EP2449240B1 - Method for controlling the rail pressure in a common-rail injection system of a combustion engine - Google Patents

Method for controlling the rail pressure in a common-rail injection system of a combustion engine Download PDF

Info

Publication number
EP2449240B1
EP2449240B1 EP10725397.3A EP10725397A EP2449240B1 EP 2449240 B1 EP2449240 B1 EP 2449240B1 EP 10725397 A EP10725397 A EP 10725397A EP 2449240 B1 EP2449240 B1 EP 2449240B1
Authority
EP
European Patent Office
Prior art keywords
pressure
volume flow
rail
rail pressure
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10725397.3A
Other languages
German (de)
French (fr)
Other versions
EP2449240A1 (en
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP2449240A1 publication Critical patent/EP2449240A1/en
Application granted granted Critical
Publication of EP2449240B1 publication Critical patent/EP2449240B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • F02D41/3854Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped with elements in the low pressure part, e.g. low pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/025Means for varying pressure in common rails by bleeding fuel pressure from the common rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method

Definitions

  • the invention relates to a method for controlling and regulating an internal combustion engine according to the preamble of claim 1.
  • a rail pressure control circuit comprises a comparison point for determining a control deviation, a pressure controller for calculating an actuating signal, the controlled system and a software filter for calculating the actual rail pressure in the feedback branch.
  • the control deviation is calculated from a target rail pressure to the actual rail pressure.
  • the controlled system includes the pressure actuator, the rail and the injectors for injecting the fuel into the combustion chambers of the internal combustion engine.
  • a common rail system with pressure control is known in which the pressure regulator is equipped with different regulator parameters.
  • the pressure control should be more stable due to the different controller parameters.
  • the controller parameters are in turn calculated depending on operating parameters, here: the engine speed and the target injection quantity.
  • the pressure controller uses the controller parameters, the pressure controller then calculates the control signal for a pressure control valve, via which the fuel outflow from the rail into the fuel tank is determined.
  • the pressure control valve is consequently arranged on the high-pressure side of the common rail system.
  • An electrical pre-feed pump or a controllable high-pressure pump are shown in this reference as alternative measures for pressure regulation.
  • the DE 103 30 466 B3 describes a common rail system with pressure control, but in which the pressure controller accesses a suction throttle via the control signal. About the Suction throttle in turn determines the inlet cross-section to the high-pressure pump. The suction throttle is consequently arranged on the low pressure side of the common rail system.
  • a passive pressure relief valve can be provided as a protective measure against excessive rail pressure in this common rail system. The fuel is then drained from the rail into the fuel tank via the open pressure relief valve.
  • a corresponding common rail system is from the DE 10 2006 040 441 B3 known.
  • Patent literature DE 198 02 583 A1 and DE 10 2007 061228 A1 each show the characteristics of the preamble.
  • Patent literature DE 10 2007 059352 B3 , DE 10 2004 059330 A1 and DE 197 31 994 A1 each show similar rail pressure control systems.
  • control leakage is effective when the injector is controlled electrically, that is, during the duration of the injection. As the injection duration decreases, the control leakage also decreases. Constant leakage is always effective, that is, even if the injector is not activated. This is also caused by the component tolerances. Since the constant leakage increases with increasing rail pressure and decreases with falling rail pressure, the pressure vibrations in the rail are dampened. The opposite is true with tax leakage. If the rail pressure rises, the injection duration is shortened to display a constant injection quantity, which results in a decreasing control leakage. If the rail pressure drops, the injection duration is increased accordingly, which results in increasing control leakage.
  • the control leakage means that the pressure vibrations in the rail are amplified.
  • the control and constant leakage represent a loss volume flow, which is pumped and compressed by the high pressure pump.
  • this loss volume flow means that the high pressure pump must be designed larger than necessary.
  • part of the drive energy of the high-pressure pump is converted into heat, which in turn heats up the fuel and reduces the efficiency of the internal combustion engine.
  • the invention is based on the object of optimizing the stability behavior and the settling time.
  • the method consists in that, in addition to the rail pressure control via the low-pressure suction throttle as the first pressure control element, a rail pressure disturbance variable for influencing the rail pressure is generated via a high-pressure pressure control valve as the second pressure control element. Fuel is diverted from the rail into a fuel tank via the high-pressure pressure control valve.
  • the invention therefore consists in that a constant leak is simulated via the control of the pressure control valve.
  • the rail pressure disturbance variable is calculated as a function of the actual rail pressure and a target volume flow of the pressure control valve using a pressure control valve map.
  • the set volume flow is in turn calculated as a function of a set injection quantity and an engine speed via a set volume flow map.
  • a target torque is used as an input variable for the target volume flow map.
  • the target volume flow map is designed in such a way that a target volume flow with a positive value, for example 2 liters / minute, is calculated in a low-load range and a target volume flow of zero is calculated in a normal operating range.
  • the low-load range is to be understood as the range of small injection quantities and thus small engine output.
  • the fuel is only diverted in the low-load range and in a small amount, there is no significant increase in the fuel temperature and also no significant decrease in the efficiency of the internal combustion engine.
  • the increased stability of the high-pressure control circuit in the low-load range can be recognized by the fact that the rail pressure remains approximately constant in overrun mode and that the rail pressure peak value has a significantly reduced pressure level when the load is shed.
  • the rail pressure disturbance variable is additionally determined by means of a subordinate current control loop, alternatively by means of a subordinate current control loop together with pilot control.
  • the Figure 1 shows a system diagram of an electronically controlled internal combustion engine 1 with a common rail system.
  • the common rail system comprises the following mechanical components: a low-pressure pump 3 for delivering fuel from a fuel tank 2, a changeable, low-pressure suction throttle 4 for influencing the fuel volume flow flowing through it, a high-pressure pump 5 for delivering fuel while increasing the pressure, a rail 6 for storing of the fuel and injectors 7 for injecting the fuel into the combustion chambers of the internal combustion engine 1.
  • the common rail system can also be designed with individual stores, in which case, for example, an individual store 8 is integrated in the injector 7 as an additional buffer volume.
  • a passive pressure relief valve 11 which, in the open state, controls the fuel from the rail 6.
  • An electrically controllable pressure control valve 12 also connects the rail 6 to the fuel tank 2.
  • a fuel volume flow is defined via the position of the pressure control valve 12 and is derived from the rail 6 into the fuel tank 2. In the further text, this fuel volume flow is referred to as rail pressure disturbance variable VDRV.
  • the operating mode of the internal combustion engine 1 is determined by an electronic control unit (ECU) 10.
  • the electronic control unit 10 contains the usual ones Components of a microcomputer system, for example a microprocessor, I / O modules, buffers and memory modules (EEPROM, RAM).
  • the operating data relevant to the operation of the internal combustion engine 1 are applied in characteristic diagrams / characteristic curves in the memory modules.
  • the electronic control unit 10 uses these to calculate the output variables from the input variables.
  • the following input variables are shown as examples: the rail pressure pCR, which is measured by means of a rail pressure sensor 9, an engine speed nMOT, a signal FP for power specification by the operator and an input variable IN.
  • the other sensor signals are summarized under input variable IN, for example the charge air pressure of an exhaust gas turbocharger.
  • the individual store pressure pE is an additional input variable of the electronic control unit 10.
  • the output variables of the electronic control unit 10 are a signal PWMSD for controlling the suction throttle 4 as the first pressure control element, a signal ve for controlling the injectors 7 (start / end of spray), a signal PWMDV for controlling the pressure control valve 12 as the second pressure control element and an output variable OFF.
  • the output variable AUS is representative of the other control signals for controlling and regulating the internal combustion engine 1, for example for a control signal for activating a second exhaust gas turbocharger when register is being charged.
  • the Figure 2 shows a rail pressure control circuit 13 for controlling the rail pressure pCR.
  • the input variables of the rail pressure control circuit 13 are: a target rail pressure pCR (SL), a target consumption V2, the engine speed nMOT, the PWM basic frequency fPWM and a variable E1.
  • Size E1 includes, for example, the battery voltage and the ohmic resistance of the inductor with supply line, which are included in the calculation of the PWM signal.
  • a first output variable of the rail pressure control circuit 13 is the raw value of the rail pressure pCR.
  • a second output variable of the rail pressure control circuit 13 corresponds to the actual rail pressure pCR (IST), which is stored in a controller 14 ( Figure 3 ) is processed further.
  • the actual rail pressure pCR (IST) is calculated from the raw value of the rail pressure pCR using a filter 20. This is then compared with the setpoint pCR (SL) at a summation point A, which results in a control deviation ep. From the control deviation ep, a pressure regulator 15 calculates its manipulated variable, which is a volume flow V1 with the physical one Unit liter / minute corresponds. The calculated target consumption V2 is added to the volume flow V1 at a summation point B. The target consumption V2 is calculated using a calculation 23, which is carried out in the Figure 3 is shown and explained in connection with this. The result of the addition at the summation point B represents the volume flow V3, which is the input variable of a limitation 16.
  • the limit 16 is changed depending on the engine speed nMOT.
  • the output variable of the limitation 16 corresponds to a target volume flow VSL. If the volume flow V3 is below the limit value of the limitation 16, the value of the set volume flow VSL corresponds to the value of the volume flow V3.
  • the target volume flow VSL is the input variable of a pump characteristic curve 17. Via the pump characteristic curve 17, an electrical target current iSL is assigned to the target volume flow VSL. The target current iSL is then converted into a PWM signal PWMSD in a calculation 18.
  • the PWM signal PWMSD represents the duty cycle and the frequency fPWM corresponds to the basic frequency.
  • the PWM signal PWMSD is then applied to the solenoid of the suction throttle.
  • the suction throttle is open when de-energized and is acted upon by the PWM control in the direction of the closed position.
  • the calculation of the PWM signal 18 can be subordinated to a current control loop, such as this from the DE 10 2004 061 474 A1 is known.
  • the high-pressure pump, the suction throttle, the rail and, if applicable, the individual accumulators correspond to a control system 19. The control circuit is thus closed.
  • the Figure 3 shows as a block diagram the highly simplified rail pressure control circuit 13 of the Figure 2 and the controller 14.
  • the rail pressure disturbance variable VDRV is generated via the controller 14.
  • the input variables of the controller 14 are: the actual rail pressure pCR (IST), the engine speed nMOT and the target injection quantity QSL.
  • the target injection quantity QSL is either calculated via a map depending on a desired performance or corresponds to the manipulated variable of a speed controller.
  • the physical unit of the target injection quantity is mm 3 / stroke.
  • a target torque MSL is used as the input variable instead of the target injection quantity QSL.
  • a first output variable is the rail pressure disturbance variable VDRV, that is to say the fuel volume flow which is diverted from the rail into the fuel tank by the pressure control valve.
  • a second output variable is the target consumption V2, which is further processed in the rail pressure control circuit 13.
  • the actual rail pressure pCR (ACTUAL) is a maximum volume flow VMAX, unit: liter / minute, via a characteristic curve 21 assigned.
  • the characteristic curve 21 is designed, for example, as a rising straight line with the basic values A (0 bar; 0 L / min) and B (2200 bar; 7.5 L / min).
  • the maximum volume flow VMAX is one of the input variables of a limitation 24.
  • the target consumption V2 is calculated using a calculation 23.
  • a first target volume flow VDV1 (SL) for the pressure control valve is calculated via the target volume flow map 22 (3D map).
  • the target volume flow map 22 is designed in such a way that a positive value of the first target volume flow VDV1 (SL) is calculated in the low load range, for example when idling, while in the normal operating range a first target volume flow VDV1 (SL) of Zero is calculated.
  • a possible embodiment of the desired volume flow map 22 is shown in FIG Figure 6 shown and explained in connection with this.
  • the first set volume flow VDV1 (SL) has the physical unit liters / minute.
  • the first set volume flow VDV1 (SL) is the second input variable for the limitation 24. Via the limitation 24, the first set volume flow VDV1 (SL) is limited to the value of the maximum volume flow VMAX.
  • the output variable corresponds to the target volume flow VDV (SL), which the pressure control valve is supposed to control from the rail into the fuel tank. If the first set volume flow VDV1 (SL) is smaller than the maximum volume flow VMAX, the value of the set volume flow VDV (SL) is set to the value of the first set volume flow VDV1 (SL). Otherwise, the value of the target volume flow VDV (SL) is set to the value of the maximum volume flow VMAX.
  • the target volume flow VDV (SL) and the actual rail pressure pCR (IST) are the input variables of the pressure control valve map 25.
  • the pressure control valve map 25 represents a map inversion, that is, the physical (stationary) behavior of the pressure control valve inverted with this map.
  • the output variable of the pressure control valve map 25 is a target current iDV (SL), which is then converted into a PWM signal PWMDV using the calculation 26.
  • a current control, current control circuit 27, or a current control with feedforward control can be subordinate to the conversion.
  • the current regulation is in the Figure 4 shown and explained in connection with this.
  • the current control with pilot control is in the Figure 5 shown and explained in connection with this.
  • the pressure control valve 12 is actuated with the PWM signal PWMDV.
  • the electrical current iDV which arises at the pressure control valve 12 is converted into an actual current iDV (ACTUAL) for current control via a filter 28 and to the calculation PWM signal 26 fed back.
  • the output signal of the pressure control valve 12 corresponds to the rail pressure disturbance variable VDRV, that is to say the fuel volume flow which is diverted from the rail into the fuel tank.
  • the Figure 4 shows a pure current control.
  • the input variables are the target current iDV (SL), the actual current iDV (IST), the battery voltage UBAT and controller parameters (kp, Tn).
  • the output variable is the PWM signal PWMDV, which is used to control the pressure control valve. From the target current iDV (SL) and the actual current iDV (IST), see Figure 3 , the current control deviation ei is first calculated.
  • the current control deviation ei is the input variable of the current regulator 29.
  • the current regulator 29 can be designed as a PI or PI (DT1) algorithm.
  • the controller parameters are processed in the algorithm. These are characterized, among other things, by the proportional coefficient kp and the reset time Tn.
  • the output variable of the current regulator 29 is a target voltage UDV (SL) of the pressure control valve. This is divided by the battery voltage UBAT and then multiplied by 100. The result corresponds to the duty cycle of the pressure control valve in percent.
  • the Figure 5 shows a current control with combined feedforward control.
  • the input variables are the target current iDV (SL), the actual current iDV (IST), the controller parameters (kp, Tn), the ohmic resistance RDV of the pressure control valve and the battery voltage UBAT.
  • the output variable is also the PWM signal PWMDV, with which the pressure control valve is controlled.
  • the target current iDV (SL) is multiplied by the ohmic resistance RDV of the pressure control valve.
  • the result corresponds to a pilot control voltage UDV (VS).
  • the current control deviation ei is calculated on the basis of the target current iDV (SL) and the actual current iDV (IST).
  • the current controller 29 calculates the target voltage UDV (SL) of the current controller as a manipulated variable.
  • the current controller 29 can also be designed here either as a PI or as a PI (DT1) controller. Then the target voltage UDV (SL) and the pilot voltage UDV (VS) are added, divided by the battery voltage UBAT and multiplied by 100.
  • the target volume flow map 22 is shown. This is used to determine the first set volume flow VDV1 (SL) for the pressure control valve.
  • the first set volume flow VDV1 (SL) and the set volume flow VDV (SL) are identical, as long as the first set volume flow VDV1 (SL) is smaller than the maximum volume flow VMAX ( Fig. 3 : Limit 24).
  • the input variables are the engine speed nMOT and the target injection quantity QSL. Engine speed values from 0 to 2000 1 / min are plotted in the horizontal direction. The nominal injection quantity values from 0 to 270 mm 3 / stroke are plotted in the vertical direction. The values within the map then correspond to the assigned first set volume flow VDV1 (SL) in liters / minute.
  • the fuel volume flow to be controlled ie the rail pressure disturbance variable, is determined via the target volume flow map 22.
  • the normal operating range is double-framed in the figure.
  • the simply framed area corresponds to the low-load area.
  • the Figure 7 shows a time diagram of a load shedding from 100% to 0% load in an internal combustion engine that drives an emergency power generator (60 Hz generator).
  • the Figure 7 consists of the partial diagrams 7A to 7E. These each show over time: the engine speed nMOT in Figure 7A , the target injection quantity QSL in Figure 7B , the suction throttle current iSD in Figure 7C , the actual rail pressure pCR (IST) in Figure 7D and the target volume flow VDV (SL) of the pressure control valve in Figure 7E .
  • the curve is shown without a pressure control valve, while the curve with control of the pressure control valve is shown as solid lines.
  • the target engine speed is identical to the nominal speed.
  • the target injection quantity QSL rises again, so that the actual rail pressure pCR (IST) now drops again.
  • the diagrams show that the control of the fuel with the help of the pressure control valve leads to a reduction in the peak value of the actual rail pressure pCR (IST).
  • this pressure difference is marked with dp.
  • the control also reduces the settling time of the actual rail pressure pCR (IST) after a load shedding.
  • the settling time without pressure control valve is marked with dt1 and the settling time with pressure control valve with dt2.
  • Steps S6 to S9 contain the configuration of the current control loop with pilot control.
  • the target injection quantity QSL, the engine speed nMOT, the actual rail pressure pCR (IST), the battery voltage UBAT and the actual current iDV (IST) of the pressure control valve read.
  • the first set volume flow VDV1 (SL) is then calculated at S2 using the set volume flow map as a function of the set injection quantity QSL and the engine speed nMOT.
  • a maximum volume flow VMAX ( Fig. 3 : 21) and the first set volume flow VDV1 (SL) is limited to the maximum volume flow VMAX, S4.
  • the set volume flow VDV (SL) is set to the value of the first set volume flow VDV1 (SL). Otherwise the target volume flow VDV (SL) is set to the value of the maximum volume flow VMAX.
  • the target current iDV (SL) is calculated as a function of the target volume flow VDV (SL) and the actual rail pressure pCR (IST).
  • a pilot control voltage UDV (VS) is calculated by multiplying the target current iDV (SL) by the ohmic resistance RDV of the pressure control valve and the supply line.
  • a setpoint voltage UDV (SL) is calculated as the manipulated variable of the current controller depending on the current control deviation ei. Then the target voltage UDV (SL) for the pressure control valve and the pilot control voltage UDV (VS) are added at S8. The result is then divided at S9 by the battery voltage UBAT and multiplied by 100, which corresponds to the duty cycle of the PWM signal for actuating the pressure control valve. The program sequence is now finished.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine nach dem Oberbegriff von Anspruch 1.The invention relates to a method for controlling and regulating an internal combustion engine according to the preamble of claim 1.

