EP2451903B1 - Method for desulfurizing materials containing olefins by regulating the amount of olefins - Google Patents

Method for desulfurizing materials containing olefins by regulating the amount of olefins Download PDF

Info

Publication number
EP2451903B1
EP2451903B1 EP10739852.1A EP10739852A EP2451903B1 EP 2451903 B1 EP2451903 B1 EP 2451903B1 EP 10739852 A EP10739852 A EP 10739852A EP 2451903 B1 EP2451903 B1 EP 2451903B1
Authority
EP
European Patent Office
Prior art keywords
olefin
stream
proportion
feed stream
regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10739852.1A
Other languages
German (de)
French (fr)
Other versions
EP2451903A2 (en
Inventor
Thilo Von Trotha
Frank Urner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
ThyssenKrupp Industrial Solutions AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Industrial Solutions AG filed Critical ThyssenKrupp Industrial Solutions AG
Priority to PL10739852T priority Critical patent/PL2451903T3/en
Publication of EP2451903A2 publication Critical patent/EP2451903A2/en
Application granted granted Critical
Publication of EP2451903B1 publication Critical patent/EP2451903B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/207Acid gases, e.g. H2S, COS, SO2, HCN
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/802Diluents

Definitions

  • the invention relates to a process for the hydrogenation of olefin- and sulfur-containing material streams, as often occur, for example, in petroleum refineries.
  • the sulfur compounds contained in these streams are completely or partially converted into hydrogen sulfide by hydrogenation in a reactor and the olefins contained in these streams are completely or partially converted into alkanes by hydrogenation.
  • the regulation of the process and in particular the temperature distribution in the reactor is achieved by controlling the olefin content in the feed streams to be fed into the reactor.
  • the WO 2009/071180 A1 describes a process for the hydrogenation of olefin-containing streams which contain organic sulfur compounds and which are converted into hydrogen sulfide during the hydrogenation.
  • the hydrogenation allows the sulfur compounds to be removed from the material flow used by removing the hydrogen sulfide from the product gas as a mixture of substances obtained by gas scrubbing after the hydrogenation.
  • the feed streams are passed through a reactor which contains a plurality of successive catalyst beds in the gas flow direction in which a successive hydrogenation is carried out.
  • the feed streams are typically a gas or a vaporized liquid.
  • Behind each catalyst bed there is an inlet device for a further feed stream, with which further feed stream can be passed into the gas stream in the reactor. Since the catalyst beds and the gas stream in the reactor heat up again after each hydrogenation step, the temperature distribution in the reactor can be controlled by distributing the feed stream downstream of the individual catalyst beds. The addition of fresh feed stream after the respective catalyst bed cools the feed stream down again.
  • the invention solves this problem by adding feed streams which contain precisely regulated olefin proportions. Since the gas stream and the catalyst bed in the reactor are only heated by the heat of reaction of the hydrogenation reaction of the olefins, the temperature distribution in the reactor can be regulated by adding feed streams with different olefin content.
  • a feed stream is always to be understood as a gaseous material stream.
  • Part of the total amount of olefin is fed in via the top of the reactor.
  • the temperature at the top of the reactor is usually about 300 ° C., at which the hydrogenation reaction can be carried out well.
  • the proportion of olefins in the first olefin-containing feed stream can advantageously be regulated by adding a low-olefin or an olefin-free diluent stream or both diluent streams to the first feed stream. This results in an olefin-containing feed stream.
  • the low-olefin and olefin-free feed streams can be added as a mixture, it being possible for these substances to be added separately in two separately regulated streams or in premixed form. By adding these two substance mixtures as diluent streams, it is then possible to set the desired proportion of olefins in the feed stream and, moreover, to control the temperature in the reactor. It is also possible, depending on the desired procedure, to introduce a further stream which contains a low-olefin or an olefin-free gas into the feed stream. The feed stream can then be further diluted in this way.
  • the proportion of olefins in the first feed stream can also be increased by separately adding an olefin-rich stream to the first feed stream. In principle, the first feed stream used already contains olefins.
  • a low-olefin and an olefin-free stream are added as a dilution stream to the first feed stream.
  • the hydrogenation can be controlled via the olefin content in this stream so that it delivers a precisely defined amount of heat.
  • the temperature downstream of the first catalyst bed is set in such a way that, when mixed with the second feed stream, it delivers precisely the temperature that is required for passage through the second catalyst bed.
  • olefin-rich stream into the feed stream, if this appears necessary, so that the proportion of olefins in the first feed stream is increased. This can be done temporarily or permanently.
  • the olefin-rich stream can be added separately or premixed with another stream.
  • an olefin-free, low-olefin and olefin-rich stream can be added separately to the first feed stream, so that this regulates the proportion of olefins in the first feed stream.
  • a premix of these streams can also be metered in. The premixing can take place in any combination and in any proportion.
  • the reactor can also contain more than two catalyst beds.
  • the material flow obtained in the reaction is passed through a third catalyst bed, whereby this and the gas flow passed through are heated. This means that after the second catalyst bed, a third feed stream is added laterally behind the second catalyst bed into the reactor to the material stream heated by the second hydrogenation and the gas stream for hydrogenation flows through a third catalyst bed after passing through the second catalyst bed.
  • a third feed stream is added laterally behind the second catalyst bed into the reactor to the material stream heated by the second hydrogenation, and the material stream for the hydrogenation flows through a third catalyst bed after being passed through the second catalyst bed. It is possible to pass the stream obtained after passing through the third partial amount of the hydrogenating desulfurization catalyst through a further or several further partial amounts of a hydrogenating desulfurization catalyst and to add a further feed stream into the reactor laterally behind the catalyst beds.
  • a low-olefin and an olefin-free stream are likewise fed into the feed line for the second feed stream behind the first catalyst bed.
  • the proportion of olefins in this second feed stream can also be controlled through the admixture of the individual streams. This in turn makes it possible to control the temperature in the third catalyst bed.
  • the olefin-free gas is preferably hydrogen, methane or a mixture of these substances.
  • the low-olefin gas is also preferably a gas which contains hydrogen or methane or both as the main component.
  • a different gas can be, for example, alkanes or carbon dioxide.
  • the olefin-rich, the olefin-poor or the olefin-free stream can be mixed as desired. They also advantageously do not contain any undesired foreign gases.
  • the feed stream is preferably fed to the hydrogenation reaction via the top of the reactor.
  • the proportion of the gas fed in via the top can in principle be as desired, but is preferably 1 to 99 percent by mass. Ideally, the flow rate of the gas fed in overhead is 5 to 15 percent by mass.
  • a feed stream can be obtained which contains a proportion of organic sulfur compounds of less than 100 ppb.
  • the hydrogen sulfide can be removed by a subsequent gas scrub, so that an essentially sulfur-free gas is obtained.
  • the feed stream as feed stream for the hydrogenating desulphurization contains light olefins which are in gaseous form at the use temperature. These are in the C number range from 2 to 6.
  • the hydrogenation reaction is carried out at a temperature of 250 to 400 ° C.
  • the feed stream is therefore preferably fed into the reactor at a temperature of 200 to 400.degree.
  • the feed stream is fed into the reactor at a temperature of 250.degree. C. to 350.degree.
  • the respective temperature in the reactor then results from the corresponding reaction procedure.
  • the reaction mixture cools down.
  • the pressure in the reactor can be controlled much better. This is 0.1 to 10 MPa for a favorable type of design.
  • the heating of the feed stream to the temperature necessary for the reaction can take place at will. This can take place, for example, using burners or steam heating devices.
  • the feed stream is preferably heated via heat exchangers. This can be done anywhere.
  • the heated material flow in the reactor can serve as the heating medium for this.
  • the heat exchangers can be heated at any point. This can be done, for example, on the individual feed streams. However, this can also take place on the material flows that are added to the feed flows. This can also be done on the feed stream that is fed into the reactor head.
  • the process for hydrogenating desulfurization is followed by gas scrubbing or a separation for hydrogen sulfide.
  • gas scrubbing or a separation for hydrogen sulfide This can be of any type and can be carried out at any point in the process.
  • the process for hydrogenating desulphurization is followed by an adsorption process with a chemical adsorbent.
  • feed lines that enable an olefin-rich stream to be fed into the corresponding feed stream.
  • This can be a feed line with which an olefin-rich stream is fed into the feed stream.
  • the olefin content in the feed stream increases and the temperature in the subsequent catalyst bed increases accordingly.
  • these can also be feed lines for a low-olefin or olefin-free stream in order to reduce the olefin content of the feed streams accordingly.
  • the feed lines for material flows can be located at any point on the reactor or in the feed lines for the feed streams. These can also be present in any combination.
  • the proportion of olefins in the feed streams can be precisely metered.
  • the temperature in the reactor can also be precisely controlled.
  • a device for dividing the feed flow is located directly on the feed line for the fresh feed.
  • the device also includes valves with which the supply of the gas to the individual injection or injection devices in the reactor can be precisely controlled. Depending on the heating of the gas in the individual catalyst beds, the amount of substance supplied is then dosed. In this way, the temperature in the reactor can be kept within the prescribed temperature limits.
  • the amount fed and the composition of the feed stream into the reactor are preferably controlled via the temperature as a parameter. Therefore, temperature sensors or thermometers can be located anywhere in the reactor. Heating devices or cooling devices with which the temperature can additionally be regulated can also be located at any point in the device. Of course, the device also includes the control devices required for control, regardless of whether they are electrical, electronic or mechanical in nature.
  • the amount and composition of the supplied material flow can also be regulated via other signals, for example via the sulfur or olefin content of the gas or a combination of these measured values. For this purpose, measuring sensors can be located at any point in the supply lines or in the reactor.
  • the device is in principle already in the patent DE 102007059243 A1 shown. This differs from the present device in particular through the additional pipelines for olefin-containing feed streams. Furthermore, in the context of the present invention, the international application with the publication number WO 2008/148081 to get expelled.
  • the device can furthermore comprise devices at any point which are necessary to maintain optimal operation. These can be, for example, valves, pumps, gas distributors or gas delivery devices. However, these can also be sensors, thermometers, flow meters or analytical devices. These can be located anywhere in the device.
  • the method according to the invention and the device allow the hydrogenating desulfurization of olefin-containing gases with little equipment and without complex cooling or heating devices.
  • the desulfurization is effective, so that the sulfur content of the feed stream in the subsequent gas scrubbing can be reduced to the ppb range (ppb: parts per billion, 10 -7 mol percent).
  • the method allows reliable and safe temperature control and handling of the method.
  • the process according to the invention results in a product gas which essentially only contains hydrogen sulfide as a sulfur compound.
  • FIG. 1 shows an example of a reactor with three catalyst beds for carrying out hydrogenation desulphurisation.
  • the feed stream (1) is divided into three feed streams (3, 4, 5) by a gas distributor (2) .
  • the feed stream usually already contains the necessary amount of olefins.
  • three valves (3a, 4a, 5a) are installed to regulate the feed flow.
  • the first feed stream (3) is preheated with a heating device (6) or a heat exchanger (with heat flow, 6a) and introduced into the reactor (7) via the reactor head (3b) (8a).
  • the temperature when the first stream is introduced is 300 ° C.
  • the first feed stream meets the first catalyst bed (8) there and is heated there.
  • the catalyst bed (8) contains the catalyst (8b) on suitable carrier particles and a grid (8c) or another suitable holding device.
  • the temperature at the outlet at the lower grid floor for the first catalyst bed (8) can be up to 390 ° C, but is typically 370 ° C.
  • the temperature in this first catalyst bed is regulated via the flow rate of the first feed stream (3b).
  • the first catalyst bed (8) is heated by a higher proportion of olefins in the first feed stream.
  • the olefin fraction can in turn be regulated via various streams (9a, b, c) , which are passed into the first feed stream (3) here, for example, as a diluent gas stream.
  • a further dilution stream (4) is introduced into a second feed stream (10a) after the first catalyst bed (8) without further regulation.
  • the material flow cools down again, ideally to 300 ° C.
  • This stream thus meets the second catalyst bed (10) with catalyst (10b) on a holding device (10c).
  • the stream of material is heated up again by the hydrogenation reaction.
  • a further feed stream (11a) is then introduced downstream of the catalyst bed (8) .
  • the resulting stream then meets a third catalyst bed (11) with catalyst (11b) .
  • the catalyst is held in the reactor by grids (8c, 10c, 11c) or other holding devices.
  • a product gas (12) is obtained which essentially only contains hydrogen sulfide as a sulfur compound.
  • the product gas is discharged (13) at the end of the reactor (7 ).
  • the first feed stream (3b ) is preheated here, for example, via a heat exchanger (6) .
  • the thermal energy of the feed stream (1) is also used (14a) to preheat the low-olefin material stream (9b) via a heat exchanger (14) , which is fed into the first feed stream (3) .
  • the feed stream (3) can, if necessary, be further heated via a further heat exchanger (14b) to set the temperature.
  • the individual material flows (9a, b, c) can be regulated via valves (15a, b, c) . Typical reactor temperatures are indicated on the side.

