EP2461009B1 - Verfahren zur Bewertung des Zustandes eines Kraftstoff-Luftgemisches - Google Patents

Verfahren zur Bewertung des Zustandes eines Kraftstoff-Luftgemisches Download PDF

Info

Publication number
EP2461009B1
EP2461009B1 EP20110190944 EP11190944A EP2461009B1 EP 2461009 B1 EP2461009 B1 EP 2461009B1 EP 20110190944 EP20110190944 EP 20110190944 EP 11190944 A EP11190944 A EP 11190944A EP 2461009 B1 EP2461009 B1 EP 2461009B1
Authority
EP
European Patent Office
Prior art keywords
combustion
signals
flame
flame light
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20110190944
Other languages
English (en)
French (fr)
Other versions
EP2461009A1 (de
Inventor
Ernst Winklhofer
Heribert Fuchs
Alois Hirsch
Harald Philipp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVL List GmbH
Original Assignee
AVL List GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVL List GmbH filed Critical AVL List GmbH
Publication of EP2461009A1 publication Critical patent/EP2461009A1/de
Application granted granted Critical
Publication of EP2461009B1 publication Critical patent/EP2461009B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/022Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an optical sensor, e.g. in-cylinder light probe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines

Definitions

  • the invention relates to a method for evaluating the state of a fuel-air mixture and / or combustion in a combustion chamber of an internal combustion engine, wherein in a database pattern signals of flame signals, in particular the flame intensity are stored, and Flammlichtsignale, in particular the flame intensity, the combustion in the combustion chamber are detected and compared with the stored pattern signals, and in the case of agreement between measured and stored signal patterns, an assessment of the state is delivered.
  • the reduction of particle formation is achieved by precise fuel metering, complete evaporation of the fuel and by mixing with the combustion air, so that ultimately a homogeneous, stoichiometric mixture is burned. These tasks place high demands on the injection system and the air mass control, on processes that influence the mixture formation, as well as on the charge turbulence.
  • the particle emissions are evaluated by the measured particle mass and the number of particles.
  • the predominant contribution to the emission comes from the engine start, the first load peaks of the still cold engine and the high load operation in the final phase of the test procedure.
  • strict limits in the NEDC test can only be met by internal combustion engines if the emission contributions during start and warm-up are subject to precise control by injection and charge movement. In the same way, the contributions in high load operation require accurate transient tuning and cylinder equalization.
  • a method for evaluating the state of a fuel / air mixture and / or combustion in a combustion chamber of an internal combustion engine is known.
  • signals of flame signals to which defined mixture states are assigned are stored in a database pattern signals of flame signals to which defined mixture states are assigned, compared with the patterns of measured flame signals. If the measured and the stored signal patterns agree, the state of the mixture in the combustion chamber is concluded. This allows accurate and simple monitoring of the mixture condition and combustion.
  • the measuring device comprises a spectrometer, a fiber optic and an evaluation device which compares the determined measurement results of the detected spectrum with data stored in a database.
  • the fiber optic connected to the spectrometer is in optical communication with a combustion chamber.
  • the JP 2005-226 893 A shows a similar method for combustion diagnostics, wherein the light emission intensity of a combustion is detected and compared with stored in a database signals. Due to the comparison, a statement about the condition of the air / fuel mixture can be made.
  • this is achieved in that at least two areas are detected in the combustion chamber via different channels of an optical multi-channel sensor, wherein the combustion is preferably detected via six to twelve, more preferably eight or nine optical channels of the multi-channel sensor, that the pattern signals in the database associated with Emission values, the particulate emissions are stored, and in accordance with measured and stored signal patterns for the combustion chamber of the respective cylinder an assessment of the state of combustion in terms of the resulting particulate emissions, is performed, wherein a limit value for the flame intensity is defined, and that when exceeded the limit value in at least one cylinder, a measure for the reduction of particulate emissions in the cylinder in question is performed.
  • the visual monitoring of the combustion can be achieved by a multi-channel sensor arranged centrally in the combustion chamber, it being particularly favorable if the multi-channel sensor is integrated in a preferably also pressure-measuring spark plug.
