EP2450118A1 - Method for producing a tube - Google Patents

Method for producing a tube Download PDF

Info

Publication number
EP2450118A1
EP2450118A1 EP10196606A EP10196606A EP2450118A1 EP 2450118 A1 EP2450118 A1 EP 2450118A1 EP 10196606 A EP10196606 A EP 10196606A EP 10196606 A EP10196606 A EP 10196606A EP 2450118 A1 EP2450118 A1 EP 2450118A1
Authority
EP
European Patent Office
Prior art keywords
carrier element
coating material
layer
coating
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10196606A
Other languages
German (de)
French (fr)
Other versions
EP2450118B1 (en
Inventor
Erik Bähr
Peter Heinrich
Helmut Höll
Peter Sen. Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP2450118A1 publication Critical patent/EP2450118A1/en
Application granted granted Critical
Publication of EP2450118B1 publication Critical patent/EP2450118B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/003Moulding by spraying metal on a surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the present invention relates to a method for producing a tube, wherein a carrier element is coated by means of a thermal spraying method and the material of the later formed tube is selected as coating material, and wherein subsequently the coating forming the tube is released from the carrier element.
  • a block or billet of, for example, steel cylinders is first formed into a billet, a short and thick-walled tube. This billet is then further processed in a subsequent process step by, for example, the pilgering process or the cross rolling to a tube of thinner diameter.
  • seamless tubes have also been produced by various thermal spraying techniques.
  • a powder coating material is introduced into a heated process gas jet.
  • the powder particles melt or on.
  • the process gas is sprayed onto a carrier element, so that a layer is formed on the carrier element.
  • the layer must fulfill two requirements. For one thing, the layer should adhere to the carrier element during the process. Because only in this way can a pipe be made with fixed specifications.
  • the coating material or later the finished tube can be as easily as possible detached from the carrier element in order to avoid subsequent damage to the tube.
  • seamless tubes are produced by means of a cold spraying process and then the finished tube is released from the carrier element by cooling or heating the tube and / or the carrier element or, alternatively, the carrier element is melted, vaporized or broken.
  • the material of the coating material and the carrier element there is a high or low adhesion between the coating material and the carrier element.
  • Low adhesion in turn means that the coating material is minimally or not at all adhered to the carrier element during the injection process, but is very easy to detach from the carrier element after completion. This in turn can cause complications during the application of the layer to the support member.
  • a thermal spraying process is used for producing a pipe, in particular a seamless pipe, by means of which a high adhesive tensile strength is provided.
  • the adhesive tensile strength results from the relationship between adhesion and layer properties. While the layer properties are largely due to the materials of coating material and carrier element as well as to the gas and the temperature used for this purpose, the adhesion properties are adaptable or adjustable according to the invention via the spray angle.
  • the spray angle is selected in the inventive method so that adhesion is sufficient, so that the coating material adheres to the carrier element, and at the same time is so low that the tube after completion without the use of costly process steps can be easily solved by the support element.
  • the process gas is sprayed in the solder onto the carrier element, so that maximum adhesion forms between the coating material and the carrier element.
  • the process gas is sprayed parallel to the carrier element. This creates no contact and thus no adhesion between the coating material and the carrier element.
  • An injection angle, which causes sufficient adhesion between the coating material and the carrier element, is therefore between more than 0 ° and 90 °.
  • the above considerations apply analogously to the angular range of 90 ° to 180 ° (spraying from the "other side"). In the following, for the sake of simplicity, reference will only be made to the acute angle range (0 ° to 90 °).
  • a flange-like layer is applied at an angle of 90 ° to the carrier element, so that, due to a specific layer thickness, an edge of the layer directed towards the carrier element is formed.
  • the jet of the process gas is aligned with the spray device so that the angle to the flank of the layer is about 90 °. In this angular position, the sprayer then remains until the completion of the coating, so that a uniform dense and non-porous layer with low adhesion at the same time.
  • a hollow mandrel is selected as the carrier element, the outer surface of which is coatable with the coating material.
  • the tube gets its shape.
  • the corresponding diameter of the pipe can be selected.
  • the coating material must be released from the carrier element. This is preferably done by introducing a coolant into the hollow mandrel so that the entire inner surface of the mandrel is cooled.
  • the coolant may be carbon dioxide (CO 2 ) or nitrogen (N 2 ), in particular in the liquid state.
  • the introduction of the coolant leads to a shock-like shrinking process of the mandrel, wherein the mandrel changes in size, so that the coating material dissolves from the mandrel, without this being damaged. After the mandrel returns to ambient temperature, it expands to its initial size and can be used for the next manufacturing process.
  • a cold gas spraying process is preferably used.
  • the method is characterized in that the powder particles of the coating material are not heated to the melting temperature, but are sprayed onto the carrier element with high pressure (temperature approx. 600 ° C, particle velocity> 1000m / s). Layers of extreme adhesion strengths can be produced which are extremely dense and nonporous. Due to the relatively low temperature compared to other thermal spray processes, the spray material is thermally influenced little and much less oxidized. Also, the coated substrate shows no material change due to heat. Methods of cold gas spraying are also in the patent WO 2009/109016 described.
  • the cold gas spraying process allows the use of titanium as a coating material.
  • the corrosion- and temperature-resistant titanium is heated only to the extent that it can be applied to the carrier element by means of the cold gas spraying method, without losing its strength properties. At higher temperatures, the titanium would become brittle quickly.
  • support element preferably aluminum is used.
  • Aluminum is a highly corrosion-resistant element that is easy to mold at low temperatures. Upon introduction of coolant into the hollow mandrel, which in the preferred embodiment is aluminum, the mandrel shrinks, thereby releasing the coating material from the mandrel.
  • a preferred embodiment of the spray system is designed so that move during the coating process, the carrier element and the spray device relative to each other, in particular parallel to the surface of the carrier material. There is a movement of Spray device and carrier element with different speeds in the same direction as well conceivable, as an opposite direction of the carrier element and spray device. Likewise, it is provided that either only the carrier element or only the spray device move in one direction.
  • FIG. 1 shows the carrier element 1 in the form of a hollow mandrel, the spray device 2, the flange-like layer 3, the process gas jet 4 and the coating 5 consisting of the coating material.
  • the position A of the spray device 2 serves to apply the flange-like layer 3 to the carrier element 1, wherein the process gas jet 4 strikes the carrier element 1 at an angle of 90 ° 6b.
  • Carrier element 1 and spray device 2 do not move in this case in the axial direction of the mandrel to each other.
  • the process gas jet 4 with the powdery coating material located therein is directed perpendicular to the carrier element 1, so that the flange-like layer 3 with a certain height, preferably 0.5 to 20 mm, is formed.
  • the finished tube is then about as thick as the flange.
  • the position of the spray device 2 changes. This is illustrated by an intermediate position B.
  • the exact position C of the spray device 2 is selected.
  • the process gas jet 4 is aligned by means of the spray device 2 in the solder 6a to the flank 9 of the flange-like layer 3.
  • the angle 6a between propagation direction of the process gas jet 4 and flank 9 of the flange-like layer 3 is substantially 90 °, wherein a possible deviation from the solder should not be more than +/- 10 °.
  • flank angle 7 and the spray angle 8 In addition to the 90 ° angle 6a, there are two more angles that are important.
  • a flank angle 7 is formed between the flank 9 and the carrier element 1. This angle describes the angle at which the flank 9 of the flange-like layer 3 faces the carrier element 1.
  • a uniform layer 5 of the coating material is sprayed onto the carrier element 1, the coating 5 having optimum layer properties with low adhesion.
  • FIG. 2 shows the sequential process steps of the invention
  • the image 1 is only an example of a spray angle 8 of 0 ° show and thus is not to be regarded as a process step.
  • the inventive method begins with Figure 2.
  • Figure 2 first, the flange-like layer 3 is sprayed onto the carrier element 1, wherein the spray device 2 is aligned at 90 ° angle 6b to the support element 1.
  • the spray device 2 is changed in its position so that the process gas jet 4 is at 90 ° angle 6a to the flank 9 of the flange layer 3.
  • the spray device 2 moves in image 3, for example, in the axial direction of the mandrel and parallel to the surface of the support member 1, while the mandrel 1 rotates about its longitudinal axis to form the tube circumference.
  • Figure 4 the approach of a coating 5 of the coating material on the support element 1 can be seen.
  • Figure 8 shows the separation process between tube 10 and mandrel at an advanced stage. After the tube 10 has been completely detached from the carrier element 1 or the mandrel, the finished tube 10 with a predetermined diameter of the selected material, in particular titanium, with the desired layer thickness and the corresponding optimum layer properties.
  • the selected material in particular titanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Chemical Vapour Deposition (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Producing tube, comprises coating a support element (1) using a thermal spraying method, with a coating material comprising a material of subsequently molded tube, and releasing the coating from the support element to form the tube. The spray angle with which the coating material is sprayed on the support element, is selected such that a low adhesion of the coating is obtained on the support element.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Rohres, wobei ein Trägerelement mittels eines thermischen Spritzverfahrens beschichtet wird und als Beschichtungswerkstoff das Material des später ausgeformten Rohres gewählt wird, und wobei anschließend die das Rohr bildende Beschichtung vom Trägerelement gelöst wird.The present invention relates to a method for producing a tube, wherein a carrier element is coated by means of a thermal spraying method and the material of the later formed tube is selected as coating material, and wherein subsequently the coating forming the tube is released from the carrier element.