Description

Die Erfindung betrifft ein Verfahren zur Hydrierung von olefin- und schwefelhaltigen Stoffströmen, wie sie beispielsweise in Erdölraffinerien häufig vorkommen. Durch das erfindungsgemäße Verfahren werden die in diesen Strömen enthaltenen Schwefelverbindungen durch Hydrierung in einem Reaktor ganz oder teilweise in Schwefelwasserstoff und die in diesen Strömen enthaltenen Olefine durch Hydrierung ganz oder teilweise in Alkane überführt. Die Regelung des Verfahrens und insbesondere die Temperaturverteilung im Reaktor wird dabei über die Steuerung des Olefinanteils in die reaktorzuführenden Einsatzströme erreicht.The invention relates to a process for the hydrogenation of olefin- and sulfur-containing material streams, as often occur, for example, in petroleum refineries. By means of the process according to the invention, the sulfur compounds contained in these streams are completely or partially converted into hydrogen sulfide by hydrogenation in a reactor and the olefins contained in these streams are completely or partially converted into alkanes by hydrogenation. The regulation of the process and in particular the temperature distribution in the reactor is achieved by controlling the olefin content in the feed streams to be fed into the reactor.

Die WO 2009/071180 A1 beschreibt ein Verfahren zur Hydrierung von olefinhaltigen Stoffströmen, die organische Schwefelverbindungen enthalten und die bei der Hydrierung in Schwefelwasserstoff überführt werden. Durch die Hydrierung können die Schwefelverbindungen aus dem eingesetzten Stoffstrom entfernt werden, indem der Schwefelwasserstoff nach der Hydrierung durch eine Gaswäsche aus dem Produktgas als erhaltenem Stoffgemisch entfernt wird.The WO 2009/071180 A1 describes a process for the hydrogenation of olefin-containing streams which contain organic sulfur compounds and which are converted into hydrogen sulfide during the hydrogenation. The hydrogenation allows the sulfur compounds to be removed from the material flow used by removing the hydrogen sulfide from the product gas as a mixture of substances obtained by gas scrubbing after the hydrogenation.

Die Einsatzströme werden durch einen Reaktor geleitet, der in Gasströmungsrichtung mehrere aufeinanderfolgende Katalysatorbetten enthält, in denen eine nacheinanderfolgende Hydrierung durchgeführt wird. Die Einsatzströme sind typischerweise ein Gas oder eine verdampfte Flüssigkeit. Hinter jedem Katalysatorbett befindet sich eine Einleitungsvorrichtung für einen weiteren Einsatzstrom, mit dem weiteren Einsatzstrom in den Gasstrom im Reaktor geleitet werden kann. Da sich die Katalysatorbetten und der Gasstrom im Reaktor nach jedem Hydrierungsschritt neu aufheizen, kann die Temperaturverteilung im Reaktor durch die Verteilung des Einsatzstromes hinter die einzelnen Katalysatorbetten gesteuert werden. Durch die Zugabe von frischem Einsatzstrom hinter dem jeweiligen Katalysatorbett kühlt sich der Einsatzstrom wieder ab.The feed streams are passed through a reactor which contains a plurality of successive catalyst beds in the gas flow direction in which a successive hydrogenation is carried out. The feed streams are typically a gas or a vaporized liquid. Behind each catalyst bed there is an inlet device for a further feed stream, with which further feed stream can be passed into the gas stream in the reactor. Since the catalyst beds and the gas stream in the reactor heat up again after each hydrogenation step, the temperature distribution in the reactor can be controlled by distributing the feed stream downstream of the individual catalyst beds. The addition of fresh feed stream after the respective catalyst bed cools the feed stream down again.

Auf diese Weise ist es möglich, die Hydrierung stets im optimalen Temperaturbereich durchzuführen. Dadurch kann der Katalysator auf einer Temperatur gehalten werden, die dessen optimalem Einsatzbereich entspricht. Durch diese Vorgehensweise erhält man verschiedene Mengenströme hinter den einzelnen Katalysatorbetten. Dies kann zu unterschiedlichen Druckverhältnissen im Reaktor führen, was je nach Ausführungsart des Verfahrens problematisch sein kann. Es besteht deshalb die Aufgabe, die Zugabe des Olefins hinter die einzelnen Katalysatorbetten so zu steuern, dass diese nicht über die Regelung des Mengenstroms erfolgt.In this way it is possible to always carry out the hydrogenation in the optimum temperature range. This allows the catalyst to be kept at a temperature that corresponds to its optimum range of use. This procedure gives different flow rates behind the individual catalyst beds. This can lead to different pressure conditions in the reactor, which can be problematic depending on how the process is carried out. There is therefore the task of controlling the addition of the olefin downstream of the individual catalyst beds in such a way that it does not take place by regulating the flow rate.

