EP2449143B1 - Cryogenic treatment of martensitic steel with mixed hardening - Google Patents

Cryogenic treatment of martensitic steel with mixed hardening Download PDF

Info

Publication number
EP2449143B1
EP2449143B1 EP10742187.7A EP10742187A EP2449143B1 EP 2449143 B1 EP2449143 B1 EP 2449143B1 EP 10742187 A EP10742187 A EP 10742187A EP 2449143 B1 EP2449143 B1 EP 2449143B1
Authority
EP
European Patent Office
Prior art keywords
steel
temperature
traces
ppm
cryogenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10742187.7A
Other languages
German (de)
French (fr)
Other versions
EP2449143A1 (en
Inventor
Laurent Ferrer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP2449143A1 publication Critical patent/EP2449143A1/en
Application granted granted Critical
Publication of EP2449143B1 publication Critical patent/EP2449143B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt

Definitions

  • composition of such a steel is given in the document FR 2,885,142 as follows (percentages by weight): 0.18 to 0.3% C, 5 to 7% Co, 2 to 5% Cr, 1 to 2% AI, 1 to 4% Mo + W / 2, traces at 0.3% of V, traces at 0.1% of Nb, traces at 50 ppm of B, 10.5 at 15% of Ni with Ni ⁇ 7 + 3.5 Al, traces at 0.4 % Si, traces at 0.4% Mn, traces at 500 ppm Ca, traces at 500 ppm rare earth, traces at 500 ppm Ti, traces at 50 ppm O (elaboration from liquid metal) or at 200 ppm O (elaboration by powder metallurgy), traces at 100 ppm N, traces at 50 ppm S, traces at 1% Cu, traces at 200 ppm P, the rest being Fe.
  • This steel has a very high mechanical strength (breaking load ranging from 2000 to 2500 MPa) and at the same time a very good resilience (180 ⁇ 10 3 J / m 2 ) and toughness (40 to 60 40 at 60 MPa ⁇ m , ), and good fatigue resistance.
  • the purpose of placing such steels in a cryogenic enclosure is to minimize the remaining austenite content in the steel, that is to say to optimize the transformation of austenite to martensite in steel. Indeed, the strength properties of steel increase inversely to its austenite content.
  • the temperature Mf at the end of the martensitic transformation is between -30 ° C. and -40 ° C., estimated under conditions of thermodynamic equilibrium. To ensure optimal transformation of the austenite martensite, it is generally considered that the temperature in the cryogenic chamber must be slightly below the temperature Mf.
  • the temperature in the cryogenic chamber must be less than -40 ° C, and that the optimum martensite transformation is performed when the hottest steel have reached this temperature. The steel is then removed from the cryogenic enclosure.
  • the present invention aims to remedy these disadvantages.
  • the aim of the invention is to propose a process for treating this type of steel which makes it possible to reduce the dispersions in its mechanical properties, which gives dispersions which follow normal statistical laws, and which on average increases these mechanical properties.
  • This object is achieved by a process according to claim 1, in which, in particular, the temperature T 1 is substantially lower than the martensitic transformation temperature M f, and the holding time t of said steel in said cryogenic environment at a temperature T 1 from the moment when the hottest part of the steel reaches a temperature below the martensitic transformation temperature Mf, is at least equal to a non-zero time t 1 .
  • the steel is placed in the cryogenic environment less than 70 hours after the temperature at the surface of the part during its cooling in step (b) reaches the temperature of 80 ° C.
  • the maximum conversion rate of austenite to martensite that can be achieved in steel by placing it in a cryogenic environment is as high as possible.
  • a steel object of the present application is subjected to the following treatment with the aim of minimizing its residual austenite content: the steel is heated and kept above its austenization temperature until its temperature is substantially homogeneous, the steel is then cooled to about room temperature, then the steel is placed and maintained in a chamber where there is a cryogenic temperature.
  • the inventors have carried out tests on such steels having undergone the above treatment. These steels have the following composition: 0.18 to 0.3% C, 5 to 7% Co, 2 to 5% Cr, 1 to 2% Al, 1 to 4% Mo + W / 2 , traces at 0.3% of V, traces at 0.1% of Nb, traces at 50 ppm of B, 10.5 at 15% of Ni with Ni ⁇ 7 + 3.5 Al, traces at 0.4% of Si, traces at 0.4% Mn, traces at 500 ppm of Ca, traces at 500 ppm of rare earths, traces at 500 ppm of Ti, traces at 50 ppm O (elaboration from liquid metal) or at 200 ppm O (elaboration by metallurgy of the powders), traces at 100 ppm of N, traces at 50 ppm of S, traces at 1% Cu, traces at 200 ppm P, the remainder being Fe.
  • These steels more particularly have the following composition: 0.200% to 0.250% C, 12.00% to 14.00% Ni, 5.00% to 7.00% in Co, 2.5% to 4.00% in Cr, 1.30 to 1.70% in Al, 1.00 to 2.00% in Mo.
  • the figure 2 shows, according to the results of these tests, the variation of the austenite rate remaining in a steel as a function of the temperature T 1 in the cryogenic enclosure for different durations t 1 , where t 1 is the duration during which this steel is maintained in this cryogenic chamber after the hottest part of the steel reaches a temperature below the martensitic transformation temperature Mf.
  • the temperature of the enclosure is equal to or lower than about -71 ° C and -67 ° C, respectively, so that the residual austenite level is minimal.
  • the first derivative of the function f with respect to t, f '(t), is positive, and the second derivative of f with respect to t, f "(t), is negative.
  • This curve is valid for all the steels of this family and is translated in the vertical direction (variation in temperature) according to the chemical composition of the steel.
  • the horizontal asymptote of this equation (the temperature T 1 for which an infinite holding time t 1 is necessary, that is to say the highest possible temperature for the enclosure) is a function of the chemical composition of the equation.
  • This composition has a direct influence on the martensitic transformation end point Ms and the end time Mf. For the present steel, this temperature is approximately equal to -40 ° C.
  • the minimum holding time t 1 necessary is approximately equal to 1 hour, and is substantially constant for all the steels of this family. Table 1 Time t 1 (hours) Temperature T 1 (° C) 2 -90 5 -70 8 -68
  • these temperatures T 1 are well below the temperature of -40 ° C, which is commonly accepted as permitting an optimal transformation of the austenite to martensite, and that the holding time t 1 is not zero.
  • the inventors show that it is not sufficient that the hottest parts of the steel have reached the temperature Mf (or a slightly lower temperature) so that the transformation into martensite in these parts is optimal, but it is necessary in addition that these hottest parts are maintained in the cryogenic chamber (where a temperature T 1 prevails) after they reach a temperature below the Martensitic transformation temperature Mf for a period at least equal to t 1 .
  • the figure 3 shows, according to other results of tests carried out by the inventors, the variation of the hardness in such a steel as a function of the temperature T 1 in the cryogenic chamber for different durations t 1 , where t 1 is the duration during which this steel is maintained in this cryogenic chamber after the hottest part of the steel reaches a temperature below the martensitic transformation temperature Mf.
  • the austenite content in the steel is minimized, and consequently the mechanical properties of the steel are increased on average.
  • the minimum austenite content in a region of a steel workpiece is reached only when this region has reached a temperature below the temperature Mf and is maintained there long enough, as shown by the curve of the figure 1 .
  • the steel is kept in the cryogenic enclosure long enough after the hottest part of the steel reaches a temperature below the martensitic transformation temperature Mf, which ensures a transformation. optimal martensite of this part.
  • the method according to the invention which makes it possible to obtain a residual level of austenite in steel which is homogeneous and minimum, the dispersion of the values of the mechanical properties is minimized, as found by the inventors .
  • the average hardness of the treated steel is 560 Hv with statistically a minimum at 535 Hv and a maximum at 579 Hv.
  • the average hardness of the treated steel is 575 Hv with statistically a minimum at 570Hv and a maximum at 579 Hv.
  • step (b) Before placing it in the cryogenic enclosure, the steel undergoes, in step (b), a quenching in a fluid (a medium) in order to cool the steel to ambient temperature.
  • a fluid a medium
  • this fluid has a drasticity at least equal to that of air.
  • this fluid is air.
  • the drasticity of a quenching medium is understood to mean the capacity of this medium to absorb the calories in the layers closest to the part which is immersed therein and to diffuse them into the rest of the medium. This capacity conditions the rate of cooling of the surface of the room immersed in this medium.
  • the figure 4 shows the results of these tests.
  • the steel is placed in the cryogenic environment (enclosure) 70 hours or less after the temperature at the surface of the workpiece during its cooling in step (b) reaches the temperature of 80 ° C, then the residual austenite content in the steel can reach its minimum after maintenance in the cryogenic chamber according to the conditions of the invention.
  • the steel is placed in the cryogenic environment more than 70 hours after this moment, then the residual content in austenite can not reach its minimum, regardless of the subsequent duration of maintenance and the temperature in the cryogenic chamber.
  • the minimum of the residual austenite content is of the order of 2.5% for the grade of steel tested during the tests. More generally, for the type of steel according to the invention, the minimum of the residual austenite content is less than 3%.
  • time t 1 For other families of steel, the minimum values of time t 1 vary.
  • the time t 1 may be greater than 2 hours, or greater than 3 hours, or greater than 4 hours.
  • the temperature T 1 below which the temperature of the chamber must be is, for example, equal to -50 ° C., or -60 ° C., or -70 ° C.
  • the invention also relates to a piece made of a steel obtained according to a process according to the invention, the residual austenite content in this steel being less than 3%.
  • this part is a turbomachine shaft.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