  • each channel of the multichannel sensor is assigned to at least one, preferably exactly one region of the combustion chamber, wherein preferably at least two regions are formed by conical or cylindrical angular segment regions.
  • a limit value for the flame intensity is defined, and that when exceeding the limit in at least one cylinder, a measure for reducing the particle emissions in the cylinder in question is performed, preferably the flame light signals over a plurality of consecutively following combustion cycles are detected.
  • a simple and rapid evaluation of the combustion can be achieved if the detected flame-light signals are numerically evaluated by means of at least one mathematical algorithm over the entire duration of the measurement considered.
  • a correlation analysis can be carried out between the pattern signals stored in the database and the measured pattern signals.
  • a stability analysis is carried out for at least one stationary point of the operating range of the internal combustion engine by evaluating individual isolated flame signals according to defined criteria.
  • the pattern signals may be recorded from measurements under known operating and emission conditions, or derived from theoretical considerations of mixture formation and combustion. However, it is possible that pattern signals are generated from a mathematical combination of flame-light signals and cylinder pressure signals or signals derived therefrom, such as, for example, the course of heat release.
  • a time signal for example a crank angle signal
  • the flame light signals are assigned to the time signal
  • a Statement about the quality and quantity of particulate emissions By comparing the detected flame-light signals with the pattern signals stored in a database, a Statement about the quality and quantity of particulate emissions. It can further be provided that at least at times simultaneously with the detection of the flame light signals and a pressure measurement in the cylinder and / or a particle measurement is performed at the end of the exhaust line.
  • the simultaneous and cycle-faithful pressure measurement and / or particle measurement increases the accuracy and reliability of the statement quality and thus a refinement of the measurement method.
  • By the combined evaluation of the cylinder pressure and / or the particle measurement and the flame light a higher accuracy and hit reliability with statements about the particle emissions is possible.
  • a significant advantage of the method according to the invention is that the information is available in a cycle-compatible manner for each cylinder. This allows a particularly accurate control of the combustion in real time, whereby the particle emissions can be significantly improved.
  • dimensionless characteristic values are formed on the basis of the flame-light signals, the particle measurements and / or the pressure-measuring signals and the characteristic values of the evaluation of the particle emissions and / or the mixture state and / or the combustion are taken as a basis ,
  • At least one optical multi-channel sensor opens into each cylinder, the optical multi-channel sensor being connected to at least one multi-channel signal evaluation device, wherein the signal evaluation device is preferably connected to a database in which pattern signals of flame-light signals with assigned particle emissions are stored ,
  • the signal evaluation device is preferably connected to a database in which pattern signals of flame-light signals with assigned particle emissions are stored
  • at least one optical multi-channel sensor can be integrated into a component opening into the combustion chamber of at least one cylinder, preferably into a spark plug.
  • Fig. 1 schematically shows an internal combustion engine 1 with a plurality of cylinders 2, wherein in each cylinder 2, a flame light measurement is performed.
  • an optical multi-channel sensor 4 which may be integrated, for example, in a spark plug.
  • Each sensor 4 is connected to a multi-channel signal evaluation device 5 which has access to a database 6 in which pattern signals of flame-signal with associated particle emissions are stored.
  • the multi-channel sensor 4 has a substantially fan-like detection range with cylinder segment or cone segment-shaped measuring segments 8, 9, wherein preferably eight measuring segments 8 fan-like in the circumferential direction around the sensor 4 and a measuring segment 9 in the axial direction, ie in the direction of the piston 10 are arranged.
  • Each measuring segment 8, 9 is assigned to a measuring channel. This makes it possible to obtain information about the light intensity from different areas of the combustion chamber 3 and evaluate.
  • Particulate formation during the combustion of CH fuels takes place by soot formation, in particular by combustion as a wall film or as fuel present in free-floating droplets.