Die Erfindung löst diese Aufgabe durch die Zugabe von Einsatzströmen, die eine genau geregelte Olefinanteile enthalten. Da die Aufheizung des Gasstroms und des Katalysatorbettes im Reaktor nur durch die Reaktionswärme der Hydrierungsreaktion der Olefine erfolgt, kann die Temperaturverteilung im Reaktor durch die Zugabe von Einsatzströmen mit unterschiedlichem Olefinanteil geregelt werden. Unter einem Einsatzstrom ist dabei stets ein gasförmiger Stoffstrom zu verstehen.The invention solves this problem by adding feed streams which contain precisely regulated olefin proportions. Since the gas stream and the catalyst bed in the reactor are only heated by the heat of reaction of the hydrogenation reaction of the olefins, the temperature distribution in the reactor can be regulated by adding feed streams with different olefin content. A feed stream is always to be understood as a gaseous material stream.

Beansprucht wird ein Verfahren zur Entschwefelung olefinhaltiger Einsatzstoffe (1) durch Regelung des Olefinanteils, wobei

  • ein olefin- und wasserstoffhaltiger gasförmiger Einsatzstrom (3b) durch einen Reaktor (7) geleitet wird, der einen hydrierenden Katalysator zur Entschwefelung (8b, 10b, 11b) enthält, und die in dem olefin- und wasserstoffhaltigen Einsatzstrom (1) enthaltenen organischen Schwefelverbindungen und Olefine ganz oder teilweise zu Schwefelwasserstoff und Alkanen hydriert werden, und
  • der olefinhaltige Einsatzstrom (1) vor der Zuführung in den Reaktor (7) aufgeteilt wird, so dass man mindestens zwei Einsatzströme erhält (3, 4, 5), und
  • der erste Einsatzstrom (3) über geeignete Vorrichtungen über den Kopf des Reaktors durch ein Katalysatorbett (8) im Reaktor (7) mit einer Teilmenge eines Katalysators zur hydrierenden Entschwefelung (8b) geleitet wird, und
  • ein zweiter Einsatzstrom (4) seitlich hinter dem ersten Katalysatorbett in den Reaktor (7) und zu dem durch die erste Hydrierung erhitzten Reaktionsgemisch gegeben wird, und der so erhaltene Gasstrom durch ein zweites Katalysatorbett (10) im Reaktor geleitet wird, und
  • der Anteil der Olefine in mindestens einem Einsatzstrom durch separate Zuführung von Olefinen oder Verdünnungsgas in die einzelnen Einsatzströme steuerbar ist, wobei die Temperatur in dem Reaktor (7) durch Regelung des Anteils von Olefinen in mindestens einem Einsatzstrom geregelt wird,
    dadurch gekennzeichnet, dass
  • als Einsatzstrom (1) für die hydrierende Entschwefelung ein Gas eingesetzt wird, das zu einem wesentlichen Anteil Olefine mit 2 bis 6 Kohlenstoffatomen enthält, und
  • die Reaktion der Hydrierung bei einer Temperatur von 250 bis 400 °C durchgeführt wird.
What is claimed is a process for the desulfurization of olefin-containing feedstocks (1) by regulating the olefin content, with
  • an olefin- and hydrogen-containing gaseous feed stream (3b) is passed through a reactor (7) which contains a hydrogenating catalyst for desulfurization (8b, 10b, 11b), and the organic sulfur compounds and contained in the olefin- and hydrogen-containing feed stream (1) Olefins are completely or partially hydrogenated to hydrogen sulfide and alkanes, and
  • the olefin-containing feed stream (1) is divided before being fed into the reactor (7) so that at least two feed streams are obtained (3, 4, 5), and
  • the first feed stream (3) is passed via suitable devices over the top of the reactor through a catalyst bed (8) in the reactor (7) with a partial amount of a catalyst for hydrogenated desulfurization (8b), and
  • a second feed stream (4) is added laterally behind the first catalyst bed into the reactor (7) and to the reaction mixture heated by the first hydrogenation, and the gas stream thus obtained is passed through a second catalyst bed (10) in the reactor, and
  • the proportion of olefins in at least one feed stream can be controlled by separately feeding olefins or diluent gas into the individual feed streams, the temperature in the reactor (7) being regulated by regulating the proportion of olefins in at least one feed stream,
    characterized in that
  • a gas which contains a substantial proportion of olefins having 2 to 6 carbon atoms is used as feed stream (1) for the hydrogenating desulphurization, and
  • the hydrogenation reaction is carried out at a temperature of 250 to 400 ° C.

Ein Teil der Gesamtmenge an Olefin wird über den Kopf des Reaktors zugeführt. Die Temperatur am Kopf des Reaktors beträgt üblicherweise etwa 300 °C, bei welcher die Hydrierungsreaktion gut durchgeführt werden kann. Der Anteil an Olefinen in dem ersten olefinhaltigen Einsatzstrom kann vorteilhaft durch Zugabe von einem olefinarmen oder einem olefinfreien Verdünnungsstrom oder von beiden Verdünnungsströmen in den ersten Einsatzstrom geregelt werden. Dadurch liegt ein olefinhaltiger Einsatzstrom vor.Part of the total amount of olefin is fed in via the top of the reactor. The temperature at the top of the reactor is usually about 300 ° C., at which the hydrogenation reaction can be carried out well. The proportion of olefins in the first olefin-containing feed stream can advantageously be regulated by adding a low-olefin or an olefin-free diluent stream or both diluent streams to the first feed stream. This results in an olefin-containing feed stream.

Der olefinarme und olefinfreie Einsatzstrom können als Gemisch zugegeben werden, wobei diese Stoffe separat in zwei getrennt geregelten Strömen oder vorgemischt zugegeben werden können. Durch Zugabe dieser beiden Stoffgemische als Verdünnungsströme kann man dann den gewünschten Anteil an Olefinen in dem Einsatzstrom einstellen und darüber hinaus die Temperatur in dem Reaktor steuern. Es ist auch möglich, in den Einsatzstrom je nach gewünschter Verfahrensweise einen weiteren Stoffstrom einzuleiten, der ein olefinarmes oder olefinfreies Gas enthält. Damit kann der Einsatzstrom dann weiter verdünnt werden. Auch kann der Anteil der Olefine in dem ersten Einssatzstrom durch separate Zugabe von einem olefinreichen Stoffstrom in den ersten Einsatzstrom erhöht werden. Prinzipiell enthält der erste eingesetzte Einsatzstrom bereits Olefine.The low-olefin and olefin-free feed streams can be added as a mixture, it being possible for these substances to be added separately in two separately regulated streams or in premixed form. By adding these two substance mixtures as diluent streams, it is then possible to set the desired proportion of olefins in the feed stream and, moreover, to control the temperature in the reactor. It is also possible, depending on the desired procedure, to introduce a further stream which contains a low-olefin or an olefin-free gas into the feed stream. The feed stream can then be further diluted in this way. The proportion of olefins in the first feed stream can also be increased by separately adding an olefin-rich stream to the first feed stream. In principle, the first feed stream used already contains olefins.

In einer Ausführung der Erfindung werden in den ersten Einsatzstrom ein olefinarmer und ein olefinfreier Stoffstrom als Verdünnungsstrom gegeben. Auf diese Weise kann über den Olefinanteil in diesem Strom die Hydrierung so gesteuert werden, dass sie eine genau definierte Wärmemenge liefert. Die Temperatur hinter dem ersten Katalysatorbett wird dadurch so eingestellt, dass sie bei Vermischung mit dem zweiten Einsatzstrom genau die Temperatur liefert, die zum Durchleiten durch das zweite Katalysatorbett erforderlich ist.In one embodiment of the invention, a low-olefin and an olefin-free stream are added as a dilution stream to the first feed stream. In this way, the hydrogenation can be controlled via the olefin content in this stream so that it delivers a precisely defined amount of heat. The temperature downstream of the first catalyst bed is set in such a way that, when mixed with the second feed stream, it delivers precisely the temperature that is required for passage through the second catalyst bed.

Es ist möglich, in den Einsatzstrom einen olefinreichen Stoffstrom zuzudosieren, wenn dies erforderlich scheint, so dass der Anteil der Olefine in dem ersten Einsatzstrom erhöht wird. Dies kann temporär oder permanent erfolgen. Die Zugabe des olefinreichen Stoffstromes kann separat oder vorgemischt mit einem anderen Stoffstrom erfolgen. Schließlich kann die Zugabe eines olefinfreien, olefinarmen und olefinreichen Stoffstromes separat in den ersten Einsatzstrom separat erfolgen, so dass dadurch der Anteil der Olefine in dem ersten Einsatzstrom geregelt wird. Obwohl die Zudosierung bevorzugt separat erfolgt, kann auch ein Vorgemisch dieser Stoffströme zudosiert werden. Die Vormischung kann in beliebiger Kombination und in beliebigem Anteil erfolgen.It is possible to meter an olefin-rich stream into the feed stream, if this appears necessary, so that the proportion of olefins in the first feed stream is increased. This can be done temporarily or permanently. The olefin-rich stream can be added separately or premixed with another stream. Finally, an olefin-free, low-olefin and olefin-rich stream can be added separately to the first feed stream, so that this regulates the proportion of olefins in the first feed stream. Although if the metering is preferably carried out separately, a premix of these streams can also be metered in. The premixing can take place in any combination and in any proportion.