La présente invention concerne un procédé de traitement d'un acier martensitique qui comporte des teneurs en autres métaux telles qu'il est apte à être durci par une précipitation de composés intermétalliques et de carbures, avec une teneur en Al comprise entre 0,4% et 3%, et qui présente une température Mf de fin de transformation martensitique inférieure à 0°C, ce procédé de traitement thermique comportant les étapes suivantes :

  1. (a) on chauffe la totalité de l'acier au dessus de sa température d'austénisation AC3,
  2. (b) on refroidit ledit acier jusqu'à environ la température ambiante,
  3. (c) on place ledit acier dans une ambiance cryogénique.
The present invention relates to a process for treating a martensitic steel which comprises contents of other metals such that it is capable of being hardened by a precipitation of intermetallic compounds and carbides, with an Al content of between 0.4% and 3%, and which has a martensitic transformation end temperature Mf lower than 0 ° C, this heat treatment process comprising the following steps:
  1. (a) the whole of the steel is heated above its austenisation temperature AC3,
  2. (b) cooling said steel to about ambient temperature,
  3. (c) placing said steel in a cryogenic environment.

Pour certaines applications, notamment pour des arbres de transmission de turbomachines, il est nécessaire d'utiliser de tels aciers, qui possèdent une très haute résistance mécanique (limite élastique et charge à rupture) jusqu'à 400°C et en même temps une bonne résistance à la rupture fragile (ténacité et ductilité élevées). Ces aciers possèdent une bonne tenue en fatigue.For certain applications, in particular for turbomachine transmission shafts, it is necessary to use such steels, which have a very high mechanical strength (elastic limit and breaking load) up to 400 ° C. and at the same time a good resistance to brittle fracture (high toughness and ductility). These steels have good fatigue resistance.

La composition d'un tel acier est donnée dans le document FR 2,885,142 comme suit (pourcentages en poids) : 0,18 à 0,3% de C, 5 à 7% de Co, 2 à 5% de Cr, 1 à 2% d'AI, 1 à 4% de Mo+W/2, traces à 0,3% de V, traces à 0,1% de Nb, traces à 50 ppm de B, 10,5 à 15% de Ni avec Ni ≥ 7+3,5 Al, traces à 0,4% de Si, traces à 0,4% de Mn, traces à 500 ppm de Ca, traces à 500 ppm de Terres rares, traces à 500 ppm de Ti, traces à 50 ppm d'O (élaboration à partir de métal liquide) ou à 200 ppm d'O (élaboration par métallurgie des poudres), traces à 100 ppm de N, traces à 50 ppm de S, traces à 1% de Cu, traces à 200 ppm de P, le reste étant Fe.The composition of such a steel is given in the document FR 2,885,142 as follows (percentages by weight): 0.18 to 0.3% C, 5 to 7% Co, 2 to 5% Cr, 1 to 2% AI, 1 to 4% Mo + W / 2, traces at 0.3% of V, traces at 0.1% of Nb, traces at 50 ppm of B, 10.5 at 15% of Ni with Ni ≥ 7 + 3.5 Al, traces at 0.4 % Si, traces at 0.4% Mn, traces at 500 ppm Ca, traces at 500 ppm rare earth, traces at 500 ppm Ti, traces at 50 ppm O (elaboration from liquid metal) or at 200 ppm O (elaboration by powder metallurgy), traces at 100 ppm N, traces at 50 ppm S, traces at 1% Cu, traces at 200 ppm P, the rest being Fe.

Cet acier possède une très haute résistance mécanique (charge à rupture pouvant aller de 2000 à 2500 Mpa) et en même temps une très bonne résilience (180·103 J/m2) et ténacité (40 à 60 40 à 60 MPa m ,

Figure imgb0001
), et une bonne tenue en fatigue.This steel has a very high mechanical strength (breaking load ranging from 2000 to 2500 MPa) and at the same time a very good resilience (180 · 10 3 J / m 2 ) and toughness (40 to 60 40 at 60 MPa m ,
Figure imgb0001
), and good fatigue resistance.