Stand der TechnikState of the art

Herkömmlicher Weise wird zum Erzeugen von nahtlosen Rohren zunächst ein Block oder ein Knüppel aus beispielsweise Stahlzylinder zu einer Luppe, ein kurzes und dickwandiges Rohr, geformt. Diese Luppe wird dann in einem folgenden Verfahrensschritt durch zum Beispiel das Pilgerschrittverfahren oder das Schrägwalzen zu einem Rohr dünneren Durchmessers weiter verarbeitet.Traditionally, to produce seamless tubes, a block or billet of, for example, steel cylinders is first formed into a billet, a short and thick-walled tube. This billet is then further processed in a subsequent process step by, for example, the pilgering process or the cross rolling to a tube of thinner diameter.

In neuerer Zeit werden nahtlose Rohre auch mittels verschiedener thermischer Spritzverfahren hergestellt. Hierbei wird ein in Pulverform vorliegender Beschichtungswerkstoff in einen erhitzten Prozessgasstrahl eingeleitet. Dabei schmelzen die Pulverpartikel auf bzw. an. Anhand einer Spritzdüse wird das Prozessgas auf ein Trägerelement aufgespritzt, so dass sich eine Schicht auf dem Trägerelement bildet. Dabei muss die Schicht zwei Voraussetzungen erfüllen. Zum einen sollte die Schicht während des Verfahrens an dem Trägerelement haften. Denn nur auf diese Weise kann ein Rohr mit festen Vorgaben hergestellt werden. Zum anderen ist es erforderlich, dass sich der Beschichtungswerkstoff bzw. später das fertige Rohr möglichst leicht von dem Trägerelement lösen lässt, um eine nachträgliche Beschädigung des Rohres zu vermeiden.More recently, seamless tubes have also been produced by various thermal spraying techniques. In this case, a powder coating material is introduced into a heated process gas jet. The powder particles melt or on. On the basis of a spray nozzle, the process gas is sprayed onto a carrier element, so that a layer is formed on the carrier element. The layer must fulfill two requirements. For one thing, the layer should adhere to the carrier element during the process. Because only in this way can a pipe be made with fixed specifications. On the other hand, it is necessary that the coating material or later the finished tube can be as easily as possible detached from the carrier element in order to avoid subsequent damage to the tube.

Ein entsprechendes Verfahren wird beispielsweise in der WO 2009/109016 A1 beschrieben. Hierbei werden nahtlose Rohre anhand eines Kaltspritzverfahrens hergestellt und anschließend das fertige Rohr von dem Trägerelement gelöst, indem das Rohr und/ oder das Trägerelement abgekühlt oder erhitzt oder alternativ das Trägerelement geschmolzen, verdampft oder zerbrochen wird.An appropriate method is used for example in the WO 2009/109016 A1 described. In this case, seamless tubes are produced by means of a cold spraying process and then the finished tube is released from the carrier element by cooling or heating the tube and / or the carrier element or, alternatively, the carrier element is melted, vaporized or broken.