Der Reaktor kann auch mehr als zwei Katalysatorbetten enthalten. In einer weiteren Ausführung der Erfindung wird der bei der Reaktion erhaltene Stoffstrom durch ein drittes Katalysatorbett geleitet, wodurch sich dieses und der durchgeleitete Gasstrom erhitzen. Dies bedeutet, dass hinter dem zweiten Katalysatorbett ein dritter Einsatzstrom seitlich hinter dem zweiten Katalysatorbett in den Reaktor zu dem durch die zweite Hydrierung erhitzten Stoffstrom gegeben wird und der Gasstrom zur Hydrierung nach dem Durchleiten durch das zweite Katalysatorbett durch ein drittes Katalysatorbett strömt.The reactor can also contain more than two catalyst beds. In a further embodiment of the invention, the material flow obtained in the reaction is passed through a third catalyst bed, whereby this and the gas flow passed through are heated. This means that after the second catalyst bed, a third feed stream is added laterally behind the second catalyst bed into the reactor to the material stream heated by the second hydrogenation and the gas stream for hydrogenation flows through a third catalyst bed after passing through the second catalyst bed.

Beispielhaft wird in einer Ausführungsform der Erfindung hinter dem zweiten Katalysatorbett ein dritter Einsatzstrom seitlich hinter dem zweiten Katalysatorbett in den Reaktor zu dem durch die zweite Hydrierung erhitzten Stoffstrom gegeben, und der Stoffstrom zur Hydrierung strömt nach dem Durchleiten durch das zweite Katalysatorbett durch ein drittes Katalysatorbett. Es ist möglich, den nach der Durchleitung durch die dritte Teilmenge des hydrierenden Entschwefelungskatalyators erhaltenen Stoffstrom durch eine weitere oder durch mehrere weitere Teilmengen eines hydrierenden Entschwefelungskatalysators zu leiten und einen weiteren Einsatzstrom seitlich hinter den Katalysatorbetten in den Reaktor zu geben.For example, in one embodiment of the invention, behind the second catalyst bed, a third feed stream is added laterally behind the second catalyst bed into the reactor to the material stream heated by the second hydrogenation, and the material stream for the hydrogenation flows through a third catalyst bed after being passed through the second catalyst bed. It is possible to pass the stream obtained after passing through the third partial amount of the hydrogenating desulfurization catalyst through a further or several further partial amounts of a hydrogenating desulfurization catalyst and to add a further feed stream into the reactor laterally behind the catalyst beds.

Um die Temperaturverteilung auch in diesem dritten Katalysatorbett zu regeln, wird in die Zuleitung für den zweiten Einsatzstrom hinter das erste Katalysatorbett ebenfalls ein olefinarmer und ein olefinfreier Stoffstrom geführt. Durch die Zumischungsmengen der einzelnen Stoffströme kann der Olefinanteil auch in diesem zweiten Einsatzstrom gesteuert werden. Dadurch ist es wiederum möglich, die Temperatur in dem dritten Katalysatorbett zu steuern. Auch hier kann es in einer Ausführung der Erfindung möglich sein, zusätzlich einen olefinreichen Stoffstrom in den Reaktor zu leiten.In order to regulate the temperature distribution in this third catalyst bed as well, a low-olefin and an olefin-free stream are likewise fed into the feed line for the second feed stream behind the first catalyst bed. The proportion of olefins in this second feed stream can also be controlled through the admixture of the individual streams. This in turn makes it possible to control the temperature in the third catalyst bed. Here too, in one embodiment of the invention, it may be possible to additionally pass an olefin-rich stream of material into the reactor.

Schließlich ist es möglich, den Gasstrom durch beliebig viele Katalysatorbetten zu leiten. Hinter jedem Katalysatorbett kann dann seitlich ein weiterer Stoffstrom eingeleitet werden, der einen Olefinanteil enthält, mit dem sich die Temperatur der nachfolgenden Hydrierung optimal einstellen lässt. Dies bedeutet, dass nach der Durchleitung durch die dritte Teilmenge des hydrierenden Entschwefelungskatalyators erhaltene Stoffstrom durch eine weitere oder durch mehrere weitere Teilmengen eines hydrierenden Entschwefelungskatalysators geleitet wird und ein weiterer Einsatzstrom seitlich hinter den Katalysatorbetten in den Reaktor gegeben wird. Es ist möglich, in den jeweiligen Einsatzstrom auch einen olefinarmen oder olefinfreien Stoffstrom zuzuführen, um den entsprechenden Einsatzstrom an Olefinen abzureichern, wenn dies benötigt wird. Der Olefinanteil des entsprechenden Einsatzstromes kann so durch Zudosieren eines Stoffstromes geregelt werden. Die Zudosierung kann dabei durch separate Stoffströme olefinarm/olefinfrei erfolgen oder als Vorgemisch.Finally, it is possible to pass the gas stream through any number of catalyst beds. A further stream of material can then be introduced laterally behind each catalyst bed which contains an olefin fraction with which the temperature of the subsequent hydrogenation can be optimally adjusted. This means that after passing through the third subset of the hydrogenating desulfurization catalyst, the stream of material obtained is passed through a further or several further subsets of one hydrogenating desulfurization catalyst is passed and a further feed stream is added laterally behind the catalyst beds into the reactor. It is possible to feed a low-olefin or olefin-free stream into the respective feed stream in order to deplete the corresponding feed stream of olefins if this is required. The olefin content of the corresponding feed stream can thus be regulated by metering in a stream. The metered addition can take place by separate streams of low-olefin / olefin-free material or as a premix.

Schließlich ist es möglich, eine Olefinanreicherung durch Zugabe eines olefinhaltigen Stoffstromes vorzunehmen. Diese kann optional hinter jedem beliebigen Katalysatorbett erfolgen. In der Regel ist dies aber nicht erforderlich. Die Zugabe der genannten Stoffströme als Verdünnungsströme kann in jeder beliebigen Kombination und in jedem beliebigen Anteil erfolgen.Finally, it is possible to carry out an olefin enrichment by adding an olefin-containing stream. This can optionally take place behind any desired catalyst bed. Usually, however, this is not necessary. The said streams can be added as dilution streams in any combination and in any proportion.

Bei dem olefinfreien Gas handelt es sich bevorzugt um Wasserstoff, um Methan oder ein Gemisch dieser Stoffe. Auch bei dem olefinarmen Gas handelt es sich bevorzugt um ein Gas, das als Hauptkomponente Wasserstoff oder Methan oder beides enthält. Es ist jedoch auch möglich, dem zugeführten Stoffströmen ein anderes Gas beizumischen. Dies können beispielsweise Alkane sein oder Kohlendioxid. Schliesslich können der olefinreiche, der olefinarme oder der olefinfreie Stoffstrom beliebig gemischt sein. Auch enthalten sie vorteilhaft keine unerwünschten Fremdgase.The olefin-free gas is preferably hydrogen, methane or a mixture of these substances. The low-olefin gas is also preferably a gas which contains hydrogen or methane or both as the main component. However, it is also possible to add a different gas to the material flow supplied. These can be, for example, alkanes or carbon dioxide. Finally, the olefin-rich, the olefin-poor or the olefin-free stream can be mixed as desired. They also advantageously do not contain any undesired foreign gases.

Der Einsatzstrom wird bevorzugt über den Kopf des Reaktors der Hydrierungsreaktion zugeführt. Der Mengenanteil des über Kopf zugeführten Gases kann prinzipiell beliebig sein, er beträgt jedoch bevorzugt 1 bis 99 Massenprozent. Idealerweise beträgt der Mengenstrom des über Kopf zugeführten Gases 5 bis 15 Massenprozent. Durch die gesamte Hydrierungsreaktion lässt sich ein Einsatzstrom erhalten, der einen Anteil an organischen Schwefelverbindungen von unter 100 ppb enthält. Durch eine nachfolgende Gaswäsche lässt sich der Schwefelwasserstoff entfernen, so dass man ein im Wesentlichen schwefelfreies Gas erhält.The feed stream is preferably fed to the hydrogenation reaction via the top of the reactor. The proportion of the gas fed in via the top can in principle be as desired, but is preferably 1 to 99 percent by mass. Ideally, the flow rate of the gas fed in overhead is 5 to 15 percent by mass. Through the entire hydrogenation reaction, a feed stream can be obtained which contains a proportion of organic sulfur compounds of less than 100 ppb. The hydrogen sulfide can be removed by a subsequent gas scrub, so that an essentially sulfur-free gas is obtained.

Das Einsatzstrom als Einsatzstrom für die hydrierende Entschwefelung enthält leichte Olefine, die bei der Einsatztemperatur gasförmig vorliegen. Diese liegen im C-Zahl-Bereich von 2 bis 6.The feed stream as feed stream for the hydrogenating desulphurization contains light olefins which are in gaseous form at the use temperature. These are in the C number range from 2 to 6.