Ces propriétés mécaniques sont obtenues grâce aux traitements thermiques auquel cet acier est soumis. En particulier, l'acier est soumis au traitement suivant : l'acier est chauffé et maintenu au dessus de sa température d'austénisation AC3 jusqu'à ce que sa température soit sensiblement homogène, l'acier est ensuite refroidi jusqu'à environ la température ambiante, puis l'acier est placé et maintenu dans une enceinte où règne une température cryogénique. On entend par "cryogénique" des températures inférieures à 0°C.These mechanical properties are obtained thanks to the heat treatments to which this steel is subjected. In particular, steel is subject to the following treatment: the steel is heated and maintained above its austenization temperature AC3 until its temperature is substantially homogeneous, the steel is then cooled to about ambient temperature and the steel is placed and maintained in an enclosure where a cryogenic temperature prevails. "Cryogenic" means temperatures below 0 ° C.

Le placement de tels aciers en enceinte cryogénique a pour objet de minimiser la teneur en austénite restante dans l'acier, c'est-à-dire optimiser la transformation d'austénite en martensite dans l'acier. En effet, les propriétés de résistance mécanique de l'acier augmentent inversement à sa teneur en austénite. Pour les aciers objets de la présente demande, la température Mf de fin de transformation martensitique est comprise entre - 30°C et - 40°C estimé dans des conditions d'équilibre thermodynamique. Pour assurer une transformation optimale de l'austénite en martensite, il est en général considéré que la température dans l'enceinte cryogénique doit donc être légèrement en dessous de la température Mf. Ainsi, étant donné le caractère athermique de la transformation de l'austénite en martensite, il est admis que la température dans l'enceinte cryogénique doit être inférieure à - 40°C, et que la transformation optimale en martensite est réalisée lorsque les parties les plus chaudes de l'acier ont atteint cette température. L'acier est alors retiré de l'enceinte cryogénique.The purpose of placing such steels in a cryogenic enclosure is to minimize the remaining austenite content in the steel, that is to say to optimize the transformation of austenite to martensite in steel. Indeed, the strength properties of steel increase inversely to its austenite content. For the steels that are the subject of the present application, the temperature Mf at the end of the martensitic transformation is between -30 ° C. and -40 ° C., estimated under conditions of thermodynamic equilibrium. To ensure optimal transformation of the austenite martensite, it is generally considered that the temperature in the cryogenic chamber must be slightly below the temperature Mf. Thus, given the athermal character of the transformation from austenite to martensite, it is accepted that the temperature in the cryogenic chamber must be less than -40 ° C, and that the optimum martensite transformation is performed when the hottest steel have reached this temperature. The steel is then removed from the cryogenic enclosure.

Cependant, les résultats d'essais mécaniques de dureté et en traction réalisés sur cet acier après un tel traitement cryogénique montrent une grande dispersion dans les propriétés mécaniques de l'acier, ce qui est indésirable. De plus, ces résultats ne suivent pas une loi statistique normale au regard des paramètres du traitement cryogénique, à l'inverse les résultats se distribuent suivant une somme d'une multitude de lois normales en fonction des conditions de traitement thermique et en particulier de passage en milieu cryogéniques. Ce comportement multimodal accentue d'autant plus la dispersion calculée (lorsqu'on englobe tous ces résultats dans une même famille) et fait baisser la valeur de la moyenne. Les minima (calculés à trois écart-types en dessous de la moyenne) des courbes de dimensionnement sont alors encore plus abaissés.However, the results of mechanical hardness and tensile tests carried out on this steel after such a cryogenic treatment show a great dispersion in the mechanical properties of the steel, which is undesirable. In addition, these results do not follow a normal statistical law with respect to the parameters of the cryogenic treatment, conversely the results are distributed according to a sum of a multitude of normal laws depending on the heat treatment conditions and in particular of passage in cryogenic media. This multimodal behavior accentuates the calculated dispersion even more (when all these results are included in the same family) and lowers the value of the average. The minima (calculated at three standard deviations below the mean) of the design curves are then further lowered.

La présente invention vise à remédier à ces inconvénients.The present invention aims to remedy these disadvantages.

L'invention vise à proposer un procédé de traitement de ce type d'acier qui permette de réduire les dispersions dans ses propriétés mécaniques, qui donne des dispersions qui suivent des lois statistiques normales, et qui augmente en moyenne ces propriétés mécaniques.The aim of the invention is to propose a process for treating this type of steel which makes it possible to reduce the dispersions in its mechanical properties, which gives dispersions which follow normal statistical laws, and which on average increases these mechanical properties.

Ce but est atteint grâce à un procédé selon la revendication 1, dans lequel, en particulier, la température T1 est sensiblement inférieure à la température de transformation martensitique Mf, et le temps de maintien t dudit acier dans ladite ambiance cryogénique à une température T1 depuis le moment où la partie la plus chaude de l'acier atteint une température inférieure à la température de transformation martensitique Mf, est au moins égal à un temps t1 non-nul.This object is achieved by a process according to claim 1, in which, in particular, the temperature T 1 is substantially lower than the martensitic transformation temperature M f, and the holding time t of said steel in said cryogenic environment at a temperature T 1 from the moment when the hottest part of the steel reaches a temperature below the martensitic transformation temperature Mf, is at least equal to a non-zero time t 1 .

Grâce à ces dispositions, toute l'austénite qui peut potentiellement se transformer en martensite dans l'acier tel qu'il est introduit dans l'ambiance cryogénique, se transforme de façon optimale. Une transformation optimale signifie que la teneur restante en austénite dans l'acier est minimale dans tout l'acier. La dispersion dans les valeurs des propriétés mécaniques est donc diminuée, puisque la teneur en austénite est homogène dans tout l'acier. De plus, ces valeurs sont en moyenne augmentées, puisque la teneur en austénite dans l'acier est minimisée.Thanks to these provisions, all the austenite that can potentially turn into martensite in steel as it is introduced into the cryogenic environment, is transformed optimally. Optimum transformation means that the remaining austenite content in steel is minimal in all steel. The dispersion in the values of the mechanical properties is therefore reduced, since the austenite content is homogeneous throughout the steel. In addition, these values are on average increased, since the austenite content in the steel is minimized.

Par exemple, la température T1 (en °C avec une tolérance de +/-5°C) et le temps t1 (en heures avec une tolérance de +/-5%) sont liés sensiblement par la relation T 1 = f t 1 avec f t = 57,666 × 1 1 / t 0,3 0,14 1,5 97,389.

Figure imgb0002
For example, the temperature T 1 (in ° C with a tolerance of +/- 5 ° C) and the time t 1 (in hours with a tolerance of +/- 5%) are related substantially by the relation T 1 = f t 1 with f t = 57.666 × 1 - 1 / t 0.3 - 0.14 1.5 - 97.389.
Figure imgb0002

Avantageusement, l'acier est placé dans l'ambiance cryogénique moins de 70 heures après le moment où la température à la surface de la pièce durant son refroidissement à l'étape (b) atteint la température de 80°C.Advantageously, the steel is placed in the cryogenic environment less than 70 hours after the temperature at the surface of the part during its cooling in step (b) reaches the temperature of 80 ° C.

