.
  • the crystalline silicon solar cell will increase as it covers more than the width of the well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

La présente invention concerne un procédé pour réaliser une électrode émetteur frontale en tant que contact frontal pour une pile solaire au silicium sur une tranche de silicium, une cavité étant réalisée dans le côté frontal de ladite tranche de silicium. Ensuite, une couche de silicium avant dopée n et une couche anti-réflexion sont produites. Une pâte est alors introduite dans la cavité au moyen d'une imprimante jet d'encre, ladite pâte contenant des particules métalliques électro-conductrices et une fritte de verre corrosive qui, par un court chauffage, réalise une corrosion à travers la couche anti-réflexion jusqu'à la couche de silicium dopé n pour mettre cette dernière en contact électrique. Par la suite, dans la cavité, la pâte étuvée est revêtue par galvanisation d'un métal de contact frontal électro-conducteur en tant que contact frontal.
EP10741995A 2009-08-13 2010-08-12 Procédé de réalisation d'une électrode émetteur destinée à une pile solaire cristalline au silicium et pile solaire au silicium correspondante Withdrawn EP2465145A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009038141A DE102009038141A1 (de) 2009-08-13 2009-08-13 Verfahren zur Herstellung einer Emitter-Elektrode auf eine kristalline Siliziumsolarzelle und entsprechende Siliziumsolarzelle
PCT/EP2010/061797 WO2011018507A2 (fr) 2009-08-13 2010-08-12 Procédé de réalisation d'une électrode émetteur destinée à une pile solaire cristalline au silicium et pile solaire au silicium correspondante

Publications (1)

Publication Number Publication Date
EP2465145A2 true EP2465145A2 (fr) 2012-06-20

Family

ID=43448364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10741995A Withdrawn EP2465145A2 (fr) 2009-08-13 2010-08-12 Procédé de réalisation d'une électrode émetteur destinée à une pile solaire cristalline au silicium et pile solaire au silicium correspondante

Country Status (13)

Country Link
US (1) US20120204946A1 (fr)
EP (1) EP2465145A2 (fr)
JP (1) JP2013502064A (fr)
KR (1) KR20120047287A (fr)
CN (1) CN102687280A (fr)
AU (1) AU2010283702A1 (fr)
CA (1) CA2771013A1 (fr)
DE (1) DE102009038141A1 (fr)
IL (1) IL218040A0 (fr)
MX (1) MX2012001900A (fr)
SG (1) SG178373A1 (fr)
TW (1) TW201130149A (fr)
WO (1) WO2011018507A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9515217B2 (en) 2012-11-05 2016-12-06 Solexel, Inc. Monolithically isled back contact back junction solar cells
US9379258B2 (en) * 2012-11-05 2016-06-28 Solexel, Inc. Fabrication methods for monolithically isled back contact back junction solar cells
DE102013108422A1 (de) * 2013-08-05 2015-02-05 Universität Konstanz Verfahren zum Erzeugen dotierter oder metallisierter Bereiche in einem Solarzellensubstrat sowie entsprechende Solarzelle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726850A (en) * 1984-03-26 1988-02-23 Unisearch Limited Buried contact solar cell

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4703553A (en) * 1986-06-16 1987-11-03 Spectrolab, Inc. Drive through doping process for manufacturing low back surface recombination solar cells
US5053083A (en) * 1989-05-08 1991-10-01 The Board Of Trustees Of The Leland Stanford Junior University Bilevel contact solar cells
US5258077A (en) * 1991-09-13 1993-11-02 Solec International, Inc. High efficiency silicon solar cells and method of fabrication
ES2096008T3 (es) 1991-11-11 1997-03-01 Solar Gmbh Siemens Procedimiento para la generacion de estructuras de electrodos finas.
JP3369175B2 (ja) * 1992-03-20 2003-01-20 シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング 組み合わせ金属被覆を有する太陽電池及びその製造方法
US6162658A (en) * 1996-10-14 2000-12-19 Unisearch Limited Metallization of buried contact solar cells
AUPO638997A0 (en) * 1997-04-23 1997-05-22 Unisearch Limited Metal contact scheme using selective silicon growth
WO2001086732A1 (fr) * 2000-05-05 2001-11-15 Unisearch Ltd. Contacts metalliques a petite surface de contact, destines a des dispositifs photovoltaiques
JP4121928B2 (ja) * 2003-10-08 2008-07-23 シャープ株式会社 太陽電池の製造方法
US7335555B2 (en) * 2004-02-05 2008-02-26 Advent Solar, Inc. Buried-contact solar cells with self-doping contacts
DE102005045704A1 (de) * 2005-09-19 2007-03-22 Gebr. Schmid Gmbh & Co. Verfahren und Vorrichtung zur Bearbeitung von Substraten, insbesondere Solarzellen
US20080035489A1 (en) * 2006-06-05 2008-02-14 Rohm And Haas Electronic Materials Llc Plating process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726850A (en) * 1984-03-26 1988-02-23 Unisearch Limited Buried contact solar cell