Die Reaktion der Hydrierung wird bei einer Temperatur von 250 bis 400 °C durchgeführt. Das Einsatzstrom wird deshalb bevorzugt bei einer Temperatur von 200 bis 400 °C in den Reaktor geführt. In einer besonders geeigneten Reaktionsführung wird das Einsatzstrom bei einer Temperatur von 250 °C bis 350 °C in den Reaktor geführt. Die jeweilige Temperatur im Reaktor ergibt sich dann durch die entsprechende Reaktionsführung. Bei Zuführung eines olefinärmeren Einsatzstromes an der entsprechenden Stelle kühlt sich das Reaktionsgemisch ab. Durch die Steuerung der Reaktionsführung über den Olefinanteil der Einsatzströme kann der Druck im Reaktor wesentlich besser kontrolliert werden. Dieser liegt für eine günstige Art der Ausführung bei 0,1 bis 10 MPa.The hydrogenation reaction is carried out at a temperature of 250 to 400 ° C. The feed stream is therefore preferably fed into the reactor at a temperature of 200 to 400.degree. In a particularly suitable reaction procedure, the feed stream is fed into the reactor at a temperature of 250.degree. C. to 350.degree. The respective temperature in the reactor then results from the corresponding reaction procedure. When a feed stream with a lower olefin content is fed in at the corresponding point, the reaction mixture cools down. By controlling the conduct of the reaction via the olefin content of the feed streams, the pressure in the reactor can be controlled much better. This is 0.1 to 10 MPa for a favorable type of design.

Die Aufheizung des Einsatzstromes auf die für die Reaktion notwendige Temperatur kann beliebig erfolgen. Diese kann beispielsweise über Brenner oder Dampfheizvorrichtungen erfolgen. Die Aufheizung des Einsatzstromes wird aber bevorzugt über Wärmetauscher erfolgen. Dies kann an beliebiger Stelle erfolgen. Als Heizmedium kann hierfür der erhitzte Stoffstrom im Reaktor dienen. Die Aufheizung durch die Wärmetauscher kann an beliebiger Stelle erfolgen. Diese kann beispielsweise an den einzelnen Einsatzströmen erfolgen. Diese kann aber auch an den Stoffströmen erfolgen, die in die Einsatzströme gegeben werden. Diese kann auch an dem Einsatzstrom erfolgen, die in den Reaktorkopf aufgegeben wird.The heating of the feed stream to the temperature necessary for the reaction can take place at will. This can take place, for example, using burners or steam heating devices. However, the feed stream is preferably heated via heat exchangers. This can be done anywhere. The heated material flow in the reactor can serve as the heating medium for this. The heat exchangers can be heated at any point. This can be done, for example, on the individual feed streams. However, this can also take place on the material flows that are added to the feed flows. This can also be done on the feed stream that is fed into the reactor head.

In einer Ausführungsform des erfindungsgemäßen Verfahrens schließt sich an das Verfahren zur hydrierenden Desulfurierung eine Gaswäsche oder eine Abtrennung für Schwefelwasserstoff an. Diese kann beliebig geartet sein und kann an beliebiger Stelle im Prozess ausgeführt werden. Beispielhaft schließt sich an das Verfahren zur hydrierenden Desulfurierung ein Adsorptionsprozess mit einem chemischen Adsorbens an.In one embodiment of the process according to the invention, the process for hydrogenating desulfurization is followed by gas scrubbing or a separation for hydrogen sulfide. This can be of any type and can be carried out at any point in the process. For example, the process for hydrogenating desulphurization is followed by an adsorption process with a chemical adsorbent.

Eine Vorrichtung wird offenbart, mit der sich das erfindungsgemäße Verfahren ausführen lässt und welche dadurch gekennzeichnet ist, dass

  • eine Rohrleitung zur Führung des Einsatzstromes den Einsatzstrom in mindestens zwei Gasströme teilt, und
  • die den ersten Einsatzstrom führende Rohrleitung von Kopfseite in einen mit mehreren waagrecht angeordneten Katalysatorbetten ausgerüsteten Reaktor führt, wobei der Reaktor mindestens zwei waagrecht angeordnete Katalysatorbetten enthält, und
  • am Reaktor zwischen dem ersten und dem zweiten Katalysatorbett eine zweite seitlich in den Reaktor führende Rohrleitung installiert ist, die den zweiten Einsatzstrom in den nach unten führenden Stoffstrom einleitet, so dass der erhaltene Stoffstrom durch das zweite Katalysatorbett strömt, und
  • die Rohrleitungen für mindestens einen Einsatzstrom Zuführungsleitungen für Stoffströme enthalten, mit denen sich der Anteil an Olefin im Einsatzstrom regeln lässt.
A device is disclosed with which the method according to the invention can be carried out and which is characterized in that
  • a pipeline for guiding the feed stream divides the feed stream into at least two gas streams, and
  • the pipeline carrying the first feed stream leads from the top into a reactor equipped with a plurality of horizontally arranged catalyst beds, the reactor containing at least two horizontally arranged catalyst beds, and
  • a second pipeline leading laterally into the reactor is installed on the reactor between the first and the second catalyst bed and introduces the second feed stream into the downward stream of material so that the material stream obtained flows through the second catalyst bed, and
  • the pipelines for at least one feed stream contain feed lines for material flows with which the proportion of olefin in the feed stream can be regulated.

Dies sind Zuführungsleitungen, die die Zuführung eines olefinreichen Stoffstromes in den entsprechenden Einsatzstrom ermöglichen. Dies kann eine Zuführungsleitung sein, mit der ein olefinreicher Stoffstrom in den Einsatzstrom gegeben wird. In diesem Fall erhöht sich der Olefinanteil in dem Einsatzstrom und die Temperatur in dem nachfolgenden Katalysatorbett erhöht sich entsprechend. Dies können aber auch Zuführungsleitungen für einen olefinarmen oder olefinfreien Stoffstrom sein, um den Olefinanteil der Einsatzströme entsprechend zu verringern. Die Zuführungsleitungen für Stoffströme können sich am Reaktor oder in den Zuführungsleitungen für die Einsatzströme an beliebiger Stelle befinden. Diese können auch in beliebiger Kombination vorliegen.These are feed lines that enable an olefin-rich stream to be fed into the corresponding feed stream. This can be a feed line with which an olefin-rich stream is fed into the feed stream. In this case the olefin content in the feed stream increases and the temperature in the subsequent catalyst bed increases accordingly. However, these can also be feed lines for a low-olefin or olefin-free stream in order to reduce the olefin content of the feed streams accordingly. The feed lines for material flows can be located at any point on the reactor or in the feed lines for the feed streams. These can also be present in any combination.

Auf diese Weise kann der Olefinanteil in den Einsatzströmen genau dosiert werden. So lässt sich auch die Temperatur im Reaktor genau steuern. Zum Teilen des Gasstromes befindet sich direkt an der Zuführungsleitung für den frischen Einsatzstrom eine Vorrichtung zur Aufteilung des Einsatzstromes. Zur Vorrichtung gehören auch Ventile, mit denen die Zuführung des Gases zu den einzelnen Einsprühungs- oder Eindüsungsvorrichtungen im Reaktor genau steuerbar ist. Je nach Aufheizung des Gases in den einzelnen Katalysatorbetten wird die zugeführte Menge an Stoff dann dosiert. So lässt sich die Temperatur in dem Reaktor in den vorgeschriebenen Temperaturgrenzen halten.In this way, the proportion of olefins in the feed streams can be precisely metered. In this way, the temperature in the reactor can also be precisely controlled. For dividing the gas flow, a device for dividing the feed flow is located directly on the feed line for the fresh feed. The device also includes valves with which the supply of the gas to the individual injection or injection devices in the reactor can be precisely controlled. Depending on the heating of the gas in the individual catalyst beds, the amount of substance supplied is then dosed. In this way, the temperature in the reactor can be kept within the prescribed temperature limits.

Wird der Einsatzstrom durch mehr als zwei Katalysatorbetten geleitet, so enthält der Reaktor weitere Katalysatorbetten. Hierzu gehören auch die entsprechenden weiteren Einleitungsvorrichtungen für die Einsatz- und Stoffströme. In diesem Fall wird eine Vorrichtung offenbart, wobei

  • die Rohrleitung zur Führung des Einsatzstromes den Einsatzstrom in drei oder mehr weitere Gasströme teilt, und
  • in dem Reaktor in drei oder mehr weitere waagrecht installierte Katalysatorbetten installiert sind, wobei
  • am Reaktor drei oder mehr weitere seitlich in den Reaktor führende Rohrleitungen installiert sind, die Einsatzströme in den nach unten führenden Stoffstrom einleiten können, so dass der erhaltene Stoffstrom durch die weiteren Katalysatorbetten strömen kann, und
  • die Rohrleitungen für die weiteren Einsatzströme Zuführungsleitungen für olefinhaltige Stoffströme enthalten, mit denen sich der Anteil an Olefin im Einsatzstrom regeln lässt.
If the feed stream is passed through more than two catalyst beds, the reactor contains further catalyst beds. This also includes the corresponding additional feed devices for the feed and material flows. In this case a device is disclosed wherein
  • the pipeline for guiding the feed stream divides the feed stream into three or more further gas streams, and
  • are installed in the reactor in three or more further horizontally installed catalyst beds, wherein
  • three or more further pipelines leading laterally into the reactor are installed on the reactor, which can introduce feed streams into the material stream leading downwards so that the material stream obtained can flow through the further catalyst beds, and
  • the pipelines for the further feed streams contain feed lines for olefin-containing material streams, with which the proportion of olefin in the feed stream can be regulated.

