EP2459925B1 - Lampe - Google Patents

Lampe Download PDF

Info

Publication number
EP2459925B1
EP2459925B1 EP10739320.9A EP10739320A EP2459925B1 EP 2459925 B1 EP2459925 B1 EP 2459925B1 EP 10739320 A EP10739320 A EP 10739320A EP 2459925 B1 EP2459925 B1 EP 2459925B1
Authority
EP
European Patent Office
Prior art keywords
cover
lamp
wall thickness
heat sink
heatsink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10739320.9A
Other languages
English (en)
French (fr)
Other versions
EP2459925A1 (de
Inventor
Ralph Bertram
Nicole Breidenassel
Guenter Hoetzl
Robert Kraus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ledvance GmbH
Original Assignee
Ledvance GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ledvance GmbH filed Critical Ledvance GmbH
Publication of EP2459925A1 publication Critical patent/EP2459925A1/de
Application granted granted Critical
Publication of EP2459925B1 publication Critical patent/EP2459925B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/506Cooling arrangements characterised by the adaptation for cooling of specific components of globes, bowls or cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/233Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating a spot light distribution, e.g. for substitution of reflector lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/27Retrofit light sources for lighting devices with two fittings for each light source, e.g. for substitution of fluorescent tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/66Details of globes or covers forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/101Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening permanently, e.g. welding, gluing or riveting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/75Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with fins or blades having different shapes, thicknesses or spacing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/763Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/86Ceramics or glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a lamp which has a heat sink which carries at least one light source, in particular at least one semiconductor light element, and also a cover attached to the heat sink.
  • LEDs light-emitting diodes
  • a heat sink is used to dissipate heat or cool the LED (s).
  • the available space for the heat sink is limited by a mostly standardized outer contour of the lamp to be replaced and a space required for a piston and a driver electronics. Due to the spatial limitation, the size of the effectively usable for cooling volume of the heat sink is limited and thus the cooling capacity. With the LED lamps with standard-limited size, the power of the light source and thus the brightness are limited according to the limited cooling capacity.
  • US 2007/0080362 A1 discloses an LED array having a high power LED chip having a first surface and a second surface, wherein the second surface is mounted on a substrate.
  • the second surface is in intimate thermal contact with a translucent heat sink having a thermal conductivity greater than 30 W / (m ⁇ K).
  • Providing the translucent heat sink can double the heat conduction from the LED dies, increasing lifetime, efficiency or luminosity, or balancing these three.
  • a lamp is known in which a cover with a bead is fastened by means of a retaining ring on a heat sink.
  • a lamp with a piston which is bent at its socket-side end known.
  • a lamp which has at least: a heat sink, which carries at least one light source, and an attached to the heat sink, at least partially translucent (transparent or translucent or opaque) cover or cover for the at least one light source, in particular Semiconductor lighting element, wherein the cover has a wall thickness, which tapers at least in sections continuously with increasing distance from the heat sink.
  • the cover has a wall thickness which increases at least in sections as the proximity to (nearer to) the heat sink increases.
  • a thick wall thickness at a greater distance from the heat sink or the contact surface does not result in a significantly increased cooling effect due to the laterally distributing (laterally directed) heat flow in the cover, because by the heat dissipation to the environment (heat dissipation) at a greater distance From the contact surface less and less heat arrives through the direct lateral heat conduction.
  • the type of light source is not limited. However, it is preferred if the at least one light source comprises at least one semiconductor light source, for example a light-emitting diode or a diode laser. Particularly preferred is the use of at least one light emitting diode as the at least one light source. In this case, the nature of the at least one light-emitting diode is not limited, but may comprise, for example, a plurality of individual LEDs or one or more LED clusters of LED chips applied to a common substrate.
  • the color (s) of the at least one light emitting diode is also not limited and may include, for example, 'white'.
  • the at least one light-emitting diode may be an inorganic or an organic light-emitting diode.
  • the light sources can generally be equipped with downstream optics.
  • the cover has a greatest wall thickness at a contact surface to the heat sink. This allows a particularly high heat dissipation from the heat sink into the cover.
  • the wall thickness of the cover tapers continuously with increasing distance from the heat sink. Continuously reducing the wall thickness of the cover as the distance from the heat sink or contact pad to the heat sink increases, provides a good compromise between lateral and transverse heat conduction into and through the cover in the various regions of the cover.
  • the wall thickness of the cover tapers in sections with increasing distance from the contact surface to the heat sink and then the wall thickness of the cover remains substantially constant.
  • a small wall thickness of the cover in a region remote from the heat sink, in particular in the greatest distance from the heat sink, is advantageous because there is a cooling to the ambient air largely by a transverse heat flow from a heated interior or receiving space is generated and not by the lateral Heat flow from the heat sink.
  • a small wall thickness of the cover is also advantageous from an optical point of view, since a transmission increases with decreasing wall thickness of the cover and thus at least the radiated brightness is attenuated to a lesser extent.
  • the cover is attached to the heat sink by means of at least one good heat conducting adhesive.
  • the use of the adhesive has the advantage that the connection or the contact surfaces between the heat sink and the cover is geometrically simple ausgestaltbar, in particular, the connection to planar contact surfaces is possible.
  • the adhesive may be a thermally highly conductive adhesive, e.g. a thermal grease, a thermal adhesive or at least one réelleleitpad. Generally, the effect of the adhesive on heat transmission should be minimized. However, the invention is not limited to the selection of a thermally well conductive adhesive. Thus, with a small thickness of the adhesive, e.g. a thin adhesive layer, an influence of the thermal conductivity coefficient of the adhesive on a heat flow through the adhesive with a sufficiently large contact area for most adhesives low.
  • the cover can also be attached to the heat sink by means of mechanical connection means, for example by means of a plug connection or a clamp or clamp connection, etc.
  • mechanical connection means for example by means of a plug connection or a clamp or clamp connection, etc.
  • a small air gap between be present to the heat sink and the cover If this air gap is narrow enough, with a sufficiently large contact surface, a significant heat transfer through the air gap can also take place.
  • the contact surface of the cover is then a purely thermal contact surface or heat transfer surface.
  • the cover may also be screwed into the heat sink, the cover being e.g. on its contact surface with the heat sink, a helical shape and the heat sink may have a matching thread shape. This further increases the contact area between the cover and the heat sink.
  • the material of the cover basically does not need to be selected according to its thermal conductivity.
  • a standard plastic or glass may be used for the cover, e.g. a conventional lamp envelope material.
  • a good heat conductive material is preferred. Good heat conduction enhances lateral heat distribution in the cover, increasing the effective cooling area within the cover and allowing more heat to be dissipated to the environment. At the same time, the good heat conduction enhances transverse heat conduction from an inner space surrounded by the cover through the cover.
  • the cover is made of glass.
  • glass has the advantage that glass is relatively inexpensive, colorable, easy to shape and resistant to aging. Furthermore, glass can simply be roughened or otherwise diffusely scattered in order not to make the light source directly visible from the outside.
  • the cover for example, has a thermal conductivity between 1 W / (m ⁇ K) and 2 W / (m ⁇ K).
  • a thermally conductive Glass with a thermal conductivity coefficient ⁇ of about 1.2 W / (m K) or more preferred.
  • conventional glasses such as window glass, have a coefficient of thermal conductivity ⁇ between 0.8 and 1.0 W / (m K)
  • eg borofloat glass has a ⁇ of about 1.2 W / (m K), N-BK10 a ⁇ of about 1.32 W / (m K) and Zerodur a ⁇ of about 1.46 W / (m K). Due to the comparatively high thermal conductivity, a large-area heat distribution in the cover and thus an efficient heat dissipation over the outer surface of the cover is achieved.
  • a translucent plastic eg polycarbonate
  • a translucent ceramic eg an alumina ceramic
  • a translucent ceramic can achieve a thermal conductivity coefficient ⁇ of 30 W / (m K) or more.
  • Translucent ceramics can be used in all modifications, that is, for example, monocrystalline (ie, in the case of aluminum oxide as sapphire), quasi-monocrystalline or polycrystalline.
  • alumina and here especially sapphire are characterized by a high thermal conductivity, resistance to environmental influences and good availability.
  • a plastic for example, a filled with a highly thermally conductive material plastic can be used.
  • the cover has a dome-like shape.
  • a cover is particularly suitable, for example, for a retrofit bulb.
  • the cover may alternatively have an open or a closed tubular shape.
  • a cover is suitable, for example, for a retrofit fluorescent tube or a retrofit line lamp (eg of the Linestra type from Osram).
  • a (in particular thermal) contact surface of the cover to the heat sink at least partially corresponds to a (lower) bearing surface of the cover.
  • the contact surface of the cover at the same time represents the bearing surface of the cover on the heat sink and thus usually the lowest point.
  • the wall thickness can decrease with increasing distance from the contact surface or with increasing height, in particular reduce it continuously. The highest point, the apse, thus has the lowest wall thickness.
  • the cover has a disk-like shape.
  • the cover is suitable in particular for a PAR (Parabolic Aluminized Reflector) - headlight retrofit lamp or luminaire or for its illuminant.
  • the cover is also particularly suitable for lamps or retrofit lamps of the type MR16, alternatively also for other MR lamp shapes, e.g. MR11 or MR8.
  • a contact surface of the cover is arranged laterally to the heat sink.
  • the contact surface of the cover at the same time represents the lateral contact surface of the cover (which usually corresponds to the side edge of the cover) on the heat sink and thus usually the outermost point.
  • the wall thickness may decrease with increasing distance from the contact surface. The innermost point of the cover, in particular its center, thus has the lowest wall thickness.
  • the cover has an optical function. This has the advantage that at the same time a beam guidance or beam correction is made possible.
  • the cover is a substantially optically inactive cover, so essentially serves to protect the lamp.
  • the at least one light source in particular semiconductor light-emitting element, is fastened on the heat sink via at least one substrate.
  • the substrate may be a substrate of an LED cluster, i. a common substrate for multiple LED chips, his.
  • the substrate may additionally or alternatively comprise at least one printed circuit board, e.g. for contacting the LED cluster or at least one individual LED (LED module) and, if appropriate, for equipping with electronic components.
  • the cover has an at least shell-side closed tubular shape and the heat sink is at least partially received by the cover and at least partially attached to a lower portion of the cover, wherein the lower portion of the cover and an upper portion of the cover a comparatively smaller wall thickness than the two lateral areas of the cover.