Bei einer Brennkraftmaschine mit Common-Railsystem wird die Güte der Verbrennung maßgeblich über das Druckniveau im Rail bestimmt. Zur Einhaltung der gesetzlichen Emissionsgrenzwerte wird daher der Raildruck geregelt. Typischerweise umfasst ein Raildruck-Regelkreis eine Vergleichsstelle zur Bestimmung einer Regelabweichung, einen Druckregler zum Berechnen eines Stellsignals, die Regelstrecke und ein Softwarefilter zur Berechnung des Ist-Raildrucks im Rückkopplungszweig. Berechnet wird die Regelabweichung aus einem Soll-Raildruck zum Ist-Raildruck. Die Regelstrecke umfasst das Druckstellglied, das Rail und die Injektoren zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine.In an internal combustion engine with a common rail system, the quality of the combustion is largely determined by the pressure level in the rail. The rail pressure is therefore regulated to comply with the legal emission limit values. Typically, a rail pressure control circuit comprises a comparison point for determining a control deviation, a pressure controller for calculating an actuating signal, the controlled system and a software filter for calculating the actual rail pressure in the feedback branch. The control deviation is calculated from a target rail pressure to the actual rail pressure. The controlled system includes the pressure actuator, the rail and the injectors for injecting the fuel into the combustion chambers of the internal combustion engine.

Aus der DE 197 31 995 A1 ist ein Common-Railsystem mit Druckregelung bekannt, bei dem der Druckregler mit unterschiedlichen Reglerparametern bestückt wird. Durch die unterschiedlichen Reglerparameter soll die Druckregelung stabiler sein. Die Reglerparameter wiederum werden in Abhängigkeit von Betriebsparametern, hier: die Motordrehzahl und die Soll-Einspritzmenge, berechnet. An Hand der Reglerparameter berechnet dann der Druckregler das Stellsignal für ein Druckregelventil, über welches der Kraftstoffabfluss aus dem Rail in den Kraftstofftank festgelegt wird. Das Druckregelventil ist folglich auf der Hochdruckseite des Common-Railsystems angeordnet. Als alternative Maßnahmen zur Druckregelung sind eine elektrische Vorförderpumpe oder eine steuerbare Hochdruckpumpe in dieser Fundstelle aufgezeigt.From the DE 197 31 995 A1 a common rail system with pressure control is known in which the pressure regulator is equipped with different regulator parameters. The pressure control should be more stable due to the different controller parameters. The controller parameters are in turn calculated depending on operating parameters, here: the engine speed and the target injection quantity. Using the controller parameters, the pressure controller then calculates the control signal for a pressure control valve, via which the fuel outflow from the rail into the fuel tank is determined. The pressure control valve is consequently arranged on the high-pressure side of the common rail system. An electrical pre-feed pump or a controllable high-pressure pump are shown in this reference as alternative measures for pressure regulation.

Auch die DE 103 30 466 B3 beschreibt ein Common-Railsystem mit Druckregelung, bei dem jedoch der Druckregler über das Stellsignal auf eine Saugdrossel zugreift. Über die Saugdrossel wiederum wird der Zulaufquerschnitt zur Hochdruckpumpe festgelegt. Die Saugdrossel ist folglich auf der Niederdruckseite des Common-Railsystems angeordnet. Ergänzend kann bei diesem Common-Railsystem noch ein passives Druckbegrenzungsventil als Schutzmaßnahme vor zu hohem Raildruck vorgesehen sein. Über das geöffnete Druckbegrenzungsventil wird dann der Kraftstoff aus dem Rail in den Kraftstofftank abgeleitet. Ein entsprechendes Common-Railsystem ist aus der DE 10 2006 040 441 B3 bekannt.Also the DE 103 30 466 B3 describes a common rail system with pressure control, but in which the pressure controller accesses a suction throttle via the control signal. About the Suction throttle in turn determines the inlet cross-section to the high-pressure pump. The suction throttle is consequently arranged on the low pressure side of the common rail system. In addition, a passive pressure relief valve can be provided as a protective measure against excessive rail pressure in this common rail system. The fuel is then drained from the rail into the fuel tank via the open pressure relief valve. A corresponding common rail system is from the DE 10 2006 040 441 B3 known.

Patentliteraturen DE 198 02 583 A1 und DE 10 2007 061228 A1 zeigen jeweils die Merkmale der Präambel.Patent literature DE 198 02 583 A1 and DE 10 2007 061228 A1 each show the characteristics of the preamble.

Patentliteraturen DE 10 2007 059352 B3 , DE 10 2004 059330 A1 und DE 197 31 994 A1 zeigen jeweils ähnliche Raildruckregelsysteme.Patent literature DE 10 2007 059352 B3 , DE 10 2004 059330 A1 and DE 197 31 994 A1 each show similar rail pressure control systems.