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
COLE A ET AL: "Fine-Line Screen Printing In Large Area Laser Grooved, Buried Contact Silicon Solar Cells", 23RD EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE, EU PVSEC ; PROCEEDINGS OF THE INTERNATIONAL CONFERENCE, HELD IN VALENCIA, SPAIN, 1 - 5 SEPTEMBER 2008, 1 September 2008 (2008-09-01), pages 1677 - 1681, XP040529107, ISBN: 978-3-936338-24-9 *
EAGER S ET AL: "Environmentally Friendly Processes In The Manufacture Of Saturn Solar Cells", CONFERENCE RECORD OF THE 29TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 200, vol. CONF. 29, 19 May 2002 (2002-05-19), pages 62 - 65, XP010666238, ISBN: 978-0-7803-7471-3, DOI: 10.1109/PVSC.2002.1190456 *
See also references of WO2011018507A2 *

Also Published As

Publication number Publication date
CN102687280A (zh) 2012-09-19
SG178373A1 (en) 2012-03-29
IL218040A0 (en) 2012-04-30
MX2012001900A (es) 2012-09-07
JP2013502064A (ja) 2013-01-17
DE102009038141A1 (de) 2011-02-17
KR20120047287A (ko) 2012-05-11
TW201130149A (en) 2011-09-01
WO2011018507A3 (fr) 2011-05-19
WO2011018507A2 (fr) 2011-02-17
US20120204946A1 (en) 2012-08-16
AU2010283702A1 (en) 2012-03-01
CA2771013A1 (fr) 2011-02-17

Similar Documents

Publication Publication Date Title
DE102011016335B4 (de) Nickelhaltige und ätzende druckbare Paste sowie Verfahren zur Bildung von elektrischen Kontakten beim Herstellen einer Solarzelle
EP2151869A2 (fr) Composant semi-conducteur
EP1987543A1 (fr) Procédé de fabrication d'une structure de contact métallique d'une cellule solaire
DE102008033169A1 (de) Verfahren zur Herstellung einer monokristallinen Solarzelle
WO2013124254A1 (fr) Procédé de mise en contact d'un substrat semi-conducteur, en particulier de mise en contact de cellules solaires, et cellules solaires ainsi mises en contact
DE102010010813A1 (de) Verfahren zur Dotierung eines Halbleitersubstrats und Solarzelle mit zweistufiger Dotierung
WO2011018507A2 (fr) Procédé de réalisation d'une électrode émetteur destinée à une pile solaire cristalline au silicium et pile solaire au silicium correspondante
DE102010025983A1 (de) Solarzelle mit dielektrischer Rückseitenverspiegelung und Verfahren zu deren Herstellung
DE102011115581A1 (de) Solarzelle und Verfahren zur Herstellung derselben
EP2786420A2 (fr) Cellule solaire et procédé de fabrication d'une cellule solaire
DE102013220886A1 (de) Verfahren zum Erzeugen einer metallischen Kontaktierungsstruktur auf einem Halbleitersubstrat
DE102006030822A1 (de) Verfahren zum Herstellen einer metallischen Kontaktstruktur einer Solarzelle
DE102004034435B4 (de) Halbleiterbauelement mit einem auf mindestens einer Oberfläche angeordneten elektrischen Kontakt
DE102009022018A1 (de) Metallisierungsverfahren zur Herstellung von Solarzellen
DE102011052256B4 (de) Verfahren zur Herstellung einer Solarzelle
DE102010020557A1 (de) Verfahren zur Herstellung einer einseitig kontaktierbaren Solarzelle aus einem Silizium-Halbleitersubstrat
DE102013219565A1 (de) Photovoltaische Solarzelle und Verfahren zum Herstellen einer photovoltaischen Solarzelle
EP2559075B1 (fr) Procédé de fabrication d'une cellule solaire et cellule solaire fabriquée selon ce procédé
DE102011001799B4 (de) Verfahren zur Herstellung eines Halbleiterbauelements sowie Halbleiterbauelement
DE102019122637A1 (de) Verfahren zur Herstellung einer metallischen Kontaktierungsstruktur einer photovoltaischen Solarzelle
DE112011106010T5 (de) Verfahren zum Fertigen einer Solarzelle
DE102018105438A1 (de) Verfahren zur Herstellung einer photovoltaischen Solarzelle und photovoltaische Solarzelle
WO2014001006A1 (fr) Procédé de formation d'une structure électriquement conductrice sur un élément support, système stratifié et utilisation de ce procédé ou de ce système stratifié
DE112012006858T5 (de) Solarzellen-Fertigungsverfahren
DE102011056632A1 (de) Verfahren zum Ausbilden einer Frontseitenmetallisierung einer Solarzelle sowie Solarzelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120312

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KIENINGER, KAY

Inventor name: HAVERKAMP, HELGE

Inventor name: MITZINNECK, PETRA

Inventor name: SOLLNER, JUERGEN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121220

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130501