  • liquid fuel is present as a wall film or in free-floating drops, it is ignited by a premix flame and burns in a sooting diffusion flame. Quantity and quality of the particle emissions thus correlate with the flame intensity observed in the combustion chamber or the flame pattern signal.
  • Fig. 2 shows a partial stratification of the fuel in the combustion chamber 3 under different operating conditions of the injector.
  • Fig. 2a shows the flame distribution with ideal mixture formation and subsequent premix combustion.
  • Fig. 2b takes place a wall wetting with diffusion combustion, which is recognizable from the locally more intense flame signals, in Fig. 2c and Fig. 2d Diffusion flames can be seen as a result of lack of injector tightness.
  • Sooty diffusion flames are very easily produced by high intensity peaks in the light signals.
  • the flame pattern signal of a soot-free premix flame is characterized by a typical isotropic signal ring ( Fig. 2a ).
  • Fig. 4a is the speed v
  • Fig. 4b the light intensity I for the directed to the piston 10 measuring range S1
  • Fig. 4c the integrated light intensity I s , for the directed to the piston 10, inlet or outlet valves measuring ranges S2, S3 applied over the test cycle time t.
  • the different lines for the light intensities I s indicate different areas S1, S2, S3 in the combustion chamber, each area being associated with a channel of the multi-channel sensor 4.
  • the sections 11 and 12 of the intensities I, I s can be assigned to the piston 10 or a right inlet valve.
  • the evaluation of the combustion of the light intensity measurement in the combustion chamber 3 with Meßzündkerzen allows a cylinder and cycle accurate evaluation, as well as a targeted evaluation and optimization of individual contributions, especially in authoritative load change intervals. Furthermore, it is possible to adopt calibration tasks by means of the method for assessing the combustion on the basis of the light intensity measurements.
  • spark plugs can be used with pressure and flame sensors, or derived therefrom indexing sensors.
  • signals are available from which a simple evaluation of premix and diffusion components in a combustion cycle takes place.
  • a flame-light integral is used in addition to the pressure evaluation.
  • Fig. 5 shows such flame light integrals I s from the initial phase of a NEDC test in the cycle sequence for a selected cylinder.
  • this flame light measurement corresponds to the measurement records of the exhaust gas measurement, but shows the contribution of a single cylinder with a cycle-accurate assignment.
  • P1, P2, P3 designate characteristic points in the light intensity profile.
  • the cumulative light intensity I s corresponds to the particle number PN measured at the end of the exhaust line.
  • Fig. 6 shows the example of a stability study in a stationary point, wherein light intensity peaks I are plotted against the number of cycles C n . Below the line 23 takes place the mixed combustion and above the line 11 diffusion combustion. Exceptionally high intensity peaks in single cycles indicate insufficient injector stability. Finding these "outliers" can be done automatically.
  • Fig. 7 used strictly test used to compare individual injectors in the driving test.
  • the signal curves in picture Fig. 7A show an unexpectedly high discrepancy of the individual cylinder contributions of the cylinders Z1, Z2, Z3 and Z4.
  • cylinder Z2 remains unchanged, in the two cylinders Z3 and Z4 increase the diffusion components in the flame signal I s .
  • the use of this cylinder-selective flame measurement technique thus provides an opportunity to evaluate variant tests on particulate emissions within a normal driving cycle in terms of their specific effects on the exhaust gas test.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Bewertung des Zustandes eines Kraftstoff-Luftgemisches und/oder der Verbrennung in einem Brennraum einer Brennkraftmaschine, wobei in einer Datenbank Mustersignale von Flammlichtsignalen, insbesondere der Flammenintensität abgelegt werden, und wobei Flammlichtsignale, insbesondere die Flammenintensität, der Verbrennung im Brennraum erfasst und mit den abgelegten Mustersignalen verglichen werden, und wobei bei Übereinstimmung zwischen gemessenen und abgelegten Signalmustern eine Bewertung des Zustandes abgegeben wird.
  • Immer strengere Grenzwerte für Partikelemissionen erfordern Maßnahmen für die Bereitstellung höchstmöglicher Gemischqualität, insbesondere in Brennkraftmaschinen mit Direkteinspritzung.
  • Die Partikelbildung bei der Verbrennung von CH-Kraftstoffen erfolgt durch Russbildung.
  • Die Reduzierung der Partikelbildung gelingt durch präzise Kraftstoffzumessung, vollständige Kraftstoffverdampfung und durch Mischung mit der Verbrennungsluft, so dass letztlich ein homogenes, stöchiometrisches Gemisch verbrannt wird. Diese Aufgaben stellen hohe Forderungen an das Einspritzsystem und die Luftmassenregelung, an Vorgänge, die auf die Gemischbildung Einfluss nehmen, so wie an die Ladungsturbulenz.