Je nach Schichtdicke, Material des Beschichtungswerkstoffes und des Trägerelements, erfolgt eine hohe oder geringe Haftung zwischen Beschichtungswerkstoff und Trägerelement. Dabei führt eine hohe Haftung dazu, dass der Beschichtungswerkstoff während dem Spritzvorgang gut an dem Trägerelement haftet, jedoch nach Fertigstellung nur schwerlich vom Trägerelement zu lösen ist. Was einen erhöhten Zeit- und Kostenaufwand infolge weiterer Verfahrensschritte nach sich ziehen kann. Eine geringe Haftung wiederum führt dazu, dass der Beschichtungswerkstoff während dem Spritzvorgang minimal bis gar nicht an dem Trägerelement haftet, jedoch nach Fertigstellung sehr leicht vom Trägerelement zu lösen ist. Dies wiederum kann Komplikationen während des Auftragens der Schicht auf dem Trägerelement hervorrufen.Depending on the layer thickness, the material of the coating material and the carrier element, there is a high or low adhesion between the coating material and the carrier element. In this case, a high adhesion to the fact that the coating material adheres well to the support member during the injection process, but is difficult to solve after completion of the support element. Which may entail increased time and cost as a result of further process steps. Low adhesion in turn means that the coating material is minimally or not at all adhered to the carrier element during the injection process, but is very easy to detach from the carrier element after completion. This in turn can cause complications during the application of the layer to the support member.

Es ist daher wünschenswert, die Haftung zwischen Beschichtungswerkstoff und Trägerelement so einzustellen, dass die erforderlichen Haftungs- und auch Schichteigenschaften garantiert und gleichzeitig Herstellungskosten minimiert werden können.It is therefore desirable to adjust the adhesion between the coating material and the carrier element, that the required adhesion and also layer properties are guaranteed and at the same time manufacturing costs can be minimized.

Offenbarung der ErfindungDisclosure of the invention

Erfindungsgemäß wird ein Verfahren zur Herstellung eines Rohres mit den Merkmalen des Patentanspruchs 1 vorgeschlagen. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche sowie der nachfolgenden Beschreibung.According to the invention, a method for producing a pipe with the features of claim 1 is proposed. Advantageous embodiments of the invention are the subject of the dependent claims and the following description.

Vorteile der ErfindungAdvantages of the invention

Erfindungsgemäß wird zum Herstellen eines Rohres, insbesondere eines nahtlosen Rohres, ein thermisches Spritzverfahren angewendet, durch welches eine hohe Haftzugfestigkeit bereitgestellt wird. Dabei ergibt sich die Haftzugfestigkeit aus dem Zusammenhang zwischen Haftungs- und Schichteigenschaften. Während die Schichteigenschaften zum größten Teil auf die Materialen von Beschichtungswerkstoff und Trägerelement sowie auf das Gas und die hierfür verwendete Temperatur zurückzuführen sind, sind die Haftungseigenschaften erfindungsgemäß über den Spritzwinkel anpassbar bzw. einstellbar. Der Spritzwinkel wird bei dem erfindungsgemäßen Verfahren so gewählt, dass eine Haftung entsteht, die ausreicht, damit der Beschichtungswerkstoff an dem Trägerelement haftet, und die gleichzeitig so gering ist, dass das Rohr nach Fertigstellung ohne die Anwendung kostenintensiver Verfahrensschritte leichter vom Trägerelement gelöst werden kann. Bei idealem Spritzwinkel besteht eine minimale Haftung der Beschichtung am Trägermaterial bei gleichzeitig optimalen Schichteigenschaften, die daran zu erkennen sind, dass die Beschichtung bzw. das spätere Rohr dicht und porenfrei vorliegt. Das Einbringen eines Kühlmittels innerhalb des Trägerelements und der damit verbundene Schrumpfvorgang sollten ausreichen, um die Haftung zwischen Beschichtungswerkstoff bzw. Rohr und Trägerelement zu lösen.According to the invention, a thermal spraying process is used for producing a pipe, in particular a seamless pipe, by means of which a high adhesive tensile strength is provided. The adhesive tensile strength results from the relationship between adhesion and layer properties. While the layer properties are largely due to the materials of coating material and carrier element as well as to the gas and the temperature used for this purpose, the adhesion properties are adaptable or adjustable according to the invention via the spray angle. The spray angle is selected in the inventive method so that adhesion is sufficient, so that the coating material adheres to the carrier element, and at the same time is so low that the tube after completion without the use of costly process steps can be easily solved by the support element. At ideal spray angle, there is minimal adhesion of the coating to the substrate at the same time optimum layer properties, which can be recognized by the fact that the coating or the subsequent tube is tight and free from pores. The introduction of a coolant within the carrier element and the associated shrinking process should be sufficient to release the adhesion between the coating material or tube and carrier element.

Bei einem Spritzwinkel von 90° wird das Prozessgas im Lot auf das Trägerelement aufgespritzt, so dass sich zwischen Beschichtungswerkstoff und Trägerelement eine maximale Haftung ausbildet. Bei einem Spritzwinkel von 0° wird das Prozessgas parallel zu dem Trägerelement aufgespritzt. Dabei entsteht kein Kontakt und damit auch keine Haftung zwischen Beschichtungswerkstoff und Trägerelement. Ein Spritzwinkel, der eine ausreichende Haftung zwischen Beschichtungswerkstoff und Trägerelement hervorruft, liegt demnach zwischen über 0° und 90°. Obige Betrachtungen gelten analog für den Winkelbereich von 90° bis 180° (Spritzen von der "anderen Seite"). Im folgenden soll sich der Einfachheit halber nur auf den spitzen Winkelbereich (0° bis 90°) bezogen werden.At a spray angle of 90 °, the process gas is sprayed in the solder onto the carrier element, so that maximum adhesion forms between the coating material and the carrier element. At a spray angle of 0 °, the process gas is sprayed parallel to the carrier element. This creates no contact and thus no adhesion between the coating material and the carrier element. An injection angle, which causes sufficient adhesion between the coating material and the carrier element, is therefore between more than 0 ° and 90 °. The above considerations apply analogously to the angular range of 90 ° to 180 ° (spraying from the "other side"). In the following, for the sake of simplicity, reference will only be made to the acute angle range (0 ° to 90 °).