  • the cover on its inner side is substantially free of undercuts, that is, has substantially no undercut. This gives the possibility of production by injection molding (plastic) or pressing (glass or ceramic). The inside of the cover limits the interior of the lamp.
  • the cover has on its inside at least laterally substantially straight contours. This simplifies manufacturing by injection molding or pressing particularly.
  • the cover is over the contact surface by means of a good thermally conductive adhesive, e.g. a paste, an adhesive and / or a pad, etc. connected to the heat sink.
  • a good thermally conductive adhesive e.g. a paste, an adhesive and / or a pad, etc. connected to the heat sink.
  • the adhesive may in particular be a TIM (Thermal Interface Material).
  • Fig.1 shows in partial side view of an incandescent retrofit lamp 1.
  • the incandescent retrofit lamp 1 has a heat sink 2 shown in side view, which has an angle substantially symmetrical about a longitudinal axis L of the incandescent retrofit lamp 1 shape.
  • 3 radially outwardly directed cooling fins 4 are provided on the outside of the lateral surface.
  • a base 6 for a light bulb socket shown in side view is present, for example, an Edison socket.
  • an LED module 8 is fixed, which is powered by the base 6 with power.
  • the LED module 8 has at least one substrate in the form of a printed circuit board 9.
  • the circuit board 9 may also be additionally populated with other electronic components, e.g. a driver block.
  • a dome-shaped cover 11 shown in cross-section is further glued.
  • the cover 11 is rotationally symmetrical about the longitudinal axis L and the LED module 8 vaulted over completely.
  • a receiving space for the LED module 8 and an interior 12 of the incandescent retrofit lamp 1 is thus created.
  • the cover 11 is flat with a lower contact surface 13 by means of an adhesive 14 and just on the heat sink 2.
  • the adhesive 14, by means of which the cover 11 adheres to the heat sink 2, can be realized, for example, as a thin adhesive layer of silver conductive adhesive or an adhesive filled with a conductive ceramic.
  • the cover 11 is opaque to support a substantially homogeneous radiation characteristic, which is at least approximate to that of a conventional light bulb.
  • the cover 11 has a wall thickness d, which tapers continuously with increasing distance (increasing height) from the heat sink 2. Consequently, the contact surface 13, which simultaneously represents the lower attachment surface of the cover 11, forms the region of the cover 11 with the highest wall thickness d.
  • the cover 11 is made of a glass having a thermal conductivity ⁇ in a range between 1 W / (m ⁇ K) and 2 W / (m ⁇ K), e.g. a borofloat glass.
  • the cover 11 is substantially optically inactive, thus has no function a lens or the like. on.
  • Fig.2 shows a section of the incandescent retrofit lamp 1 in the region of the cover 11.
  • This is heated due to heat loss of the LEDs 10 and possibly other electronic components.
  • the heat loss W is partially transmitted to the heat sink 2 and partially discharged into the receiving space 12.
  • the heat sink 2 transmits the heat W to the environment essentially by heat convection or radiant heat, in particular via the cooling fins 4.
  • part of the heat W of the heat sink 2 is transmitted to the cover 11 through the adhesive layer 14 and further through the contact surface 13.
  • the heat W spreads by means of a lateral heat conduction (a laterally directed heat flow WL) within the cover 11.
  • a laterally directed heat flow WL This emanating from the contact surface 13 warming the cover 11th causes the heat of the laterally directed heat flow WL is discharged through an outer side 15 of the cover 11 by heat convection or radiant heat to the environment, as indicated by the outgoing from the cover 11 outward arrows WL.
  • the laterally directed heat flow WL will predominate, and away from the contact surface 13, the transversely directed heat flow WT. Especially at the highest point of the cover 11, the apse A, the influence of the laterally directed heat flow WL is lowest.
  • a change in the wall thickness d from the contact surface 13 to the apse A may advantageously be in a range between one-half and one-fifth.
  • the wall thickness d at the contact surface may preferably be a factor of two to five times wider than at the apse A, in particular approximately four times.
  • FIG. 3 shows in side view partly in cross-section another retrofit lamp 16, for example for use in a lamp of the type MR16 or as a PAR illuminant, eg PAR 30.
  • the heat sink 17 is now cup-shaped with an upper opening 18.
  • the opening 18 is covered by a cover 19 with a disc-like basic shape.
  • the cover 19 and the heat sink 17 again form a receiving space 12 for the LED module. 8
  • the contact surface 13 does not correspond to a lower support surface but to a lateral edge surface of the cover 19 which is slightly beveled for a secure fit on the heat sink 17.
  • a laterally directed heat flux WL is also generated by the heat sink 17 through the contact surface 13 into the cover 19, which becomes weaker the farther it moves away from the contact surface 13 or closer to a center M of the cover 19 is coming.
  • the laterally directed heat flow WL is also superimposed by a transversely directed heat flow WT, which transports heat out of the receiving space 12 through the cover 19 to the outside.
  • the relative influence of the laterally directed heat flow WL is lowest, and consequently that of the transversely directed heat flow WT is greatest, so that for effective heat dissipation from the cover 19 to the environment there, a smaller wall thickness d is preferred than at the edge.
  • a greatest wall thickness d at the contact surface 13 or at the edge region of the cover 19 is preferred.
  • Figure 4 shows an oblique view of a cross-sectional view of a fluorescent tube or line lamp retrofit lamp 20th
  • Figure 5 shows the fluorescent tube or line lamp retrofit lamp 20 as a sectional front view.
  • the retrofit lamp 20 has a substantially tubular basic shape and is used e.g. as a substitute for a conventional fluorescent tube or a line lamp.
  • a lower region of the retrofit lamp 20 has a heat sink 21 which extends in an elongate manner along a longitudinal axis L of the retrofit lamp 20 and has a plate-shaped base 22.
  • a plurality of light emitting diodes 10 are arranged equidistantly along the longitudinal direction L, e.g. on a flexible band-shaped carrier 9. This can be realized, for example, by an LED module 8 in the form of an LED strip of the type LinearLight Flex from Osram.
  • a plurality of cooling fins 4 are perpendicular downward.
  • a correspondingly fitting elongated cover 23 is attached, which forms the receiving space 12 for the LED module 8 with the heat sink 21.
  • the shape of the cover 23 of the shape of the cover 11 from Fig.1 and Fig.2 substantially, so that the operation of the cover 23 at this point does not need to be carried out further, but analogous to Fig.1 and Fig.2 is referenced.
  • FIG. 6 shows in front view a cross-sectional view of another fluorescent tube or line lamp retrofit lamp 24.
  • the heat sink 25 with the LED module 8 is now completely surrounded by a tubular cover 26 at least on the shell side.
  • the heat sink 25 is formed of a solid material, so that it forms with the cover 26 a large-area contact surface 27, which occupies a large part of the lower half of the cover 26.
  • lateral vertices S have the greatest wall thickness d, while an upper vertex A1 and a lower vertex A2 have the lowest wall thickness d. It is assumed that the LED module 8 radiates into an upper half-space and the heat sink 25 is placed on a lower portion of the cover 26.
  • the cover 26 has an at least shell-side closed tubular shape, and the heat sink 25 is at least partially received in the cover 26.
  • the heat sink 25 is mostly fixed to a lower portion I (lower quarter sector) of the cover 26, wherein the lower portion I and an upper portion II (upper quarter sector) of the cover 26 opposite thereto may have a comparatively smaller wall thickness d than the two lateral portions III (lateral quarter sectors) of the cover 26.
  • the sectoring starts from a cutting line which at least essentially corresponds to the longitudinal axis L.
  • the wall thickness d of the cover 26 changes continuously and has the lowest wall thickness d in the upper region I at an upper vertex A1 and in the lower region II at a lower vertex A2.
  • Such a shape of the cover 26 may for example be produced so that a cross-sectional contour of an inner side 28 of the cover 26 is substantially circular, while a cross-sectional contour of an outer side 29 of the cover 26 has a substantially oval shape.
  • the cover 26 thus has a wall thickness d for its upper half or its upper portion above the lateral vertices S, which tapers with increasing distance from the heat sink 25 or its contact surface 27 with the heat sink 25.
  • Figure 7 shows in front view a cross-sectional view of a retrofit lamp 30 in the form of a fluorescent tube or line lamp retrofit lamp according to another embodiment.
  • the cover 31 is in contrast to the retrofit lamp 20 off Figure 4 carried out on its outer side 15 only semi-cylindrical, so that they can be dissolved out in their preparation from a mold.
  • On its inside 32 (which together with the base 22 of the heat sink 21, the receiving space 12 limited) it is also free of undercuts.
  • the inner side 32 is designed in order to simplify a production by injection molding or pressing process such that a lateral surface 33 or side wall of the inner side 32 extends perpendicularly from the lower side of the cover 31.
  • a ceiling surface 34 which adjoins the lateral surface 33 upwards and which covers the receiving space 12 is curved again, in particular in the form of a cylindrical sector.
  • the wall thickness d is greatest at the contact surface 13 and decreases continuously in a portion 35 or region which includes the lateral surface 33 as the distance from the contact surface 13 increases.
  • the adjoining portion 36 or region containing the ceiling surface 34 has a constant wall thickness d.
  • the cover 31 thus continues to have as the retrofit lamp 20 at the contact surface 13 to the heat sink 21, a greater wall thickness d than at the farthest from the heat sink 21 point, namely the (linear) Apse A. Specifically, the wall thickness d at the Contact area 13 largest.
  • the section 36 can also taper further from its approach on the section 35 to the apse A back.
  • Figure 8 shows in side view partially in cross section a retrofit lamp 37 in the form of a piston retrofit lamp according to another embodiment.
  • the cover 38 is in contrast to the retrofit lamp 1 off Fig.1 and Fig.2 executed on its outer side 15 only hemispherical, so that they can be dissolved out in their preparation from a mold.
  • On its inner side 32 (which limits the receiving space 12 together with the heat sink 2), it is also free of undercuts.
  • the inner side 32 designed to simplify manufacture by injection molding or pressing process so that a lateral surface 33 or side wall of the inner side 32 from the bottom of the cover 31 is perpendicular starting, ie, for example, have a cylindrical shape or cylindrical group of merging vertical surfaces can.
  • a ceiling surface 34 which adjoins the lateral surface 33 and which overhangs the receiving space 12, is again arched upwards or domed, in particular spherical, in shape.
  • the wall thickness d is greatest at the contact surface 13 and decreases in a portion 35 or region continuously with increasing distance from the contact surface 13, which includes the lateral surface 33.
  • the section 36 can also taper further from its attachment to the section 35 towards the apse A.
  • Figure 9 shows in side view partially in cross section a retrofit lamp 39 in the form of a piston retrofit lamp according to yet another embodiment.
  • the retrofit lamp 37 now has no cover 40 with a hemispherical outer side, but a more than hemispherical outer side 15 as the cover 11 Fig.1 and Fig.2 ,
  • the cover 40 has on its inner side 32 a vertical lateral surface 33.
  • the wall thickness d is no longer greatest at the contact surface 13, but at a greatest lateral extent the cover 40 at a small distance from the contact surface 13 and decreases from there continuously with increasing distance from the contact surface 13. But also this cover 40 has at the contact surface 13 to the heat sink 2 has a greater wall thickness d than that of the heat sink This cover 40 has the advantage of greater heat dissipation from the heat sink 2 over a cover with a constant wall thickness, in particular a small wall thickness such as in the region of the apse A, for example.
  • the cover of the shell-side closed tubular cover need not be symmetrical with respect to a longitudinal axis.
  • the difference in wall thickness d between the thickest point of the cover and the thinnest part of the cover may generally preferably take a factor between two and five.