Bauartbedingt treten bei einem Common-Railsystem eine Steuer- und eine Konstantleckage auf. Die Steuerleckage ist dann wirksam, wenn der Injektor elektrisch angesteuert wird, das heißt, während der Dauer der Einspritzung. Mit abnehmender Einspritzdauer sinkt daher auch die Steuerleckage. Die Konstantleckage ist immer wirksam, das heißt, auch dann, wenn der Injektor nicht angesteuert wird. Verursacht wird diese auch durch die Bauteiltoleranzen. Da die Konstantleckage mit steigendem Raildruck zunimmt und mit fallendem Raildruck abnimmt, werden die Druckschwingungen im Rail bedämpft. Bei der Steuerleckage verhält es sich hingegen umgekehrt. Steigt der Raildruck, so wird zur Darstellung einer konstanten Einspritzmenge die Einspritzdauer verkürzt, was eine sinkende Steuerleckage zur Folge hat. Sinkt der Raildruck, so wird die Einspritzdauer entsprechend vergrößert, was eine steigende Steuerleckage zur Folge hat. Die Steuerleckage führt also dazu, dass die Druckschwingungen im Rail verstärkt werden. Die Steuer- und die Konstantleckage stellen einen Verlustvolumenstrom dar, welcher von der Hochdruckpumpe gefördert und verdichtet wird. Dieser Verlustvolumenstrom führt aber dazu, dass die Hochdruckpumpe größer als notwendig ausgelegt werden muss. Zudem wird ein Teil der Antriebsenergie der Hochdruckpumpe in Wärme umgesetzt, was wiederum die Erwärmung des Kraftstoffs und eine Wirkungsgrad-Reduktion der Brennkraftmaschine bewirkt.Due to the design, a control and constant leakage occur in a common rail system. The control leakage is effective when the injector is controlled electrically, that is, during the duration of the injection. As the injection duration decreases, the control leakage also decreases. Constant leakage is always effective, that is, even if the injector is not activated. This is also caused by the component tolerances. Since the constant leakage increases with increasing rail pressure and decreases with falling rail pressure, the pressure vibrations in the rail are dampened. The opposite is true with tax leakage. If the rail pressure rises, the injection duration is shortened to display a constant injection quantity, which results in a decreasing control leakage. If the rail pressure drops, the injection duration is increased accordingly, which results in increasing control leakage. The control leakage means that the pressure vibrations in the rail are amplified. The control and constant leakage represent a loss volume flow, which is pumped and compressed by the high pressure pump. However, this loss volume flow means that the high pressure pump must be designed larger than necessary. In addition, part of the drive energy of the high-pressure pump is converted into heat, which in turn heats up the fuel and reduces the efficiency of the internal combustion engine.

Zur Verringerung der Konstantleckage werden in der Praxis die Bauteile miteinander vergossen. Eine Verringerung der Konstantleckage hat allerdings den Nachteil, dass sich das Stabilitätsverhalten des Common-Railsystems verschlechtert und die Druckregelung schwieriger wird. Deutlich wird dies im Schwachlastbereich, weil hier die Einspritzmenge, also das entnommene Kraftstoffvolumen, sehr gering ist. Ebenso deutlich wird dies bei einem Lastabwurf von 100% nach 0% Last, da hier die Einspritzmenge auf Null reduziert wird und sich daher der Raildruck nur langsam wieder abbaut. Dies wiederum bewirkt eine lange Ausregelzeit.In practice, the components are cast together to reduce the constant leakage. However, reducing the constant leakage has the disadvantage that the stability behavior of the common rail system deteriorates and pressure control becomes more difficult. This becomes clear in the low-load range, because here the injection quantity, i.e. the fuel volume withdrawn, is very small. This becomes just as clear with a load shedding from 100% to 0% load, since the injection quantity is reduced to zero here and the rail pressure therefore only slowly decreases again. This in turn causes a long settling time.

Ausgehend von einem Common-Railsystem mit einer Raildruckregelung über eine niederdruckseitige Saugdrossel und mit verringerter Konstantleckage, liegt der Erfindung die Aufgabe zu Grunde, das Stabilitätsverhalten und die Ausregelzeit zu optimieren.Starting from a common rail system with rail pressure control via a low-pressure suction throttle and with reduced constant leakage, the invention is based on the object of optimizing the stability behavior and the settling time.

Gelöst wird diese Aufgabe durch ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine mit den Merkmalen von Anspruch 1. Die Ausgestaltungen sind in den Unteransprüchen dargestellt.This object is achieved by a method for controlling and regulating an internal combustion engine having the features of claim 1. The configurations are shown in the subclaims.

Das Verfahren besteht darin, dass neben der Raildruckregelung über die niederdruckseitige Saugdrossel als erstes Druckstellglied eine Raildruck-Störgröße zur Beeinflussung des Raildrucks über ein hochdruckseitiges Druckregelventil als zweites Druckstellglied erzeugt wird. Über das hochdruckseitige Druckregelventil wird Kraftstoff aus dem Rail in einen Kraftstofftank abgesteuert. Die Erfindung besteht also darin, dass über die Steuerung des Druckregelventils eine Konstantleckage nachgebildet wird. Berechnet wird die Raildruck-Störgröße in Abhängigkeit des Ist-Raildrucks und eines Soll-Volumenstroms des Druckregelventils über ein Druckregelventil-Kennfeld. Der Soll-Volumenstrom wiederum wird in Abhängigkeit einer Soll-Einspritzmenge und einer Motordrehzahl über ein Soll-Volumenstrom-Kennfeld berechnet. Bei einer momentenbasierten Struktur wird anstelle der Soll-Einspritzmenge ein Soll-Moment als Eingangsgröße für das Soll-Volumenstrom-Kennfeld verwendet. Das Soll-Volumenstrom-Kennfeld ist in der Form ausgeführt, dass in einem Schwachlastbereich ein Soll-Volumenstrom mit einem positiven Wert, zum Beispiel 2 Liter/Minute, und in einem Normalbetriebsbereich ein Soll-Volumenstrom von Null berechnet wird. Unter Schwachlastbereich ist im Sinne der Erfindung der Bereich kleiner Einspritzmengen und damit kleiner Motorleistung zu verstehen.The method consists in that, in addition to the rail pressure control via the low-pressure suction throttle as the first pressure control element, a rail pressure disturbance variable for influencing the rail pressure is generated via a high-pressure pressure control valve as the second pressure control element. Fuel is diverted from the rail into a fuel tank via the high-pressure pressure control valve. The invention therefore consists in that a constant leak is simulated via the control of the pressure control valve. The rail pressure disturbance variable is calculated as a function of the actual rail pressure and a target volume flow of the pressure control valve using a pressure control valve map. The set volume flow is in turn calculated as a function of a set injection quantity and an engine speed via a set volume flow map. In the case of a torque-based structure, instead of the target injection quantity, a target torque is used as an input variable for the target volume flow map. The target volume flow map is designed in such a way that a target volume flow with a positive value, for example 2 liters / minute, is calculated in a low-load range and a target volume flow of zero is calculated in a normal operating range. In the context of the invention, the low-load range is to be understood as the range of small injection quantities and thus small engine output.

Da der Kraftstoff nur im Schwachlastbereich und in kleiner Menge abgesteuert wird, erfolgt keine signifikante Erhöhung der Kraftstofftemperatur und auch keine signifikante Verringerung des Wirkungsgrads der Brennkraftmaschine. Die erhöhte Stabilität des Hochdruck-Regelkreises im Schwachlastbereich kann daran erkannt werden, dass der Raildruck im Schubbetrieb etwa konstant bleibt und bei einem Lastabwurf der Raildruck-Spitzenwert ein deutlich reduziertes Druckniveau hat.Since the fuel is only diverted in the low-load range and in a small amount, there is no significant increase in the fuel temperature and also no significant decrease in the efficiency of the internal combustion engine. The increased stability of the high-pressure control circuit in the low-load range can be recognized by the fact that the rail pressure remains approximately constant in overrun mode and that the rail pressure peak value has a significantly reduced pressure level when the load is shed.

In einer Ausführungsform ist zur Verbesserung der Genauigkeit noch vorgesehen, dass die Raildruck-Störgröße ergänzend mittels eines unterlagerten Stromregelkreises, alternativ mittels eines unterlagerten Stromregelkreises nebst Vorsteuerung, bestimmt wird.In one embodiment, to improve the accuracy, it is also provided that the rail pressure disturbance variable is additionally determined by means of a subordinate current control loop, alternatively by means of a subordinate current control loop together with pilot control.

In den Figuren ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:

Figur 1
ein Systemschaubild,
Figur 2
einen Raildruck-Regelkreis,
Figur 3
ein Blockschaltbild,
Figur 4
einen Stromregelkreis,
Figur 5
einen Stromregelkreis mit Vorsteuerung,
Figur 6
ein Soll-Volumenstrom-Kennfeld,
Figur 7
ein Zeitdiagramm und
Figur 8
einen Programm-Ablaufplan.
A preferred exemplary embodiment is shown in the figures. Show it:
Figure 1
a system diagram,
Figure 2
a rail pressure control loop,
Figure 3
a block diagram,
Figure 4
a current control loop,
Figure 5
a current control loop with pilot control,
Figure 6
a target volume flow map,
Figure 7
a timing diagram and
Figure 8
a program schedule.

Die Figur 1 zeigt ein Systemschaubild einer elektronisch gesteuerten Brennkraftmaschine 1 mit einem Common-Railsystem. Das Common-Railsystem umfasst folgende mechanische Komponenten: eine Niederdruckpumpe 3 zur Förderung von Kraftstoff aus einem Kraftstofftank 2, eine veränderbare, niederdruckseitige Saugdrossel 4 zur Beeinflussung des durchströmenden Kraftstoff-Volumenstroms, eine Hochdruckpumpe 5 zur Förderung des Kraftstoffs unter Druckerhöhung, ein Rail 6 zum Speichern des Kraftstoffs und Injektoren 7 zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine 1. Optional kann das Common-Railsystem auch mit Einzelspeichern ausgeführt sein, wobei dann zum Beispiel im Injektor 7 ein Einzelspeicher 8 als zusätzliches Puffervolumen integriert ist. Als Schutz vor einem unzulässig hohen Druckniveau im Rail 6 ist ein passives Druckbegrenzungsventil 11 vorgesehen, welches im geöffneten Zustand den Kraftstoff aus dem Rail 6 absteuert. Ein elektrisch ansteuerbares Druckregelventil 12 verbindet ebenfalls das Rail 6 mit dem Kraftstofftank 2. Über die Stellung des Druckregelventils 12 wird ein Kraftstoffvolumenstrom definiert, welcher aus dem Rail 6 in den Kraftstofftank 2 abgeleitet wird. Im weiteren Text wird dieser Kraftstoffvolumenstrom als Raildruck-Störgröße VDRV bezeichnet.The Figure 1 shows a system diagram of an electronically controlled internal combustion engine 1 with a common rail system. The common rail system comprises the following mechanical components: a low-pressure pump 3 for delivering fuel from a fuel tank 2, a changeable, low-pressure suction throttle 4 for influencing the fuel volume flow flowing through it, a high-pressure pump 5 for delivering fuel while increasing the pressure, a rail 6 for storing of the fuel and injectors 7 for injecting the fuel into the combustion chambers of the internal combustion engine 1. Optionally, the common rail system can also be designed with individual stores, in which case, for example, an individual store 8 is integrated in the injector 7 as an additional buffer volume. To protect against an impermissibly high pressure level in the rail 6, a passive pressure relief valve 11 is provided which, in the open state, controls the fuel from the rail 6. An electrically controllable pressure control valve 12 also connects the rail 6 to the fuel tank 2. A fuel volume flow is defined via the position of the pressure control valve 12 and is derived from the rail 6 into the fuel tank 2. In the further text, this fuel volume flow is referred to as rail pressure disturbance variable VDRV.