Vorteilhafter Weise wird bei einer bevorzugten Ausführungsform zu Beginn des thermischen Spritzverfahrens eine flanschartige Schicht im Winkel von 90° auf das Trägerelement aufgebracht, so dass sich aufgrund einer bestimmten Schichtdicke eine zum Trägerelement gerichtete Flanke der Schicht ausbildet. Anschließend wird der Strahl des Prozessgases anhand der Spritzvorrichtung so ausgerichtet, dass der Winkel zu der Flanke der Schicht etwa 90° beträgt. In dieser Winkelposition verharrt die Spritzvorrichtung dann bis zum Abschluss der Beschichtung, so dass eine gleichmäßige dichte und porenfreie Schicht mit gleichzeitig geringer Haftung entsteht.Advantageously, in a preferred embodiment, at the beginning of the thermal spraying process, a flange-like layer is applied at an angle of 90 ° to the carrier element, so that, due to a specific layer thickness, an edge of the layer directed towards the carrier element is formed. Subsequently, the jet of the process gas is aligned with the spray device so that the angle to the flank of the layer is about 90 °. In this angular position, the sprayer then remains until the completion of the coating, so that a uniform dense and non-porous layer with low adhesion at the same time.

Zweckmäßiger Weise wird als Trägerelement ein hohler Dorn gewählt, dessen äußere Oberfläche mit dem Beschichtungswerkstoff beschichtbar ist. In Folge dessen erhält das Rohr seine Form. Je nach Dorngröße kann der entsprechende Durchmesser des Rohres gewählt werden.Conveniently, a hollow mandrel is selected as the carrier element, the outer surface of which is coatable with the coating material. As a result, the tube gets its shape. Depending on the size of the mandrel, the corresponding diameter of the pipe can be selected.

Nachdem die gewünschte Länge des Rohres durch Beschichtung des Trägerelements erfolgt ist, muss der Beschichtungswerkstoff von dem Trägerelement gelöst werden. Dies erfolgt vorzugsweise durch Einbringen eines Kühlmittels in den hohlen Dorn, so dass die gesamte Innenfläche des Dorns abgekühlt wird. Bei dem Kühlmittel kann es sich um Kohlendioxid (CO2) oder Stickstoff (N2), insbesondere im flüssigen Aggregatzustand, handeln.After the desired length of the tube has been effected by coating the carrier element, the coating material must be released from the carrier element. This is preferably done by introducing a coolant into the hollow mandrel so that the entire inner surface of the mandrel is cooled. The coolant may be carbon dioxide (CO 2 ) or nitrogen (N 2 ), in particular in the liquid state.

Das Einleiten des Kühlmittels führt zu einem schockartigen Schrumpfvorgang des Dorns, wobei sich der Dorn in seiner Größe verändert, so dass sich der Beschichtungswerkstoff von dem Dorn löst, ohne dass dieser beschädigt wird. Nachdem der Dorn die Umgebungstemperatur wieder erreicht hat, dehnt er sich auf seine Anfangsgröße aus und kann für das nächste Herstellungsverfahren verwendet werden.The introduction of the coolant leads to a shock-like shrinking process of the mandrel, wherein the mandrel changes in size, so that the coating material dissolves from the mandrel, without this being damaged. After the mandrel returns to ambient temperature, it expands to its initial size and can be used for the next manufacturing process.

Bevorzugt wird bei der erfindungsgemäßen Herstellung von Rohren als thermisches Spritzverfahren ein Kaltgasspritzverfahren eingesetzt. Das Verfahren zeichnet sich dadurch aus, dass die Pulverpartikel des Beschichtungswerkstoffes nicht bis auf die Schmelztemperatur erwärmt werden, aber mit hohem Druck auf das Trägerelement aufgespritzt werden (Temperatur ca. 600°C, Partikelgeschwindigkeit > 1000m/s). Es können Schichten von extremen Haftungsfestigkeiten erzeugt werden, die außerordentlich dicht und porenfrei sind. Aufgrund der relativ niedrigen Temperatur im Vergleich zu anderen thermischen Spritzverfahren wird der Spritzwerkstoff thermisch wenig beeinflusst und erheblich weniger oxidiert. Auch das beschichtete Trägermaterial zeigt keine Materialveränderung aufgrund von Wärmeeinwirkung. Verfahren des Kaltgasspritzens sind ebenfalls in der Patentschrift WO 2009/109016 beschrieben.In the production of pipes according to the invention as a thermal spraying method, a cold gas spraying process is preferably used. The method is characterized in that the powder particles of the coating material are not heated to the melting temperature, but are sprayed onto the carrier element with high pressure (temperature approx. 600 ° C, particle velocity> 1000m / s). Layers of extreme adhesion strengths can be produced which are extremely dense and nonporous. Due to the relatively low temperature compared to other thermal spray processes, the spray material is thermally influenced little and much less oxidized. Also, the coated substrate shows no material change due to heat. Methods of cold gas spraying are also in the patent WO 2009/109016 described.

Das Kaltgasspritzverfahren ermöglicht unter anderem die Verwendung von Titan als Beschichtungswerkstoff. Beim Kaltgasspritzen wird das korrosions- und temperaturbeständige Titan nur insoweit erhitzt, damit es mittels des Kaltgasspritzverfahrens auf das Trägerelement aufgebracht werden kann, ohne dabei seine Festigkeitseigenschaften zu verlieren. Bei höheren Temperaturen würde das Titanium schnell verspröden.Among other things, the cold gas spraying process allows the use of titanium as a coating material. In cold gas spraying, the corrosion- and temperature-resistant titanium is heated only to the extent that it can be applied to the carrier element by means of the cold gas spraying method, without losing its strength properties. At higher temperatures, the titanium would become brittle quickly.