Description

  • Die Erfindung betrifft eine Lampe, welche einen Kühlkörper aufweist, der mindestens eine Lichtquelle, insbesondere mindestens ein Halbleiterleuchtelement, trägt, als auch eine an dem Kühlkörper befestigte Abdeckung.
  • Generell weisen Leuchtdioden (LEDs) bei höheren Temperaturen geringere Helligkeiten und geringere Lebensdauern auf. Bei LED-Retrofitlampen wird zur Wärmeabfuhr bzw. Kühlung der LED(s) ein Kühlkörper verwendet. Der für den Kühlkörper zur Verfügung stehende Raum ist jedoch begrenzt durch eine meist genormte Außenkontur der zu ersetzenden Lampe und einen Raumbedarf für einen Kolben und eine Treiberelektronik. Durch die räumliche Begrenzung ist die Größe des effektiv zur Kühlung nutzbaren Volumens des Kühlkörpers begrenzt und damit die Kühlleistung. Bei den LED-Lampen mit normbegrenzter Größe wird entsprechend der begrenzten Kühlleistung die Leistung der Lichtquelle und damit die Helligkeit begrenzt.
  • US 2007/0080362 A1 offenbart eine LED-Anordnung mit einem Hochleistungs-LED-Chip, welcher eine erste Oberfläche und eine zweite Oberfläche aufweist, wobei die zweite Oberfläche auf einem Substrat angebracht ist. Die zweite Oberfläche steht in engem thermischen Kontakt mit einer lichtdurchlässigen Wärmesenke, welche eine thermische Leitfähigkeit von mehr als 30 W /(m·K) aufweist. Ein Bereitstellen der lichtdurchlässigen Wärmesenke kann die Wärmeleitung von den LED-Rohchips verdoppeln, was Lebensdauer, Wirkungsgrad oder Leuchtstärke oder ein Gleichgewicht aus diesen dreien erhöht.
  • Aus der GB 2 428 467 A ist eine Lampe bekannt, bei der eine Abdeckung mit einem Wulst mittels eines Halterings auf einem Kühlkörper befestigt ist. Aus der DE 20 2007 008 258 U1 ist eine Lampe mit einem Kolben, der an seinem sockelseitigen Ende umgebogen ist, bekannt.
  • Es ist die Aufgabe der vorliegenden Erfindung, mit einfachen Mitteln eine Verbesserung einer Wärmeabfuhr einer Lampe insbesondere der eingangs genannten Art bereitzustellen.
  • Diese Aufgabe wird gemäß den Merkmalen der unabhängigen Ansprüche gelöst. Bevorzugte Ausführungsformen sind insbesondere den abhängigen Ansprüchen entnehmbar.
  • Die Aufgabe wird gelöst durch eine Lampe, welche mindestens aufweist: einen Kühlkörper, welcher mindestens eine Lichtquelle trägt, und eine an dem Kühlkörper befestigte, zumindest teilweise lichtdurchlässige (transparente oder transluzente bzw. opake) Abdeckung bzw. Abdeckelement für die mindestens eine Lichtquelle, insbesondere Halbleiterleuchtelement, wobei die Abdeckung eine Wandstärke aufweist, welche sich zumindest abschnittsweise mit steigender Entfernung von dem Kühlkörper kontinuierlich verjüngt. In anderen Worten weist die Abdeckung eine Wandstärke auf, welche sich zumindest abschnittsweise mit zunehmender Nähe (geringerem Abstand) zu dem Kühlkörper vergrößert.
  • Durch die vergleichsweise große Wandstärke im Bereich des Kühlkörpers wird eine entsprechend große Kontaktfläche zwischen der Abdeckung und dem Kühlkörper erzeugt. Dadurch wird ein stärkerer Wärmeübergang vom Kühlkörper in das Abdeckelement hinein ermöglicht als es ohne die verbreiterte Wandstärke möglich ist. Folglich wird die Abdeckung stärker aufgeheizt und gibt mehr Wärme an die Umgebung ab. In anderen Worten ermöglicht die verbreiterte (thermische) Kontaktfläche einen höheren Wärmeverlust über die Abdeckung. Eine dicke Wandstärke in einer größeren Entfernung von dem Kühlkörper bzw. der Kontaktfläche ergibt keinen signifikant gesteigerten Kühleffekt aufgrund des sich in der Abdeckung lateral bzw. flächig verteilenden (lateral gerichteten) Wärmeflusses mehr, da durch die Wärmeabgabe an die Umgebung (Entwärmung) mit größerer Entfernung von der Kontaktfläche immer weniger Wärme durch die direkte laterale Wärmeleitung ankommt.
  • Aufgrund der Entwärmung über die Abdeckung bzw. deren Oberfläche kann eine bessere Kühlung der Lichtquellen erreicht werden, ohne dass sich die Größe der Lampe verändert. Hiermit können ohne eine wesentliche Vergrößerung der Abmessungen der Lampe größere Verlustleitungen abgeführt werden.
    Allgemein ist die Art der Lichtquelle nicht beschränkt. Es wird jedoch bevorzugt, wenn die mindestens eine Lichtquelle mindestens eine Halbleiterlichtquelle umfasst, z.B. eine Leuchtdiode oder einen Diodenlaser. Besonders bevorzugt ist dabei die Verwendung mindestens einer Leuchtdiode als der mindestens einen Lichtquelle. Dabei ist die Art der mindestens einen Leuchtdiode nicht beschränkt, sondern kann z.B. mehrere Einzel-LEDs oder ein oder mehrere LED-Cluster aus auf einem gemeinsamen Substrat aufgebrachten LED-Chips umfassen. Die Farbe(n) der mindestens einen Leuchtdiode ist ebenfalls nicht beschränkt und kann beispielsweise 'weiß' beinhalten. Die mindestens eine Leuchtdiode kann eine anorganische oder eine organische Leuchtdiode sein. Die Lichtquellen können allgemein mit nachgeschalteten Optiken ausgerüstet sein.
    Es ist eine Ausgestaltung, dass die Abdeckung eine größte Wandstärke an einer Kontaktfläche zu dem Kühlkörper aufweist. Dadurch wird eine besonders hohe Wärmeableitung von dem Kühlkörper in die Abdeckung ermöglicht.
    Erfindungsgemäß verjüngt sich die Wandstärke der Abdeckung mit steigender Entfernung von dem Kühlkörper kontinuierlich. Eine kontinuierliche Verringerung der Wandstärke der Abdeckung mit zunehmendem Abstand von dem Kühlkörper bzw. der Kontaktfläche zu dem Kühlkörper bewirkt, dass ein guter Kompromiss zwischen lateraler und transversaler Wärmeleitung in bzw. durch die Abdeckung in den verschiedenen Bereichen von der Abdeckung realisierbar ist.
  • Es ist eine alternative Ausgestaltung, die nicht Teil der Erfindung ist, dass die Wandstärke der Abdeckung sich abschnittsweise mit steigender Entfernung von der Kontaktfläche zu dem Kühlkörper verjüngt und anschließend daran die Wandstärke der Abdeckung im Wesentlichen konstant bleibt.
  • Eine geringe Wandstärke der Abdeckung in einem Bereich entfernt von dem Kühlkörper, insbesondere in der größten Entfernung von dem Kühlkörper, ist vorteilhaft, da dort eine Entwärmung an die Umgebungsluft größtenteils durch einen transversalen Wärmefluss aus einem aufgeheizten Innenraum oder Aufnahmeraum erzeugt wird und nicht durch den lateralen Wärmefluss von dem Kühlkörper. Der transversale Wärmefluss ist um so effektiver, je geringer die Wandstärke der Abdeckung ist. Eine geringe Wandstärke der Abdeckung ist auch aus optischer Sicht vorteilhaft, da eine Transmission mit abnehmender Wandstärke der Abdeckung zunimmt und damit zumindest die abgestrahlte Helligkeit in einem geringeren Maße gedämpft wird.
  • Ebenfalls erfindungsgemäß ist die Abdeckung an dem Kühlkörper mittels mindestens eines gut wärmeleitenden Haftmittels befestigt. Die Verwendung des Haftmittels weist den Vorteil auf, dass die Verbindung bzw. die Kontaktflächen zwischen dem Kühlkörper und der Abdeckung geometrisch einfach ausgestaltbar ist, insbesondere ist die Verbindung an planen Kontaktflächen möglich.
  • Das Haftmittel kann ein thermisch gut leitendes Haftmittel sein, z.B. eine Wärmeleitpaste, ein Wärmeleitkleber oder mindestens ein Wärmeleitpad. Allgemein sollte der Effekt des Haftmittels auf eine Wärmedurchleitung minimiert werden. Jedoch ist die Erfindung nicht auf die Auswahl eines thermisch gut leitenden Haftmittels beschränkt. So ist bei einer geringen Dicke des Haftmittels, z.B. einer dünnen Klebeschicht, ein Einfluss des Wärmeleitfähigkeitskoeffizienten des Haftmittels auf einen Wärmefluss durch das Haftmittel bei ausreichend großer Kontaktfläche für die meisten Haftmittel gering.
  • Alternativ kann die Abdeckung auch mittels mechanischer Verbindungsmittel an dem Kühlkörper angebracht sein, z.B. mittels einer Steckverbindung oder einer Klammer- oder Klemmverbindung usw. Dabei kann auch ein geringer Luftspalt zwischen dem Kühlkörper und der Abdeckung vorhanden sein. Ist dieser Luftspalt schmal genug, kann bei ausreichend großer Kontaktfläche auch eine signifikante Wärmeübertragung durch den Luftspalt hindurch erfolgen. Die Kontaktfläche der Abdeckung ist dann eine rein thermische Kontaktfläche oder Wärmeübergangsfläche.
  • Alternativ kann die Abdeckung auch in den Kühlkörper eingeschraubt sein, wobei die Abdeckung z.B. an ihrer Kontaktfläche mit dem Kühlkörper eine Schraubenform und der Kühlkörper eine passende Gewindeform aufweisen kann. Dies erhöht die Kontaktfläche zwischen der Abdeckung und dem Kühlkörper weiter.
  • Das Material der Abdeckung braucht grundsätzlich nicht besonders nach seiner Wärmeleitfähigkeit ausgesucht zu sein. So kann für die Abdeckung ein üblicher Kunststoff oder Glas verwendet werden, z.B. ein herkömmliches Lampenkolbenmaterial. Jedoch wird ein gut wärmeleitendes Material bevorzugt. Eine gute Wärmeleitung verbessert eine laterale Wärmeverteilung in der Abdeckung, wodurch sich eine effektive Kühlungsfläche innerhalb der Abdeckung vergrößert und die Wärme stärker an die Umgebung abgegeben werden kann. Gleichzeitig verbessert die gute Wärmeleitung eine transversale Wärmeleitung von einem durch die Abdeckung umgebenen Innenraum durch die Abdeckung hindurch.