Die Zuführungsmenge und die Zusammensetzung des Einsatzstromes in den Reaktor werden bevorzugt über die Temperatur als Parameter gesteuert. Deshalb können sich an jeder beliebigen Stelle im Reaktor Temperatursensoren oder Thermometer befinden. Auch können sich an jeder beliebigen Stelle in der Vorrichtung Heizeinrichtungen oder Kühleinrichtungen befinden, mit denen sich die Temperatur zusätzlich regeln lässt. Selbstverständlich gehören zur Vorrichtung auch die zur Steuerung notwendigen Regeleinrichtungen, wobei es keine Rolle spielt, ob diese elektrischer, elektronischer oder mechanischer Natur sind. Die Regelung der Menge und Zusammensetzung des zugeführten Stoffstromes ist aber auch über andere Signale möglich, beispielsweise über den Schwefel- oder Olefingehalt des Gases oder einer Kombination dieser Messwerte. Hierzu können sich in den Zuführungsleitungen oder im Reaktor an jeder beliebigen Stelle Messsensoren befinden.The amount fed and the composition of the feed stream into the reactor are preferably controlled via the temperature as a parameter. Therefore, temperature sensors or thermometers can be located anywhere in the reactor. Heating devices or cooling devices with which the temperature can additionally be regulated can also be located at any point in the device. Of course, the device also includes the control devices required for control, regardless of whether they are electrical, electronic or mechanical in nature. The amount and composition of the supplied material flow can also be regulated via other signals, for example via the sulfur or olefin content of the gas or a combination of these measured values. For this purpose, measuring sensors can be located at any point in the supply lines or in the reactor.

Die Vorrichtung ist prinzipiell bereits in der Patentschrift DE 102007059243 A1 gezeigt. Diese unterscheidet sich von der vorliegenden Vorrichtung insbesondere durch die zusätzlichen Rohrleitungen für olefinhaltige Einsatzströme. Ferner kann im Kontext der vorliegenden Erfindung auf die internationale Anmeldung mit der Veröffentlichungsnummer WO 2008/148081 verwiesen werden.The device is in principle already in the patent DE 102007059243 A1 shown. This differs from the present device in particular through the additional pipelines for olefin-containing feed streams. Furthermore, in the context of the present invention, the international application with the publication number WO 2008/148081 to get expelled.

Die Vorrichtung kann ferner an beliebiger Stelle noch Vorrichtungen umfassen, die zur Aufrechterhaltung eines optimalen Betriebes notwendig sind. Dies können beispielsweise Ventile, Pumpen, Gasverteiler oder Gasfördereinrichtungen sein. Dies können aber auch Sensoren, Thermometer, Durchflussmesser oder analytische Einrichtungen sein. Diese können sich in der Vorrichtung an beliebiger Stelle befinden.The device can furthermore comprise devices at any point which are necessary to maintain optimal operation. These can be, for example, valves, pumps, gas distributors or gas delivery devices. However, these can also be sensors, thermometers, flow meters or analytical devices. These can be located anywhere in the device.

Das erfindungsgemäße Verfahren und die Vorrichtung erlauben die hydrierende Entschwefelung von olefinhaltigen Gasen mit geringem apparativen Aufwand und ohne aufwendige Kühl- oder Heizeinrichtungen. Die Entschwefelung ist effektiv, so dass sich der Schwefelgehalt des Einsatzstromes in der nachfolgenden Gaswäsche bis in den ppb-Bereich (ppb: parts per billion, 10-7 Molprozent) senken lässt. Das Verfahren gestattet die zuverlässige und sichere Temperaturkontrolle und Handhabung des Verfahrens. Durch das erfindungsgemäße Verfahren enthält man ein Produktgas, das im Wesentlichen nur noch Schwefelwasserstoff als Schwefelverbindung enthält.The method according to the invention and the device allow the hydrogenating desulfurization of olefin-containing gases with little equipment and without complex cooling or heating devices. The desulfurization is effective, so that the sulfur content of the feed stream in the subsequent gas scrubbing can be reduced to the ppb range (ppb: parts per billion, 10 -7 mol percent). The method allows reliable and safe temperature control and handling of the method. The process according to the invention results in a product gas which essentially only contains hydrogen sulfide as a sulfur compound.

Die Vorrichtung wird anhand einer Zeichnung genauer erläutert, wobei die Ausführungsform nicht auf diese Zeichnung beschränkt ist.The device is explained in more detail with reference to a drawing, the embodiment not being restricted to this drawing.

FIG. 1 zeigt einen Reaktor beispielhaft mit drei Katalysatorbetten zur Durchführung einer hydrierenden Entschwefelung. Der Einsatzstrom (1) wird durch einen Gasverteiler (2) in drei Einsatzströme (3, 4, 5) aufgeteilt. Der Einsatzstrom enthält in der Regel bereits die notwendige Menge an Olefinen. Für jede Gas- oder Flüssigkeitszuführungsleitung sind drei Ventile (3a, 4a, 5a) zum Regulieren des Einsatzstromes installiert. Der erste Einsatzstrom (3) wird mit einer Heizeinrichtung (6) oder einem Wärmetauscher (mit Wärmestrom, 6a) vorgeheizt und über den Reaktorkopf (3b) in den Reaktor (7) eingeleitet (8a). Idealerweise beträgt die Temperatur beim Einleiten des ersten Stromes 300 °C. Der erste Einsatzstrom trifft dort auf das erste Katalysatorbett (8) und heizt sich dort auf. Das Katalysatorbett (8) enthält den Katalysator (8b) auf geeigneten Trägerpartikeln und einen Gitterrost (8c) oder eine andere geeignete Haltevorrichtung. Die Temperatur bei Austritt am unteren Gitterboden für das erste Katalysatorbett (8) kann bis zu 390 °C betragen, beträgt jedoch typischerweise 370 °C. Die Temperatur in diesem ersten Katalysatorbett wird geregelt über den Mengenstrom des ersten Einsatzstromes (3b). Durch einen höheren Olefinanteil im ersten Einsatzstrom heizt sich das erste Katalysatorbett (8) auf. Der Olefinanteil kann wiederum über verschiedene Stoffströme (9a, b, c) geregelt werden, die hier beispielhaft als Verdünnungsgasstrom in den ersten Einsatzstrom (3) geleitet werden. Hierbei handelt es sich um einen olefinreichen Stoffstrom (9a), um einen olefinarmen Stoffstrom (9b) oder um einen olefinfreien Stoffstrom (9c). Wird beispielsweise ein Einsatzstrom (3a) mit höherem Olefinanteil benötigt, so wird mehr von dem olefinreichen Stoffstrom (9a) zugeführt. Bei Einsatz eines olefinärmeren Einsatzstromes (3) wird mehr von dem olefinarmen (9b) oder dem olefinfreien Stoffstrom (9c) zugeführt. Zur Nachregulierung kann über Zudosierung eines olefinreichen Stoffstromes (9a) Olefin nachdosiert werden. Auf diese Weise lässt sich die Temperatur im ersten Katalysatorbett (8) gut steuern. Diese Vorgehensweise ist auch bei den anderen Einsatzströmen (4, 5) möglich. Beispielhaft wird hier hinter dem ersten Katalysatorbett (8) ein weiterer Verdünnungsstrom (4) ohne weitere Regelung in einen zweiten Einsatzstrom (10a) eingeleitet. Dadurch kühlt sich der Stoffstrom wieder ab, idealerweise auf 300 °C. So trifft dieser Strom auf das zweite Katalysatorbett (10) mit Katalysator (10b) auf einer Haltevorrichtung (10c). Dort heizt sich der Stoffstrom durch die Hydrierungsreaktion wieder auf. Zur Einstellung der richtigen Reaktionstemperatur wird dann hinter dem Katalysatorbett (8) ein weiterer Einsatzstrom (11a) eingeleitet. Der entstehende Stoffstrom trifft dann wieder auf ein drittes Katalysatorbett (11) mit Katalysator (11b). Der Katalysator wird durch Gitterroste (8c, 10c, 11c) oder andere Haltevorrichtungen im Reaktor gehalten. Am Ausgang des Reaktors erhält man ein Produktgas (12), das im Wesentlichen nur noch Schwefelwasserstoff als Schwefelverbindung enthält. Das Produktgas wird am Ende des Reaktors (7) ausgeführt (13). Mit der Wärmeenergie des Einsatzstromes (6a) wird hier beispielhaft der erste Einsatzstrom (3b) über einen Wärmetauscher (6) vorgeheizt. Die Wärmeenergie des Einsatzstromes (1) wird auch genutzt (14a), um hier beispielhaft den olefinarmen Stoffstrom (9b) über einen Wärmetauscher (14) vorzuheizen, der in den ersten Einsatzstrom (3) gegeben wird. Der Einsatzstrom (3) kann bedarfsweise über einen weiteren Wärmetauscher (14b) zur Einstellung der Temperatur weiter aufgeheizt werden. Die einzelnen Stoffströme (9a,b,c) lassen sich über Ventile (15a, b, c) regeln. Seitlich werden typische Reaktortemperaturen angegeben. FIG. 1 shows an example of a reactor with three catalyst beds for carrying out hydrogenation desulphurisation. The feed stream (1) is divided into three feed streams (3, 4, 5) by a gas distributor (2) . The feed stream usually already contains the necessary amount of olefins. For each gas or liquid supply line, three valves (3a, 4a, 5a) are installed to regulate the feed flow. The first feed stream (3) is preheated with a heating device (6) or a heat exchanger (with heat flow, 6a) and introduced into the reactor (7) via the reactor head (3b) (8a). Ideally, the temperature when the first stream is introduced is 300 ° C. The first feed stream meets the first catalyst bed (8) there and is heated there. The catalyst bed (8) contains the catalyst (8b) on suitable carrier particles and a grid (8c) or another suitable holding device. The temperature at the outlet at the lower grid floor for the first catalyst bed (8) can be up to 390 ° C, but is typically 370 ° C. The temperature in this first catalyst bed is regulated via the flow rate of the first feed stream (3b). The first catalyst bed (8) is heated by a higher proportion of olefins in the first feed stream. The olefin fraction can in turn be regulated via various streams (9a, b, c) , which are passed into the first feed stream (3) here, for example, as a diluent gas stream. This is an olefin-rich stream (9a), a low-olefin stream (9b) or an olefin-free stream (9c). If, for example, a feed stream (3a) with a higher olefin content is required, more of the olefin-rich stream (9a) is fed in. When using a low-olefin feed stream (3) , more of the low-olefin stream (9b) or the olefin-free stream (9c) is fed. For readjustment, olefin can be metered in by metering in an olefin-rich stream (9a) . In this way, the temperature in the first catalyst bed (8) can be easily controlled. This procedure is also possible with the other feed streams (4, 5) . For example, a further dilution stream (4) is introduced into a second feed stream (10a) after the first catalyst bed (8) without further regulation. As a result, the material flow cools down again, ideally to 300 ° C. This stream thus meets the second catalyst bed (10) with catalyst (10b) on a holding device (10c). There, the stream of material is heated up again by the hydrogenation reaction. To set the correct reaction temperature, a further feed stream (11a) is then introduced downstream of the catalyst bed (8) . The resulting stream then meets a third catalyst bed (11) with catalyst (11b) . The catalyst is held in the reactor by grids (8c, 10c, 11c) or other holding devices. At the outlet of the reactor, a product gas (12) is obtained which essentially only contains hydrogen sulfide as a sulfur compound. The product gas is discharged (13) at the end of the reactor (7 ). With the thermal energy of the feed stream (6a) , the first feed stream (3b ) is preheated here, for example, via a heat exchanger (6) . The thermal energy of the feed stream (1) is also used (14a) to preheat the low-olefin material stream (9b) via a heat exchanger (14) , which is fed into the first feed stream (3) . The feed stream (3) can, if necessary, be further heated via a further heat exchanger (14b) to set the temperature. The individual material flows (9a, b, c) can be regulated via valves (15a, b, c) . Typical reactor temperatures are indicated on the side.