Als Trägerelement wird vorzugsweise Aluminium eingesetzt. Bei Aluminium handelt es sich um ein sehr korrosionsbeständiges Element, das bei niedrigen Temperaturen gut formbar ist. Beim Einleiten von Kühlmittel in den hohlen Dorn, der bei der bevorzugten Ausführungsform aus Aluminium besteht, schrumpft der Dorn, wodurch sich der Beschichtungswerkstoff von dem Dorn löst.As support element preferably aluminum is used. Aluminum is a highly corrosion-resistant element that is easy to mold at low temperatures. Upon introduction of coolant into the hollow mandrel, which in the preferred embodiment is aluminum, the mandrel shrinks, thereby releasing the coating material from the mandrel.

Eine bevorzugte Ausführungsform der Spritzanlage ist so ausgelegt, dass sich während des Beschichtungsverfahrens das Trägerelement und die Spritzvorrichtung relativ zueinander, insbesondere parallel zur Oberfläche des Trägermaterials, bewegen. Dabei ist eine Bewegung von Spritzvorrichtung und Trägerelement mit unterschiedlichen Geschwindigkeiten in dieselbe Richtung ebenso denkbar, wie eine entgegengesetzte Richtung von Trägerelement und Spritzvorrichtung. Ebenso ist vorgesehen, dass sich entweder nur das Trägerelement oder nur die Spritzvorrichtung in eine Richtung bewegen.A preferred embodiment of the spray system is designed so that move during the coating process, the carrier element and the spray device relative to each other, in particular parallel to the surface of the carrier material. There is a movement of Spray device and carrier element with different speeds in the same direction as well conceivable, as an opposite direction of the carrier element and spray device. Likewise, it is provided that either only the carrier element or only the spray device move in one direction.

Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der beiliegenden Zeichnung und dem dort dargestellten Ausführungsbeispiel.Further advantages and embodiments of the invention will become apparent from the accompanying drawings and the embodiment illustrated therein.

Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It is understood that the features mentioned above and those yet to be explained below can be used not only in the particular combination given, but also in other combinations or in isolation, without departing from the scope of the present invention.

Die Erfindung ist anhand von Ausführungsbeispielen in der Zeichnung schematisch dargestellt und wird im Folgenden unter Bezugnahme auf die Zeichnungen ausführlich beschrieben.The invention is illustrated schematically by means of embodiments in the drawing and will be described in detail below with reference to the drawings.

Figurenbeschreibung

Figur 1
zeigt das Einstellen der Spritzvorrichtung zur Wahl eines Spritzwinkels; und
Figur 2
zeigt ein Verfahren zum Herstellen eines Rohres in seinen einzelnen Schritten.
figure description
FIG. 1
shows the setting of the spray device for selecting a spray angle; and
FIG. 2
shows a method of manufacturing a tube in its individual steps.

Ausführungsformen der ErfindungEmbodiments of the invention

Figur 1 zeigt das Trägerelement 1 in Form eines hohlen Dorns, die Spritzvorrichtung 2, die flanschartige Schicht 3, den Prozessgasstrahl 4 und die Beschichtung 5 bestehend aus dem Beschichtungswerkstoff. Die Stellung A der Spritzvorrichtung 2 dient zum Auftragen der flanschartigen Schicht 3 auf das Trägerelement 1, wobei der Prozessgasstrahl 4 im 90° Winkel 6b auf das Trägerelement 1 trifft. Trägerelement 1 und Spritzvorrichtung 2 bewegen sich hierbei nicht in axialer Richtung des Dorns zueinander. In dieser Position wird der Prozessgasstrahl 4 mit dem darin befindlichen pulverartigen Beschichtungswerkstoff senkrecht auf das Trägerelement 1 gerichtet, so dass sich die flanschartige Schicht 3 mit einer bestimmten Höhe, bevorzugt 0,5 bis 20 mm , ausbildet. Das fertige Rohr ist dann in etwa so dick wie der Flansch. Nachdem die flanschartige Schicht 3 die vorgegebene Schichtdicke erreicht hat, ändert sich die Position der Spritzvorrichtung 2. Dies wird durch eine Zwischenposition B verdeutlicht. Bevor mit dem eigentlichen Beschichtungsvorgang begonnen wird, wird die exakte Position C der Spritzvorrichtung 2 gewählt. Hierfür wird der Prozessgasstrahl 4 mittels der Spritzvorrichtung 2 im Lot 6a zu der Flanke 9 der flanschartigen Schicht 3 ausgerichtet. Somit beträgt der Winkel 6a zwischen Ausbreitungsrichtung des Prozessgasstrahls 4 und Flanke 9 der flanschartigen Schicht 3 im Wesentlichen 90°, wobei eine mögliche Abweichung von dem Lot nicht mehr als +/- 10° aufweisen sollte. FIG. 1 shows the carrier element 1 in the form of a hollow mandrel, the spray device 2, the flange-like layer 3, the process gas jet 4 and the coating 5 consisting of the coating material. The position A of the spray device 2 serves to apply the flange-like layer 3 to the carrier element 1, wherein the process gas jet 4 strikes the carrier element 1 at an angle of 90 ° 6b. Carrier element 1 and spray device 2 do not move in this case in the axial direction of the mandrel to each other. In this position, the process gas jet 4 with the powdery coating material located therein is directed perpendicular to the carrier element 1, so that the flange-like layer 3 with a certain height, preferably 0.5 to 20 mm, is formed. The finished tube is then about as thick as the flange. After the flange-like layer 3 has reached the predetermined layer thickness, the position of the spray device 2 changes. This is illustrated by an intermediate position B. Before starting the actual coating process, the exact position C of the spray device 2 is selected. For this purpose, the process gas jet 4 is aligned by means of the spray device 2 in the solder 6a to the flank 9 of the flange-like layer 3. Thus, the angle 6a between propagation direction of the process gas jet 4 and flank 9 of the flange-like layer 3 is substantially 90 °, wherein a possible deviation from the solder should not be more than +/- 10 °.

