AU2011244959A1 - Method for producing a pipe - Google Patents

Method for producing a pipe Download PDF

Info

Publication number
AU2011244959A1
AU2011244959A1 AU2011244959A AU2011244959A AU2011244959A1 AU 2011244959 A1 AU2011244959 A1 AU 2011244959A1 AU 2011244959 A AU2011244959 A AU 2011244959A AU 2011244959 A AU2011244959 A AU 2011244959A AU 2011244959 A1 AU2011244959 A1 AU 2011244959A1
Authority
AU
Australia
Prior art keywords
carrier element
pipe
spraying
angle
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2011244959A
Other versions
AU2011244959B2 (en
Inventor
Erik Bahr
Peter Heinrich
Helmut Holl
Peter Richter Sen.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of AU2011244959A1 publication Critical patent/AU2011244959A1/en
Application granted granted Critical
Publication of AU2011244959B2 publication Critical patent/AU2011244959B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/003Moulding by spraying metal on a surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Abstract

The present invention relates to a method for producing a pipe (10), a carrier element (1) being coated by means of a thermal spraying method, the material of the pipe (10) formed later being selected as the coating material, and the coating (5) forming the pipe (10) being detached from the carrier element (1), the spraying angle (8), at which the coating material is sprayed onto the carrier element (1), being selected such that a low level of adhesion of the coating (5) on the carrier element (1) is achieved. (Figure 1) -4 c 6a 7 -9 8 6b Fig. 1 8J7 Fig. 1a