  • Im NEDC (New European Driving Cycle) - Test werden die Partikelemissionen durch die gemessene Partikelmasse und die Partikelanzahl bewertet. Der überwiegende Emissionsbeitrag stammt dabei aus dem Motorstart, den ersten Belastungsspitzen des noch betriebskalten Motors und dem Hochlastbetrieb in der Schlussphase des Testablaufs. Strenge Grenzwerte beim NEDC-Test können von Brennkraftmaschinen insbesondere nur dann erfüllt werden, wenn die Emissionsbeiträge bei Start- und Warmlauf einer genauen Kontrolle durch Einspritzung und Ladungsbewegung unterliegen. In gleicher Weise erfordern die Beiträge im Hochlastbetrieb eine genaue Transientabstimmung und Zylindergleichstellung.
  • Entwicklungsmaßnahmen, die auf die Gemischbildung Einfluss nehmen, zielen darauf ab, feinzerstäubte Kraftstoffsprays zu erzeugen, die sich im Brennraum verteilen und durch die Kompressionswärme verdampfen. Kontakt mit kalten Brennraumwänden soll dabei vermieden werden, da ein einmal gebildeter Wandfilm, vor allem im kalten Motor, nicht ausreichend verdampfen kann.
  • Untersuchungen haben ergeben, dass insbesondere im kalten Betriebszustand bei einer Mehrzylinder-Brennkraftmaschine die einzelnen Zylinder unterschiedlich an den Partikelemissionen beteiligt sind, wodurch zylinderselektive Maßnahmen ergriffen werden müssen. Beim Motorentwicklungsablauf kommt somit der Analyse der Ursachen der Partikelentstehung immer höhere Bedeutung zu.
  • Aus der AT 503 276 A2 ist ein Verfahren zur Bewertung des Zustandes eines Kraftstoff/Luftgemisches und/oder der Verbrennung in einem Brennraum einer Brennkraftmaschine bekannt. Dabei werden in einer Datenbank abgelegte Mustersignale von Flammlichtsignalen, denen definierte Gemischzustände zugeordnet sind, mit den Mustern von gemessenen Flammlichtsignalen verglichen. Bei Übereinstimmung zwischen den gemessenen und den abgelegten Signalmustern wird auf den Zustand des Gemisches im Brennraum geschlossen. Dadurch kann eine genaue und einfache Überwachung des Gemischzustandes und der Verbrennung ermöglicht werden.
  • Weiters ist aus der FR 2 816 056 A1 eine Messeinrichtung zur Bewertung des Zustandes eines brennbaren Gemisches bekannt, wobei die Messeinrichtung einen Spektrometer, eine Fiberoptik und eine Auswerteeinrichtung aufweist, welche die ermittelten Messresultate des erfassten Spektrums mit in einer Datenbank abgelegten Daten vergleicht. Die an den Spektrometer angeschlossene Fiberoptik steht dabei mit einer Verbrennungskammer in optischer Verbindung. Durch Vergleichen der gemessenen Daten mit den in der Datenbank abgelegten Signalen kann der Zustand des brennbaren Gemisches ermittelt werden.
  • Die JP 2005-226 893 A zeigt ein ähnliches Verfahren zur Verbrennungsdiagnostik, wobei die Lichtemissionsintensität einer Verbrennung erfasst und mit in einer Datenbank abgelegten Signale verglichen wird. Aufgrund des Vergleiches kann eine Aussage über den Zustand des Luft/Kraftstoffgemisches getätigt werden.
  • Ein weiteres Verfahren ist in EP-1998032 gezeigt.
  • Es ist die Aufgabe der Erfindung, mit möglichst geringem Aufwand eine Überwachung der Partikelemissionen zu ermöglichen.
  • Erfindungsgemäß wird dies dadurch erreicht, dass im Brennraum zumindest zwei Bereiche über verschiedene Kanäle eines optischen Mehrkanalsensors erfasst werden, wobei die Verbrennung vorzugsweise über sechs bis zwölf, besonders vorzugsweise acht oder neun optische Kanäle des Mehrkanalsensors erfasst wird, dass die Mustersignale in der Datenbank mit zugeordneten Emissionswerten, den Partikelemissionen, abgelegt werden und bei Übereinstimmung zwischen gemessenen und abgelegten Signalmustern für den Brennraum des jeweiligen Zylinders eine Bewertung des Zustandes der Verbrennung im Hinblick auf die entstehenden Partikelemissionen, durchgeführt wird, wobei ein Grenzwert für die Flammelichtintensität definiert wird, und dass bei Überschreiten des Grenzwertes in zumindest einem Zylinder eine Maßnahme zur Verringerung der Partikelemissionen in dem betreffenden Zylinder durchgeführt wird.
  • Die optische Überwachung der Verbrennung lässt sich durch einen zentral im Brennraum angeordneten Mehrkanalsensor erzielen, wobei es besonders günstig ist, wenn der Mehrkanalsensor in eine vorzugsweise auch druckmessende Zündkerze integriert ist.
  • Um mit möglichst geringem Aufwand hinreichend genau Aussagen über die Partikelentstehung machen zu können, ist es besonders vorteilhaft, wenn jeder Kanal des Mehrkanalsensors zumindest einem, vorzugsweise genau einem Bereich des Brennraumes zugeordnet ist, wobei vorzugsweise zumindest zwei Bereiche durch kegelige oder zylindrische Winkelsegmentbereiche gebildet werden.
  • Im Rahmen der Erfindung kann weiters vorgesehen sein, dass ein Grenzwert für die Flammelichtintensität definiert wird, und dass bei Überschreiten des Grenzwertes in zumindest einem Zylinder eine Maßnahme zur Verringerung der Partikelemissionen in dem betreffenden Zylinder durchgeführt wird, wobei vorzugsweise die Flammlichtsignale über eine Vielzahl von hintereinander folgenden Verbrennungszyklen erfasst werden.