Zusätzlich zu dem 90° Winkel 6a entstehen noch zwei weitere Winkel, die von Bedeutung sind. Zum einen der Flankenwinkel 7 und der Spritzwinkel 8. In der Verlängerung des Prozessgasstrahls 4 bildet sich ein Winkel zwischen dieser Verlängerung und dem Trägerelement 1. Dieser Winkel wird als Spritzwinkel 8 bezeichnet, da es den Winkel beschreibt, unter dem der Beschichtungswerkstoff auf das Trägerelement 1 auftrifft. Gleichzeitig bildet sich zwischen der Flanke 9 und dem Trägerelement 1 ein Flankenwinkel 7. Dieser beschreibt den Winkel, in welchem die Flanke 9 der flanschartigen Schicht 3 zu dem Trägerelement 1 steht. Mit Hilfe des Flankenwinkels 7 der gemessen werden kann, lässt sich der Spritzwinkel 8 berechnen. Aufgrund der Tatsache, dass in einem Dreieck die drei Innenwinkel eine Winkelsumme von 180° ergeben, lässt sich für das Dreieck, zu sehen im separaten Ausschnitt der Figur 1a folgende Gleichung aufstellen: 90 ° + Flankenwinkel 7 + Spritzwinkel 8 = 180 °

Figure imgb0001
Spritzwinkel 8 = 90 ° - Flankenwinkel 7
Figure imgb0002
In addition to the 90 ° angle 6a, there are two more angles that are important. On the one hand, the flank angle 7 and the spray angle 8. In the extension of the process gas jet 4 forms an angle between them Extension and the support element 1. This angle is referred to as the spray angle 8, as it describes the angle at which the coating material impinges on the support element 1. At the same time, a flank angle 7 is formed between the flank 9 and the carrier element 1. This angle describes the angle at which the flank 9 of the flange-like layer 3 faces the carrier element 1. With the help of the flank angle 7 can be measured, the spray angle 8 can be calculated. Due to the fact that in a triangle the three interior angles yield an angle sum of 180 °, can be seen for the triangle, in the separate section of the FIG. 1a set up the following equation: 90 ° + flank angle 7 + spray angle 8th = 180 °
Figure imgb0001
spray angle 8th = 90 ° - flank angle 7
Figure imgb0002

Nachdem die Spritzvorrichtung 2 in die Position C gebracht wurde, wird eine gleichmäßige Schicht 5 des Beschichtungswerkstoffes auf das Trägerelement 1 aufgespritzt, wobei die Beschichtung 5 optimale Schichteigenschaften bei geringer Haftung aufweist.After the spray device 2 has been brought into position C, a uniform layer 5 of the coating material is sprayed onto the carrier element 1, the coating 5 having optimum layer properties with low adhesion.

Die Figur 2 zeigt die nacheinander ablaufenden Verfahrensschritte der Erfindung, wobei das Bild 1 nur beispielhaft einen Spritzwinkel 8 von 0° zeigen soll und somit nicht als Verfahrensschritt anzusehen ist.The FIG. 2 shows the sequential process steps of the invention, the image 1 is only an example of a spray angle 8 of 0 ° show and thus is not to be regarded as a process step.

Das erfindungsgemäße Verfahren beginnt mit Bild 2. In Bild 2 wird zunächst die flanschartige Schicht 3 auf das Trägerelement 1 aufgespritzt, wobei die Spritzvorrichtung 2 im 90° Winkel 6b zu dem Trägerelement 1 ausgerichtet ist. In Bild 3 wird die Spritzvorrichtung 2 in ihrer Lage so geändert, dass sich der Prozessgasstrahl 4 im 90° Winkel 6a zu der Flanke 9 der flanschartigen Schicht 3 befindet. Die Spritzvorrichtung 2 bewegt sich bei Bild 3 beispielsweise in axialer Richtung des Dorns und parallel zur Oberfläche des Trägerelements 1, während sich der Dorn 1 um seine längsachse dreht, um den Rohrumfang auszubilden. In Bild 4 ist der Ansatz einer Beschichtung 5 des Beschichtungswerkstoffes auf dem Trägerelement 1 zu erkennen. In Bild 5 ist die Beschichtung 5 des Trägerelements 1 soweit fortgeschritten, dass bereits der gesamte Abschnitt des Dorns vom Beschichtungswerkstoff 5 bedeckt ist. In Bild 6 soll die Beschichtung 5 des Beschichtungswerkstoffes nun von dem Trägerelement 1 gelöst werden, indem ein insbesondere flüssiges Kühlmittel 11 bestehend aus CO2 oder N2 in den hohlen Dorn eingeführt wird. Während des Kühlvorgangs kann, sollte es sich um ein Endlosrohr handeln, der Spritzvorgang weiterhin durchgeführt werden. In Bild 7 befinden sich sowohl der Dorn als auch die Spritzvorrichtung 2 im Stillstand, so dass das Rohr 10 von dem Dorn 1 abgezogen werden kann. Gleichzeitig wird weiter Kühlmittel 11 in den hohlen Dorn eingespritzt, um Risse oder sonstige Nebenwirkungen beim Lösen von dem Dorn zu vermeiden. In Bild 8 wird der Trennvorgang zwischen Rohr 10 und Dorn im fortgeschrittenen Stadium gezeigt. Nachdem das Rohr 10 vollständig von dem Trägerelement 1 bzw. dem Dorn gelöst worden ist, liegt das fertige Rohr 10 mit vorbestimmtem Durchmesser aus dem gewählten Material, insbesondere Titan, mit der erwünschten Schichtdicke und den entsprechenden optimalen Schichteigenschaften vor.The inventive method begins with Figure 2. In Figure 2, first, the flange-like layer 3 is sprayed onto the carrier element 1, wherein the spray device 2 is aligned at 90 ° angle 6b to the support element 1. In Figure 3, the spray device 2 is changed in its position so that the process gas jet 4 is at 90 ° angle 6a to the flank 9 of the flange layer 3. The spray device 2 moves in image 3, for example, in the axial direction of the mandrel and parallel to the surface of the support member 1, while the mandrel 1 rotates about its longitudinal axis to form the tube circumference. In Figure 4, the approach of a coating 5 of the coating material on the support element 1 can be seen. In Figure 5, the coating 5 of the support member 1 has progressed so far that already the entire portion of the mandrel is covered by the coating material 5. In Figure 6, the coating 5 of the coating material is now to be released from the carrier element 1 by a particular liquid coolant 11 is introduced consisting of CO 2 or N 2 in the hollow mandrel. During the cooling process, if it is an endless tube, the spraying process can continue. In Figure 7, both the mandrel and the spray device 2 are at a standstill, so that the tube 10 can be removed from the mandrel 1. At the same time, further coolant 11 is injected into the hollow mandrel to avoid cracks or other side effects when releasing the mandrel. Figure 8 shows the separation process between tube 10 and mandrel at an advanced stage. After the tube 10 has been completely detached from the carrier element 1 or the mandrel, the finished tube 10 with a predetermined diameter of the selected material, in particular titanium, with the desired layer thickness and the corresponding optimum layer properties.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Trägerelementsupport element
22
Spritzvorrichtungsprayer
33
flanschartige Schichtflange-like layer
44
ProzessgasstrahlProcess gas stream
55
Beschichtungcoating
6a6a
Winkel bezogen auf flanschartige SchichtAngle based on flange-like layer
6b6b
Winkel bezogen auf TrägerelementAngle based on carrier element
77
Flankenwinkelflank angle
88th
Spritzwinkelspray angle
99
Flankeflank
1010
Rohrpipe
1111
Kühlmittelcoolant