Die Betriebsweise der Brennkraftmaschine 1 wird durch ein elektronisches Steuergerät (ECU) 10 bestimmt. Das elektronische Steuergerät 10 beinhaltet die üblichen Bestandteile eines Mikrocomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer und Speicherbausteine (EEPROM, RAM). In den Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten in Kennfeldern/Kennlinien appliziert. Über diese berechnet das elektronische Steuergerät 10 aus den Eingangsgrößen die Ausgangsgrößen. In der Figur 1 sind exemplarisch folgende Eingangsgrößen dargestellt: der Raildruck pCR, der mittels eines Rail-Drucksensors 9 gemessen wird, eine Motordrehzahl nMOT, ein Signal FP zur Leistungsvorgabe durch den Betreiber und eine Eingangsgröße EIN. Unter der Eingangsgröße EIN sind die weiteren Sensorsignale zusammengefasst, beispielsweise der Ladeluftdruck eines Abgasturboladers. Bei einem Common-Railsystem mit Einzelspeichern 8 ist der Einzelspeicherdruck pE eine zusätzliche Eingangsgröße des elektronischen Steuergeräts 10.The operating mode of the internal combustion engine 1 is determined by an electronic control unit (ECU) 10. The electronic control unit 10 contains the usual ones Components of a microcomputer system, for example a microprocessor, I / O modules, buffers and memory modules (EEPROM, RAM). The operating data relevant to the operation of the internal combustion engine 1 are applied in characteristic diagrams / characteristic curves in the memory modules. The electronic control unit 10 uses these to calculate the output variables from the input variables. In the Figure 1 The following input variables are shown as examples: the rail pressure pCR, which is measured by means of a rail pressure sensor 9, an engine speed nMOT, a signal FP for power specification by the operator and an input variable IN. The other sensor signals are summarized under input variable IN, for example the charge air pressure of an exhaust gas turbocharger. In a common rail system with individual stores 8, the individual store pressure pE is an additional input variable of the electronic control unit 10.

In Figur 1 sind als Ausgangsgrößen des elektronischen Steuergeräts 10 ein Signal PWMSD zur Ansteuerung der Saugdrossel 4 als erstes Druckstellglied, ein Signal ve zur Ansteuerung der Injektoren 7 (Spritzbeginn/Spritzende), ein Signal PWMDV zur Ansteuerung des Druckregelventils 12 als zweites Druckstellglied und eine Ausgangsgröße AUS dargestellt. Die Ausgangsgröße AUS steht stellvertretend für die weiteren Stellsignale zur Steuerung und Regelung der Brennkraftmaschine 1, beispielsweise für ein Stellsignal zur Aktivierung eines zweiten Abgasturboladers bei einer Registeraufladung.In Figure 1 The output variables of the electronic control unit 10 are a signal PWMSD for controlling the suction throttle 4 as the first pressure control element, a signal ve for controlling the injectors 7 (start / end of spray), a signal PWMDV for controlling the pressure control valve 12 as the second pressure control element and an output variable OFF. The output variable AUS is representative of the other control signals for controlling and regulating the internal combustion engine 1, for example for a control signal for activating a second exhaust gas turbocharger when register is being charged.

Die Figur 2 zeigt einen Raildruck-Regelkreis 13 zur Regelung des Raildrucks pCR. Die Eingangsgrößen des Raildruck-Regelkreises 13 sind: ein Soll-Raildruck pCR(SL), ein Soll-Verbrauch V2, die Motordrehzahl nMOT, die PWM-Grundfrequenz fPWM und eine Größe E1. Unter der Größe E1 sind beispielsweise die Batteriespannung und der ohmsche Widerstand der Saugdrosselspule mit Zuleitung zusammengefasst, welche in die Berechnung des PWM-Signals mit eingehen. Eine erste Ausgangsgröße des Raildruck-Regelkreises 13 ist der Rohwert des Raildrucks pCR. Eine zweite Ausgangsgröße des Raildruck-Regelkreises 13 entspricht dem Ist-Raildruck pCR(IST), welcher in einer Steuerung 14 (Figur 3) weiter verarbeitet wird. Aus dem Rohwert des Raildrucks pCR wird mittels eines Filters 20 der Ist-Raildruck pCR(IST) berechnet. Dieser wird dann mit dem Sollwert pCR(SL) an einem Summationspunkt A verglichen, woraus eine Regelabweichung ep resultiert. Aus der Regelabweichung ep berechnet ein Druckregler 15 seine Stellgröße, welche einem Volumenstrom V1 mit der physikalischen Einheit Liter/Minute entspricht. Zum Volumenstrom V1 wird an einem Summationspunkt B der berechnete Soll-Verbrauch V2 addiert. Berechnet wird der Soll-Verbrauch V2 über eine Berechnung 23, welche in der Figur 3 dargestellt ist und in Verbindung mit dieser erklärt wird. Das Ergebnis der Addition am Summationspunkt B stellt den Volumenstrom V3 dar, welcher die Eingangsgröße einer Begrenzung 16 ist. Die Begrenzung 16 wird in Abhängigkeit der Motordrehzahl nMOT verändert. Die Ausgangsgröße der Begrenzung 16 entspricht einem Soll-Volumenstrom VSL. Liegt der Volumenstrom V3 unterhalb des Grenzwerts der Begrenzung 16, so entspricht der Wert des Soll-Volumenstroms VSL dem Wert des Volumenstroms V3. Der Soll-Volumenstrom VSL ist die Eingangsgröße einer Pumpen-Kennlinie 17. Über die Pumpen-Kennlinie 17 wird dem Soll-Volumenstrom VSL ein elektrischer Soll-Strom iSL zugeordnet. Der Soll-Strom iSL wird danach in einer Berechnung 18 in ein PWM-Signal PWMSD umgerechnet. Das PWM-Signal PWMSD stellt hierbei die Einschaltdauer dar und die Frequenz fPWM entspricht der Grundfrequenz. Mit dem PWM-Signal PWMSD wird dann die Magnetspule der Saugdrossel beaufschlagt. Dadurch wird der Weg des Magnetkerns verändert, wodurch der Förderstrom der Hochdruckpumpe frei beeinflusst wird. Aus Sicherheitsgründen ist die Saugdrossel stromlos offen und wird über die PWM-Ansteuerung in Richtung der Schließstellung beaufschlagt. Der Berechnung des PWM-Signals 18 kann ein Stromregelkreis unterlagert sein, wie dieser aus der DE 10 2004 061 474 A1 bekannt ist. Die Hochdruckpumpe, die Saugdrossel, das Rail und gegebenenfalls die Einzelspeicher entsprechen einer Regelstrecke 19. Damit ist der Regelkreis geschlossen.The Figure 2 shows a rail pressure control circuit 13 for controlling the rail pressure pCR. The input variables of the rail pressure control circuit 13 are: a target rail pressure pCR (SL), a target consumption V2, the engine speed nMOT, the PWM basic frequency fPWM and a variable E1. Size E1 includes, for example, the battery voltage and the ohmic resistance of the inductor with supply line, which are included in the calculation of the PWM signal. A first output variable of the rail pressure control circuit 13 is the raw value of the rail pressure pCR. A second output variable of the rail pressure control circuit 13 corresponds to the actual rail pressure pCR (IST), which is stored in a controller 14 ( Figure 3 ) is processed further. The actual rail pressure pCR (IST) is calculated from the raw value of the rail pressure pCR using a filter 20. This is then compared with the setpoint pCR (SL) at a summation point A, which results in a control deviation ep. From the control deviation ep, a pressure regulator 15 calculates its manipulated variable, which is a volume flow V1 with the physical one Unit liter / minute corresponds. The calculated target consumption V2 is added to the volume flow V1 at a summation point B. The target consumption V2 is calculated using a calculation 23, which is carried out in the Figure 3 is shown and explained in connection with this. The result of the addition at the summation point B represents the volume flow V3, which is the input variable of a limitation 16. The limit 16 is changed depending on the engine speed nMOT. The output variable of the limitation 16 corresponds to a target volume flow VSL. If the volume flow V3 is below the limit value of the limitation 16, the value of the set volume flow VSL corresponds to the value of the volume flow V3. The target volume flow VSL is the input variable of a pump characteristic curve 17. Via the pump characteristic curve 17, an electrical target current iSL is assigned to the target volume flow VSL. The target current iSL is then converted into a PWM signal PWMSD in a calculation 18. The PWM signal PWMSD represents the duty cycle and the frequency fPWM corresponds to the basic frequency. The PWM signal PWMSD is then applied to the solenoid of the suction throttle. This changes the path of the magnetic core, which freely influences the flow rate of the high pressure pump. For safety reasons, the suction throttle is open when de-energized and is acted upon by the PWM control in the direction of the closed position. The calculation of the PWM signal 18 can be subordinated to a current control loop, such as this from the DE 10 2004 061 474 A1 is known. The high-pressure pump, the suction throttle, the rail and, if applicable, the individual accumulators correspond to a control system 19. The control circuit is thus closed.

Die Figur 3 zeigt als Blockschaltbild den stark vereinfachten Raildruck-Regelkreis 13 der Figur 2 und die Steuerung 14. Über die Steuerung 14 wird die Raildruck-Störgröße VDRV erzeugt. Die Eingangsgrößen der Steuerung 14 sind: der Ist-Raildruck pCR(IST), die Motordrehzahl nMOT und die Soll-Einspritzmenge QSL. Die Soll-Einspritzmenge QSL wird entweder über ein Kennfeld in Abhängigkeit eines Leistungswunsches berechnet oder entspricht der Stellgröße eines Drehzahlreglers. Die physikalische Einheit der Soll-Einspritzmenge ist mm3/Hub. Bei einer momentenorientierten Struktur wird anstelle der Soll-Einspritzmenge QSL ein Soll-Moment MSL als Eingangsgröße verwendet. Eine erste Ausgangsgröße ist die Raildruck-Störgröße VDRV, also demjenigen Kraftstoffvolumenstrom, welcher vom Druckregelventil aus dem Rail in den Kraftstofftank abgesteuert wird. Eine zweite Ausgangsgröße ist der Soll-Verbrauch V2, welcher im Raildruck-Regelkreis 13 weiterverarbeitet wird. Über eine Kennlinie 21 wird dem Ist-Raildruck pCR(IST) ein maximaler Volumenstrom VMAX, Einheit: Liter/Minute, zugeordnet. Die Kennlinie 21 ist beispielhaft als ansteigende Gerade mit den Eckwerten A(0 bar; 0 L/min) und B (2200 bar; 7.5 L/min) ausgeführt. Der maximale Volumenstrom VMAX ist eine der Eingangsgrößen einer Begrenzung 24.The Figure 3 shows as a block diagram the highly simplified rail pressure control circuit 13 of the Figure 2 and the controller 14. The rail pressure disturbance variable VDRV is generated via the controller 14. The input variables of the controller 14 are: the actual rail pressure pCR (IST), the engine speed nMOT and the target injection quantity QSL. The target injection quantity QSL is either calculated via a map depending on a desired performance or corresponds to the manipulated variable of a speed controller. The physical unit of the target injection quantity is mm 3 / stroke. In the case of a torque-oriented structure, a target torque MSL is used as the input variable instead of the target injection quantity QSL. A first output variable is the rail pressure disturbance variable VDRV, that is to say the fuel volume flow which is diverted from the rail into the fuel tank by the pressure control valve. A second output variable is the target consumption V2, which is further processed in the rail pressure control circuit 13. The actual rail pressure pCR (ACTUAL) is a maximum volume flow VMAX, unit: liter / minute, via a characteristic curve 21 assigned. The characteristic curve 21 is designed, for example, as a rising straight line with the basic values A (0 bar; 0 L / min) and B (2200 bar; 7.5 L / min). The maximum volume flow VMAX is one of the input variables of a limitation 24.