  • Es ist zudem eine Ausgestaltung, dass die Abdeckung aus Glas besteht. Die Verwendung von Glas weist den Vorteil auf, dass Glas vergleichsweise preiswert, einfärbbar, gut formbar und alterungsbeständig ist. Glas kann ferner einfach aufgeraut oder auf andere Art diffus streuend ausgestaltet sein, um die Lichtquelle von außen nicht direkt sichtbar zu machen.
  • Es ist eine spezielle Ausgestaltung, dass die Abdeckung beispielsweise eine Wärmeleitfähigkeit zwischen 1 W/(m·K) und 2 W/(m·K) aufweist. Insbesondere wird ein thermisch leitfähiges Glas mit einem Wärmeleitfähigkeitskoeffizienten λ von ca. 1,2 W / (m K) oder mehr bevorzugt. Während übliche Gläser, wie Fensterglas, einen Wärmeleitfähigkeitskoeffizienten λ zwischen 0,8 und 1,0 W/(m K) aufweisen, weist z.B. Borofloatglas ein λ von ca. 1,2 W/(m K) auf, N-BK10 ein λ von ca. 1,32 W/(m K) und Zerodur ein λ von ca. 1,46 W/(m K). Durch die vergleichsweise hohe thermische Leitfähigkeit wird eine großflächige Wärmeverteilung in der Abdeckung und damit eine effiziente Wärmeabfuhr über die äußere Oberfläche der Abdeckung erreicht.
  • Alternativ ist beispielsweise auch die Verwendung eines lichtdurchlässigen Kunststoffs (z.B. Polycarbonat) oder einer lichtdurchlässigen Keramik (z.B. einer Aluminiumoxid-Keramik) möglich. So kann eine lichtdurchlässige Keramik einen Wärmeleitfähigkeitskoeffizienten λ von 30 W / (m K) oder mehr erreichen. Lichtdurchlässige Keramiken können dabei in allen Modifikationen, also beispielsweise einkristallin (d.h. beim Aluminiumoxid als Saphir), quasi-einkristallin oder polykristallin verwendet werden. Insbesondere Aluminiumoxid und hier ganz besonders Saphir zeichnen sich durch eine hohe Wärmeleitfähigkeit, Widerstandsfähigkeit gegen Umwelteinflüsse sowie eine gute Verfügbarkeit aus.
    Als ein Kunststoff kann beispielsweise ein mit einem hoch thermisch leitfähigen Material verfüllter Kunststoff verwendet werden.
  • Es ist außerdem eine Ausgestaltung, dass die Abdeckung eine domartige Form aufweist. Eine solche Abdeckung ist beispielsweise für eine Retrofit-Glühlampe besonders geeignet.
  • Die Abdeckung kann alternativ eine offene oder eine geschlossene Röhrenform aufweist. Eine solche Abdeckung ist beispielsweise für eine Retrofit-Leuchtstoffröhre oder eine Retrofit-Linienlampe (z.B. vom Typ Linestra der Fa. Osram) geeignet.
  • Es ist eine spezielle Ausgestaltung, dass eine (insbesondere thermische) Kontaktfläche der Abdeckung zu dem Kühlkörper einer (unteren) Auflagefläche der Abdeckung zumindest teilweise entspricht. Bei der domartigen Form und der offenen Röhrenform stellt die Kontaktfläche der Abdeckung gleichzeitig die Auflagefläche der Abdeckung auf dem Kühlkörper dar und damit üblicherweise deren tiefsten Punkt. Dabei kann sich insbesondere die Wandstärke mit steigender Entfernung von der Kontaktfläche bzw. mit steigender Höhe verringern, insbesondere kontinuierlich verringern. Der höchste Punkt, die Apsis, weist somit die geringste Wandstärke auf.
  • Es ist eine alternative Ausgestaltung, dass die Abdeckung eine scheibenartige Form aufweist. Dadurch ist die Abdeckung insbesondere für eine PAR(Parabolic Aluminized Reflector) - Scheinwerfer-Retrofitlampe oder Leuchte bzw. für dessen Leuchtmittel geeignet. Die Abdeckung ist insbesondere auch für Lampen oder Retrofitlampen vom Typ MR16 geeignet, alternativ auch für andere MR-Lampenformen, z.B. MR11 oder MR8.
  • Es ist dann eine weitere spezielle Ausgestaltung, dass eine Kontaktfläche der Abdeckung zu dem Kühlkörper seitlich angeordnet ist. Bei der scheibenartigen Form stellt die Kontaktfläche der Abdeckung gleichzeitig die seitliche Anlagefläche der Abdeckung (welche meist dem Seitenrand der Abdeckung entspricht) auf dem Kühlkörper dar und damit üblicherweise deren äußersten Punkt. Dabei kann sich insbesondere die Wandstärke mit steigender Entfernung von der Kontaktfläche verringern. Der innerste Punkt der Abdeckung, insbesondere deren Mittelpunkt, weist somit die geringste Wandstärke auf.
  • Es ist eine weitere Ausgestaltung, dass die Abdeckung eine optische Funktion aufweist. Dies hat den Vorteil, dass gleichzeitig eine Strahlführung oder Strahlkorrektur ermöglicht wird.
  • Es ist eine dazu alternative Ausgestaltung, dass die Abdeckung eine im Wesentlichen optisch nicht aktive Abdeckung ist, also im Wesentlichen zum Schutz der Lampe dient.
  • Es ist eine weitere Ausgestaltung, dass die mindestens eine Lichtquelle, insbesondere Halbleiterleuchtelement, über mindestens ein Substrat auf dem Kühlkörper befestigt ist. Das Substrat kann beispielsweise ein Substrat eines LED-Clusters, d.h. ein gemeinsames Substrat für mehrere LED-Chips, sein. Das Substrat kann zusätzlich oder alternativ mindestens eine Leiterplatte umfassen, z.B. zur Kontaktierung des LED-Clusters oder mindestens einer Einzel-LED (LED-Modul) und ggf. zur Bestückung mit elektronischen Bauelementen.
  • Es kann eine weitere Ausgestaltung sein, dass die Abdeckung eine zumindest mantelseitig geschlossene Röhrenform aufweist und der Kühlkörper zumindest teilweise von der Abdeckung aufgenommen ist und zumindest teilweise an einem unteren Bereich der Abdeckung befestigt ist, wobei der untere Bereich der Abdeckung und ein oberer Bereich der Abdeckung eine vergleichsweise geringere Wandstärke aufweisen als die beiden seitlichen Bereiche der Abdeckung.
  • Es ist eine weitere vorteilhafte Ausgestaltung, dass die Abdeckung an ihrer Innenseite im Wesentlichen frei von Hinterschnitten ist, also im Wesentlichen keinen Hinterschnitt aufweist. Dadurch ist die Möglichkeit einer Fertigung im Spritzgussverfahren (bei Kunststoff) oder im Pressverfahren (bei Glas oder Keramikmaterial) gegeben. Die Innenseite der Abdeckung begrenzt den Innenraum der Lampe.
  • Es kann eine spezielle Ausgestaltung sein, dass die Abdeckung an ihrer Innenseite zumindest seitlich im Wesentlichen gerade Konturen aufweist. Dies vereinfacht eine Fertigung im Spritzgussverfahren oder im Pressverfahren besonders.
  • Es ist noch eine Ausgestaltung, dass die Lampe eine RetrofitLampe ist, deren Außenkontur nicht oder nicht Wesentlich über eine Außenkontur einer zu ersetzenden Lampe hinausgeht.
    Insbesondere zur Verwendung mit einer Glühlampen-Retrofitlampe ist es vorteilhaft, dass die Abdeckung in ihren äußeren Abmessungen der Kontur, insbesondere Rundung, der zu ersetzenden Glühlampe folgt. Dies gilt vorzugsweise analog Retrofitlampen zum Ersatz einer Lampe herkömmlichen Typs, z.B. einer Linienlampe, Reflektorlampe usw.
    Die Erfindung kann insbesondere ein oder mehrere der folgenden Merkmale umfassen:
    • Eine Lampe, insbesondere eine LED-Lampe, weist einen Sockel, einen Kühlkörper, ein LED-Modul und eine semitransparente oder transparente Abdeckung, z.B. einen Lampenkolben bzw. eine semitransparente oder transparente Optik oder Abdeckscheibe auf.
    Die Abdeckung (z.B. der Kolben/ die Optik / die Abdeckscheibe) ist vorzugsweise zum Kühlkörper hin dicker ausgeführt und weist eine breitflächige Anbindungsfläche bzw. Kontaktfläche zur thermischen Anbindung an den Kühlkörper auf.
  • Die Abdeckung ist über die Kontaktfläche mittels eines gut wärmeleitfähigen Haftmittels, z.B. einer Paste, eines Klebers und/oder eines Pads usw. an den Kühlkörper angebunden. Das Haftmittel kann insbesondere ein TIM (Thermal Interface Material) sein.
  • Die Abdeckung wird mit zunehmendem Abstand von der Kühlkörperkontaktfläche dünner.
    In den folgenden Figuren wird die Erfindung anhand von Ausführungsbeispielen schematisch genauer beschrieben. Dabei können zur Übersichtlichkeit gleiche oder gleichwirkende Elemente mit gleichen Bezugszeichen versehen sein.
  • Fig.1
    zeigt in Seitenansicht teilweise im Querschnitt eine Kolben-Retrofitlampe;
    Fig.2
    zeigt einen Ausschnitt aus der Glühlampen-Retrofitlampe aus Fig.1 im Bereich einer Abdeckung;
    Fig.3
    zeigt in Seitenansicht teilweise im Querschnitt eine Reflektor-Retrofitlampe;
    Fig.4
    zeigt in Schrägansicht eine Querschnittsdarstellung einer Leuchtstoffröhren- oder Linienlampen-Retrofitlampe;
    Fig.5
    zeigt in Vorderansicht eine Querschnittsdarstellung der Retrofitlampe aus Fig.4; und
    Fig.6
    zeigt in Vorderansicht eine Querschnittsdarstellung einer weiteren Leuchtstoffröhren- oder Linienlampen-Retrofitlampe;
    Fig.7
    zeigt in Vorderansicht eine Querschnittsdarstellung eine Leuchtstoffröhren- oder Linienlampen-Retrofitlampe gemäß einer nicht beanspruchten Ausführungsform;
    Fig.8
    zeigt in Seitenansicht teilweise im Querschnitt eine Kolben-Retrofitlampe gemäß einer weiteren, nicht beanspruchten Ausführungsform;
    Fig.9
    zeigt in Seitenansicht teilweise im Querschnitt eine Kolben-Retrofitlampe gemäß noch einer weiteren, nicht beanspruchten Ausführungsform.
  • Fig.1 zeigt in teilweiser Seitenansicht eine Glühlampen-Retrofitlampe 1. Die Glühlampen-Retrofitlampe 1 weist einen in Seitenansicht gezeigten Kühlkörper 2 auf, welcher eine im Wesentlichen um eine Längsachse L der Glühlampen-Retrofitlampe 1 winkelsymmetrische Form aufweist. Dabei sind an der Außenseite der Mantelfläche 3 radial nach außen gerichtete Kühlrippen 4 vorhanden. An einer Unterseite 5 des Kühlkörpers 2 ist ein Sockel 6 für eine in Seitenansicht gezeigte Glühlampenfassung vorhanden, z.B. ein Edisonsockel.