BezugszeichenlisteList of reference symbols

11
Einsatzstrom (olefinhaltig)Feed stream (containing olefin)
22
GasverteilerGas distributor
33
Erster EinsatzstromFirst input stream
3a3a
Ventil zum Regeln des ersten EinsatzstromesValve for regulating the first feed stream
3b3b
Erster Einsatzstrom über Reaktorkopf geführtFirst feed stream passed through the reactor head
44th
Zweiter EinsatzstromSecond input stream
4a4a
Ventil zum Regeln des zweiten EinsatzstromesValve for regulating the second feed stream
55
Dritter EinsatzstromThird feed stream
5a5a
Ventil zum Regeln des dritten EinsatzstromesValve for regulating the third feed stream
66th
Wärmetauscher zum Aufheizen des ersten EinsatzstromesHeat exchanger for heating up the first feed stream
6a6a
Wärmestrom vom Einsatzstrom zur Aufheizung des ersten EinsatzstromesHeat flow from the feed stream for heating the first feed stream
77th
Reaktorreactor
88th
Erstes KatalysatorbettFirst catalyst bed
8a8a
Gaszuführungseinrichtungen für den ersten EinsatzstromGas supply devices for the first feed stream
8b8b
Katalysatorteilchen im ersten KatalysatorbettCatalyst particles in the first catalyst bed
8c8c
Haltevorrichtung für das erste KatalysatorbettHolding device for the first catalyst bed
9a9a
Olefinreicher StoffstromOlefin-rich material flow
9b9b
Olefinarmer StoffstromLow-olefin material flow
9c9c
Olefinfreier StoffstromOlefin-free material flow
1010
Zweites KatalysatorbettSecond catalyst bed
10a10a
Gaszuführungseinrichtungen für den zweiten EinsatzstromGas supply devices for the second feed stream
10b10b
Katalysatorteilchen im zweiten KatalysatorbettCatalyst particles in the second catalyst bed
10c10c
Haltevorrichtung für das zweite KatalysatorbettHolding device for the second catalyst bed
1111
Drittes KatalysatorbettThird catalyst bed
11a11a
Gaszuführungseinrichtungen für den dritten EinsatzstromGas supply devices for the third feed stream
11b11b
Katalysatorteilchen im dritten KatalysatorbettCatalyst particles in the third catalyst bed
11c11c
Haltevorrichtung für das dritte KatalysatorbettHolding device for the third catalyst bed
1212
ProduktgasProduct gas
1313
ProduktgasentnahmeProduct gas extraction
1414th
Wärmetauscher zum Aufheizen des olefinarmen StoffstromesHeat exchanger for heating up the low-olefin material flow
14a14a
Wärmestrom vom Einsatzstrom zur Aufheizung eines StoffstromesHeat flow from the feed flow to the heating of a material flow
14b14b
Wärmetauscher zum Aufheizen des ersten EinsatzstromesHeat exchanger for heating up the first feed stream

Claims (19)

  1. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins, wherein
    • an olefin- and hydrogen-containing gaseous feed stream (3b) is passed through a reactor (7) containing a hydrogenating catalyst for desulfurization (8b, 10b, 11b) and the organic sulfur compounds and olefins present in the olefin- and hydrogen-containing feed stream (1) are entirely or partially hydrogenated to form hydrogen sulphide and alkanes, and
    • the olefin-containing feed stream (1) is divided to give at least two feed streams (3, 4, 5) before introduction into the reactor (7), and
    • the first feed stream (3) is conveyed, via suitable devices via the top of the reactor, through a catalyst bed (8) in the reactor (7) containing a partial amount of a catalyst for hydrogenative desulfurization (8b), and
    • a second feed stream (4) is introduced laterally downstream of the first catalyst bed into the reactor (7) and introduced into the reaction mixture which has been heated by the first hydrogenation, and the resulting gas stream is passed through a second catalyst bed (10) in the reactor, and
    • the proportion of the olefins in at least one feed stream is controllable by means of separate introduction of olefins or diluent gas into the individual feed streams, where the temperature in the reactor (7) is regulated by regulating the proportion of olefins in at least one feed stream,
    characterized in that
    • a gas which contains a significant proportion of olefins having from 2 to 6 carbon atoms is used as a feed stream (1) for the hydrogenative desulfurization, and
    • the hydrogenation reaction is carried out at a temperature of from 250 to 400°C.
  2. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to Claim 1, characterized in that the proportion of olefins in the first olefin-containing feed stream (3b) is regulated by addition of a low-olefin diluent stream (9b) or an olefin-free diluent stream (9c) or of both diluent streams to the first feed stream (3).
  3. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to either Claim 1 or 2, characterized in that the proportion of olefins in the first feed stream (3b) is increased by separate addition of an olefin-rich stream (9a) to the first feed stream (3).
  4. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to any of Claims 1 to 3, characterized in that, downstream of the second catalyst bed (10), a third feed stream is introduced laterally downstream of the second catalyst bed into the feed stream (10a) which has been heated by the second hydrogenation in the reactor and the stream flows, for the purpose of hydrogenation, through a third catalyst bed (11) after passage through the second catalyst bed (10).
  5. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to any of Claims 1 to 4, characterized in that the stream (12) obtained after passage through the third partial amount (11) of the hydrogenating desulfurization catalyst is conveyed through a further partial amount or through a plurality of further partial amounts of a hydrogenating desulfurization catalyst and a further feed stream is introduced laterally into the reactor downstream of the catalyst beds.
  6. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to Claim 5, characterized in that the proportion of olefins in the feed streams (3, 4, 5) is regulated by addition of a low-olefin stream (9b) or an olefin-free (9c) stream or a combination of these streams (9b, 9c) to the feed streams.
  7. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to any of Claims 1 to 6, characterized in that the olefin-free (9c) or low-olefin (9b) stream is a hydrogen-containing stream.
  8. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to any of Claims 1 to 6, characterized in that the low-olefin (9b) or olefin-free (9c) stream is a methane-containing stream.
  9. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to any of Claims 1 to 6, characterized in that the low-olefin (9b) or olefin-free (9c) stream is a hydrogen- and methane-containing stream.
  10. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to any of Claims 1 to 9, characterized in that the first feed stream (3) introduced into the top of the reactor is preheated.
  11. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to any of Claims 1 to 10, characterized in that the proportion of the first gas stream (3) introduced into the top of the reactor is from 1 to 99% by mass of the total feed stream (1) .
  12. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to any of Claims 1 to 11, characterized in that the proportion of the first gas stream (3) introduced into the top of the reactor is from 5 to 15% by mass of the total feed stream (1) .
  13. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to any of Claims 1 to 12, characterized in that the feed stream (1) is introduced at a temperature of from 200 to 400°C into the reactor (7).
  14. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to any of Claims 1 to 12, characterized in that the feed stream (1) is introduced at a temperature of from 250 to 350°C into the reactor (7) .
  15. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to any of Claims 1 to 14, characterized in that the hydrogenative desulfurization is carried out at a pressure of from 0.1 to 10 MPa.
  16. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to any of Claims 1 to 15, characterized in that the heating of the feed stream (3, 4, 5) is effected at any position by heat exchange with the hydrogenated feed stream.
  17. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to any of Claims 1 to 16, characterized in that the heating of an olefin-rich stream (9a), a low-olefin stream (9b) or an olefin-free stream (9c) is effected at any position by heat exchange (6a) with the hydrogenated feed stream (13) .
  18. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to any of Claims 1 to 17, characterized in that the process for hydrogenative desulfurization is followed by a gas scrub or a removal of hydrogen sulphide.
  19. Process for desulfurizing olefin-containing starting materials (1) by regulating the proportion of olefins according to any of Claims 1 to 18, characterized in that the process for hydrogenative desulfurization is followed by an adsorption process using a chemical adsorbent.
EP10739852.1A 2009-07-10 2010-07-07 Method for desulfurizing materials containing olefins by regulating the amount of olefins Active EP2451903B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10739852T PL2451903T3 (en) 2009-07-10 2010-07-07 Method for desulfurizing materials containing olefins by regulating the amount of olefins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009032802A DE102009032802A1 (en) 2009-07-10 2009-07-10 Process for the desulfurization of olefin-containing feedstocks by controlling the olefin content
PCT/EP2010/004092 WO2011003585A2 (en) 2009-07-10 2010-07-07 Method for desulfurizing olefin-containing charge material by controlling the olefin content