  • Eine einfache und rasche Bewertung der Verbrennung lässt sich erzielen, wenn die erfassten Flammlichtsignale mittels zumindest eines mathematischen Algorithmus über die gesamte betrachtete Messdauer numerisch bewertet werden. Dabei kann zwischen den in der Datenbank abgelegten und den gemessenen Mustersignalen eine Korrelationsanalyse durchgeführt werden.
  • Um sogenannte "Ausreißer" in den Messergebnissen auffinden und deren Bedeutung für die Partikelemissionen feststellen zu können, kann weiters vorgesehen sein, dass für zumindest einen Stationärpunkt des Betriebsbereiches der Brennkraftmaschine eine Stabilitätsuntersuchung durchgeführt wird, indem einzelne isoliert auftretende Flammlichtsignale nach definierten Kriterien bewertet werden.
  • Die Mustersignale können aus Messungen unter bekannten Betriebs- und Emissionsbedingungen aufgezeichnet oder aus theoretischen Überlegungen zur Gemischbildung und zur Verbrennung hergeleitet werden. Es ist aber möglich, dass Mustersignale aus einer rechnerischen Verknüpfung von Flammlichtsignalen und Zylinderdrucksignalen oder daraus abgeleiteten Signalen, wie zum Beispiel dem Verlauf der Wärmefreisetzung, erzeugt werden.
  • Wenn ein Zeitsignal, beispielsweise ein Kurbelwinkelsignal, erfasst wird und die Flammlichtsignale dem Zeitsignal zugeordnet werden, kann aus der Lage und dem Verlauf des Flammlichtsignals auf die Ursache der erhöhten Partikelemissionen geschlossen werden. Durch Vergleichen der erfassten Flammlichtsignale mit den in einer Datenbank abgespeicherten Mustersignalen kann unmittelbar eine Aussage über die Qualität und Quantität der Partikelemissionen getroffen werden. Dabei kann weiters vorgesehen sein, dass zumindest zeitweise gleichzeitig mit der Erfassung der Flammlichtsignale auch eine Druckmessung im Zylinder und/oder eine Partikelmessung am Ende des Abgasstranges durchgeführt wird. Die gleichzeitige und zyklustreue Druckmessung und/oder Partikelmessung erhöht die Genauigkeit und Zuverlässigkeit der Aussagequalität und somit eine Verfeinerung des Messverfahrens. Durch die kombinierte Auswertung des Zylinderdrucks und/oder der Partikelmessung und des Flammlichts ist eine höhere Genauigkeit und Treffersicherheit bei Aussagen über die Partikelemissionen möglich.
  • Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens ist, dass die Informationen für jeden Zylinder zyklustreu vorliegen. Dies gestattet eine besonders genau Regelung der Verbrennung in Echtzeit, wodurch die Partikelemissionen wesentlich verbessert werden können.
  • Um motorenübergreifende Aussagen treffen zu können, ist es weiters vorteilhaft, wenn auf Basis der Flammlichtsignale, der Partikelmessungen und/oder der Druckmesssignale dimensionslose Kennwerte gebildet werden und die Kennwerte der Bewertung der Partikelemissionen und/oder des Gemischzustandes und/oder der Verbrennung zu Grunde gelegt werden.
  • Zur Durchführung des Verfahrens ist vorgesehen, dass in jeden Zylinder zumindest ein optischer Mehrkanalsensor einmündet, wobei der optische Mehrkanalsensor mit zumindest einer Mehrkanal-Signalauswerteeinrichtung verbunden ist, wobei vorzugsweise die Signalauswerteeinrichtung mit einer Datenbank verbunden ist, in welcher Mustersignale von Flammlichtsignalen mit zugeordneten Partikelemissionen abgelegt sind. Dabei kann zumindest ein optischer Mehrkanalsensor in einen in den Brennraum zumindest eines Zylinders mündenden Bauteil, vorzugsweise in eine Zündkerze, integriert sein.
  • Die Erfindung wird im folgenden anhand der Figuren näher erläutert. Es zeigen:
  • Fig. 1
    eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens;
    Fig. 2a
    bis Fig. 2d verschiedene Flammlichtmuster;
    Fig. 3a
    bis Fig. 3c einen optischen Mehrkanalsensor in verschiedenen Schrägansichten;
    Fig. 4a
    die Fahrgeschwindigkeit über der Zeit für einen Fahrzyklus;
    Fig. 4b
    und Fig. 4c ein Diffusionslichtsignaldiagramme für diesen Fahrzyklus;
    Fig. 5
    eine Gegenüberstellung zwischen Partikelmessung und Flammlichtmessung;
    Fig. 6
    ein Diffusionslichtsignaldiagramm mit typischen Messausreißern; und
    Fig. 7
    eine Flammlichtmessung bei einer Brennkraftmaschine mit und ohne partikelvermeidende Maßnahmen.
  • Fig. 1 zeigt schematisch eine Brennkraftmaschine 1 mit mehreren Zylindern 2, wobei in jedem Zylinder 2 eine Flammlichtmessung durchgeführt wird. Zu diesem Zwecke mündet in den Brennraum 3 jedes Zylinders 2 ein optischer Mehrkanalsensor 4 ein, welcher beispielsweise in eine Zündkerze integriert sein kann. Jeder Sensor 4 steht mit einer Mehrkanal-Signalauswerteeinrichtung 5 in Verbindung, welche Zugriff auf eine Datenbank 6 hat, in welcher Mustersignale von Flammlichtsignalen mit zugeordneten Partikelemissionen abgelegt sind. Der Mehrkanalsensor 4 weist einen im Wesentlichen fächerartigen Erfassungsbereich mit zylindersegment- oder kegelsegmentförmigen Messsegmenten 8, 9 auf, wobei vorzugsweise acht Messsegmente 8 fächerartig in Umfangsrichtung um den Sensor 4 und ein Messsegment 9 in axialer Richtung, also in Richtung des Kolbens 10, angeordnet sind. Jedes Messsegment 8, 9 ist dabei einem Messkanal zugeordnet. Dadurch ist es möglich, Informationen über die Lichtintensität aus unterschiedlichen Bereichen des Brennraumes 3 zu gewinnen und auszuwerten.