  • Auf einer Oberseite 7 des Kühlkörpers 2 ist ein LED-Modul 8 befestigt, welches über den Sockel 6 mit Strom versorgt wird. Das LED-Modul 8 weist mindestens ein Substrat in Form einer Leiterplatte 9 auf. Auf der Leiterplatte 9 befinden sich ein oder mehrere Leuchtdioden 10, und zwar hier in Form eines LED-Clusters, bei dem mehrere, ggf. auch unterschiedlich farbig strahlende, LED-Chips auf einem gemeinsamen Substrat ("Submount") angebracht sind. Die Leiterplatte 9 kann auch zusätzlich mit anderen elektronischen Bauelementen bestückt sein, z.B. einem Treiberbaustein.
  • An der Oberseite 7 des Kühlkörpers 2 ist ferner eine im Querschnitt gezeigte domartige Abdeckung 11 angeklebt. Die Abdeckung 11 ist um die Längsachse L herum rotationssymmetrisch geformt und überwölbt das LED-Modul 8 vollständig. Durch die Abdeckung 11 und den Kühlkörper 2 wird somit ein Aufnahmeraum für das LED-Modul 8 bzw. ein Innenraum 12 der Glühlampen-Retrofitlampe 1 geschaffen. Die Abdeckung 11 liegt mit einer unterseitigen Kontaktfläche 13 mittels eines Klebers 14 flächig und eben auf dem Kühlkörper 2 auf.
  • Der Kleber 14, mittels welchem die Abdeckung 11 an dem Kühlkörper 2 haftet, kann beispielsweise als eine dünne Klebeschicht aus Silberleitkleber oder einem mit einer leitfähigen Keramik verfüllten Kleber realisiert sein.
  • Die Abdeckung 11 ist opak, um eine weitgehend homogene Abstrahlcharakteristik zu unterstützen, welche der einer herkömmlichen Glühbirne zumindest angenähert ist.
  • Die Abdeckung 11 weist eine Wandstärke d auf, welche sich kontinuierlich mit steigender Entfernung (steigender Höhe) von dem Kühlkörper 2 verjüngt. Folglich bildet die Kontaktfläche 13, welche gleichzeitig die untere Aufsatzfläche der Abdeckung 11 darstellt, den Bereich der Abdeckung 11 mit der höchsten Wandstärke d.
  • Die Abdeckung 11 besteht aus einem Glas mit einer Wärmeleitfähigkeit λ in einem Bereich zwischen 1 W/(m·K) und 2 W/(m·K), z.B. einem Borofloatglas.
  • Die Abdeckung 11 ist im Wesentlichen optisch nicht aktiv, weist somit keine Funktion eine Linse o.ä. auf.
  • Die Funktion der Abdeckung 11 wird im Folgenden näher erläutert.
  • Fig.2 zeigt einen Ausschnitt aus der Glühlampen-Retrofitlampe 1 im Bereich der Abdeckung 11. Bei Betrieb des LED-Moduls 8 erwärmt sich dieses aufgrund einer Verlustwärme der LEDs 10 und ggf. weiterer elektronischer Komponenten. Die Verlustwärme W wird teilweise auf den Kühlkörper 2 übertragen und teilweise in den Aufnahmeraum 12 abgegeben. Der Kühlkörper 2 wiederum gibt die Wärme W im Wesentlichen durch Wärmekonvektion oder Strahlungswärme an die Umgebung ab, insbesondere über die Kühlrippen 4.
  • Ein Teil der Wärme W des Kühlkörpers 2 wird jedoch durch die Klebeschicht 14 und weiter durch die Kontaktfläche 13 auf die Abdeckung 11 übertragen. Dort breitet sich die Wärme W mittels einer lateralen Wärmeleitung (eines lateral gerichteten Wärmeflusses WL) innerhalb der Abdeckung 11 aus. Diese von der Kontaktfläche 13 ausgehende Aufwärmung der Abdeckung 11 führt dazu, dass die Wärme des lateral gerichteten Wärmeflusses WL über eine Außenseite 15 der Abdeckung 11 durch Wärmekonvektion oder Strahlungswärme an die Umgebung abgegeben wird, wie durch die aus der Abdeckung 11 nach außen abgehenden Pfeile WL angedeutet. Durch die Wärmeabgabe nach außen (Entwärmung) wird der lateral gerichtete Wärmefluss WL mit steigender Entfernung von der Kontaktfläche 13 immer geringer.
  • Aufgrund des aufgeheizten Aufnahmeraums 12 tritt jedoch auch ein transversal gerichteter Wärmefluss WT von dem Aufnahmeraum 12 im Wesentlichen senkrecht durch die Abdeckung 11 nach Außen auf. Die beiden Wärmeflüsse oder Wärmeverteilungen WL und WT überlagern sich in der Abdeckung 11.
  • An und kurz hinter der Kontaktfläche 13 wird der lateral gerichtete Wärmefluss WL überwiegen, entfernt von der Kontaktfläche 13 der transversal gerichtete Wärmefluss WT. Insbesondere an dem höchsten Punkt der Abdeckung 11, der Apsis A, ist der Einfluss des lateral gerichteten Wärmeflusses WL am geringsten.
  • Durch die relative Verbreiterung der Wandstärke d zu der Kontaktfläche 13 hin wird der lateral gerichtete Wärmefluss WL verstärkt und so die Abdeckung 11 stärker aufgeheizt. Somit wird auch eine Wärmeabfuhr von der Abdeckung 11 nach außen verstärkt, was wiederum eine verstärkte Wärmeabfuhr von dem und eine verbesserte Kühlung des LED-Modul(s) 8 bewirkt.
  • Andererseits wird durch die relative Verringerung der Wandstärke d mit zunehmender Entfernung von der Kontaktfläche 13 erreicht, dass ein Durchlass des transversal gerichteten Wärmeflusses WT durch die Abdeckung 11 nur geringfügig behindert wird, also die Wärmeisolierungswirkung der Abdeckung 11 gering ist. Die geringste Wandstärke d tritt folglich an der Apsis A auf. Die Wandstärke d an jedem Punkt der Abdeckung kann so auf eine maximale Wärmeabgabe nach außen hin optimiert werden. Aufgrund der sich typischerweise örtlich nicht sprunghaft ändernden Wärmeflüsse WT und WL wird in den meisten Fällen eine kontinuierliche Änderung der Wandstärke d eine besonders effektive Wärmeabfuhr ermöglichen.
  • Für eine Glühlampen-Retrofitlampe 1 mag eine Änderung der Wandstärke d von der Kontaktfläche 13 zu der Apsis A vorteilhafterweise in einem Bereich zwischen einer Hälfte und einem Fünftel liegen. In anderen Worten kann die Wandstärke d an der Kontaktfläche bevorzugt um einen Faktor zwei bis fünf Mal breiter sein als an der Apsis A, insbesondere ca. vier Mal.
  • Fig.3 zeigt in Seitenansicht teilweise im Querschnitt eine weitere Retrofitlampe 16, z.B. zum Einsatz in einer Lampe vom Typ MR16 oder als ein PAR-Leuchtmittel, z.B. PAR 30. Im Gegensatz zu der Glühlampen-Retrofitlampe 1 aus Fig.1 und Fig.2 ist der Kühlkörper 17 nun becherförmig mit einer oberen Öffnung 18 ausgebildet. Die Öffnung 18 ist mittels einer Abdeckung 19 mit einer scheibenartigen Grundform abgedeckt. Die Abdeckung 19 und der Kühlkörper 17 bilden auch hier wieder einen Aufnahmeraum 12 für das LED-Modul 8.
  • In diesem Ausführungsbeispiel entspricht die Kontaktfläche 13 nicht einer unteren Auflagefläche, sondern einer seitlichen, für einen festen Sitz an dem Kühlkörper 17 leicht angeschrägten Randfläche der Abdeckung 19.
  • In einer dem Ausführungsbeispiel aus Fig.1 und Fig.2 grundsätzlich ähnlichen Weise wird auch hier ein lateral gerichteter Wärmefluss WL von dem Kühlkörper 17 durch die Kontaktfläche 13 in die Abdeckung 19 hinein erzeugt, welcher umso schwächer wird, je weiter er sich von der Kontaktfläche 13 entfernt bzw. je näher er einem Mittelpunkt M der Abdeckung 19 kommt. Der lateral gerichtete Wärmefluss WL wird auch hier von einem transversal gerichteten Wärmefluss WT überlagert, welcher Wärme aus dem Aufnahmeraum 12 durch die Abdeckung 19 hindurch nach außen transportiert.
  • Am Mittelpunkt M ist der relative Einfluss des lateral gerichteten Wärmeflusses WL am geringsten und folglich derjenige des transversal gerichteten Wärmeflusses WT am größten, so dass für eine effektive Wärmeabfuhr von der Abdeckung 19 an die Umgebung dort eine geringere Wandstärke d bevorzugt wird als am Rand. Andererseits wird zur Erzeugung eines starken lateralen Wärmeflusses WL eine größte Wandstärke d an der Kontaktfläche 13 bzw. am Randbereich der Abdeckung 19 bevorzugt.
  • Fig.4 zeigt in Schrägansicht eine Querschnittsdarstellung einer Leuchtstoffröhren- oder Linienlampen-Retrofitlampe 20. Fig.5 zeigt die Leuchtstoffröhren- oder Linienlampen-Retrofitlampe 20 als Schnittdarstellung in Vorderansicht.
  • Die Retrofitlampe 20 weist eine im Wesentlichen röhrenförmige Grundform auf und dient z.B. als ein Ersatz einer herkömmlichen Leuchtstoffröhre oder einer Linienlampe. Ein unterer Bereich der Retrofitlampe 20 weist einen entlang einer Längsachse L der Retrofitlampe 20 länglich ausgedehnten Kühlkörper 21 auf, welcher eine plattenförmige Basis 22 aufweist. Auf einer Oberseite der plattenförmigen Basis 22 sind entlang der Längsrichtung L mehrere Leuchtdioden 10 äquidistant angeordnet, z.B. auf einem flexiblen bandförmigen Träger 9. Dies kann beispielsweise durch ein LED-Modul 8 in Form eines LED-Bands vom Typ LinearLight Flex der Fa. Osram realisiert sein. An einer Unterseite der plattenförmigen Basis 22 gehen mehrere Kühlrippen 4 senkrecht nach unten ab.
  • Auf der Oberseite 7 des Kühlkörpers 21 ist eine entsprechend passende längliche Abdeckung 23 befestigt, welche mit dem Kühlkörper 21 den Aufnahmeraum 12 für das LED-Modul 8 bildet. Im Querschnitt kann die Form der Abdeckung 23 der Form der Abdeckung 11 aus Fig.1 und Fig.2 im Wesentlichen entsprechen, so dass die Wirkungsweise der Abdeckung 23 an dieser Stelle nicht weiter ausgeführt zu werden braucht, sondern analog auf Fig.1 und Fig.2 verwiesen wird.
  • Fig.6 zeigt in Vorderansicht eine Querschnittsdarstellung einer weiteren Leuchtstoffröhren- oder Linienlampen-Retrofitlampe 24. Im Gegensatz zu der Ausführungsform von Fig.4 und Fig.5 ist der Kühlkörper 25 mit dem LED-Modul 8 nun zumindest mantelseitig vollständig von einer röhrenförmigen Abdeckung 26 umgeben. Ferner ist der Kühlkörper 25 aus einem massiven Material ausgebildet, so dass er mit der Abdeckung 26 eine großflächige Kontaktfläche 27 ausbildet, welche einen großen Teil der unteren Hälfte der Abdeckung 26 einnimmt.