Publications (2)

Publication Number Publication Date
EP2451903A2 EP2451903A2 (en) 2012-05-16
EP2451903B1 true EP2451903B1 (en) 2020-09-02

Family

ID=42938202

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10739852.1A Active EP2451903B1 (en) 2009-07-10 2010-07-07 Method for desulfurizing materials containing olefins by regulating the amount of olefins

Country Status (14)

Country Link
US (1) US20130030235A1 (en)
EP (1) EP2451903B1 (en)
CN (1) CN102471703B (en)
CA (1) CA2767397A1 (en)
CO (1) CO6612178A2 (en)
DE (1) DE102009032802A1 (en)
DK (1) DK2451903T3 (en)
EA (1) EA028944B1 (en)
IN (1) IN2012DN01106A (en)
MX (1) MX2012000429A (en)
MY (1) MY172046A (en)
PL (1) PL2451903T3 (en)
WO (1) WO2011003585A2 (en)
ZA (1) ZA201200993B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109415638A (en) * 2016-10-07 2019-03-01 托普索公司 A method of containing the fuel gas stream of the alkene greater than 4% for hydrotreating

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB104771A (en) * 1916-04-04 1917-03-22 Augustus Bever Improvements in Explosive Projectiles.
GB1044771A (en) * 1963-04-02 1900-01-01
US3506567A (en) * 1966-08-04 1970-04-14 Standard Oil Co Two-stage conversion of nitrogen contaminated feedstocks
US3983029A (en) * 1973-03-02 1976-09-28 Chevron Research Company Hydrotreating catalyst and process
US4017382A (en) * 1975-11-17 1977-04-12 Gulf Research & Development Company Hydrodesulfurization process with upstaged reactor zones
NL191763C (en) * 1979-09-26 1996-07-02 Shell Int Research Method of demetallizing a hydrocarbon oil.
PL1741768T5 (en) * 2005-07-04 2024-02-05 Neste Oyj Process for the manufacture of diesel range hydrocarbons
WO2007003709A1 (en) 2005-07-04 2007-01-11 Neste Oil Oyj Process for the manufacture of diesel range hydrocarbons
AR066682A1 (en) * 2007-05-25 2009-09-02 Shell Int Research A PROCESS TO REMOVE SULFUR FROM FUEL GAS, LESS REAGENT AND MORE REAGENT CONTAINS CONTAINING ORGANIC SULFUR AND LIGHT OLEFINS
DE102007059243A1 (en) * 2007-12-07 2009-06-10 Uhde Gmbh Process for the desulfurization of olefin-containing starting materials
US9279087B2 (en) * 2008-06-30 2016-03-08 Uop Llc Multi-staged hydroprocessing process and system
DE102008059243A1 (en) 2008-11-21 2010-05-27 Newfrey Llc, Newark Joining component and method for producing a joining component
EP2226375B1 (en) * 2009-03-04 2012-05-16 IFP Energies nouvelles Process for the continuous hydrogenation of triglyceride containing raw materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2451903A2 (en) 2012-05-16
CA2767397A1 (en) 2011-01-13
EA201290030A1 (en) 2012-07-30
ZA201200993B (en) 2012-09-26
IN2012DN01106A (en) 2015-04-10
CN102471703A (en) 2012-05-23
US20130030235A1 (en) 2013-01-31
CO6612178A2 (en) 2013-02-01
EA028944B1 (en) 2018-01-31
DK2451903T3 (en) 2020-11-23
MX2012000429A (en) 2012-06-08
WO2011003585A2 (en) 2011-01-13
MY172046A (en) 2019-11-12
PL2451903T3 (en) 2021-03-08
CN102471703B (en) 2015-12-16
WO2011003585A3 (en) 2011-06-16
DE102009032802A1 (en) 2011-01-13

Similar Documents

Publication Publication Date Title
WO2011009570A1 (en) Process and apparatus for dehydrating alkanes with equalization of the product composition
EP2252567B1 (en) Method and device for thermal partial oxidation of hydrocarbons
EP2451903B1 (en) Method for desulfurizing materials containing olefins by regulating the amount of olefins
EP2653524B1 (en) Zone de convection d'un four de craquage
EP3889105B1 (en) Method and system for producing a synthesis gas product containing hydrogen and carbon oxides
EP3219666B1 (en) Method and device for creating a mixed feed flow for a steam reforming unit
WO2009071180A1 (en) Method for desulfurizing ingredient materials containing olefin
EP3330221B1 (en) Method and device for creating a feed flow for a steam reforming unit
DE3403987A1 (en) METHOD FOR THE PRODUCTION OF SEMI-SYNTHETIC PROTECTIVE AND REACTION GAS, ESPECIALLY FOR THE HEAT TREATMENT OF STEEL AND METAL MATERIALS, CONSISTING OF A MIXTURE OF DIFFERENTLY SELECTABLE QUANTITIES OF NITROGEN, OXYXIDE, WATER
EP3560578A1 (en) Method for treating a spent liquor containing sulphides
WO2021110455A1 (en) Method of stable operation of a steam reforming plant
EP3330220B1 (en) Method of manufacturing a feed flow for a steam reforming installation
EP3038998A1 (en) Device and method for producing acetylene and synthesis gas
DE4340688C2 (en) Process for adjusting the carbon activity in a synthesis gas production process
DE3943036C2 (en) Process for the hydrogenation of a carbon-containing feed, in particular coal and / or heavy oil
DE10238988B4 (en) Process for operating a hydrogen generating apparatus and apparatus for generating hydrogen
DE102004055826A1 (en) Process and apparatus for fully hydrogenating a hydrocarbon stream
DE102009052649A1 (en) Heating a pre-reformer in a synthesis gas system, comprises supplying methane-feed to steam reformer, converting the stream into gas, using part of methane-feed for the formation hot gas, and passing the hot gas through the pre-reformer
EP2739387A1 (en) Method for handling product fluid flows
DE961646C (en) Method and device for cracking hydrocarbons
DE1470681A1 (en) Process for the hydrorefining of sulfur-containing hydrocarbon distillates
WO2012126463A2 (en) Device and method for residence time control in a catalytic conversion of solid-containing hydrocarbons
DE102012206540A1 (en) Tube bundle reactor with heat recovery from product gas
DE102018001751A1 (en) A method and apparatus for removing hydrogen sulfide from a gas mixture and burners for use herein
DE102015121037A1 (en) Device for the distribution of oxygen in an oxidation reactor, oxidation reactor and installation with such a device and method of operation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111125

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130516

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200409

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1308810

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016743

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20201118

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201203

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210104

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016743

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210707

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210707

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1308810

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100707

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230719

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230703

Year of fee payment: 14

Ref country code: FR

Payment date: 20230725

Year of fee payment: 14

Ref country code: DK

Payment date: 20230721

Year of fee payment: 14

Ref country code: DE

Payment date: 20230719

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010016743

Country of ref document: DE

Owner name: THYSSENKRUPP UHDE GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG, 45143 ESSEN, DE