  • Die Partikelbildung bei der Verbrennung von CH-Kraftstoffen erfolgt durch Russbildung, insbesondere durch Verbrennung als Wandfilm oder als in freischwebenden Tropfen vorliegenden Kraftstoff. Wenn flüssiger Kraftstoff als Wandfilm oder in freischwebenden Tropfen vorliegt, wird dieser von einer Vormischflamme entzündet und verbrennt in einer rußenden Diffusionsflamme. Quantität und Qualität der Partikelemissionen korreliert somit mit der im Brennraum beobachteten Flammenintensität bzw. dem Flammenmustersignal.
  • Fig. 2 zeigt eine Teilschichtung des Kraftstoffes im Brennraum 3 unter verschiedenen Betriebsbedingungen des Injektors. Fig. 2a zeigt dabei die Flammenverteilung bei idealer Gemischbildung und nachfolgender Vormischverbrennung. In Fig. 2b erfolgt eine Wandbenetzung mit Diffusionsverbrennung, die aus den lokal intensiveren Flammensignalen erkennbar ist, in Fig. 2c und Fig. 2d sind Diffusionsflammen als Ergebnis mangelnder Injektordichtheit zu erkennen.
  • Rußende Diffusionsflammen treten in den Lichtsignalen sehr einfach durch hohe Intensitätsspitzen hervor. Das Flammenmustersignal einer rußfreien Vormischflamme zeichnet sich durch einen typischen isotropen Signalring aus (Fig. 2a).
  • In Fig. 4a ist die Geschwindigkeit v, in Fig. 4b die Lichtintensität I für den auf den Kolben 10 gerichteten Messbereich S1, und in Fig. 4c die aufintegrierte Lichtintensität Is,für die auf den Kolben 10, Einlass- oder Auslassventile gerichtete Messbereiche S2, S3 über der Testzyklusdauer t aufgetragen. Die verschiedenen Linien für die Lichtintensitäten Is zeigen verschiedene Bereiche S1, S2, S3 im Brennraum an, wobei jeder Bereich einem Kanal des Mehrkanalsensors 4 zugeordnet ist. Dadurch können beispielsweise die Abschnitte 11 und 12 der Intensitäten I, Is dem Kolben 10 bzw. einem rechten Einlassventil zugeordnet werden.
  • Die Bewertung der Verbrennung der Lichtintensitätsmessung im Brennraum 3 mit Messzündkerzen erlaubt eine zylinder- und zyklusgenaue Bewertung, sowie eine zielgenaue Bewertung und Optimierung von Einzelbeiträgen, insbesondere in maßgebenden Lastwechselintervallen. Weiters ist es möglich, mittels dem Verfahren zur Beurteilung der Verbrennung auf Grund der Lichtintensitätsmessungen Kalibrieraufgaben zu übernehmen. Zur Signalerfassung können dabei Zündkerzen mit Druck- und Flammlichtsensoren verwendet werden, oder davon abgeleitete Indiziersensoren. Als Informationen stehen Signale zur Verfügung, aus denen eine einfache Bewertung von Vormisch- und Diffusionsanteilen in einem Verbrennungszyklus erfolgt. Für eine Zyklusübersicht wird neben der Druckauswertung ein Flammlichtintegral verwendet. Fig. 5 zeigt solche Flammlichtintegrale Is aus der Anfangsphase eines NEDC-Tests in der Zyklusabfolge für einen ausgewählten Zylinder. In der kumulierten Signaldarstellung entspricht diese Flammlichtmessung den Messschrieben der Abgasmessung, zeigt aber mit zyklusgenauer Zuordnung den Beitrag eines einzelnen Zylinders. Mit P1, P2, P3, sind charakteristische Punkte im Lichtintensitätsverlauf bezeichnet. Die kumulative Lichtintensität Is korrespondiert mit der am Ende des Abgasstranges gemessenen Partikelanzahl PN.
  • Für eine systematische Motoranalyse wird eine Vielzahl von Zyklen benötigt. Die Signalauswertung erfolgt dazu mit Algorithmen, die gesamte Zyklussequenzen numerisch bewerten und in Ergebnisstatistiken darstellen. Das Auffinden von Anormalien wird durch Korrelationsanalysen unterstützt. Als auffällig identifizierte Zyklen könne visuell bewertet werden. Fig. 6 zeigt dazu das Beispiel einer Stabilitätsuntersuchung in einem Stationärpunkt, wobei Lichtintensitätsspitzen I über der Anzahl der Zyklen Cn aufgetragen sind. Unterhalb der Linie 23 findet die Mischverbrennung und oberhalb der Linie 11 Diffusionsverbrennung statt. Außergewöhnlich hohe Intensitätsspitzen in Einzelzyklen weisen auf unzureichende Injektorstabilität hin. Das Auffinden dieser "Ausreißer" kann automatisiert erfolgen.
  • Die Möglichkeit, Einzelzylinder in ihrem Beitrag zum Gesamtergebnis des Abgastests zu bewerten, wird im in Fig. 7 dargestellten Variantentest dazu genutzt, einzelne Injektoren im Fahrtest zur vergleichen. Die Signalverläufe in Bild Fig. 7A zeigen eine unerwartet hohe Diskrepanz der einzelnen Zylinderbeiträge der Zylinder Z1, Z2, Z3 und Z4. Nach einem wechselweisen Austausch der Injektoren tritt in Zylinder Z1 beispielsweise eine deutliche Verbesserung auf, Zylinder Z2 bleibt unverändert, in den beiden Zylinder Z3 und Z4 steigen die Diffusionsanteile im Flammlichtsignal Is. Die Verwendung dieser zylinderselektiven Flammenmesstechnik schafft damit eine Möglichkeit, Variantentests zur Partikelemission innerhalb eines normalen Fahrzyklus in ihrer spezifischen Auswirkungen auf den Abgastest zu bewerten.