  • In diesem Fall weisen seitliche Scheitelpunkte S die größte Wandstärke d auf, während ein oberer Scheitelpunkt A1 und ein unterer Scheitelpunkt A2 die geringste Wandstärke d aufweisen. Dabei wird vorausgesetzt, dass das LED-Modul 8 in einen oberen Halbraum abstrahlt und der Kühlkörper 25 auf einen unteren Bereich der Abdeckung 26 aufgesetzt wird.
  • In anderen Worten weist die Abdeckung 26 eine zumindest mantelseitig geschlossene Röhrenform auf, und der Kühlkörper 25 ist zumindest teilweise in der Abdeckung 26 aufgenommen. Der Kühlkörper 25 ist größtenteils an einem unteren Bereich I (unterem Viertelsektor) der Abdeckung 26 befestigt, wobei der untere Bereich I und ein diesem gegenüberliegender oberer Bereich II (oberer Viertelsektor) der Abdeckung 26 eine vergleichsweise geringere Wandstärke d aufweisen kann als die beiden seitlichen Bereiche III (seitliche Viertelsektoren) der Abdeckung 26. Dabei geht die Sektorierung von einer Schnittlinie aus, welche der Längsachse L zumindest im Wesentlichen entspricht.
  • Insbesondere ändert sich die Wandstärke d der Abdeckung 26 kontinuierlich und weist in dem oberen Bereich I an einem oberen Scheitelpunkt A1 und in dem unteren Bereich II an einem unteren Scheitelpunkt A2 die geringste Wandstärke d auf.
  • Hingegen sind die beiden seitlichen Scheitelpunkte S, welche sich in dem jeweiligen seitlichen Bereich III befinden, die Orte der größten Wandstärke d.
  • Eine solche Form der Abdeckung 26 kann beispielsweise so erzeugt werden, dass eine Querschnittskontur einer Innenseite 28 der Abdeckung 26 im Wesentlichen kreisförmig ausgebildet ist, während eine Querschnittskontur einer Außenseite 29 der Abdeckung 26 eine im Wesentlichen ovale Form aufweist.
  • Die Abdeckung 26 weist somit für ihre obere Hälfte bzw. ihren oberen Abschnitt oberhalb der seitlichen Scheitelpunkte S eine Wandstärke d auf, welche sich mit steigender Entfernung von dem Kühlkörper 25 bzw. seiner Kontaktfläche 27 mit dem Kühlkörper 25 verjüngt.
  • Während in dem oberen Bereich I der transversal gerichtete Wärmestrom WT dominiert, hat es sich gezeigt, dass auch an dem unteren Bereich II eine geringe Wandstärke d vorteilhaft ist, da dort eine direkte Wärmeableitung von dem Kühlkörper 25 in transversaler Richtung durch die Abdeckung 26 hindurch eine effektivere Wärmeabgabe ermöglicht als eine Optimierung im Hinblick auf eine Wärmeableitung bzw. Wärmespreizung im Abdeckelement 26. Auch hat es sich gezeigt, dass eine erhöhte Wandstärke d in den seitlichen Bereichen III der Abdeckung 26 eine effektivere Wärmeabgabe ermöglicht als eine Optimierung im Hinblick auf eine transversal gerichtete Wärmeableitung durch das Abdeckelement 26 hindurch.
  • Fig.7 zeigt in Vorderansicht eine Querschnittsdarstellung eine Retrofitlampe 30 in Form einer Leuchtstoffröhren- oder Linienlampen-Retrofitlampe gemäß einer weiteren Ausführungsform. Die Abdeckung 31 ist in Gegensatz zu der Retrofitlampe 20 aus Fig.4 an ihrer Außenseite 15 lediglich halbzylinderförmig ausgeführt, so dass sie bei ihrer Herstellung aus einer Gussform herauslöst werden kann. An ihrer Innenseite 32 (welche zusammen mit der Basis 22 des Kühlkörpers 21 den Aufnahmeraum 12 begrenzt) ist sie ebenfalls frei von Hinterschnitten. Insbesondere ist die Innenseite 32 zur Vereinfachung einer Herstellung im Spritzgussverfahren oder Pressverfahren so ausgestaltet, dass eine seitliche Fläche 33 bzw. Seitenwand der Innenseite 32 von der Unterseite der Abdeckung 31 ausgehend senkrecht verläuft. Eine an die seitliche Fläche 33 nach oben anschließende Deckenfläche 34, welche den Aufnahmeraum 12 überdeckt, ist hingegen wieder gewölbt, insbesondere zylindersektorförmig, ausgestaltet.
  • Die Wandstärke d ist an der Kontaktfläche 13 am größten und verringert sich in einem Abschnitt 35 oder Bereich, welcher die seitliche Fläche 33 beinhaltet, kontinuierlich mit steigendem Abstand von der Kontaktfläche 13. Der daran anschließende Abschnitt 36 oder Bereich, welcher die Deckenfläche 34 beinhaltet, weist hingegen eine konstante Wandstärke d auf. Die Abdeckung 31 weist folglich weiterhin wie die Retrofitlampe 20 an der Kontaktfläche 13 zu dem Kühlkörper 21 eine größere Wandstärke d auf als an dem von dem Kühlkörper 21 am weitesten beabstandeten Punkt, nämlich der (linienförmigen) Apsis A. Speziell ist die Wandstärke d an der Kontaktfläche 13 am größten.
  • Alternativ kann sich der Abschnitt 36 auch ausgehend von seinem Ansatz an dem Abschnitt 35 zur Apsis A hin weiter verjüngen.
  • Fig.8 zeigt in Seitenansicht teilweise im Querschnitt eine Retrofitlampe 37 in Form einer Kolben-Retrofitlampe gemäß einer weiteren Ausführungsform.
  • Die Abdeckung 38 ist in Gegensatz zur Retrofitlampe 1 aus Fig.1 und Fig.2 an ihrer Außenseite 15 lediglich halbkugelförmig ausgeführt, so dass sie bei ihrer Herstellung aus einer Gussform herauslöst werden kann. An ihrer Innenseite 32 (welche zusammen mit dem Kühlkörper 2 den Aufnahmeraum 12 begrenzt) ist sie ebenfalls frei von Hinterschnitten. Insbesondere ist die Innenseite 32 zur Vereinfachung einer Herstellung im Spritzgussverfahren oder Pressverfahren so ausgestaltet, dass eine seitliche Fläche 33 bzw. Seitenwand der Innenseite 32 von der Unterseite der Abdeckung 31 ausgehend senkrecht verläuft, also z.B. eine Zylinderform oder zylinderförmig angeordnete Gruppe von ineinander übergehenden senkrechten Flächen aufweisen kann. Eine an die seitliche Fläche 33 nach oben anschließende Deckenfläche 34, welche den Aufnahmeraum 12 überwölbt, ist hingegen wieder nach oben gewölbt bzw. domartig, insbesondere sphärisch, ausgestaltet.
  • Die Wandstärke d ist an der Kontaktfläche 13 am größten und verringert sich in einem Abschnitt 35 oder Bereich kontinuierlich mit steigendem Abstand von der Kontaktfläche 13, welcher die seitliche Fläche 33 beinhaltet. Der daran anschließende Abschnitt 36 oder Bereich, welcher die Deckenfläche 34 beinhaltet, weist hingegen eine konstante Wandstärke d auf. Die Abdeckung 38 weist folglich weiterhin wie die Retrofitlampe 1 an der Kontaktfläche 13 zu dem Kühlkörper 2 eine größere Wandstärke d auf als an dem von dem Kühlkörper 2 am weitesten beabstandeten Punkt, nämlich der (punktförmigen) Apsis A.
  • Alternativ kann sich der Abschnitt 36 auch von seinem Ansatz an dem Abschnitt 35 zur Apsis A hin weiter verjüngen.
  • Fig.9 zeigt in Seitenansicht teilweise im Querschnitt eine Retrofitlampe 39 in Form einer Kolben-Retrofitlampe gemäß noch einer weiteren Ausführungsform. Im Gegensatz zur Retrofitlampe 37 weist sie nun keine Abdeckung 40 mit einer halbkugelförmigen Außenseite auf, sondern eine mehr als halbkugelförmige Außenseite 15 wie die Abdeckung 11 aus Fig.1 und Fig.2. Gleichzeitig weist die Abdeckung 40 an ihrer Innenseite 32 eine senkrechte seitliche Fläche 33 auf.
  • Folglich ist die Wandstärke d nicht mehr an der Kontaktfläche 13 am größten, sondern an einer größten seitlichen Ausdehnung der Abdeckung 40 in einem geringen Abstand von der Kontaktfläche 13 und verringert sich ab dort kontinuierlich mit steigendem Abstand von der Kontaktfläche 13. Aber auch diese Abdeckung 40 weist an der Kontaktfläche 13 zu dem Kühlkörper 2 eine größere Wandstärke d auf als an dem von dem Kühlkörper am weitesten beabstandeten Punkt, nämlich der (punktförmigen) Apsis A. Auch diese Abdeckung 40 weist gegenüber einer Abdeckung mit konstanter Wandstärke, insbesondere einer geringen Wandstärke wie z.B. im Bereich der Apsis A, den Vorteil der stärkeren Wärmeableitung von dem Kühlkörper 2 auf.
  • Selbstverständlich ist die vorliegende Erfindung nicht auf die gezeigten Ausführungsbeispiele beschränkt.
  • So braucht ferner die Abdeckung der mantelseitig geschlossenen röhrenförmigen Abdeckung nicht bezüglich einer Längsachse symmetrisch ausgebildet zu sein.
  • Der Unterschied der Wandstärke d zwischen der dicksten Stelle der Abdeckung und der dünnsten Stelle der Abdeckung kann allgemein bevorzugt einen Faktor zwischen zwei und fünf annehmen.
  • Bezugszeichenliste
  • 1
    Glühlampen-Retrofitlampe
    2
    Kühlkörper
    3
    Mantelfläche des Kühlkörpers
    4
    Kühlrippe
    5
    Unterseite des Kühlkörpers
    6
    Sockel
    7
    Oberseite des Kühlkörpers
    8
    LED-Modul
    9
    Leiterplatte
    10
    Leuchtdiode
    11
    Abdeckung
    12
    Aufnahmeraum
    13
    Kontaktfläche
    14
    Klebeschicht
    15
    Außenseite der Abdeckung
    16
    Retrofitlampe
    17
    Kühlkörper
    18
    Öffnung des Kühlkörpers
    19
    Abdeckung
    20
    Retrofitlampe
    21
    Kühlkörper
    22
    Basis des Kühlkörpers
    23
    Abdeckung
    24
    Retrofitlampe
    25
    Kühlkörper
    26
    Abdeckung
    27
    Kontaktfläche
    28
    Innenseite der Abdeckung
    29
    Außenseite der Abdeckung
    30
    Retrofitlampe
    31
    Abdeckung
    32
    Innenseite
    33
    seitliche Fläche der Innenseite
    34
    Deckenfläche der Innenseite
    35
    Abschnitt der Abdeckung
    36
    Abschnitt der Abdeckung
    37
    Retrofitlampe
    38
    Abdeckung
    39
    Retrofitlampe
    40
    Abdeckung
    A
    Apsis
    A1
    oberer Scheitelpunkt
    A2
    unterer Scheitelpunkt
    I
    unterer Bereich
    II
    oberer Bereich
    III
    seitlicher Bereich
    L
    Längsachse
    M
    Mittelpunkt
    S
    seitlicher Scheitelpunkt
    WL
    lateral gerichteter Wärmefluss
    WT
    transversal gerichteter Wärmefluss