Description

- 1 AUSTRALIA PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT ORIGINAL Name of Applicant: Linde Aktiengesellschaft Actual Inventors: Peter Heinrich and Peter Richter, sen. and Helmut Holl and Erik Bahr Address for Service is: SHELSTON IP 60 Margaret Street Telephone No: (02) 9777 1111 SYDNEY NSW 2000 Facsimile No. (02) 9241 4666 CCN: 3710000352 Attorney Code: SW Invention Title: Method for producing a pipe The following statement is a full description of this invention, including the best method of performing it known to me/us: File: 72464AUP00 -2 METHOD FOR PRODUCING A PIPE The present invention relates to a method for producing a pipe, a carrier element being coated by means of a thermal spraying method and the material of the pipe formed later being selected as the coating material, and the coating forming the pipe subsequently being detached from the carrier element. PRIOR ART To produce seamless pipes, a block or a billet made of cylindrical steel is typically formed into a hollow, a short and thick-walled pipe. This hollow is then processed further in a following method step, for example, by the reciprocating rolling method or by skew rolling, to form a pipe of thinner diameter. In more recent time, seamless pipes have also been produced by means of various thermal spraying methods. In this case, a coating material provided in powdered form is introduced into a heated processing gas jet. The powder particles melt or fuse. The processing gas is sprayed onto a carrier element by means of a spraying nozzle, so that a layer forms on the carrier element. The layer must meet two requirements. On the one hand, the layer must adhere to the carrier element during the method. Only in this way can a pipe having fixed specifications be produced. On the other hand, it is necessary for the coating material or, later, the finished pipe to be able to be detached as easily as possible from the carrier element, in order to avoid subsequent damage to the pipe. A corresponding method is described, for example, in WO 2009/109016. In this case, seamless pipes are produced - 3 by means of a cold spraying method and the finished pipe is subsequently detached from the carrier element, in that the pipe and/or the carrier element are cooled or heated or alternatively the carrier element is melted, vaporized, or pulverized. Depending on the layer thickness and the material of the coating material and of the carrier element, a high level or a low level of adhesion occurs between coating material and carrier element. A high level of adhesion has the result that the coating material adheres well on the carrier element during the spraying procedure, but is only to be detached from the carrier element with difficulty after being finished. This can result in an increased time and cost expenditure as a result of further method steps. In turn, a low level of adhesion has the result that the coating material adheres minimally or not at all to the carrier element during the spraying procedure, but is very easy to detach from the carrier element after manufacturing. This can again cause complications during the application of the layer on the carrier element. It is therefore desirable to set the adhesion between coating material and carrier element so that the required adhesive properties and also layer properties can be guaranteed and production costs can simultaneously be minimized. Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.
It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative. SUMMARY OF THE INVENTION According to a first aspect, the present invention provides a method for producing a pipe, a carrier element being coated using a thermal spraying method, the material of the pipe formed layer being selected as the coating material, and the coating forming the pipe being detached from the carrier element, wherein the spraying angle at which the coating material is sprayed onto the carrier element is selected such that a low level of adhesion of the coating on the carrier element is achieved. According to a second aspect, the present invention provides a pipe when produced by the method according to the first aspect. Advantageous embodiments of the invention are the subject matter of the claims dependent on claim 1 and the following description. Preferably, the coating material is sprayed onto the carrier element at a spraying angle from 0' to 900. Preferably, a flange-like layer is sprayed onto the carrier element at the beginning of the thermal spraying method, so that a flank oriented toward the carrier element forms because of a specific layer thickness of this layer.
- 5 Preferably, the flange-like layer is sprayed on at a spraying angle of 900. Preferably, an angle, which is essentially perpendicular to the flank of the flange-like layer oriented toward the carrier element, is selected as the spraying angle for the coating forming the pipe. Preferably, wherein a hollow mandrel is selected as the carrier element, whose external surface can be coated. Preferably, a coolant is conducted into the hollow mandrel to detach the coating material from the carrier element. Preferably, a liquid CO 2 or N 2 is used as the coolant. Preferably, a cold gas spraying method is used as the thermal spraying method. Preferably, the coating material is titanium. Preferably, the carrier element is aluminum. Preferably, the carrier element and a spraying device move relative to one another during the coating method. ADVANTAGES OF THE INVENTION According to the invention, a thermal spraying method is applied for producing a pipe, in particular a seamless pipe, by which a high adhesive tensile strength is provided. The adhesive tensile strength results from the relationship between adhesive properties and layer properties. While the layer properties are predominatly to be attributed to the - 6 materials of coating material and carrier element and to the gas and the temperature used for this purpose, the adhesive properties are adaptable or settable according to the invention via the spray angle. The spray angle is selected in the method according to the invention so that an adhesion results, which is sufficient so that the coating material adheres to the carrier element, and which is simultaneously low enough that the pipe can be detached more easily from the carrier element after finishing, without the application of more costly method steps. At the ideal spray angle, there is a minimal adhesion of the coating on the carrier material with optimum layer properties at the same time, which can be seen in that the coating or the later pipe is provided in dense and nonporous form. The introduction of a coolant within the carrier element and the shrinking procedure connected thereto are to be sufficient to detach the adhesion between coating material or pipe and carrier element. At a spray angle of 900, the processing gas is sprayed at a right angle onto the carrier element, so that a maximum adhesion forms between coating material and carrier element. At a spray angle of 0', the processing gas is sprayed on parallel to the carrier element. No contact, and therefore also no adhesion, results between coating material and carrier element. A spray angle which induces sufficient adhesion between coating material and carrier element is accordingly between 0' and 900. The above considerations applies similarly for the angle range from 900 to 1800 (spraying from the "other side") . For the sake of simplicity, reference will only be made hereafter to the acute angle range (00 to 900). In a preferred embodiment, a flange-like layer is advantageously applied at an angle of 900 to the - 7 carrier element at the beginning of the thermal spraying method, so that a flank of the layer oriented toward the carrier element forms because of a specific layer thickness. The jet of the processing gas is subsequently oriented by means of the spraying device so that the angle to the flank of the layer is approximately 90*. The spraying device remains in this angle position until the completion of the coating, so that a uniformly dense and nonporous layer simultaneously having a low level of adhesion results. A hollow mandrel is expediently selected as the carrier element, whose outer surface can be coated using the coating material. The pipe receives its shape as a result thereof. The corresponding diameter of the pipe can be selected depending on the mandrel size. After the desired length of the pipe has been produced by