An Hand der Motordrehzahl nMOT und der Soll-Einspritzmenge QSL wird über eine Berechnung 23 der Soll-Verbrauch V2 berechnet. Ebenfalls an Hand der Motordrehzahl nMOT und der Soll-Einspritzmenge QSL wird über das Soll-Volumenstrom-Kennfeld 22 (3D-Kennfeld) ein erster Soll-Volumenstrom VDV1(SL) für das Druckregelventil berechnet. Das Soll-Volumenstrom-Kennfeld 22 ist in der Form ausgeführt, dass im Schwachlastbereich, zum Beispiel bei Leerlauf, ein positiver Wert des ersten Soll-Volumenstroms VDV1(SL) berechnet wird, während im Normalbetriebsbereich ein erster Soll-Volumenstrom VDV1(SL) von Null berechnet wird. Eine mögliche Ausführungsform des Soll-Volumenstrom-Kennfelds 22 ist in der Figur 6 dargestellt und wird in Verbindung mit dieser näher erklärt. Der erste Soll-Volumenstrom VDV1(SL) hat die physikalische Einheit Liter/Minute. Der erste Soll-Volumenstrom VDV1(SL) ist die zweite Eingangsgröße für die Begrenzung 24. Über die Begrenzung 24 wird der erste Soll-Volumenstrom VDV1(SL) auf den Wert des maximalen Volumenstroms VMAX begrenzt. Die Ausgangsgröße entspricht dem Soll-Volumenstrom VDV(SL), welchen das Druckregelventil aus dem Rail in den Kraftstofftank absteuern soll. Ist der erste Soll-Volumenstrom VDV1(SL) kleiner als der maximale Volumenstrom VMAX, so wird der Wert des Soll-Volumenstroms VDV(SL) auf den Wert des ersten Soll-Volumenstroms VDV1(SL) gesetzt. Anderenfalls wird der Wert des Soll-Volumenstroms VDV(SL) auf den Wert des maximalen Volumenstroms VMAX gesetzt. Der Soll-Volumenstrom VDV(SL) und der Ist-Raildruck pCR(IST) sind die Eingangsgrößen des Druckregelventil-Kennfelds 25. Das Druckregelventil-Kennfeld 25 stellt eine Kennfeld-Inversion dar, das heißt, das physikalische (stationäre) Verhalten des Druckregelventils wird mit diesem Kennfeld invertiert. Die Ausgangsgröße des Druckregelventil-Kennfelds 25 ist ein Soll-Strom iDV(SL), welcher anschließend über die Berechnung 26 in ein PWM-Signal PWMDV umgerechnet wird. Der Umrechnung kann eine Stromregelung, Stromregelkreis 27, oder eine Stromregelung mit Vorsteuerung unterlagert sein. Die Stromregelung ist in der Figur 4 dargestellt und wird in Verbindung mit dieser erklärt. Die Stromregelung mit Vorsteuerung ist in der Figur 5 dargestellt und wird in Verbindung mit dieser erklärt. Mit dem PWM-Signal PWMDV wird das Druckregelventil 12 angesteuert. Der sich am Druckregelventil 12 einstellende elektrische Strom iDV wird zur Stromregelung über ein Filter 28 in einen Ist-Strom iDV(IST) umgerechnet und auf die Berechnung PWM-Signal 26 zurückgekoppelt. Das Ausgangssignal des Druckregelventils 12 entspricht der Raildruck-Störgröße VDRV, also demjenigen Kraftstoffvolumenstrom, welcher aus dem Rail in den Kraftstofftank abgesteuert wird.Based on the engine speed nMOT and the target injection quantity QSL, the target consumption V2 is calculated using a calculation 23. Also based on the engine speed nMOT and the target injection quantity QSL, a first target volume flow VDV1 (SL) for the pressure control valve is calculated via the target volume flow map 22 (3D map). The target volume flow map 22 is designed in such a way that a positive value of the first target volume flow VDV1 (SL) is calculated in the low load range, for example when idling, while in the normal operating range a first target volume flow VDV1 (SL) of Zero is calculated. A possible embodiment of the desired volume flow map 22 is shown in FIG Figure 6 shown and explained in connection with this. The first set volume flow VDV1 (SL) has the physical unit liters / minute. The first set volume flow VDV1 (SL) is the second input variable for the limitation 24. Via the limitation 24, the first set volume flow VDV1 (SL) is limited to the value of the maximum volume flow VMAX. The output variable corresponds to the target volume flow VDV (SL), which the pressure control valve is supposed to control from the rail into the fuel tank. If the first set volume flow VDV1 (SL) is smaller than the maximum volume flow VMAX, the value of the set volume flow VDV (SL) is set to the value of the first set volume flow VDV1 (SL). Otherwise, the value of the target volume flow VDV (SL) is set to the value of the maximum volume flow VMAX. The target volume flow VDV (SL) and the actual rail pressure pCR (IST) are the input variables of the pressure control valve map 25. The pressure control valve map 25 represents a map inversion, that is, the physical (stationary) behavior of the pressure control valve inverted with this map. The output variable of the pressure control valve map 25 is a target current iDV (SL), which is then converted into a PWM signal PWMDV using the calculation 26. A current control, current control circuit 27, or a current control with feedforward control can be subordinate to the conversion. The current regulation is in the Figure 4 shown and explained in connection with this. The current control with pilot control is in the Figure 5 shown and explained in connection with this. The pressure control valve 12 is actuated with the PWM signal PWMDV. The electrical current iDV which arises at the pressure control valve 12 is converted into an actual current iDV (ACTUAL) for current control via a filter 28 and to the calculation PWM signal 26 fed back. The output signal of the pressure control valve 12 corresponds to the rail pressure disturbance variable VDRV, that is to say the fuel volume flow which is diverted from the rail into the fuel tank.

Die Figur 4 zeigt eine reine Stromregelung. Die Eingangsgrößen sind der Soll-Strom iDV(SL), der Ist-Strom iDV(IST), die Batteriespannung UBAT und Reglerparameter (kp, Tn). Die Ausgangsgröße ist das PWM-Signal PWMDV, mit welchem das Druckregelventil angesteuert wird. Aus dem Soll-Strom iDV(SL) und dem Ist-Strom iDV(IST), siehe Figur 3, wird zunächst die Strom-Regelabweichung ei berechnet. Die Strom-Regelabweichung ei ist die Eingangsgröße des Stromreglers 29. Der Stromregler 29 kann als PI- oder PI(DT1)-Algorithmus ausgeführt sein. Im Algorithmus werden die Reglerparameter verarbeitet. Diese sind unter anderem durch den Proportionalbeiwert kp und die Nachstellzeit Tn charakterisiert. Die Ausgangsgröße des Stromreglers 29 ist eine Soll-Spannung UDV(SL) des Druckregelventils. Diese wird durch die Batteriespannung UBAT dividiert und danach mit 100 multipliziert. Das Ergebnis entspricht der Einschaltdauer des Druckregelventils in Prozent.The Figure 4 shows a pure current control. The input variables are the target current iDV (SL), the actual current iDV (IST), the battery voltage UBAT and controller parameters (kp, Tn). The output variable is the PWM signal PWMDV, which is used to control the pressure control valve. From the target current iDV (SL) and the actual current iDV (IST), see Figure 3 , the current control deviation ei is first calculated. The current control deviation ei is the input variable of the current regulator 29. The current regulator 29 can be designed as a PI or PI (DT1) algorithm. The controller parameters are processed in the algorithm. These are characterized, among other things, by the proportional coefficient kp and the reset time Tn. The output variable of the current regulator 29 is a target voltage UDV (SL) of the pressure control valve. This is divided by the battery voltage UBAT and then multiplied by 100. The result corresponds to the duty cycle of the pressure control valve in percent.

Die Figur 5 zeigt eine Stromregelung mit kombinierter Vorsteuerung. Die Eingangsgrößen sind der Soll-Strom iDV(SL), der Ist-Strom iDV(IST), die Reglerparameter (kp, Tn), der ohmsche Widerstand RDV des Druckregelventils und die Batteriespannung UBAT. Die Ausgangsgröße ist auch hier das PWM-Signal PWMDV, mit welchem das Druckregelventil angesteuert wird. Zunächst wird der Soll-Strom iDV(SL) mit dem ohmschen Widerstand RDV des Druckregelventils multipliziert. Das Ergebnis entspricht einer Vorsteuerspannung UDV(VS). An Hand des Soll-Stroms iDV(SL) und des Ist-Stroms iDV(IST) wird die Strom-Regelabweichung ei berechnet. Aus der Strom-Regelabweichung ei berechnet dann der Stromregler 29 als Stellgröße die Soll-Spannung UDV(SL) des Stromreglers. Der Stromregler 29 kann auch hier entweder als PI- oder als PI(DT1)-Regler ausgeführt sein. Danach werden die Soll-Spannung UDV(SL) und die Vorsteuerspannung UDV(VS) addiert, durch die Batteriespannung UBAT geteilt und mit 100 multipliziert.The Figure 5 shows a current control with combined feedforward control. The input variables are the target current iDV (SL), the actual current iDV (IST), the controller parameters (kp, Tn), the ohmic resistance RDV of the pressure control valve and the battery voltage UBAT. The output variable is also the PWM signal PWMDV, with which the pressure control valve is controlled. First, the target current iDV (SL) is multiplied by the ohmic resistance RDV of the pressure control valve. The result corresponds to a pilot control voltage UDV (VS). The current control deviation ei is calculated on the basis of the target current iDV (SL) and the actual current iDV (IST). From the current control deviation ei, the current controller 29 then calculates the target voltage UDV (SL) of the current controller as a manipulated variable. The current controller 29 can also be designed here either as a PI or as a PI (DT1) controller. Then the target voltage UDV (SL) and the pilot voltage UDV (VS) are added, divided by the battery voltage UBAT and multiplied by 100.