Claims (18)

  1. Verfahren zur Bewertung des Zustandes eines Kraftstoff-Luftgemisches und/oder der Verbrennung in zumindest einem Brennraum (3) einer Brennkraftmaschine, wobei in einer Datenbank (6) Mustersignale von Flammlichtsignalen, insbesondere der Flammenintensität abgelegt werden, und wobei Flammlichtsignale, insbesondere die Flammenintensität, der Verbrennung im Brennraum (3) erfasst und mit den abgelegten Mustersignalen verglichen werden, und wobei bei Übereinstimmung zwischen gemessenen und abgelegten Signalmustern eine Bewertung des Zustandes abgegeben wird, wobei im Brennraum (3) zumindest zwei Bereiche (8, 9) über verschiedene Kanäle eines optischen Mehrkanalsensors (4) erfasst werden, wobei die Verbrennung vorzugsweise über sechs bis zwölf, besonders vorzugsweise acht oder neun optische Kanäle des Mehrkanalsensors (4) erfasst wird, dass die Mustersignale in der Datenbank (6) mit zugeordneten Emissionswerten, den Partikelemissionen, abgelegt werden und bei Übereinstimmung zwischen gemessenen und abgelegten Signalmustern für den Brennraum des jeweiligen Zylinders (2) eine Bewertung des Zustandes der Verbrennung im Hinblick auf die entstehenden Partikelemissionen, durchgeführt wird, wobei ein Grenzwert für die Flammelichtintensität (I) definiert wird, und dass bei Überschreiten des Grenzwertes in zumindest einem Zylinder (2) eine Maßnahme zur Verringerung der Partikelemissionen in dem betreffenden Zylinder durchgeführt wird, dadurch gekennzeichnet, dass die Verbrennung im Brennraum (3) durch zumindest einen zentral in der Brennraummitte angeordneten optischen Mehrkanalsensor (4) erfasst wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass für jeden einzelnen Zylinder die Bewertung des Zustandes der Verbrennung durchgeführt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass jeder Kanal des Mehrkanalsensors (4) zumindest einem, vorzugsweise genau einem Bereich des Brennraumes (3) zugeordnet ist, wobei vorzugsweise zumindest zwei Bereiche durch kegelige oder zylindrische Messsegmentbereiche (8, 9) gebildet werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass, der optische Mehrkanalsensor (4) in einen in den Brennraum (3) mündenden Bauteil, vorzugsweise eine Zündkerze, integriert ist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Flammlichtsignale (I) über mehrere hintereinander folgende Verbrennungszyklen erfasst werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die erfassten Flammlichtsignale (I) mittels zumindest eines mathematischen Algorithmus über die gesamte betrachtete Messdauer numerisch bewertet werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zwischen den erfassten Flammlichtsignalen (I) und den abgelegten Mustersignalen Korrelationsanalysen durchgeführt werden.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass für zumindest einen Stationärpunkt des Betriebsbereiches der Brennkraftmaschine eine Stabilitätsuntersuchung durchgeführt wird, indem einzelne isoliert auftretende Flammlichtsignale (I) nach definierten Kriterien bewertet werden.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Mustersignale aus Messungen unter bekannten Betriebs- und Emissionsbedingungen aufgezeichnet werden.
  10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Mustersignale aus theoretischen Überlegungen zu Gemischbildung und Verbrennung hergeleitet werden.
  11. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Mustersignale aus einer rechnerischen Verknüpfung von Flammlichtsignalen (I) und Zylinderdrucksignalen und/oder Emissionsmessungen oder daraus abgeleiteten Signalen, vorzugsweise dem Verlauf der Wärmefreisetzung, erzeugt werden.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass ein Zeitsignal, vorzugsweise ein Kurbelwinkelsignal, erfasst wird und die Flammlichtsignale (I) dem Zeitsignal zugeordnet werden.
  13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass aus der Lage und dem Verlauf des Flammlichtsignals (I) auf die Emissionen, vorzugsweise auf Partikelemissionen geschlossen wird.
  14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass gleichzeitig mit der Messung der Flammlichtsignale (I) auch eine Druckmessung im jeweiligen Zylinder (2) durchgeführt wird, wobei vorzugsweise die Zylinderdruckspitzen mit den Flammlichtsignalspitzen (I) innerhalb zumindest eines Zyklus verglichen werden und wobei aus zumindest einer Abweichung zwischen den Zylinderdruckspitzen und den Lichtsignalspitzen auf eine irreguläre Verbrennung, insbesondere bei transientem Motorbetrieb geschlossen wird.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass in Abhängigkeit des Gemischzustandes und/oder der Abweichung zwischen den Zylinderdruckspitzen von den Lichtsignalspitzen eine Optimierungsprozedur für die Parametrierung der Einspritzung und/oder der Luftdrosselung durchgeführt wird.
  16. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass gleichzeitig mit der Erfassung der Flammlichtsignale (I) eine Messung der Emissionen, vorzugsweise der Partikelemissionen durchgeführt wird, wobei die vorzugsweise kumulativ erfassten Emissionen mit zylinderselektiv erfassten Flammlichtsignalspitzen (I) verglichen und dem jeweiligen Zylinder zugeordnet werden.
  17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass auf der Basis der Flammlichtsignale (I) und/oder der Druckmesssignale und/oder der Emissionsmesssignale dimensionslose Kennwerte gebildet und die Kennwerte der Bewertung des Gemischzustandes und/oder der Verbrennung zu Grunde gelegt werden.
  18. Vorrichtung zur Durchführung des Verfahrens zur Bewertung des Zustandes eines Kraftstoff-Luft-Gemisches und/oder der Verbrennung in zumindest einem Brennraum (3) einer Brennkraftmaschine nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass in jeden Zylinder (2) zumindest ein optischer Mehrkanalsensor (4) einmündet, wobei der optische Mehrkanalsensor (4) mit zumindest einer Mehrkanal-Signalauswerteeinrichtung (5) verbunden ist, und wobei vorzugsweise die Mehrkanal-Signalauswerteeinrichtung (5) mit einer Datenbank (6) verbunden ist, in welcher Mustersignale von Flammlichtsignalen (I) mit zugeordneten Partikelemissionen abgelegt sind.
EP20110190944 2010-12-01 2011-11-28 Verfahren zur Bewertung des Zustandes eines Kraftstoff-Luftgemisches Not-in-force EP2461009B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT19992010A AT510702B1 (de) 2010-12-01 2010-12-01 Verfahren und vorrichtung zur bewertung des zustandes eines kraftstoff-luftgemisches