coating the carrier element, the coating material must be detached from the carrier element. This is preferably performed by introducing a coolant into the hollow mandrel, so that the entire inner surface of the mandrel is cooled. The coolant can be carbon dioxide (C0 2 ) or nitrogen (N 2 ), in particular in the liquid phase. The introduction of the coolant results in an abrupt shrinking procedure of the mandrel, the mandrel changing in its size, so that the coating material detaches from the mandrel without being damaged. After the mandrel has reached the ambient temperature again, it expands to its initial size and can be used for the next production method. During the production of pipes according to the invention, a cold gas spraying method is preferably used as the thermal spraying method. The method is - 8 distinguished in that the powder particles of the coating material are not heated to the melting temperature, but are sprayed at high pressure onto the carrier element (temperature approximately 600-C, particle speed > 1000 m/s) . Layers of extreme adhesive strengths can be generated, which are extraordinarily dense and nonporous. Because of the relatively low temperature in comparison to other thermal spraying methods, the spraying material is only slightly thermally influenced and oxidized substantially less. The coated carrier material also does not display any material change because of the effect of heat. Methods of cold gas spraying are also described in Patent Specification WO 2009/109016. The cold gas spraying method allows, inter alia, the use of titanium as a coating material. In the cold gas spraying method, the corrosion-resistant and temperature-resistant titanium is only heated enough that it can be applied by means of the cold gas spraying method to the carrier element, without losing its strength properties. At higher temperatures, the titanium would become brittle rapidly. Aluminum is preferably used as the carrier element. Aluminum is a very corrosion-resistant element, which can be molded well at low temperatures. Upon introduction of coolant into the hollow mandrel, which comprises aluminum in the preferred embodiment, the mandrel shrinks, whereby the coating material detaches from the mandrel. A preferred embodiment of the spraying system is designed so that the carrier element and the spraying device move relative to one another, in particular parallel to the surface of the carrier element, during the coating procedure. A movement of spraying device - 9 and carrier element at different speeds in the same direction is conceivable, as are opposing directions of carrier element and spraying device. It is also provided that either only the carrier element or only the spraying device moves in one direction. Further advantages and embodiments of the invention result from the appended drawing and the exemplary embodiment shown therein. It is obvious that the above-mentioned features and the features still to be explained hereafter are usable not only in the respective specified combination, but rather also in other combinations or alone, without leaving the scope of the present invention. The invention is schematically shown on the basis of exemplary embodiments in the drawings and is explained in greater detail hereafter with reference to the drawings. DESCRIPTION OF THE FIGURES Figure 1 shows the setting of the spraying device to select a spraying angle; and Figure 2 shows a method for producing a pipe in its individual steps. EMBODIMENTS OF THE INVENTION Figure 1 shows the carrier element 1 in the form of a hollow mandrel, the spraying device 2, the flange-like layer 3, the processing gas jet 4, and the coating 5 comprising the coating material. The position A of the spraying device 2 is used for applying the flange-like layer 3 to the carrier element 1, the processing gas jet 4 being incident the carrier element 1 at the 900 - 10 angle 6b. Carrier element 1 and spraying device 2 do not move in relation to one another in the axial direction of the mandrel in this case. In this position, the processing gas jet 4 having the powdered coating material located therein is oriented perpendicularly to the carrier element 1, so that the flange-like layer 3 forms having a specific height, preferably 0.5 to 20 mm. The finished pipe is then approximately as thick as the flange. After the flange like layer 3 has reached the predefined layer thickness, the position of the spraying device 2 changes. This is illustrated by an intermediate position B. Before the actual coating procedure is begun, the exact position C of the spraying device 2 is selected. For this purpose, the processing gas jet 4 is oriented by means of the spraying device 2 at a right angle 6a to the flank 9 of the flange-like layer 3. The angle 6a between the propagation direction of the processing gas jet 4 and the flank 9 of the flange-like layer 3 is therefore essentially 900, a possible deviation from the right angle not being greater than +/-100. In addition to the 900 angle 6a, two further angles which are significant also result. Firstly, the flank angle 7 and the spraying angle 8. In the extension of the processing gas jet 4, an angle forms between this extension and the carrier element 1. This angle is described as the spraying angle 8, since it describes the angle at which the coating material is incident on the carrier element 1. Simultaneously, a flank angle 7 forms between the flank 9 and the carrier element 1. This describes the angle at which the flank 9 of the flange-like layer 3 stands to the carrier element 1. The spraying angle 8 can be calculated with the aid of the flank angle 7, which can be measured. Because of the fact that the three internal angles of a triangle - 11 result in an angle sum of 1800, the following equation may be set up for the triangle visible in the separate detail of Figure la: 90* + flank angle (7) + spraying angle (8) = 1800 Spraying angle (8) = 900 - flank angle (7) After the spraying device 2 has been brought into the position C, a uniform layer 5 of the coating material is sprayed onto the carrier element 1, the coating 5 having optimum layer properties with little adhesion. Figure 2 shows the successively executed method steps of the invention, scene 1 showing a spraying angle 8 of 00 only as an example and therefore not being viewed as a method step. The method according to the invention begins with scene 2. In scene 2, the flange-like layer 3 is first sprayed onto the carrier element 1, the spraying device 2 being oriented at the 900 angle 6b to the carrier element 1. In scene 3, the spraying device 2 is changed in its location so that the processing gas jet 4 is located at the 900 angle 6a to the flank 9 of the flange-like layer 3. The spraying device 2 moves in scene 3 in the axial direction of the mandrel and parallel to the surface of the carrier element 1, for example, while the mandrel 1 rotates around its longitudinal axis, in order to form the pipe periphery. In scene 4, the beginning of a coating 5 of the coating material on the carrier element 1 may be recognized. In scene 5, the coating 5 of the carrier element 1 has progressed enough that the entire section of the mandrel is already covered by the coating material 5. In scene 6, the coating 5 of the coating material is now to be detached from the carrier element 1, in that a - 12 particularly liquid coolant 11 comprising C02 or N 2 is introduced into the hollow mandrel. During the cooling procedure, if it is an endless pipe, the spraying procedure can be performed further. In scene 7, both the mandrel and also the spraying device 2 are at a standstill, so that the pipe 10 can be drawn off of the mandrel 1. Further coolant 11 is simultaneously injected into the hollow mandrel, in order to avoid cracks or other side effects during the detachment from the mandrel. In scene 8, the separation procedure between pipe 10 and mandrel is shown in the advanced stage. After the pipe 10 has been completely detached from the carrier element 1 or the mandrel, the finished pipe 10 having predetermined diameter made of the selected material, in particular titanium, having the desired layer thickness and the corresponding optimum layer properties is provided.
- 13 LIST OF REFERENCE NUMERALS 1 carrier element 2 spraying device 3 flange-like layer 4 processing gas jet 5 coating 6a angle in relation to flange-like layer 6b angle in relation to carrier element 7 flank angle 8 spraying angle 9 flank 10 pipe 11 coolant