In der Figur 6 ist das Soll-Volumenstrom-Kennfeld 22 dargestellt. Über dieses wird der erste Soll-Volumenstrom VDV1(SL) für das Druckregelventil bestimmt. Der erste Soll-Volumenstrom VDV1(SL) und der Soll-Volumenstrom VDV(SL) sind identisch, solange der erste Soll-Volumenstrom VDV1(SL) kleiner als der maximale Volumenstrom VMAX ist (Fig. 3: Begrenzung 24). Die Eingangsgrößen sind die Motordrehzahl nMOT und die Soll-Einspritzmenge QSL. In waagerechter Richtung sind Motordrehzahlwerte von 0 bis 2000 1/min aufgetragen. In senkrechter Richtung sind die Soll-Einspritzmengenwerte von 0 bis 270 mm3/Hub aufgetragen. Die Werte innerhalb des Kennfelds entsprechen dann dem zugeordneten ersten Soll-Volumenstrom VDV1(SL) in Liter/Minute. Über das Soll-Volumenstrom-Kennfeld 22 wird der abzusteuernde Kraftstoffvolumenstrom festgelegt, also die Raildruck-Störgröße. Das Soll-Volumenstrom-Kennfeld 22 ist in der Form ausgeführt, dass im Normalbetriebsbereich ein erster Soll-Volumenstrom von VDV1(SL)= 0 Liter/Minute berechnet wird. Der Normalbetriebsbereich ist in der Figur doppelt gerahmt. Der einfach gerahmte Bereich entspricht dem Schwachlastbereich. Im Schwachlastbereich wird ein positiver Wert des ersten Soll-Volumenstroms VDV1(SL) berechnet. Beispielsweise bei nMOT=1000 1/min und QSL=30 mm3/Hub wird ein erster Soll-Volumenstrom von VDV1(SL)=1.5 Liter/Minute festgelegt.In the Figure 6 The target volume flow map 22 is shown. This is used to determine the first set volume flow VDV1 (SL) for the pressure control valve. The first set volume flow VDV1 (SL) and the set volume flow VDV (SL) are identical, as long as the first set volume flow VDV1 (SL) is smaller than the maximum volume flow VMAX ( Fig. 3 : Limit 24). The input variables are the engine speed nMOT and the target injection quantity QSL. Engine speed values from 0 to 2000 1 / min are plotted in the horizontal direction. The nominal injection quantity values from 0 to 270 mm 3 / stroke are plotted in the vertical direction. The values within the map then correspond to the assigned first set volume flow VDV1 (SL) in liters / minute. The fuel volume flow to be controlled, ie the rail pressure disturbance variable, is determined via the target volume flow map 22. The target volume flow map 22 is designed in such a way that a first target volume flow of VDV1 (SL) = 0 liters / minute is calculated in the normal operating range. The normal operating range is double-framed in the figure. The simply framed area corresponds to the low-load area. In the low-load range, a positive value of the first set volume flow VDV1 (SL) is calculated. For example, with nMOT = 1000 1 / min and QSL = 30 mm 3 / stroke, a first target volume flow of VDV1 (SL) = 1.5 liters / minute is specified.

Die Figur 7 zeigt als Zeitdiagramm einen Lastabwurf von 100% auf 0% Last bei einer Brennkraftmaschine, welche eine Notstromaggregat (60Hz-Generator) antreibt. Die Figur 7 besteht aus den Teildiagrammen 7A bis 7E. Diese zeigen jeweils über der Zeit: die Motordrehzahl nMOT in Figur 7A, die Soll-Einspritzmenge QSL in Figur 7B, den Saugdrosselstrom iSD in Figur 7C, den Ist-Raildruck pCR(IST) in Figur 7D und den Soll-Volumenstrom VDV(SL) des Druckregelventils in Figur 7E. Als gestrichelte Linie ist in den Figuren 7C und 7D der Verlauf ohne Druckregelventil dargestellt, während als durchgezogene Linien der Verlauf mit Ansteuerung des Druckregelventils dargestellt ist. Im dargestellten Zeitbereich sind die Soll-Motordrehzahl (=1800 1/min) und der Soll-Raildruck (=1800 bar) konstant. Die Soll-Motordrehzahl ist hierbei mit der Nenndrehzahl identisch.The Figure 7 shows a time diagram of a load shedding from 100% to 0% load in an internal combustion engine that drives an emergency power generator (60 Hz generator). The Figure 7 consists of the partial diagrams 7A to 7E. These each show over time: the engine speed nMOT in Figure 7A , the target injection quantity QSL in Figure 7B , the suction throttle current iSD in Figure 7C , the actual rail pressure pCR (IST) in Figure 7D and the target volume flow VDV (SL) of the pressure control valve in Figure 7E . As a dashed line is in the Figures 7C and 7D the curve is shown without a pressure control valve, while the curve with control of the pressure control valve is shown as solid lines. In the time range shown, the target engine speed (= 1800 rpm) and the target rail pressure (= 1800 bar) are constant. The target engine speed is identical to the nominal speed.

Die Figur 7A zeigt die Motordrehzahl nMOT, welche nach dem Abwerfen der Last, Zeitpunkt t1, zunächst ansteigt und sich anschließend wieder auf der Nenndrehzahl nMOT=1800 1/min einpendelt (t8). Steigt die Motordrehzahl nMOT an, so fällt die Soll-Einspritzmenge QSL vom Anfangswert QSL=300 mm3/Hub ab (Figur 7B). Zum Zeitpunkt t3 erreicht diese den Wert QSL=0 mm3/Hub. Zum Zeitpunkt t6 schwingt die Motordrehzahl nMOT unter die Nenndrehzahl, was zu einem Ansteigen der Soll-Einspritzmenge QSL ab dem Zeitpunkt t6 führt. Ist die Motordrehzahl nMOT eingeschwungen, so ist auch die Soll-Einspritzmenge QSL eingeschwungen, und zwar auf die Leerlaufmenge von etwa QSL=30 mm3/Hub.The Figure 7A shows the engine speed nMOT, which increases after the load has been dropped, time t1, and then settles again to the nominal speed nMOT = 1800 1 / min (t8). If the engine speed nMOT increases, the target injection quantity QSL falls from the initial value QSL = 300 mm 3 / stroke ( Figure 7B ). At time t3, this reaches the value QSL = 0 mm 3 / stroke. At time t6, engine speed nMOT oscillates below the nominal speed, which leads to an increase in target injection quantity QSL from time t6. The engine speed is nMOT settled, the target injection quantity QSL has also settled, namely to the idling quantity of approximately QSL = 30 mm 3 / stroke.

Der Verlauf ohne Druckregelventil und Ansteuerung (gestrichelte Linien) ist wie folgt:
Mit steigender Motordrehzahl nMOT und fallender Soll-Einspritzmenge QSL ab t1, steigt der Ist-Raildruck pCR(IST) an, siehe Figur 7D. Da der Raildruck pCR geregelt wird, ergibt sich bei konstantem Soll-Raildruck pCR(SL) eine negative Regelabweichung (Fig. 2: ep), so dass der Druckregler die Saugdrossel in Schließrichtung beaufschlagt. Dies geschieht über einen ansteigenden Saugdrosselstrom iSD. Zum Zeitpunkt t5 erreicht der Saugdrosselstrom iSD seinen Maximalwert iSD=1,8 A, siehe Figur 7C. Nun ist die Saugdrossel vollständig geschlossen. Da gleichzeitig die Soll-Einspritzmenge QSL=0 mm3/Hub ist, erreicht der Ist-Raildruck pCR(IST) zum Zeitpunkt t5 seinen Maximalwert von pCR(IST)=2400 bar und verharrt auf diesem Druckniveau. Zum Zeitpunkt t6 steigt die Soll-Einspritzmenge QSL wieder an, so dass nunmehr der Ist-Raildruck pCR(IST) wieder fällt. Da die Raildruck-Regelabweichung weiterhin negativ ist, bleibt der Saugdrosselstrom iSD auch weiterhin auf seinem Maximalwert iSD=1,8 A, das heißt, die Saugdrossel bleibt geschlossen. Auf Grund der geringen Einspritzmenge im Leerlauf fällt der Ist-Raildruck pCR(IST) nur sehr langsam ab. Ab dem Zeitpunkt t8 erreicht der Ist-Raildruck pCR(IST) schließlich wieder das Niveau des Soll-Raildrucks, hier: 1800 bar. Anschließend kommt es zu einem Unterschwingen des Ist-Raildrucks pCR(IST), so dass sich nun kurzzeitig eine positive Raildruck-Regelabweichung ergibt. Dies führt dazu, dass nach dem Zeitpunkt t8 der Saugdrosselstrom iSD abnimmt und sich auf einem tieferen Niveau einpendelt.
The course without pressure control valve and control (dashed lines) is as follows:
With increasing engine speed nMOT and falling target injection quantity QSL from t1, the actual rail pressure pCR (IST) increases, see Figure 7D . Since the rail pressure pCR is regulated, there is a negative control deviation (constant target rail pressure pCR (SL)) ( Fig. 2 : ep), so that the pressure regulator acts on the suction throttle in the closing direction. This is done via an increasing suction throttle current iSD. At time t5, the suction throttle current iSD reaches its maximum value iSD = 1.8 A, see Figure 7C . The suction throttle is now completely closed. Since at the same time the target injection quantity QSL = 0 mm 3 / stroke, the actual rail pressure pCR (IST) reaches its maximum value of pCR (IST) = 2400 bar at time t5 and remains at this pressure level. At time t6, the target injection quantity QSL rises again, so that the actual rail pressure pCR (IST) now drops again. Since the rail pressure control deviation is still negative, the suction throttle current iSD remains at its maximum value iSD = 1.8 A, which means that the suction throttle remains closed. Due to the small amount of fuel injected at idle, the actual rail pressure pCR (IST) drops only very slowly. From time t8, the actual rail pressure pCR (IST) finally reaches the level of the target rail pressure again, here: 1800 bar. The actual rail pressure pCR (IST) then undershoots, so that a positive rail pressure control deviation now results briefly. This leads to the suction throttle current iSD decreasing after time t8 and settling at a lower level.

Der Verlauf bei Verwendung eines Druckregelventils (durchgezogene Linie) ist wie folgt:
Zum Zeitpunkt t2 unterschreitet die Soll-Einspritzmenge QSL den Wert QSL=120 mm3/Hub, wodurch über das Soll-Volumenstrom-Kennfeld (Figur 6) ein zunehmender erster Soll-Volumenstrom VDV1(SL) und ein zunehmender Soll-Volumenstrom VDV(SL) berechnet wird. Die Soll-Einspritzmenge QSL fällt nun ab bis auf QSL=0 mm3/Hub, was zu einem Ansteigen des Soll-Volumenstroms auf VDV(SL)=2 Liter/Minute bis zum Zeitpunkt t3 führt, siehe Figur 7E. Bis zum Zeitpunkt t6 verharrt die Soll-Einspitzmenge auf dem Wert QSL=0 mm3/Hub. Entsprechend bleibt der Soll-Volumenstrom auf dem Wert VDV(SL)=2 Liter/Minute. Nach dem Zeitpunkt t6 steigt die Soll-Einspritzmenge QSL an und schwingt sich anschließend auf der Leerlaufmenge QSL=30 mm3/Hub ein. Entsprechend fällt der Soll-Volumenstrom VDV(SL) für das Druckregelventil nach dem Zeitpunkt t6 ab und pendelt sich auf den Wert VDV(SL)=1,5 Liter/Minute ein. Da der Soll-Volumenstrom VDV(SL) und damit der vom Druckregelventil abgesteuerte Kraftstoffvolumenstrom zum Zeitpunkt t2 ansteigt, wird der Anstieg des Ist-Raildrucks pCR(IST) verlangsamt. Zum Zeitpunkt t4 erreicht der Ist-Raildruck pCR(IST) den Spitzenwert von pCR(IST)=2200 bar (Figur 7D). Der folgende Abfall des Ist-Raildrucks pCR(IST) erfolgt auf Grund der Absteuermenge schneller, so dass der Nenndruck (1800 bar) bereits zum Zeitpunkt t7 wieder erreicht wird. Da der Ist-Raildruck pCR(IST) vom Zeitpunkt t2 an, in Folge der Absteuerung des Kraftstoffes über das Druckregelventil, langsamer zunimmt, steigt auch der Saugdrosselstrom iSD langsamer an. Dadurch erreicht dieser später seinen Maximalwert von iSD=1,8 A, siehe Figur 7C. Ab dem Zeitpunkt t7 ergibt sich eine positive Raildruck-Regelabweichung, wodurch der Saugdrosselstrom iSD abfällt. Da nun im Leerlauf ein Soll-Volumenstrom von VDV(SL)=1,5 Liter/Minute abgesteuert wird, erreicht der Saugdrosselstrom iSD im Leerlauf ein tieferes Niveau von iSD=1,3 A.
The course when using a pressure control valve (solid line) is as follows:
At time t2, the target injection quantity QSL falls below the value QSL = 120 mm 3 / stroke, which means that the target volume flow characteristic map ( Figure 6 ) an increasing first set volume flow VDV1 (SL) and an increasing set volume flow VDV (SL) is calculated. The target injection quantity QSL now drops to QSL = 0 mm 3 / stroke, which leads to an increase in the target volume flow to VDV (SL) = 2 liters / minute until time t3, see Figure 7E . Until the time t6 the target injection quantity remains at the value QSL = 0 mm 3 / stroke. Accordingly, the target volume flow remains at the value VDV (SL) = 2 liters / minute. After the time t6, the target injection quantity QSL increases and then swings to the idling quantity QSL = 30 mm 3 / stroke. Accordingly, the target volume flow VDV (SL) for the pressure control valve drops after time t6 and settles to the value VDV (SL) = 1.5 liters / minute. Since the target volume flow VDV (SL) and thus the fuel volume flow controlled by the pressure control valve increases at time t2, the increase in the actual rail pressure pCR (IST) is slowed down. At time t4, the actual rail pressure pCR (IST) reaches the peak value of pCR (IST) = 2200 bar ( Figure 7D ). The following drop in the actual rail pressure pCR (IST) takes place more quickly due to the discharge quantity, so that the nominal pressure (1800 bar) is reached again at time t7. Since the actual rail pressure pCR (IST) increases more slowly from time t2 as a result of the fuel being controlled via the pressure control valve, the suction throttle current iSD also increases more slowly. As a result, this later reaches its maximum value of iSD = 1.8 A, see Figure 7C . From time t7, there is a positive rail pressure control deviation, as a result of which the suction throttle current iSD drops. Since a set volume flow of VDV (SL) = 1.5 liters / minute is now switched off when idling, the suction throttle flow iSD reaches a lower level of iSD = 1.3 A when idling.