Claims (12)

Verfahren zum Herstellen eines Rohres (10), wobei ein Trägerelement (1) mittels eines thermischen Spritzverfahrens beschichtet wird, wobei als Beschichtungswerkstoff das Material des später ausgeformten Rohres (10) gewählt wird, und wobei die das Rohr (10) bildende Beschichtung (5) vom Trägerelement (1) gelöst wird,
dadurch gekennzeichnet, dass
der Spritzwinkel (8), unter dem der Beschichtungwerkstoff auf das Trägerelement (1) gespritzt wird, derart gewählt wird, dass eine geringe Haftung der Beschichtung (5) auf dem Trägerelement (1) erzielt wird.
Method for producing a tube (10), wherein a carrier element (1) is coated by means of a thermal spraying method, wherein the material of the subsequently formed tube (10) is selected as the coating material, and wherein the coating (5) forming the tube (10) is selected is released from the carrier element (1),
characterized in that
the spray angle (8) under which the coating material is sprayed onto the carrier element (1) is chosen such that a low adhesion of the coating (5) to the carrier element (1) is achieved.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Beschichtungswerkstoff in einem Spritzwinkel (8) von über 0° bis 90° auf das Trägerelement (1) aufgespritzt wird.A method according to claim 1 or 2, characterized in that the coating material in a spray angle (8) of more than 0 ° to 90 ° is sprayed onto the carrier element (1). Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zu Beginn des thermischen Spritzverfahrens eine flanschartige Schicht (3) auf das Trägerelement (1) aufgespritzt wird, so dass sich aufgrund einer bestimmten Schichtstärke dieser Schicht (3) eine zum Trägerelement (1) gerichtete Flanke (9) bildet.A method according to claim 1 or 2, characterized in that at the beginning of the thermal spraying process, a flange-like layer (3) is sprayed onto the carrier element (1), so that due to a certain layer thickness of this layer (3) directed to the carrier element (1) Flank (9) forms. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die flanschartige Schicht (3) mit einem Spritzwinkel (8) von 90° aufgespritzt wird.A method according to claim 3, characterized in that the flange-like layer (3) is sprayed with a spraying angle (8) of 90 °. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass als Spritzwinkel (8) für die das Rohr (10) bildende Beschichtung (5) ein Winkel (6a) gewählt wird, der im Wesentlichen senkrecht auf die zum Trägerelement (1) gerichtete Flanke (9) der flanschartigen Schicht (3) steht.Method according to claim 3 or 4, characterized in that an angle (6a) which is substantially perpendicular to the flank ( 9) of the flange-like layer (3). Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass als Trägerelement (1) ein insbesondere hohler Dorn gewählt wird, dessen äußere Oberfläche beschichtbar ist.Method according to one of the preceding claims, characterized in that as a carrier element (1) a particular hollow mandrel is selected, the outer surface of which is coatable. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass zum Lösen des Beschichtungswerkstoffs (5) von dem Trägerelement (1) ein Kühlmittel (11) in den hohlen Dorn geleitet wird.A method according to claim 6, characterized in that for releasing the coating material (5) from the carrier element (1), a coolant (11) is passed into the hollow mandrel. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass als Kühlmittel (11) insbesondere flüssiges CO2 oder N2 verwendet wird.A method according to claim 7, characterized in that as coolant (11) in particular liquid CO 2 or N 2 is used. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass als thermisches Spritzverfahren ein Kaltgasspritzverfahren eingesetzt wird.Method according to one of the preceding claims, characterized in that a cold gas spraying method is used as the thermal spraying method. Verfahren nach nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Beschichtungswerkstoff um Titan handelt.Method according to one of the preceding claims, characterized in that it is the coating material is titanium. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Trägerelement (1) um Aluminium handelt.Method according to one of the preceding claims, characterized in that the carrier element (1) is aluminum. Verfahren nach nach einem der vorstehenden Ansprüche, dadurch gekenzeichnet, dass sich während des Beschichtungsverfahrens das Trägerelement (1) und eine Spritzvorrichtung (2) relativ zueinander bewegen.Method according to one of the preceding claims, characterized thereby, that the carrier element (1) and a spraying device (2) move relative to each other during the coating process.
EP10196606.7A 2010-11-04 2010-12-22 Method for producing a tube Not-in-force EP2450118B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010060362A DE102010060362A1 (en) 2010-11-04 2010-11-04 Method for producing a pipe

Publications (2)

Publication Number Publication Date
EP2450118A1 true EP2450118A1 (en) 2012-05-09
EP2450118B1 EP2450118B1 (en) 2013-07-24

Family

ID=43807002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10196606.7A Not-in-force EP2450118B1 (en) 2010-11-04 2010-12-22 Method for producing a tube

Country Status (4)

Country Link
US (1) US8316916B2 (en)
EP (1) EP2450118B1 (en)
AU (1) AU2011244959B2 (en)
DE (1) DE102010060362A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2925904A4 (en) * 2012-12-03 2016-08-17 Future Titanium Technology Pty Ltd Method of forming seamless pipe of titanium and/or titanium alloys