Publications (2)

Publication Number Publication Date
EP2461009A1 EP2461009A1 (de) 2012-06-06
EP2461009B1 true EP2461009B1 (de) 2013-10-23

Family

ID=45065794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110190944 Not-in-force EP2461009B1 (de) 2010-12-01 2011-11-28 Verfahren zur Bewertung des Zustandes eines Kraftstoff-Luftgemisches

Country Status (4)

Country Link
US (1) US8775049B2 (de)
EP (1) EP2461009B1 (de)
JP (1) JP5939663B2 (de)
AT (1) AT510702B1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT510702B1 (de) * 2010-12-01 2012-06-15 Avl List Gmbh Verfahren und vorrichtung zur bewertung des zustandes eines kraftstoff-luftgemisches
JP6088939B2 (ja) * 2013-08-26 2017-03-01 株式会社島津製作所 プラグ内蔵型光学測定用プローブ及びこれを備えた光学測定装置
JP6059625B2 (ja) 2013-09-20 2017-01-11 株式会社島津製作所 光学測定用プローブ及びこれを備えた光学測定装置
AT520434B1 (de) * 2017-12-07 2019-04-15 Avl List Gmbh Verfahren zur erkennung und detektion von vorzündungsereignissen
DE102018115022B4 (de) * 2018-06-22 2020-04-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Visualisierung eines Verbrennungsprozesses eines Kraftstoff-Luft-Gemischs
CN117783679B (zh) * 2023-12-27 2024-05-28 江苏江龙新能源科技有限公司 一种石墨电极的自动检测系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453838A (en) * 1994-06-17 1995-09-26 Ceram Optec Industries, Inc. Sensing system with a multi-channel fiber optic bundle sensitive probe
AT3845U1 (de) * 1999-09-28 2000-08-25 Avl List Gmbh Optoelektronische messeinrichtung
DE19955619B4 (de) * 1999-11-19 2004-01-29 Daimlerchrysler Ag Vorrichtung zur Überwachung der Verbrennung in Verbrennungsmotoren
US6670613B2 (en) * 2000-04-28 2003-12-30 Bacharach, Inc. System and method for spectral analysis
FR2816056B1 (fr) 2000-11-02 2003-05-16 Centre Nat Rech Scient Dispositif de mesure de richesse d'une combustion et procede afferent de reglage
JP3782031B2 (ja) * 2002-03-29 2006-06-07 株式会社日立製作所 空燃比検出装置
JP3852051B2 (ja) 2004-02-12 2006-11-29 川崎重工業株式会社 燃焼診断方法および燃焼診断装置
JP4782836B2 (ja) * 2005-09-17 2011-09-28 ダイムラー・アクチェンゲゼルシャフト 外部点火内燃機関の運転方法
AT503276B1 (de) * 2007-05-31 2010-06-15 Avl List Gmbh Verfahren zur bewertung des zustandes eines kraftstoff/luft-gemisches
US8070482B2 (en) * 2007-06-14 2011-12-06 Universidad de Concepción Combustion control system of detection and analysis of gas or fuel oil flames using optical devices
US8265851B2 (en) * 2009-05-18 2012-09-11 Closed-Loop Engine Technology, Llc Method of controlling engine performance
AT510702B1 (de) * 2010-12-01 2012-06-15 Avl List Gmbh Verfahren und vorrichtung zur bewertung des zustandes eines kraftstoff-luftgemisches

Also Published As

Publication number Publication date
JP5939663B2 (ja) 2016-06-22
EP2461009A1 (de) 2012-06-06
US8775049B2 (en) 2014-07-08
AT510702B1 (de) 2012-06-15
JP2012118080A (ja) 2012-06-21
US20120143458A1 (en) 2012-06-07
AT510702A4 (de) 2012-06-15

Similar Documents

Publication Publication Date Title
EP2461009B1 (de) Verfahren zur Bewertung des Zustandes eines Kraftstoff-Luftgemisches
DE102004052705A1 (de) Verfahren und Vorrichtung zur Erfassung von Ionisationssignalen in Diesel- und Zwei-Modus-Motoren mit Plasmaentladungssystemen
DE102008001569A1 (de) Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde
DE10327691A1 (de) Verfahren zur Überwachug der Abgasrückführung einer Brennkraftmaschine
DE4320943C2 (de) Verfahren zur Charakterisierung der Arbeitsweise von Verbrennungsmotoren durch Messen der Gaszusammensetzung im Brennraum durch Raman-Spektroskopie
EP1774161B1 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschine
DE102020000353B4 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine eines Kraftfahrzeugs, insbesondere eines Kraftwagens
DE4003752A1 (de) Verfahren zum zuordnen von verbrennungsfehlern zu einem zylinder einer brennkraftmaschine
DE19963225B4 (de) Verfahren zum Überwachen des Verbrennungsablaufs in einem Dieselmotor sowie entsprechendes Messsystem
EP3588051B1 (de) Verfahren zur visualisierung eines verbrennungsprozesses eines kraftstoff-luft-gemischs
DE102018126693A1 (de) Verfahren zur Erkennung einer Verkokung im Einlasstrakt eines Verbrennungsmotors
AT506085A4 (de) Brennkraftmaschine
DE102009052332B4 (de) Vorrichtung zur Prüfung von Abgassensoren
DE102005004442B4 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
AT520434B1 (de) Verfahren zur erkennung und detektion von vorzündungsereignissen
DE10011632A1 (de) Kalibrierungsverfahren
EP1565649B1 (de) Verfahren zur ermittlung der einspritzmenge einer brennkraftmaschine
DE102018106822A1 (de) Regenerationsverfahren zur Reduzierung des Verkokungsgrades eines einen Injektor umgebenden Ringspaltes
DE102015217138A1 (de) Verfahren zum Ermitteln einer Ursache eines Fehlers in einem Einspritzsystem einer Brennkraftmaschine
DE102017005504A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine, insbesondere eines Kraftfahrzeugs
DE102020206798B4 (de) Verfahren zum automatisierten Vermessen eines Kennfeldes einer Brennkraftmaschine auf einem Prüfstand sowie Steuergerät zur Steuerung eines Prüfstands
DE102006056325A1 (de) Verfahren zur Erkennung eines Defekts der Ventilsteuerung einer Brennkraftmaschine mit Zylinderabschaltung
DE19523987C2 (de) Abgassensor
DE102016221776B4 (de) Verfahren zum Bewerten einer Zündeinrichtung für eine Brennkraftmaschine
DE4207506A1 (de) Vorrichtung zur erkennung von verbrennungsaussetzern einer brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/14 20060101AFI20130620BHEP

Ipc: F23N 5/08 20060101ALI20130620BHEP

Ipc: G01M 15/10 20060101ALI20130620BHEP

INTG Intention to grant announced

Effective date: 20130716

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 637746

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011001526

Country of ref document: DE

Effective date: 20131219

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131023

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140223

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140123

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

BERE Be: lapsed

Owner name: AVL LIST GMBH

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001526

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

26N No opposition filed

Effective date: 20140724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001526

Country of ref document: DE

Effective date: 20140724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20141212

Year of fee payment: 4

Ref country code: SE

Payment date: 20141114

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141130

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111128

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131128

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131023

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151128

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151128

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 637746

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211130

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011001526

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601