Die dargestellten Diagramme zeigen, dass die Absteuerung des Kraftstoffes mit Hilfe des Druckregelventils zu einer Reduktion des Spitzenwerts des Ist-Raildrucks pCR(IST) führt. In der Figur 7D ist dieser Druckunterschied mit dp gekennzeichnet. Durch die Absteuerung wird zudem nach einem Lastabwurf die Ausregelzeit des Ist-Raildrucks pCR(IST) reduziert. In der Figur 7D ist die Ausregelzeit ohne Druckregelventil mit dt1 und die Ausregelzeit mit Druckregelventil mit dt2 gekennzeichnet. Insgesamt wird im Schwachlastbereich die Stabilität des Hochdruck-Regelkreises erhöht, ohne dass es hierbei zu einer signifikanten Erhöhung der Kraftstofftemperatur und Verringerung des Wirkungsgrads der Brennkraftmaschine kommt.The diagrams show that the control of the fuel with the help of the pressure control valve leads to a reduction in the peak value of the actual rail pressure pCR (IST). In the Figure 7D this pressure difference is marked with dp. The control also reduces the settling time of the actual rail pressure pCR (IST) after a load shedding. In the Figure 7D The settling time without pressure control valve is marked with dt1 and the settling time with pressure control valve with dt2. Overall, the stability of the high-pressure control loop is increased in the low-load range without a significant increase in the fuel temperature and a reduction in the efficiency of the internal combustion engine.

In der Figur 8 ist ein Programm-Ablaufplan des Verfahrens zur Bestimmung der Raildruck-Störgröße dargestellt. In den Schritten S6 bis S9 ist die Ausgestaltung des Stromregelkreises mit Vorsteuerung enthalten. Bei S1 werden die Soll-Einspritzmenge QSL, die Motordrehzahl nMOT, der Ist-Raildruck pCR(IST), die Batteriespannung UBAT und der Ist-Strom iDV(IST) des Druckregelventils eingelesen. Danach wird bei S2 über das Soll-Volumenstrom-Kennfeld in Abhängigkeit der Soll-Einspritzmenge QSL und der Motordrehzahl nMOT der erste Soll-Volumenstrom VDV1(SL) berechnet. Bei S3 wird an Hand des Ist-Raildrucks pCR(IST) ein maximaler Volumenstrom VMAX (Fig. 3: 21) berechnet und der erste Soll-Volumenstrom VDV1(SL) auf den maximalen Volumenstrom VMAX begrenzt, S4. Ist der erste Soll-Volumenstrom VDV1(SL) kleiner als der maximale Volumenstrom VMAX, so wird der Soll-Volumenstrom VDV(SL) auf den Wert des ersten Soll-Volumenstroms VDV1(SL) gesetzt. Anderenfalls wird der Soll-Volumenstrom VDV(SL) auf den Wert des maximalen Volumenstroms VMAX gesetzt. Bei S5 wird in Abhängigkeit des Soll-Volumenstroms VDV(SL) und des Ist-Raildrucks pCR(IST) der Soll-Strom iDV(SL) berechnet. Bei S6 wird eine Vorsteuerspannung UDV(VS) berechnet, indem der Soll-Strom iDV(SL) mit dem ohmschen Widerstand RDV des Druckregelventils und der Zuleitung multipliziert wird. Bei S7 wird als Stellgröße des Stromreglers eine Soll-Spannung UDV(SL) in Abhängigkeit der Strom-Regelabweichung ei berechnet. Dann werden bei S8 die Soll-Spannung UDV(SL) für das Druckregelventil und die Vorsteuerspannung UDV(VS) addiert. Das Ergebnis wird dann bei S9 durch die Batteriespannung UBAT geteilt und mit 100 multipliziert, was der Einschaltdauer des PWM-Signals zur Ansteuerung des Druckregelventils entspricht. Damit ist der Programmablauf beendet.In the Figure 8 a program flow chart of the method for determining the rail pressure disturbance is shown. Steps S6 to S9 contain the configuration of the current control loop with pilot control. At S1, the target injection quantity QSL, the engine speed nMOT, the actual rail pressure pCR (IST), the battery voltage UBAT and the actual current iDV (IST) of the pressure control valve read. The first set volume flow VDV1 (SL) is then calculated at S2 using the set volume flow map as a function of the set injection quantity QSL and the engine speed nMOT. At S3, a maximum volume flow VMAX ( Fig. 3 : 21) and the first set volume flow VDV1 (SL) is limited to the maximum volume flow VMAX, S4. If the first set volume flow VDV1 (SL) is smaller than the maximum volume flow VMAX, then the set volume flow VDV (SL) is set to the value of the first set volume flow VDV1 (SL). Otherwise the target volume flow VDV (SL) is set to the value of the maximum volume flow VMAX. At S5, the target current iDV (SL) is calculated as a function of the target volume flow VDV (SL) and the actual rail pressure pCR (IST). At S6, a pilot control voltage UDV (VS) is calculated by multiplying the target current iDV (SL) by the ohmic resistance RDV of the pressure control valve and the supply line. In S7, a setpoint voltage UDV (SL) is calculated as the manipulated variable of the current controller depending on the current control deviation ei. Then the target voltage UDV (SL) for the pressure control valve and the pilot control voltage UDV (VS) are added at S8. The result is then divided at S9 by the battery voltage UBAT and multiplied by 100, which corresponds to the duty cycle of the PWM signal for actuating the pressure control valve. The program sequence is now finished.

Claims (4)

  1. A method for open-loop and closed-loop control of an internal combustion engine (1), wherein the rail pressure (pCR) is controlled by means of a low-pressure side suction throttle (4) as a first pressure regulator in a closed-loop rail pressure control circuit (13); and wherein a rail pressure disturbance variable (VDRV) for influencing the rail pressure (pCR) is generated by means of a high-pressure side pressure control valve (12) as a second pressure regulator, by which fuel is commanded from the rail (6) back into a fuel tank (2),
    characterized in that
    the rail pressure disturbance variable (VDRV) is calculated as a function of the actual rail pressure (pCR(IST)) and a nominal volume flow (VDV(SL)) of the pressure control valve (12) by means of a characteristic diagram (25) for the pressure control valve, wherein the nominal volume flow (VDV(SL)) of the pressure control valve (12) is calculated as a function of a nominal injection quantity (QSL), alternatively, a nominal torque (MSL), and an engine speed (nMOT) by means of a characteristic diagram (22) for the nominal volume flow, and wherein the characteristic diagram (22) for the nominal volume flow is configured so that a nominal volume flow (VDV(SL)) having a positive value is calculated in a low-load range, and a nominal volume flow (VDV(SL)) of zero is calculated in a normal operating range.
  2. The method according to claim 1,
    characterized in that
    the nominal volume flow (VDV(SL)) is limited as a function of the actual rail pressure (pCR(lST)).
  3. The method according to any one of the preceding claims,
    characterized in that
    the rail pressure disturbance variable (VDRV) is additionally determined by means of a subordinated closed-loop current control circuit (27).
  4. The method according to any one of the preceding claims,
    characterized in that
    the rail pressure disturbance variable (VDRV) is additionally determined by means of a subordinated closed-loop current control circuit (27) with pilot control.
EP10725397.3A 2009-07-02 2010-06-17 Method for controlling the rail pressure in a common-rail injection system of a combustion engine Active EP2449240B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009031528A DE102009031528B3 (en) 2009-07-02 2009-07-02 Method for controlling and regulating an internal combustion engine
PCT/EP2010/003654 WO2011000480A1 (en) 2009-07-02 2010-06-17 Method for the closed-loop control of the rail pressure in a common-rail injectiom system of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2449240A1 EP2449240A1 (en) 2012-05-09
EP2449240B1 true EP2449240B1 (en) 2020-06-24

Family

ID=42735727

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10725397.3A Active EP2449240B1 (en) 2009-07-02 2010-06-17 Method for controlling the rail pressure in a common-rail injection system of a combustion engine

Country Status (5)

Country Link
US (1) US9624867B2 (en)
EP (1) EP2449240B1 (en)
CN (1) CN102575610B (en)
DE (1) DE102009031528B3 (en)
WO (1) WO2011000480A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010039874B4 (en) * 2010-08-27 2015-10-08 Continental Automotive Gmbh Method and apparatus for operating a high-pressure fuel-injection-fuel injection system for an internal combustion engine
DE102014213648B3 (en) 2014-07-14 2015-10-08 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine, injection system for an internal combustion engine and internal combustion engine
DE102015209377B4 (en) * 2015-05-21 2017-05-11 Mtu Friedrichshafen Gmbh Injection system for an internal combustion engine and internal combustion engine with such an injection system
DE102017214001B3 (en) 2017-08-10 2019-02-07 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine with an injection system, injection system, configured for carrying out such a method, and internal combustion engine with such an injection system
US11092091B2 (en) * 2018-03-19 2021-08-17 Woodward, Inc. Pressure regulating mass flow system for multipoint gaseous fuel injection
DE102019202004A1 (en) 2019-02-14 2020-08-20 Mtu Friedrichshafen Gmbh Method for operating an injection system of an internal combustion engine, an injection system for an internal combustion engine and an internal combustion engine with such an injection system
DE102019112754B4 (en) * 2019-05-15 2021-06-24 Man Energy Solutions Se Method and control device for operating a common rail fuel supply system
CN113494403B (en) * 2021-08-11 2023-02-03 上海新动力汽车科技股份有限公司 Method for correcting output value of flow control model of oil rail high-pressure pump