Claims (15)

1. A method for producing a pipe, a carrier element being coated using a thermal spraying method, the material of the pipe formed layer being selected as the coating material, and the coating forming the pipe being detached from the carrier element, wherein the spraying angle at which the coating material is sprayed onto the carrier element is selected such that a low level of adhesion of the coating on the carrier element is achieved.
2. The method according to claim 1, wherein the coating material is sprayed onto the carrier element at a spraying angle from 00 to 900.
3. The method according to claim 1 or 2, wherein a flange-like layer is sprayed onto the carrier element at the beginning of the thermal spraying method, so that a flank oriented toward the carrier element forms because of a specific layer thickness of this layer.
4. The method according to claim 3, wherein the flange-like layer is sprayed on at a spraying angle of 90'.
5. The method according to claim 3 or 4, wherein an angle, which is essentially perpendicular to the flank of the flange-like layer oriented toward the carrier element, is selected as the spraying angle for the coating forming the pipe.
6. The method according to any one of the preceding claims, wherein a hollow mandrel is selected as - 15 the carrier element, whose external surface can be coated.
7. The method according to claim 6, wherein a coolant is conducted into the hollow mandrel to detach the coating material from the carrier element.
8. The method according to claim 7, liquid CO 2 or N 2 is used as the coolant.
9. The method according to any one of the preceding claims, wherein a cold gas spraying method is used as the thermal spraying method.
10. The method according to any one of the preceding claims, wherein the coating material is titanium.
11. The method according to any one of the preceding claims, wherein the carrier element is aluminum.
12. The method according to any one of the preceding claims, wherein the carrier element and a spraying device move relative to one another during the coating method.
13. A pipe when produced by the method according to any one of the preceding claims.
14. A method for producing a pipe substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples.
15. A pipe when produced by the method substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples.
AU2011244959A 2010-11-04 2011-11-03 Method for producing a pipe Ceased AU2011244959B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010060362A DE102010060362A1 (en) 2010-11-04 2010-11-04 Method for producing a pipe
DE102010060362.7 2010-11-04