Claims (12)

  1. Lampe (1; 16; 20; 24), mindestens aufweisend:
    - einen Kühlkörper (2; 17; 21; 25), welcher mindestens eine Lichtquelle (10), insbesondere Halbleiterleuchtelement, speziell Leuchtdiode, trägt, und
    - eine an dem Kühlkörper (2; 17; 21; 25) befestigte, zumindest teilweise lichtdurchlässige Abdeckung (11; 19; 23; 26) für die mindestens eine Lichtquelle (10),
    - wobei die Abdeckung (11; 19; 23; 26) eine Wandstärke (d) aufweist, welche sich zumindest abschnittsweise mit steigender Entfernung von dem Kühlkörper (2; 17; 21; 25) verjüngt,
    - wobei die Abdeckung (11; 19; 23; 26) an dem Kühlkörper (2; 17; 21; 25) mittels mindestens eines gut wärmeleitenden Haftmittels (14) befestigt ist,
    - dadurch gekennzeichnet, dass sich die Wandstärke (d) der Abdeckung (11; 19; 23;26) mit steigender Entfernung von dem Kühlkörper (2; 17; 21; 25) kontinuierlich verjüngt.
  2. Lampe (1; 16; 20; 24), insbesondere nach Anspruch 1, mindestens aufweisend:
    - einen Kühlkörper (2; 17; 21; 25), welcher mindestens eine Lichtquelle (10), insbesondere Halbleiterleuchtelement, speziell Leuchtdiode, trägt, und
    - eine an dem Kühlkörper (2; 17; 21; 25) befestigte, zumindest teilweise lichtdurchlässige Abdeckung (11; 19; 23; 26) für die mindestens eine Lichtquelle (10),
    - wobei die Abdeckung (11; 19; 23; 26) an einer Kontaktfläche (13) zu dem Kühlkörper (2; 17; 21; 25) eine größere Wandstärke (d) aufweist als an dem von dem Kühlkörper (2; 17; 21; 25) am weitesten beabstandeten Punkt (A),
    - wobei die Abdeckung (11; 19; 23; 26) an dem Kühlkörper (2; 17; 21; 25) mittels mindestens eines gut wärmeleitenden Haftmittels (14) befestigt ist,
    - dadurch gekennzeichnet, dass sich die Wandstärke (d) der Abdeckung (11; 19; 23; 26) mit steigender Entfernung von dem Kühlkörper (2; 17; 21; 25) kontinuierlich verjüngt.
  3. Lampe (1; 16; 20) nach einem der vorhergehenden Ansprüche, wobei die Abdeckung eine größte Wandstärke (d) an einer Kontaktfläche (13) zu dem Kühlkörper (2; 17; 21) aufweist.
  4. Lampe (1; 16; 20; 24) nach einem der vorhergehenden Ansprüche, bei der die Abdeckung (11; 19; 23; 26) eine Wärmeleitfähigkeit zwischen 1 W/(m-K) und 2 W/(m-K) aufweist, insbesondere aus Glas mit einer Wärmeleitfähigkeit zwischen 1 W/(m-K) und 2 W/(m-K) besteht.
  5. Lampe (1; 37; 39) nach einem der vorhergehenden Ansprüche, bei der die Abdeckung (11) zumindest abschnittsweise eine domartige Form aufweist.
  6. Lampe (20) nach einem der Ansprüche 1 bis 4, bei der die Abdeckung (23) eine offene Röhrenform aufweist.
  7. Lampe (1; 20; 30) nach einem der vorhergehenden Ansprüche, bei der eine Kontaktfläche (13) der Abdeckung (11; 23) zu dem Kühlkörper (2; 23) einer unteren Auflagefläche der Abdeckung (11; 23) zumindest teilweise entspricht.
  8. Lampe (16) nach einem der Ansprüche 1 bis 4, bei der die Abdeckung (19) eine scheibenartige Form aufweist.
  9. Lampe (16) nach Anspruch 8, bei der eine Kontaktfläche (13) der Abdeckung (19) zu dem Kühlkörper (17) seitlich angeordnet ist.
  10. Lampe nach einem der vorhergehenden Ansprüche, bei der die Abdeckung eine optische Funktion aufweist.
  11. Lampe (30) nach einem der vorhergehenden Ansprüche, bei der die Abdeckung an ihrer Innenseite im Wesentlichen frei von Hinterschnitten ist.
  12. Lampe (24) nach einem der vorhergehenden Ansprüche, bei der die Abdeckung (26) eine zumindest mantelseitig geschlossene Röhrenform aufweist und der Kühlkörper (25) zumindest teilweise in der Abdeckung (26) aufgenommen ist und zumindest teilweise an einem unteren Bereich (I) der Abdeckung (26) befestigt ist, wobei der untere Bereich (I) der Abdeckung (26) und ein oberer Bereich (II) der Abdeckung (26) eine vergleichsweise geringere Wandstärke (d) aufweisen als die beiden seitlichen Bereiche (III) der Abdeckung (26).
EP10739320.9A 2009-07-30 2010-07-20 Lampe Active EP2459925B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009035370A DE102009035370A1 (de) 2009-07-30 2009-07-30 Lampe
PCT/EP2010/060475 WO2011012498A1 (de) 2009-07-30 2010-07-20 Lampe

Publications (2)

Publication Number Publication Date
EP2459925A1 EP2459925A1 (de) 2012-06-06
EP2459925B1 true EP2459925B1 (de) 2018-04-11

Family

ID=42797609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10739320.9A Active EP2459925B1 (de) 2009-07-30 2010-07-20 Lampe

Country Status (8)

Country Link
US (1) US8851716B2 (de)
EP (1) EP2459925B1 (de)
JP (1) JP2013500560A (de)
CN (1) CN102472434B (de)
AU (1) AU2010277788A1 (de)
CA (1) CA2769496A1 (de)
DE (1) DE102009035370A1 (de)
WO (1) WO2011012498A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10125931B2 (en) * 2008-03-01 2018-11-13 Goldeneye, Inc. Barrier with integrated self cooling solid state light sources
DE102011003968A1 (de) * 2011-02-11 2012-08-16 Osram Ag Halbleiterleuchtvorrichtung und Verfahren zum Montieren einer Abdeckung an einer Halterung einer Halbleiterleuchtvorrichtung
JP5042375B1 (ja) * 2011-05-10 2012-10-03 シャープ株式会社 直管形ランプ
US20130016508A1 (en) * 2011-07-13 2013-01-17 Curt Progl Variable thickness globe
EP2732202B1 (de) * 2011-07-15 2017-06-28 Philips Lighting Holding B.V. Beleuchtungsvorrichtung mit einem träger und einem umschlag
US8746915B2 (en) * 2011-07-29 2014-06-10 Cree, Inc. Light emitting die (LED) lamps, heat sinks and related methods
US8820951B2 (en) * 2012-02-06 2014-09-02 Xicato, Inc. LED-based light source with hybrid spot and general lighting characteristics
DE102012203902A1 (de) * 2012-03-13 2013-09-19 Trilux Gmbh & Co. Kg OLED-Kühlelement
DE202012102963U1 (de) * 2012-08-07 2013-11-13 Rp-Technik E.K. Leuchtstofflampenartiges LED-Leuchtmittel
US20140160762A1 (en) * 2012-12-07 2014-06-12 GE Lighting Solutions, LLC Diffuser element and lighting device comprised thereof
CN103032785A (zh) * 2012-12-20 2013-04-10 苏州东山精密制造股份有限公司 一种led天棚灯
BR112015019549A2 (pt) 2013-02-19 2017-07-18 Koninklijke Philips Nv dispositivo de iluminação
CN103791439B (zh) * 2014-01-27 2015-05-06 上海三思电子工程有限公司 新型led照明装置
WO2016012226A1 (en) 2014-07-21 2016-01-28 Koninklijke Philips N.V. Lighting device with virtual light source
JP6453660B2 (ja) 2015-02-05 2019-01-16 株式会社東芝 照明装置
CN105987352A (zh) * 2015-03-05 2016-10-05 深圳市裕富照明有限公司 光学扩光件及发光装置
JP2016181441A (ja) * 2015-03-24 2016-10-13 アイリスオーヤマ株式会社 照明装置
CN107366836A (zh) * 2017-06-28 2017-11-21 太仓市普利照明电器有限公司 一种两用绝缘照明灯
AT521023B1 (de) * 2018-05-16 2019-10-15 Pavani Christoph Zierleiste
US10845013B2 (en) 2018-10-03 2020-11-24 Vista Manufacturing Inc Flexible light assembly

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314136A (ja) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd 半導体発光装置
US6682211B2 (en) * 2001-09-28 2004-01-27 Osram Sylvania Inc. Replaceable LED lamp capsule
JP2003281925A (ja) * 2002-01-16 2003-10-03 Meiji Univ 照明器具、照明器具本体及びled素子
JP4235427B2 (ja) * 2002-09-24 2009-03-11 オスラム・メルコ株式会社 発光ダイオードランプ
US20050068777A1 (en) * 2003-09-25 2005-03-31 Dragoslav Popovic Modular LED light and method
US6908219B1 (en) * 2004-03-29 2005-06-21 Valeo Sylvania Llc Optical element for a high mounted stop lamp with an LED light source
KR100638611B1 (ko) * 2004-08-12 2006-10-26 삼성전기주식회사 다중 렌즈 발광 다이오드
TWI261654B (en) * 2004-12-29 2006-09-11 Ind Tech Res Inst Lens and LED with uniform light emitted applying the lens
JP4899502B2 (ja) * 2005-03-07 2012-03-21 日亜化学工業株式会社 面状照射光源及び面状照射装置
CN100585268C (zh) * 2005-03-07 2010-01-27 日亚化学工业株式会社 面状照射光源及面状照射装置
KR101136344B1 (ko) * 2005-04-06 2012-04-18 삼성전자주식회사 광학 렌즈, 이를 갖는 광학 모듈, 이를 갖는 백라이트어셈블리 및 이를 갖는 표시 장치
NL1029583C2 (nl) * 2005-07-21 2007-01-25 Imt B V Explosieveilig armatuur.
US8071997B2 (en) 2005-10-07 2011-12-06 Osram Sylvania Inc. LED with light transmissive heat sink
US7378686B2 (en) * 2005-10-18 2008-05-27 Goldeneye, Inc. Light emitting diode and side emitting lens
JP4013077B2 (ja) * 2005-11-21 2007-11-28 松下電工株式会社 発光装置およびその製造方法
JP2007194132A (ja) * 2006-01-20 2007-08-02 Fujifilm Holdings Corp 照明装置
JP2007207576A (ja) * 2006-02-01 2007-08-16 Jefcom Kk Ledランプ
JP4565656B2 (ja) 2006-02-28 2010-10-20 スタンレー電気株式会社 灯具
JP2008059862A (ja) * 2006-08-30 2008-03-13 Ichikoh Ind Ltd 車両用灯具
DE202006018835U1 (de) * 2006-12-13 2007-03-08 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH LED-Leuchte
DE202007008258U1 (de) 2007-04-30 2007-10-31 Lumitech Produktion Und Entwicklung Gmbh LED-Leuchtmittel
KR101289069B1 (ko) * 2007-05-09 2013-07-22 엘지디스플레이 주식회사 2중 렌즈구조의 led 패키지 및 이를 구비한액정표시장치
KR100809658B1 (ko) 2007-06-27 2008-03-05 김재을 엘이디용 렌즈 및 그것을 사용한 엘이디 표시장치
DE102007040596B4 (de) * 2007-08-27 2011-01-13 Epsys Paul Voinea E.K. Beleuchtungsmittel mit Wärmespreizung durch Wärmeleitbeschichtung
DE202008007862U1 (de) * 2008-06-12 2008-08-21 Lin, Hsiang-Chou LED-Leuchte mit freistehenden Kühlrippen
DE202008017219U1 (de) * 2008-08-05 2009-04-16 Pyroswift Holding Co., Ltd., Wanchai Leuchtdioden-Lichtaggregat
JP4334013B1 (ja) * 2008-09-29 2009-09-16 株式会社サンエスオプテック Led照明装置
US8360604B2 (en) * 2009-09-30 2013-01-29 Cree, Inc. Light emitting diode (LED) lighting systems including low absorption, controlled reflectance enclosures
CN201582724U (zh) * 2009-12-18 2010-09-15 重庆三弓科技发展有限公司 Led灯罩

Also Published As

Publication number Publication date
JP2013500560A (ja) 2013-01-07
US8851716B2 (en) 2014-10-07
CN102472434B (zh) 2016-12-28
CN102472434A (zh) 2012-05-23
EP2459925A1 (de) 2012-06-06
CA2769496A1 (en) 2011-02-03
AU2010277788A1 (en) 2012-02-23
WO2011012498A1 (de) 2011-02-03
US20120163001A1 (en) 2012-06-28
DE102009035370A1 (de) 2011-02-03

Similar Documents

Publication Publication Date Title
EP2459925B1 (de) Lampe
EP2499420B1 (de) Leuchtvorrichtung
EP1721102B1 (de) Lampe
EP1960708B1 (de) Flächenleuchte
EP2499428A2 (de) Leuchtvorrichtung
WO2011054716A2 (de) Beleuchtungsvorrichtung mit einem kolben
DE102010030296B4 (de) Lampe mit konkavem Reflektor und einem Vorsprung für mindestens eine Lichtquelle
JP2013219004A (ja) 蛍光灯取付具に使用するためのledライト管
DE112011106000T5 (de) Thermomanagement für Leuchtdioden
WO2011117058A1 (de) Lampe mit reflektormittel und reflektorelement
DE102011007214B4 (de) Kolben für Halbleiter - Leuchtvorrichtung sowie Halbleiter - Leuchtvorrichtung
WO2008049381A1 (de) Beleuchtungseinrichtung
DE102017222649A1 (de) Lichtmodul, anordnung, scheinwerfer und verfahren
WO2010133631A1 (de) Kühlkörper für eine leuchtvorrichtung
EP2564116B1 (de) Led-leuchte als glühbirnensubstitut
EP1840455B1 (de) Beleuchtungseinheit für ein Fahrzeug mit zumindest zwei Lichtquellen
EP2317211A2 (de) Außenleuchte und Hochdruckleuchtenersatz
WO2012136578A1 (de) Led-lampe mit einer led als leuchtmittel und mit einem lampenschirm aus glas oder kunststoff
DE102012211279A1 (de) Halbleiter-leuchtvorrichtung mit wärmerohr
DE102017109836B4 (de) Leuchtmittel mit Kühlkörper
EP2650588A1 (de) LED-Lichtröhre zur Verwendung in einer Leuchtstoffröhre
DE202005016093U1 (de) Leuchte
DE102009058308B4 (de) Reflektor für Leuchten mit Ellipsoid-Facetten
DE202009017433U1 (de) LED-Leuchte mit Kühlkörper
DE102009025975A1 (de) Anordnung für Lichthoflöschung, Lichtgleichmäßigkeit, Lichtverstärkung und Feststellung des Lichtsstrahlwinkels für eine LED- oder SMD-LED-Birne und -Lampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111230

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

17Q First examination report despatched

Effective date: 20170405

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEDVANCE GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010014851

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21K0099000000

Ipc: F21V0029506000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F21K 9/23 20160101AFI20171030BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: F21K 9/233 20160101ALI20171113BHEP

Ipc: F21K 9/27 20160101ALI20171113BHEP

Ipc: F21K 9/66 20160101ALI20171113BHEP

Ipc: F21V 3/02 20060101ALI20171113BHEP

Ipc: F21Y 103/10 20160101ALN20171113BHEP

Ipc: F21K 9/232 20160101ALI20171113BHEP

Ipc: F21Y 115/10 20160101ALN20171113BHEP

Ipc: F21V 29/506 20150101AFI20171113BHEP

INTG Intention to grant announced

Effective date: 20171130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 988431

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010014851

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180411

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010014851

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190114

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180720

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180720

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180720

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 988431

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010014851

Country of ref document: DE

Representative=s name: LANCHAVA, BAKURI, DR. RER. NAT., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230726

Year of fee payment: 14