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2869464B2 (en) * 1989-05-30 1999-03-10 富士重工業株式会社 Fuel injection control device for two-cycle engine
JP3033214B2 (en) * 1991-02-27 2000-04-17 株式会社デンソー Accumulation type fuel supply method and apparatus by a plurality of fuel pumping means, and abnormality determination apparatus in equipment having a plurality of fluid pumping means
US5284119A (en) * 1991-07-08 1994-02-08 Walter Potoroka, Sr. Internal combustion engine fuel injection apparatus and system
US5423303A (en) * 1993-05-28 1995-06-13 Bennett; David E. Fuel rail for internal combustion engine
JP2885076B2 (en) 1994-07-08 1999-04-19 三菱自動車工業株式会社 Accumulator type fuel injection device
JP3460338B2 (en) * 1994-10-31 2003-10-27 株式会社デンソー Exhaust gas recirculation control device for internal combustion engine
JP3594144B2 (en) * 1995-08-30 2004-11-24 株式会社デンソー Fuel supply device
DE19548278B4 (en) * 1995-12-22 2007-09-13 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE19612412B4 (en) * 1996-03-28 2006-07-06 Siemens Ag Control for a pressurized fluid supply system, in particular for the high pressure in a fuel injection system
US6024064A (en) * 1996-08-09 2000-02-15 Denso Corporation High pressure fuel injection system for internal combustion engine
US6016791A (en) * 1997-06-04 2000-01-25 Detroit Diesel Corporation Method and system for controlling fuel pressure in a common rail fuel injection system
JP3612175B2 (en) * 1997-07-15 2005-01-19 株式会社日立製作所 Fuel pressure control device for in-cylinder injection engine
DE19731995B4 (en) * 1997-07-25 2008-02-21 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE19731994B4 (en) * 1997-07-25 2007-11-15 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE19752025B4 (en) * 1997-11-24 2006-11-09 Siemens Ag Method and device for regulating the fuel pressure in a fuel storage
DE19757655C2 (en) * 1997-12-23 2002-09-26 Siemens Ag Method and device for monitoring the function of a pressure sensor
DE19802583C2 (en) * 1998-01-23 2002-01-31 Siemens Ag Device and method for regulating pressure in accumulator injection systems with an electromagnetically actuated pressure actuator
US5975061A (en) * 1998-02-17 1999-11-02 Walbro Corporation Bypass fuel pressure regulator
US6257209B1 (en) * 1998-03-18 2001-07-10 Toyota Jidosha Kabushiki Kaisha Evaporative fuel processing apparatus for lean-burn internal combustion engine
JP4023020B2 (en) * 1999-02-19 2007-12-19 トヨタ自動車株式会社 Fuel pressure control device for high pressure fuel injection system
DE19916100A1 (en) * 1999-04-09 2000-10-12 Bosch Gmbh Robert Method and device for controlling an internal combustion engine
JP3633388B2 (en) * 1999-08-04 2005-03-30 トヨタ自動車株式会社 High pressure fuel pump control device for internal combustion engine
DE19950289A1 (en) * 1999-10-19 2001-04-26 Bosch Gmbh Robert Fuel supply unit for IC engine of motor vehicle with feed container in storage tank of vehicle from which delivery set sucks fuel and delivers this to engine and with return line
US6279541B1 (en) * 2000-12-01 2001-08-28 Walbro Corporation Fuel supply system responsive to engine fuel demand
JP3908480B2 (en) * 2001-05-16 2007-04-25 ボッシュ株式会社 Operation control method in fuel injection device and fuel injection device
DE10211283A1 (en) * 2002-03-14 2003-09-25 Bosch Gmbh Robert Operating method for automobile engine fuel metering system with limitation of variation rate of pressure in high pressure region of latter
JP3885652B2 (en) 2002-04-26 2007-02-21 株式会社デンソー Accumulated fuel injection system
JP3978655B2 (en) * 2002-04-30 2007-09-19 株式会社デンソー Fuel supply device for internal combustion engine
EP1369580B1 (en) * 2002-06-06 2005-11-02 Siemens VDO Automotive Corporation A flow-through pressure regulator including a perforated diaphragm-to-seat spring retainer
ITTO20020619A1 (en) * 2002-07-16 2004-01-16 Fiat Ricerche METHOD OF CHECKING THE FUEL INJECTION PRESSURE OF A COMMON MANIFOLD INJECTION SYSTEM OF A COMBUSTION ENGINE
JP2004183550A (en) * 2002-12-03 2004-07-02 Isuzu Motors Ltd Filter treating device for common-rail pressure detection value and common-rail type fuel injection controller
DE10261414B4 (en) * 2002-12-30 2005-03-17 Siemens Ag Fuel injection system
DE10261446A1 (en) * 2002-12-31 2004-07-08 Robert Bosch Gmbh Method for actuating a pressure control valve in a fuel injection system of an internal combustion engine
DE10318646A1 (en) * 2003-04-24 2004-11-18 Siemens Ag Method for controlling a fuel pressure in a fuel supply device for an internal combustion engine
JP4207834B2 (en) * 2003-06-27 2009-01-14 株式会社デンソー Accumulated fuel injection system
DE10330466B3 (en) * 2003-07-05 2004-10-21 Mtu Friedrichshafen Gmbh Regulation method for IC engine with common-rail fuel injection system has pulse width modulation signal frequency switched between 2 values dependent on engine speed
DE10349628A1 (en) * 2003-10-24 2005-06-02 Robert Bosch Gmbh Method for regulating the pressure in a fuel accumulator of an internal combustion engine
JP4042057B2 (en) * 2003-11-04 2008-02-06 株式会社デンソー Valve opening adjustment device and common rail fuel injection device
DE102004023365B4 (en) * 2004-05-12 2007-07-19 Mtu Friedrichshafen Gmbh Method for pressure control of a storage injection system
DE102004059330A1 (en) * 2004-12-09 2006-06-14 Robert Bosch Gmbh Method for operating a fuel system of an internal combustion engine
DE102004061474B4 (en) * 2004-12-21 2014-07-17 Mtu Friedrichshafen Gmbh Method and device for controlling the rail pressure
JP4475205B2 (en) * 2005-09-01 2010-06-09 株式会社デンソー Control device for common rail fuel injection system
JP4170345B2 (en) * 2006-01-31 2008-10-22 三菱電機株式会社 High pressure fuel pump control device for internal combustion engine
DE102006040441B3 (en) * 2006-08-29 2008-02-21 Mtu Friedrichshafen Gmbh Method for identifying opening of passive pressure limiting valve, involves supplying fuel from common-rail system in fuel tank, where load shedding is identified
JP4600369B2 (en) * 2006-09-05 2010-12-15 株式会社デンソー Pressure reducing valve delay compensation device and program
DE102006049266B3 (en) 2006-10-19 2008-03-06 Mtu Friedrichshafen Gmbh Method for recognizing opened passive pressure-relief-valve, which deviates fuel from common-railsystem into fuel tank, involves regulating the rail pressure, in which actuating variable is computed from rail-pressure offset
WO2008090033A1 (en) 2007-01-24 2008-07-31 Continental Automotive Gmbh Method for controlling a fuel supply device for an internal combustion engine
DE602007006656D1 (en) * 2007-07-05 2010-07-01 Magneti Marelli Powertrain Spa Method for controlling a pressure relief valve in a common rail fuel supply system
JP4345861B2 (en) * 2007-09-20 2009-10-14 株式会社デンソー Fuel injection control device and fuel injection system using the same
DE102007052092B4 (en) 2007-10-31 2011-06-01 Continental Automotive Gmbh Method and fuel system for controlling the fuel supply for an internal combustion engine
DE102007052451B4 (en) * 2007-11-02 2009-09-24 Continental Automotive Gmbh Method for determining the current continuous leakage quantity of a common-rail injection system and injection system for an internal combustion engine
DE102007059352B3 (en) * 2007-12-10 2009-06-18 Continental Automotive Gmbh Fuel pressure control system and fuel pressure control method
DE102007060006B3 (en) * 2007-12-13 2009-07-09 Continental Automotive Gmbh Fuel pressure control system
JP4428443B2 (en) * 2007-12-18 2010-03-10 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE102007061228A1 (en) 2007-12-19 2009-06-25 Robert Bosch Gmbh Fuel injection system, for an internal combustion motor, has a sensor to register the pressure at the common rail with a control to stop the fuel supply if the sensor signal indicates a leakage or other fault
JP4976318B2 (en) * 2008-01-30 2012-07-18 日立オートモティブシステムズ株式会社 Fuel injection device for internal combustion engine
JP4873378B2 (en) * 2008-04-21 2012-02-08 株式会社デンソー Abnormality diagnosis device for intake air volume sensor
US20090326788A1 (en) * 2008-06-25 2009-12-31 Honda Motor Co., Ltd. Fuel injection device
DE102009031527B3 (en) * 2009-07-02 2010-11-18 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN102575610B (en) 2015-01-28
DE102009031528B3 (en) 2010-11-11
WO2011000480A1 (en) 2011-01-06
US9624867B2 (en) 2017-04-18
US20120097131A1 (en) 2012-04-26
EP2449240A1 (en) 2012-05-09
CN102575610A (en) 2012-07-11

Similar Documents

Publication Publication Date Title
EP2449242B1 (en) Control and regulation method of the fuel pressure of a common-rail of a combustion engine
EP2449241B1 (en) Method for controlling the rail pressure in a common-rail injection system of a combustion engine
EP2449240B1 (en) Method for controlling the rail pressure in a common-rail injection system of a combustion engine
DE102005029138B3 (en) Control and regulating process for engine with common rail system has second actual rail pressure determined by second filter
DE10162989C1 (en) Circuit for regulating injection system fuel pump, derives adaptive component of desired delivery volume from integral component if integral component above threshold for defined time
DE102009050467B4 (en) Method for controlling and regulating an internal combustion engine
DE102008044144B4 (en) Fuel injection control apparatus and method for controlling an injection characteristic of a fuel injection valve
EP2006521B1 (en) Method for controlling rail pressure during a starting process
DE102008001240A1 (en) Method and device for controlling a fuel supply system
DE102014213648B3 (en) Method for operating an internal combustion engine, injection system for an internal combustion engine and internal combustion engine
DE102006000333A1 (en) Fuel injection control system for use in automobile internal combustion (IC) engine e.g. common rail type diesel engine, lowers excess fuel pressure in accumulator to permissible range when excess fuel pressure is over set criteria
DE102011051062A1 (en) Fuel injection control system for an internal combustion engine
DE102005011114A1 (en) Pressure accumulation type fuel injection apparatus for diesel engine has pressure reduction facilitator that lengthens opening period of injector valve by excess injection quantity so that fuel might be injected
EP3371440A1 (en) Internal combustion engine with injection quantity control
EP2358988A1 (en) Control and regulation method for an internal combustion engine having a common rail system
WO2017186326A1 (en) Method for operating an internal combustion engine, device for the open-loop and/or closed-loop control of an internal combustion engine, injection system and internal combustion engine
EP2358987B1 (en) Control and regulation method for an internal combustion engine having a common rail system
EP2718556B1 (en) Method for controlling rail pressure
DE102019202004A1 (en) Method for operating an injection system of an internal combustion engine, an injection system for an internal combustion engine and an internal combustion engine with such an injection system
DE102013213924A1 (en) Method and device for controlling a fuel metering system
WO2019011839A1 (en) Method for regulating pressure in a high-pressure injection system of an internal combustion engine, and internal combustion engine for carrying out such a method
DE102018218599A1 (en) Method for regulating a pressure in a high-pressure fuel reservoir

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190301

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/14 20060101ALN20191212BHEP

Ipc: F02M 63/02 20060101ALI20191212BHEP

Ipc: F02D 41/38 20060101AFI20191212BHEP

Ipc: F02D 41/20 20060101ALN20191212BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/38 20060101AFI20191213BHEP

Ipc: F02D 41/20 20060101ALN20191213BHEP

Ipc: F02D 41/14 20060101ALN20191213BHEP

Ipc: F02M 63/02 20060101ALI20191213BHEP

INTG Intention to grant announced

Effective date: 20200117

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1284114

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016675

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200925

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016675

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210617

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1284114

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100617

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240628

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240625

Year of fee payment: 15