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365723B2 (en) * 2012-04-24 2013-12-11 新日鐵住金株式会社 Manufacturing method of piercing and rolling plug
DE102013216439A1 (en) 2013-05-22 2014-11-27 Siemens Aktiengesellschaft Method for producing a cup-shaped component and production plant suitable for the use of this method
DE102014206073A1 (en) 2014-03-31 2015-10-01 Siemens Aktiengesellschaft Process for producing a hollow body by means of cold gas spraying and mold core suitable for carrying out this process
DE102018120291B3 (en) 2018-08-21 2020-01-02 Sascha Larch Process for producing a lightweight pressure vessel forming a lightweight pressure tank and lightweight pressure vessel
WO2020038930A1 (en) 2018-08-21 2020-02-27 Sascha Larch Method for producing a light-weight pressure tank and light-weight pressure tank
US20230278099A1 (en) * 2022-03-04 2023-09-07 Goodrich Corporation Systems and methods for manufacturing landing gear components using titanium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1599392A (en) * 1978-05-31 1981-09-30 Osprey Metals Ltd Method and apparatus for producing workable spray deposits
DE3617833C1 (en) * 1986-05-27 1987-09-03 Mannesmann Ag Process for the production of rotationally symmetrical hollow bodies
US5401539A (en) * 1985-11-12 1995-03-28 Osprey Metals Limited Production of metal spray deposits
WO2008049460A1 (en) * 2006-10-24 2008-05-02 Siemens Aktiengesellschaft Method for adjusting the surface roughness in a low temperature coating method, and component
WO2009109016A1 (en) 2008-03-06 2009-09-11 Commonwealth Scientific And Industrial Research Organisation Manufacture of pipes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983495A (en) * 1997-12-29 1999-11-16 Ford Global Technologies, Inc. Method of making spray-formed inserts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1599392A (en) * 1978-05-31 1981-09-30 Osprey Metals Ltd Method and apparatus for producing workable spray deposits
US5401539A (en) * 1985-11-12 1995-03-28 Osprey Metals Limited Production of metal spray deposits
DE3617833C1 (en) * 1986-05-27 1987-09-03 Mannesmann Ag Process for the production of rotationally symmetrical hollow bodies
WO2008049460A1 (en) * 2006-10-24 2008-05-02 Siemens Aktiengesellschaft Method for adjusting the surface roughness in a low temperature coating method, and component
WO2009109016A1 (en) 2008-03-06 2009-09-11 Commonwealth Scientific And Industrial Research Organisation Manufacture of pipes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2925904A4 (en) * 2012-12-03 2016-08-17 Future Titanium Technology Pty Ltd Method of forming seamless pipe of titanium and/or titanium alloys
AU2013354884B2 (en) * 2012-12-03 2018-03-08 Commonwealth Scientific And Industrial Research Organisation Method of forming seamless pipe of titanium and/or titanium alloys

Also Published As

Publication number Publication date
AU2011244959A1 (en) 2012-05-24
US8316916B2 (en) 2012-11-27
US20120273152A1 (en) 2012-11-01
AU2011244959B2 (en) 2013-11-28
EP2450118B1 (en) 2013-07-24
DE102010060362A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
EP2450118B1 (en) Method for producing a tube
DE19915082C1 (en) Regeneratively cooled rocket motor nozzle comprizes spiraled coolant-flowed tubing subsequently sprayed with loadbearing and fixing layers once exterior mandrel former is stripped off.
EP1791645B1 (en) Method for cold gas spraying and cold gas spraying pistol with increased retention time for the powder in the gas stream
DE3247510A1 (en) METHOD FOR SHEATHING ROD-SHAPED METALLIC MOLDED BODIES WITH THERMOPLASTIC PLASTIC
WO1998033031A1 (en) Heat exchanger tube, and method for the production of same
EP2062997A2 (en) Device for coating components
EP2024654B1 (en) Method for the production of a rolling bearing component
EP3381593B1 (en) Method for selective beam-based melting or sintering
DE102012013750A1 (en) Method for connecting two components
EP3259378A1 (en) Method for producing a strand from stainless steel, and strand made of stainless steel
EP2714963B1 (en) Cold gas spray method with improved adhesion and reduced layer porosity
DE102008060494A1 (en) Production of coated plasticizer screws for injection molding or extrusion of plastics comprises coating at least surfaces subject to wear with metal alloy, all surfaces to be coated being simultaneously heated above melting point of alloy
EP3110567B1 (en) Large-diameter pipe arrangement and method for producing the same
DE10202212B4 (en) Method for producing a band or sheet made of a metallic composite material
EP1506816B1 (en) Laval nozzle for thermal or kinetical spraying
EP2503026A1 (en) Method for repairing a layer on a substrate
DE2338431A1 (en) DRAWING PROCEDURE
EP2165778A1 (en) Production method, extrusion press and die for an extruded hollow profile and extruded hollow profile and heat exchanger with an extruded hollow profile
EP1466674A2 (en) Method and device for the manufacturing of a tube from a metallic material
DE102015111096B4 (en) Process for producing a seamless, multi-layer pipe product
DE2551521C2 (en) Process for the production of melt resin profiles
DE10331487B3 (en) Coating longitudinal components, eg plastic pipes, comprises applying a foamable plastic mass, distributing it over the component circumference, moulding and hardening
EP2543744A1 (en) Method and device for treating a steel product and steel product
DE102015209660B4 (en) Process for producing a sheet metal forming part
DE102016201362B3 (en) Method and device for heat treatment of workpieces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121023

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 23/00 20060101ALI20121214BHEP

Ipc: C23C 24/04 20060101ALI20121214BHEP

Ipc: B21C 37/06 20060101AFI20121214BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130527

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 623091

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010004116

Country of ref document: DE

Effective date: 20130919

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130724

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130821

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131024

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131025

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 20131231

26N No opposition filed

Effective date: 20140425

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010004116

Country of ref document: DE

Effective date: 20140425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131222

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20141212

Year of fee payment: 5

Ref country code: DE

Payment date: 20141216

Year of fee payment: 5

Ref country code: GB

Payment date: 20141217

Year of fee payment: 5

Ref country code: SE

Payment date: 20141211

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141208

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141211

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101222

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010004116

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151223

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151222

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151222

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 623091

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724