Ainsi, le taux de transformation maximal d'austénite en martensite qu'il est possible d'atteindre dans l'acier par son placement dans une ambiance cryogénique est le plus élevé possible.Thus, the maximum conversion rate of austenite to martensite that can be achieved in steel by placing it in a cryogenic environment is as high as possible.

L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels :

  • la figure 1 montre la relation T1 = f(t1) entre le temps t1 pendant lequel l'acier est maintenu dans l'enceinte cryogénique après que la partie la plus chaude de l'acier atteint une température
  • inférieure à la température de transformation martensitique Mf, et la température T1 dans l'enceinte, dans le procédé selon l'invention,
  • la figure 2 montre la variation du taux d'austénite restante dans un acier en fonction de la température T1 dans l'enceinte cryogénique pour différents temps t1 pendant lequel l'acier est maintenu dans cette enceinte après que la partie la plus chaude de l'acier atteint une température inférieure à la température de transformation martensitique Mf,
  • la figure 3 montre la variation de la dureté dans un acier en fonction de la température T1 dans l'enceinte cryogénique pour différents temps t1 pendant lequel l'acier est maintenu dans cette enceinte après que la partie la plus chaude de l'acier atteint une température inférieure à la température de transformation martensitique Mf,
  • la figure 4 montre la variation du taux d'austénite restante dans un acier en fonction de la durée séparant la fin du refroidissement de cet acier depuis sa température d'austénisation, et le placement de cet acier dans l'enceinte cryogénique, pour différents temps t1 pendant lequel l'acier est maintenu dans cette enceinte après que la partie la plus chaude de l'acier atteint une température inférieure à la température de transformation martensitique Mf.
The invention will be better understood and its advantages will appear better on reading the detailed description which follows, of an embodiment shown by way of non-limiting example. The description refers to the accompanying drawings in which:
  • the figure 1 shows the relation T 1 = f (t 1 ) between the time t 1 during which the steel is kept in the cryogenic chamber after the hottest part of the steel reaches a temperature
  • less than the martensitic transformation temperature Mf, and the temperature T 1 in the chamber, in the process according to the invention,
  • the figure 2 shows the variation of the austenite rate remaining in a steel as a function of the temperature T 1 in the cryogenic chamber for different times t 1 during which the steel is maintained in this chamber after the hottest part of the steel reaches a temperature below the martensitic transformation temperature Mf,
  • the figure 3 shows the variation of the hardness in a steel as a function of the temperature T 1 in the cryogenic chamber for different times t 1 during which the steel is maintained in this chamber after the hottest part of the steel reaches a temperature less than the martensitic transformation temperature Mf,
  • the figure 4 shows the variation of the remaining austenite ratio in a steel as a function of the time separating the end of the cooling of this steel from its austenization temperature, and the placement of this steel in the cryogenic chamber, for different times t 1 during which steel is maintained in this chamber after the hottest part of the steel reaches a temperature below the martensitic transformation temperature Mf.

Comme indiqué en préambule, un acier objet de la présente demande est soumis au traitement suivant avec pour objectif de minimiser sa teneur résiduelle en austénite : l'acier est chauffé et maintenu au dessus de sa température d'austénisation jusqu'à ce que sa température soit sensiblement homogène, l'acier est ensuite refroidi jusqu'à environ la température ambiante, puis l'acier est placé et maintenu dans une enceinte où règne une température cryogénique.As indicated in the preamble, a steel object of the present application is subjected to the following treatment with the aim of minimizing its residual austenite content: the steel is heated and kept above its austenization temperature until its temperature is substantially homogeneous, the steel is then cooled to about room temperature, then the steel is placed and maintained in a chamber where there is a cryogenic temperature.

Les inventeurs ont réalisés des essais sur de tels aciers ayant subi le traitement ci-dessus. Ces aciers ont la composition suivante : 0,18 à 0,3% de C, 5 à 7% de Co, 2 à 5% de Cr, 1 à 2% d'Al, 1 à 4% de Mo+W/2, traces à 0,3% de V, traces à 0,1% de Nb, traces à 50 ppm de B, 10,5 à 15% de Ni avec Ni ≥ 7+3,5 Al, traces à 0,4% de Si, traces à 0,4% de Mn, traces à 500 ppm de Ca, traces à 500 ppm de Terres rares, traces à 500 ppm de Ti, traces à 50 ppm d'O (élaboration à partir de métal liquide) ou à 200 ppm d'O (élaboration par métallurgie des poudres), traces à 100 ppm de N, traces à 50 ppm de S, traces à 1% de Cu, traces à 200 ppm de P, le reste étant Fe. Ces aciers ont plus particulièrement la composition suivante : 0,200% à 0,250% en C, 12,00% à 14,00% en Ni, 5,00% à 7,00% en Co, 2,5% à 4,00% en Cr, 1,30 à 1,70% en Al, 1,00% à 2,00% en Mo.The inventors have carried out tests on such steels having undergone the above treatment. These steels have the following composition: 0.18 to 0.3% C, 5 to 7% Co, 2 to 5% Cr, 1 to 2% Al, 1 to 4% Mo + W / 2 , traces at 0.3% of V, traces at 0.1% of Nb, traces at 50 ppm of B, 10.5 at 15% of Ni with Ni ≥ 7 + 3.5 Al, traces at 0.4% of Si, traces at 0.4% Mn, traces at 500 ppm of Ca, traces at 500 ppm of rare earths, traces at 500 ppm of Ti, traces at 50 ppm O (elaboration from liquid metal) or at 200 ppm O (elaboration by metallurgy of the powders), traces at 100 ppm of N, traces at 50 ppm of S, traces at 1% Cu, traces at 200 ppm P, the remainder being Fe. These steels more particularly have the following composition: 0.200% to 0.250% C, 12.00% to 14.00% Ni, 5.00% to 7.00% in Co, 2.5% to 4.00% in Cr, 1.30 to 1.70% in Al, 1.00 to 2.00% in Mo.

La figure 2 montre, selon les résultats de ces essais, la variation du taux d'austénite restante dans un acier en fonction de la température T1 dans l'enceinte cryogénique pour différentes durées t1, où t1 est la durée pendant laquelle cet acier est maintenu dans cette enceinte cryogénique après que la partie la plus chaude de l'acier atteint une température inférieure à la température de transformation martensitique Mf.The figure 2 shows, according to the results of these tests, the variation of the austenite rate remaining in a steel as a function of the temperature T 1 in the cryogenic enclosure for different durations t 1 , where t 1 is the duration during which this steel is maintained in this cryogenic chamber after the hottest part of the steel reaches a temperature below the martensitic transformation temperature Mf.

Ces résultats montrent que si l'acier est maintenu dans l'enceinte pendant 2 heures après que la partie la plus chaude de l'acier atteint une température inférieure à la température de transformation martensitique Mf, il est nécessaire que la température de l'enceinte soit inférieure ou égale à - 90°C pour que le taux d'austénite résiduelle soit minimal. Au dessus de cette température, le taux d'austénite résiduelle est supérieur. En dessous de - 90°C, le taux d'austénite résiduelle reste sensiblement constant et égal à sa valeur minimale, en l'espèce environ 2,5% (mesure tenant compte de la dispersion naturelle de la mesure).These results show that if the steel is kept in the chamber for 2 hours after the hottest part of the steel reaches a temperature below the martensitic transformation temperature Mf, it is necessary that the temperature of the enclosure is less than or equal to -90 ° C so that the residual austenite level is minimal. Above this temperature, the residual austenite rate is higher. Below -90 ° C, the residual austenite rate remains substantially constant and equal to its minimum value, in this case approximately 2.5% (a measure taking into account the natural dispersion of the measurement).

De façon similaire, si l'acier est maintenu dans l'enceinte pendant 5 heures ou 8 heures après que la partie la plus chaude de l'acier atteint une température inférieure à la température de transformation martensitique Mf, il est nécessaire que la température de l'enceinte soit égale ou plus basse que respectivement environ - 71°C et - 67°C pour que le taux d'austénite résiduelle soit minimal.Similarly, if the steel is kept in the chamber for 5 hours or 8 hours after the hottest part of the steel reaches a temperature below the martensitic transformation temperature Mf, it is necessary that the temperature of the enclosure is equal to or lower than about -71 ° C and -67 ° C, respectively, so that the residual austenite level is minimal.

Les résultats montrent que dans tous les cas, le taux d'austénite résiduelle est sensiblement égal.The results show that in all cases, the residual austenite level is substantially equal.

Plus généralement, la teneur résiduelle en austénite est minimale et sensiblement constante lorsque le temps t1 et la température T1 se situent sous la courbe T1 = f(t1) donnée en figure 1.More generally, the residual austenite content is minimal and substantially constant when the time t 1 and the temperature T 1 lie below the curve T 1 = f (t 1 ) given in FIG. figure 1 .

Cette courbe a pour équation : f t = 57,666 × 1 1 t 0,3 0,14 1,5 97,389

Figure imgb0003
This curve has for equation: f t = 57.666 × 1 - 1 t 0.3 - 0.14 1.5 - 97.389
Figure imgb0003

La courbe T1 = f(t1) donne la température T1 (exprimée en °C) dans la chambre cryogénique où l'acier doit être maintenu pendant un temps t1 (exprimé en heures) après que la partie la plus chaude de l'acier atteint une température inférieure à la température de transformation martensitique Mf de façon que toutes les régions de l'acier soient transformées au maximum en martensite, et aient donc une teneur résiduelle en austénite minimale et homogène.The curve T 1 = f (t 1 ) gives the temperature T 1 (expressed in ° C) in the cryogenic chamber where the steel must be maintained for a time t 1 (expressed in hours) after the hottest part of the steel reaches a temperature below the martensitic transformation temperature Mf so that all the regions of the steel are converted to a maximum of martensite, and therefore have a minimum and homogeneous residual austenite content.

La courbe T1 = f(t1) est obtenue par approximation statistique des résultats expérimentaux donnés dans le tableau 1 ci-dessous. Il est donc entendu que pour un temps t1 donné de maintien de l'acier dans la chambre cryogénique après que la partie la plus chaude de l'acier atteint une température inférieure à la température de transformation martensitique Mf, la température dans cette chambre doit être environ égale ou inférieure à celle donnée par la courbe T1 = f(t1). La dérivée première de la fonction f par rapport à t, f'(t), est positive, et la dérivée seconde de f par rapport à t, f"(t), est négative.The curve T 1 = f (t 1 ) is obtained by statistical approximation of the experimental results given in Table 1 below. It is therefore understood that for a given time t 1 of maintaining the steel in the cryogenic chamber after the hottest part of the steel reaches a temperature below the martensitic transformation temperature Mf, the temperature in this chamber must be approximately equal or less than that given by the curve T 1 = f (t 1 ). The first derivative of the function f with respect to t, f '(t), is positive, and the second derivative of f with respect to t, f "(t), is negative.

L'allure de cette courbe est valable pour tous les aciers de cette famille et se translate dans la direction verticale (variation en température) en fonction de la composition chimique de l'acier. L'asymptote horizontale de cette équation (la température T1 pour laquelle un temps de maintien t1 infini est nécessaire, c'est-à-dire la température la plus haute possible pour l'enceinte) est fonction de la composition chimique de l'acier (cette composition influe directement sur les températures de début Ms et de fin Mf de transformation martensitique). Pour le présent acier, cette température est environ égale à - 40°C. Le temps de maintien t1 minimum nécessaire est environ égal à 1 heure, et est sensiblement constant pour tous les aciers de cette famille. Tableau 1 Temps t1 (heures) Température T1 (°C) 2 -90 5 -70 8 -68 The shape of this curve is valid for all the steels of this family and is translated in the vertical direction (variation in temperature) according to the chemical composition of the steel. The horizontal asymptote of this equation (the temperature T 1 for which an infinite holding time t 1 is necessary, that is to say the highest possible temperature for the enclosure) is a function of the chemical composition of the equation. This composition has a direct influence on the martensitic transformation end point Ms and the end time Mf. For the present steel, this temperature is approximately equal to -40 ° C. The minimum holding time t 1 necessary is approximately equal to 1 hour, and is substantially constant for all the steels of this family. Table 1 Time t 1 (hours) Temperature T 1 (° C) 2 -90 5 -70 8 -68

On note, de façon inattendue, que ces températures T1 sont bien inférieures à la température de - 40°C communément admise comme permettant une transformation optimale de l'austénite en martensite, et que le temps de maintien t1 n'est pas nul. Ainsi, les inventeurs montrent qu'il n'est pas suffisant que les parties les plus chaudes de l'acier aient atteint la température Mf (ou une température légèrement inférieure) pour que la transformation en martensite dans ces parties soit optimale, mais il faut en plus que ces parties les plus chaudes soient maintenues dans la chambre cryogénique (où règne une température T1) après qu'elles atteignent une température inférieure à la température de transformation martensitique Mf pendant une durée au moins égale à t1.It is unexpectedly noted that these temperatures T 1 are well below the temperature of -40 ° C, which is commonly accepted as permitting an optimal transformation of the austenite to martensite, and that the holding time t 1 is not zero. . Thus, the inventors show that it is not sufficient that the hottest parts of the steel have reached the temperature Mf (or a slightly lower temperature) so that the transformation into martensite in these parts is optimal, but it is necessary in addition that these hottest parts are maintained in the cryogenic chamber (where a temperature T 1 prevails) after they reach a temperature below the Martensitic transformation temperature Mf for a period at least equal to t 1 .

La figure 3 montre, selon d'autres résultats d'essais réalisés par les inventeurs, la variation de la dureté dans un tel acier en fonction de la température T1 dans l'enceinte cryogénique pour différentes durées t1, où t1 est la durée pendant laquelle cet acier est maintenu dans cette enceinte cryogénique après que la partie la plus chaude de l'acier atteint une température inférieure à la température de transformation martensitique Mf.The figure 3 shows, according to other results of tests carried out by the inventors, the variation of the hardness in such a steel as a function of the temperature T 1 in the cryogenic chamber for different durations t 1 , where t 1 is the duration during which this steel is maintained in this cryogenic chamber after the hottest part of the steel reaches a temperature below the martensitic transformation temperature Mf.

Ces résultats montrent que la dureté est maximale et sensiblement constante lorsque le temps t1 et la température T1 se situent sous la courbe T1 = f(t1) donnée en figure 1.These results show that the hardness is maximum and substantially constant when the time t 1 and the temperature T 1 lie under the curve T 1 = f (t 1 ) given in figure 1 .

En comparant les courbes des figures 2 et 3, on peut donc établir une corrélation entre le taux d'austénite résiduel dans l'acier, et la dureté de cet acier. On en conclut que plus la teneur en austénite dans l'acier est faible, plus la dureté de l'acier est élevée. Les résultats d'essais effectués par les inventeurs sur d'autres propriétés mécaniques montrent une tendance similaire, à savoir que les propriétés mécaniques augmentent quand le taux d'austénite diminue.Comparing the curves of figures 2 and 3 a correlation can thus be established between the residual austenite content in steel and the hardness of this steel. It is concluded that the lower the austenite content in steel, the higher the hardness of the steel. The results of tests carried out by the inventors on other mechanical properties show a similar tendency, namely that the mechanical properties increase when the austenite rate decreases.

Grâce au procédé selon l'invention, on minimise la teneur en austénite dans l'acier, et par conséquent on augmente en moyenne les propriétés mécaniques de l'acier.Thanks to the process according to the invention, the austenite content in the steel is minimized, and consequently the mechanical properties of the steel are increased on average.

Par ailleurs, la teneur minimale en austénite dans une région d'une pièce en acier n'est atteinte que lorsque cette région a atteint une température inférieure à la température Mf et y est maintenue suffisamment longtemps, comme le montre la courbe de la figure 1.Furthermore, the minimum austenite content in a region of a steel workpiece is reached only when this region has reached a temperature below the temperature Mf and is maintained there long enough, as shown by the curve of the figure 1 .

Dans le cas où, après que la partie la plus chaude de l'acier atteint une température inférieure à la température de transformation martensitique Mf, la pièce est maintenue dans l'enceinte cryogénique où règne une température T1 pendant un temps t inférieur au temps t1 satisfaisant la relation T1 = f(t1), alors certaines régions plus centrales de la pièce ne sont pas restées suffisamment longtemps en dessous de la température Mf, tandis que certaines régions situées plus en surface de la pièce sont restées suffisamment longtemps à la température Mf. Le taux résiduel d'austénite augmente donc depuis ces régions en surface vers ces régions centrales. Cette variation spatiale du taux résiduel d'austénite entraîne une dispersion des valeurs des propriétés mécaniques obtenues lors des essais.In the case where, after the hottest part of the steel reaches a temperature below the martensitic transformation temperature Mf, the part is held in the cryogenic chamber where there is a temperature T 1 for a time t less than the time t 1 satisfying the relation T 1 = f (t 1 ), then some more central regions of the room did not stay long enough below the temperature Mf, while some regions located on the surface of the room remained long enough at the temperature Mf. The residual rate of austenite therefore increases from these surface regions to these central regions. This spatial variation of the residual austenite rate results in a dispersion of the values of the mechanical properties obtained during the tests.

Or, dans le procédé selon l'invention, l'acier est maintenu dans l'enceinte cryogénique suffisamment longtemps après que la partie la plus chaude de l'acier atteint une température inférieure à la température de transformation martensitique Mf, ce qui assure une transformation optimale en martensite de cette partie. On comprend donc pourquoi, grâce au procédé selon l'invention qui permet d'obtenir un taux résiduel d'austénite dans l'acier qui soit homogène et minimum, la dispersion des valeurs des propriétés mécaniques est minimisée, comme l'ont constaté les inventeurs. Par exemple, en appliquant un procédé de traitement selon l'art antérieur, la moyenne en dureté de l'acier traité est de 560 Hv avec statistiquement un minimum à 535 Hv et un maximum à 579 Hv. En utilisant le procédé selon l'invention, la moyenne en dureté de l'acier traité est de 575 Hv avec statistiquement un minimum à 570Hv et un maximum à 579 Hv.However, in the process according to the invention, the steel is kept in the cryogenic enclosure long enough after the hottest part of the steel reaches a temperature below the martensitic transformation temperature Mf, which ensures a transformation. optimal martensite of this part. It is thus clear why, thanks to the method according to the invention which makes it possible to obtain a residual level of austenite in steel which is homogeneous and minimum, the dispersion of the values of the mechanical properties is minimized, as found by the inventors . For example, applying a treatment method according to the prior art, the average hardness of the treated steel is 560 Hv with statistically a minimum at 535 Hv and a maximum at 579 Hv. Using the method according to the invention, the average hardness of the treated steel is 575 Hv with statistically a minimum at 570Hv and a maximum at 579 Hv.

Avant son placement dans l'enceinte cryogénique, l'acier subit, à l'étape (b), une trempe dans un fluide (un milieu) afin de refroidir l'acier jusqu'à température ambiante. Idéalement, ce fluide possède une drasticité au moins égale à celle de l'air. Par exemple, ce fluide est de l'air.Before placing it in the cryogenic enclosure, the steel undergoes, in step (b), a quenching in a fluid (a medium) in order to cool the steel to ambient temperature. Ideally, this fluid has a drasticity at least equal to that of air. For example, this fluid is air.

Par drasticité d'un milieu de trempe, on entend la capacité de ce milieu d'absorber les calories dans les couches les plus proches de la pièce qui y est plongée, et de les diffuser dans le reste du milieu. Cette capacité conditionne la vitesse de refroidissement de la surface de la pièce plongée dans ce milieu.The drasticity of a quenching medium is understood to mean the capacity of this medium to absorb the calories in the layers closest to the part which is immersed therein and to diffuse them into the rest of the medium. This capacity conditions the rate of cooling of the surface of the room immersed in this medium.

Les essais effectués par les inventeurs montrent que l'acier doit idéalement être placé dans l'ambiance cryogénique moins de 70 heures après le moment où la température à la surface de la pièce durant son refroidissement à l'étape (b) atteint la température de 80°C.The tests carried out by the inventors show that the steel must ideally be placed in the cryogenic environment less than 70 hours after the moment when the temperature at the surface of the part during its cooling in step (b) reaches the temperature of 80 ° C.

La figure 4 montre les résultats de ces essais. Lorsque l'acier est placé dans l'ambiance (enceinte) cryogénique 70 heures ou moins après le moment où la température à la surface de la pièce durant son refroidissement à l'étape (b) atteint la température de 80°C, alors la teneur résiduelle en austénite dans l'acier peut atteindre son minimum après maintien dans l'enceinte cryogénique selon les conditions de l'invention. En revanche, lorsque l'acier est placé dans l'ambiance cryogénique plus de 70 heures après ce moment, alors la teneur résiduelle en austénite ne peut atteindre son minimum, quelles que soient la durée ultérieure de maintien et la température dans l'enceinte cryogénique.The figure 4 shows the results of these tests. When the steel is placed in the cryogenic environment (enclosure) 70 hours or less after the temperature at the surface of the workpiece during its cooling in step (b) reaches the temperature of 80 ° C, then the residual austenite content in the steel can reach its minimum after maintenance in the cryogenic chamber according to the conditions of the invention. On the other hand, when the steel is placed in the cryogenic environment more than 70 hours after this moment, then the residual content in austenite can not reach its minimum, regardless of the subsequent duration of maintenance and the temperature in the cryogenic chamber.

Le minimum de la teneur résiduelle en austénite est de l'ordre de 2,5% pour la nuance d'acier testée lors des essais. Plus généralement, pour le type d'aciers selon l'invention, le minimum de la teneur résiduelle en austénite est inférieur à 3%.The minimum of the residual austenite content is of the order of 2.5% for the grade of steel tested during the tests. More generally, for the type of steel according to the invention, the minimum of the residual austenite content is less than 3%.

Pour d'autres familles d'acier, les valeurs minimum du temps t1 varient. Par exemple, le temps t1 peut être supérieur à 2 heures, ou supérieur à 3 heures, ou supérieur à 4 heures.For other families of steel, the minimum values of time t 1 vary. For example, the time t 1 may be greater than 2 hours, or greater than 3 hours, or greater than 4 hours.

Pour chacun de ces temps t1, la température T1 en dessous de laquelle doit être la température de l'enceinte est par exemple égale à - 50°C, ou à - 60°C, ou à - 70°C.For each of these times t 1 , the temperature T 1 below which the temperature of the chamber must be is, for example, equal to -50 ° C., or -60 ° C., or -70 ° C.

L'invention concerne également une pièce dans un acier obtenu selon un procédé selon l'invention, le taux d'austénite résiduel dans cet acier étant inférieur à 3%.The invention also relates to a piece made of a steel obtained according to a process according to the invention, the residual austenite content in this steel being less than 3%.

Par exemple, cette pièce est un arbre de turbomachine.For example, this part is a turbomachine shaft.

Claims (6)

  1. A method for producing martensitic steel that comprises a content of other metals such that the steel can be hardened by an intermetallic compound and carbide precipitation, with a martensitic transformation temperature Mf below 0°C, this thermal treatment method comprising the following steps:
    (a) heating the entirety of the steel above the austenizing temperature thereof,
    (b) cooling said steel to around the ambient temperature,
    (c) placing said steel into a cryogenic medium at a temperature T1,
    the method being characterized in that the temperature T1 is substantially less than the martensitic transformation temperature Mf, and the time for keeping said steel in said cryogenic medium from the moment when the hottest portion of the steel reaches a temperature lower than the martensitic transformation temperature Mf, is at least equal to a time t1 longer than 1 hour, the temperature T1 (in °C) and the time t1 (in hours) being substantially linked by the equation T1 = f(t1), the function f being substantially given by f t = 57.666 × 1 1 / t 0.3 0.14 1.5 97.389.
    Figure imgb0006
    or by a temperature-translated curve relative to f(t), wherein
    said steel has for composition: 0.18 to 0.3% of C, 5 to 7% of Co, 2 to 5% of Cr, 1 to 2% of Al, 1 to 4% of Mo+W/2, traces to 0.3% of V, traces to 0.1% of Nb, traces to 50 ppm of B, 10.5 to 15% of Ni with Ni ≥ 7+3.5 Al, traces to 0.4% of Si, traces to 0.4% of Mn, traces to 500 ppm of Ca, traces to 500 ppm of rare earths, traces to 500 ppm of Ti, traces to 50 ppm of O if developed from molten metal or to 200 ppm of O if developed through powder metallurgy, traces to 100 ppm of N, traces to 50 ppm of S, traces to 1% of Cu, traces to 200 ppm of P, the rest being Fe.
  2. The method according to claim 1, characterized in that said steel has for composition: 0.200% to 0.250% in C, 12.00% to 14.00% in Ni, 5.00% to 7.00% in Co, 2.5% to 4.00% in Cr, 1.30 to 1.70% in Al, 1.00% to 2.00% in Mo.
  3. The method according to claim 1 or 2, characterized in that in step (b), said steel is cooled to approximately ambient temperature by quenching in a medium with a drasticity at least equal to that of the air.
  4. The method according to any one of claims 1 to 3, characterized in that said steel is placed in said cryogenic medium less than 70 hours after the moment when the surface temperature of the piece during cooling thereof in step (b) reaches the temperature of 80°C.
  5. A piece made from a steel obtained using a method according to any one of the preceding claims, characterized in that the residual austenite level in said steel is less than 3%.
  6. A turbomachine transmission shaft made from a steel obtained according to a method according to any one of claims 1 to 4, characterized in that the residual austenite level in said steel is less than 3%.
EP10742187.7A 2009-07-03 2010-07-02 Cryogenic treatment of martensitic steel with mixed hardening Active EP2449143B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0954577A FR2947565B1 (en) 2009-07-03 2009-07-03 CRYOGENIC TREATMENT OF A MARTENSITIC STEEL WITH MIXED CURING
PCT/FR2010/051402 WO2011001126A1 (en) 2009-07-03 2010-07-02 Cryogenic treatment of martensitic steel with mixed hardening

Publications (2)

Publication Number Publication Date
EP2449143A1 EP2449143A1 (en) 2012-05-09
EP2449143B1 true EP2449143B1 (en) 2018-09-05

Family

ID=41612378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10742187.7A Active EP2449143B1 (en) 2009-07-03 2010-07-02 Cryogenic treatment of martensitic steel with mixed hardening

Country Status (9)

Country Link
US (1) US10174391B2 (en)
EP (1) EP2449143B1 (en)
JP (1) JP5996427B2 (en)
CN (1) CN102471854B (en)
BR (1) BR112012000128B1 (en)
CA (1) CA2766788C (en)
FR (1) FR2947565B1 (en)
RU (1) RU2554836C2 (en)
WO (1) WO2011001126A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2947566B1 (en) * 2009-07-03 2011-12-16 Snecma PROCESS FOR PRODUCING A MARTENSITIC STEEL WITH MIXED CURING
WO2014126012A1 (en) * 2013-02-12 2014-08-21 日立金属株式会社 Method for producing martensitic steel
JP5692622B1 (en) * 2013-03-26 2015-04-01 日立金属株式会社 Martensite steel
FR3072392B1 (en) * 2017-10-18 2019-10-25 Safran Landing Systems PROCESS FOR PROCESSING A STEEL
CN115478212A (en) * 2021-05-31 2022-12-16 宝武特种冶金有限公司 Carbide and intermetallic compound composite reinforced ultrahigh-strength steel and bar preparation method thereof
CN115329475B (en) * 2022-07-15 2023-04-25 华中科技大学 Part preparation method and equipment based on zoned multistage cryogenic treatment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1056561A (en) * 1962-10-02 1967-01-25 Armco Steel Corp Chromium-nickel-aluminium steel and method for heat treatment thereof
GB1089934A (en) * 1964-10-28 1967-11-08 Republic Steel Corp High strength steel alloy composition
SU1553564A1 (en) * 1987-12-30 1990-03-30 Предприятие П/Я Г-4778 Method of heat treatment of martensite-ageing steels
US5393488A (en) * 1993-08-06 1995-02-28 General Electric Company High strength, high fatigue structural steel
US6238455B1 (en) * 1999-10-22 2001-05-29 Crs Holdings, Inc. High-strength, titanium-bearing, powder metallurgy stainless steel article with enhanced machinability
DE60202598T2 (en) * 2001-03-27 2006-03-23 CRS Holdings, Inc., Wilmington ULTRA-HIGH-RESISTANCE EXTRACTOR-STAINLESS STAINLESS STEEL AND LONG-TERM STRIP MANUFACTURED THEREFROM
US7475478B2 (en) * 2001-06-29 2009-01-13 Kva, Inc. Method for manufacturing automotive structural members
RU2260061C1 (en) * 2004-07-23 2005-09-10 Открытое акционерное общество "Тульский оружейный завод" Method for manufacturing parts of electromagnetic steering drive of guided missile
FR2885141A1 (en) * 2005-04-27 2006-11-03 Aubert & Duval Soc Par Actions Hardened martensitic steel contains amounts of carbon, cobalt, chrome and aluminum with traces of other minerals
FR2885142B1 (en) 2005-04-27 2007-07-27 Aubert & Duval Soc Par Actions CURED MARTENSITIC STEEL, METHOD FOR MANUFACTURING A WORKPIECE THEREFROM, AND PIECE THUS OBTAINED
FR2887558B1 (en) * 2005-06-28 2007-08-17 Aubert & Duval Soc Par Actions MARTENSITIC STAINLESS STEEL COMPOSITION, PROCESS FOR MANUFACTURING A MECHANICAL PART THEREFROM, AND PIECE THUS OBTAINED
US8968495B2 (en) * 2007-03-23 2015-03-03 Dayton Progress Corporation Methods of thermo-mechanically processing tool steel and tools made from thermo-mechanically processed tool steels
PL2164998T3 (en) 2007-07-10 2011-05-31 Aubert & Duval Sa Hardened martensitic steel having a low or zero content of cobalt, process for manufacturing a part from this steel, and part thus obtained
FR2933990B1 (en) * 2008-07-15 2010-08-13 Aubert & Duval Sa LOW-COBALT HARDENED CURED MARTENSITIC STEEL, METHOD FOR MANUFACTURING A WORKPIECE THEREFROM, AND PIECE THUS OBTAINED

Also Published As

Publication number Publication date
BR112012000128B1 (en) 2021-03-23
RU2554836C2 (en) 2015-06-27
FR2947565A1 (en) 2011-01-07
RU2012103658A (en) 2013-08-10
US20120168039A1 (en) 2012-07-05
US10174391B2 (en) 2019-01-08
EP2449143A1 (en) 2012-05-09
JP2012531525A (en) 2012-12-10
CN102471854B (en) 2015-04-22
BR112012000128A2 (en) 2016-03-15
CA2766788C (en) 2019-06-18
CN102471854A (en) 2012-05-23
CA2766788A1 (en) 2011-01-06
JP5996427B2 (en) 2016-09-21
FR2947565B1 (en) 2011-12-23
WO2011001126A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
EP2449143B1 (en) Cryogenic treatment of martensitic steel with mixed hardening
EP2753723B1 (en) Rolled steel that hardens by means of precipitation after hot-forming and/or quenching with a tool having very high strength and ductility, and method for manufacturing same
CA2984131C (en) Steel, product made of said steel, and manufacturing method thereof
JP5333700B1 (en) Low alloy oil well pipe steel with excellent resistance to sulfide stress cracking and method for producing low alloy oil well pipe steel
EP2245203B1 (en) Austenitic stainless steel sheet and method for obtaining this sheet
EP2576849B1 (en) Method of production of a profiled wire made of hydrogen-embrittlement-resistant steel having high mechanical properties
WO2010007297A1 (en) Hardened martensitic steel having a low cobalt content, process for manufacturing a part from this steel, and part thus obtained
WO2009007562A1 (en) Hardened martensitic steel having a low or zero content of cobalt, process for manufacturing a part from this steel, and part thus obtained
WO2017064684A1 (en) Steel, product created from said steel, and manufacturing method thereof
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
EP0209437B1 (en) Lightly alloyed, forged steel cylinder for cold rolling
EP1778886A1 (en) Object comprising a steel part of a metal construction consisting of an area welded by a high power density beam and exhibiting an excellent toughness in a molten area, method for producing said object
JP5986434B2 (en) Seamless steel pipe for hollow spring
JP5816136B2 (en) Manufacturing method of seamless steel pipe for hollow spring
FR3026748A1 (en) METAL ALLOY, METALLIC PART AND PROCESS FOR OBTAINING
CA3162447A1 (en) Solid metallic component and method for producing same
KR20180085787A (en) Carbon Nitriding Steels and Carburized Nitrided Parts
EP0092629A1 (en) Process for the manufacture of rods and tubes from steels with great mechanical properties
JP2024034952A (en) Steel material for nitriding induction hardening and steel component
EP1042524A1 (en) Case hardening structural steel, method for obtaining same and parts formed with same
BE354960A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160531

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/44 20060101AFI20180117BHEP

Ipc: C21D 6/04 20060101ALI20180117BHEP

Ipc: C22C 38/52 20060101ALI20180117BHEP

Ipc: C21D 9/30 20060101ALI20180117BHEP

Ipc: C22C 38/06 20060101ALI20180117BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180226

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN AIRCRAFT ENGINES

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1037889

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010053323

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1037889

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010053323

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

26N No opposition filed

Effective date: 20190606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100702

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 14

Ref country code: FR

Payment date: 20230621

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230622

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 14