Publications (2)

Publication Number Publication Date
AU2011244959A1 true AU2011244959A1 (en) 2012-05-24
AU2011244959B2 AU2011244959B2 (en) 2013-11-28

Family

ID=43807002

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2011244959A Ceased AU2011244959B2 (en) 2010-11-04 2011-11-03 Method for producing a pipe

Country Status (4)

Country Link
US (1) US8316916B2 (en)
EP (1) EP2450118B1 (en)
AU (1) AU2011244959B2 (en)
DE (1) DE102010060362A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365723B2 (en) * 2012-04-24 2013-12-11 新日鐵住金株式会社 Manufacturing method of piercing and rolling plug
UA113393C2 (en) * 2012-12-03 2017-01-25 METHOD OF FORMATION OF SEPARATION OF SEAMLESS PIPE OF TITANIUM OR TITANIUM ALLOY, PIPE OF TITANIUM OR TITANIUM ALLOY AND DEVICES FOR FORMING OF TREASURES
DE102013216439A1 (en) 2013-05-22 2014-11-27 Siemens Aktiengesellschaft Method for producing a cup-shaped component and production plant suitable for the use of this method
DE102014206073A1 (en) 2014-03-31 2015-10-01 Siemens Aktiengesellschaft Process for producing a hollow body by means of cold gas spraying and mold core suitable for carrying out this process
DE102018120291B3 (en) 2018-08-21 2020-01-02 Sascha Larch Process for producing a lightweight pressure vessel forming a lightweight pressure tank and lightweight pressure vessel
EP3841324B1 (en) 2018-08-21 2023-09-27 LARCH, Sascha Method for producing a light-weight pressure tank and light-weight pressure tank
US20230278099A1 (en) * 2022-03-04 2023-09-07 Goodrich Corporation Systems and methods for manufacturing landing gear components using titanium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1599392A (en) * 1978-05-31 1981-09-30 Osprey Metals Ltd Method and apparatus for producing workable spray deposits
US5401539A (en) * 1985-11-12 1995-03-28 Osprey Metals Limited Production of metal spray deposits
DE3617833C1 (en) * 1986-05-27 1987-09-03 Mannesmann Ag Process for the production of rotationally symmetrical hollow bodies
US5983495A (en) * 1997-12-29 1999-11-16 Ford Global Technologies, Inc. Method of making spray-formed inserts
WO2008049460A1 (en) * 2006-10-24 2008-05-02 Siemens Aktiengesellschaft Method for adjusting the surface roughness in a low temperature coating method, and component
CN101983258B (en) 2008-03-06 2013-01-30 国家科学和工业研究组织 Manufacture of pipes

Also Published As

Publication number Publication date
EP2450118B1 (en) 2013-07-24
US8316916B2 (en) 2012-11-27
US20120273152A1 (en) 2012-11-01
AU2011244959B2 (en) 2013-11-28
DE102010060362A1 (en) 2012-05-10
EP2450118A1 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
AU2011244959B2 (en) Method for producing a pipe
US11697881B2 (en) Manufacture of pipes
EP2834014B1 (en) Titanium load-bearing structure and process for producing such
AU2015246650B2 (en) Process for producing a preform using cold spray
WO2016208599A1 (en) Clad pipe and method for manufacturing clad pipe
EP2688708B1 (en) Method for repairing an aluminium alloy component
CN104136651A (en) Method for coating a substrate
CN101449072B (en) Rolling bearing component, and method for the production thereof
CN104948901B (en) The manufacture method of HTHP gas cylinder with thin-wall metal inner lining structure
JP2001287004A (en) Composite tube and manufacturing method therefor
CN102211187B (en) Method for manufacturing or repairing steel-based roller core composite roller through injection molding
JP2912473B2 (en) Manufacturing method of long preform by spray deposit method
CN110773713B (en) Method for preparing composite metal plate by centrifugal casting
JP2857807B2 (en) Manufacturing method of long tubular preform by spray-deposit method
KR20090052698A (en) Method for manufacturing thin plate using spray coating
JP2003103354A (en) Composite roll
JPH0318405A (en) Production of laminated sleeve for rolling equipment
JPS6316844A (en) Apparatus for producing bellows

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired