JP5692622B1 - Martensite steel - Google Patents

Martensite steel Download PDF

Info

Publication number
JP5692622B1
JP5692622B1 JP2014525653A JP2014525653A JP5692622B1 JP 5692622 B1 JP5692622 B1 JP 5692622B1 JP 2014525653 A JP2014525653 A JP 2014525653A JP 2014525653 A JP2014525653 A JP 2014525653A JP 5692622 B1 JP5692622 B1 JP 5692622B1
Authority
JP
Japan
Prior art keywords
less
ductility
strength
martensitic steel
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014525653A
Other languages
Japanese (ja)
Other versions
JPWO2014156327A1 (en
Inventor
勝彦 大石
勝彦 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014525653A priority Critical patent/JP5692622B1/en
Application granted granted Critical
Publication of JP5692622B1 publication Critical patent/JP5692622B1/en
Publication of JPWO2014156327A1 publication Critical patent/JPWO2014156327A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

マルテンサイト鋼の優れた強度特性を維持した状態で延性を付与する、つまりは、強度と延性を両立させるためのマルテンサイト鋼を提供する。質量%でC:0.18〜0.30%、Al:1.0〜2%、V:0.3%以下、Cr:2.0〜5.0%、Ni:10.5〜15.0%、但しNi≧7.0+3.5Al、Co:5.0〜7.0%、Mo単独またはMo+W/2:1.0〜4.0%、選択元素のB、Si、Mn、Ca、希土類元素、Cu、Nbを、B:0.0050%以下、Si:0.4%以下、Mn:0.4%以下、Ca:0.05%以下、希土類元素:0.05%以下、Cu:1.0%以下、Nb:0.1%以下を含有し、残部はFe及び不純物でなる組成を有するマルテンサイト鋼において、前記マルテンサイト鋼はMg:40ppm以下(0%は含まず)を更に含有するマルテンサイト鋼。Provided is a martensitic steel that imparts ductility while maintaining the excellent strength characteristics of the martensitic steel, that is, to achieve both strength and ductility. C: 0.18-0.30% by mass, Al: 1.0-2%, V: 0.3% or less, Cr: 2.0-5.0%, Ni: 10.5-15. 0%, however, Ni ≧ 7.0 + 3.5Al, Co: 5.0 to 7.0%, Mo alone or Mo + W / 2: 1.0 to 4.0%, selective elements B, Si, Mn, Ca, Rare earth element, Cu, Nb, B: 0.0050% or less, Si: 0.4% or less, Mn: 0.4% or less, Ca: 0.05% or less, rare earth element: 0.05% or less, Cu : Martensitic steel containing 1.0% or less, Nb: 0.1% or less, with the balance being composed of Fe and impurities, the martensitic steel is Mg: 40 ppm or less (excluding 0%) Further martensitic steel contained.

Description

本発明は、マルテンサイト鋼に関するものである。   The present invention relates to martensitic steel.

マルテンサイト鋼は、優れた機械的特性を具備し、焼入れ硬さが高く、耐摩耗性や疲労強度に優れるため、ベアリング等の機械構造用鋼や、包丁、鋏等の刃物用鋼、自動車用摺動部品や航空機部材として幅広い分野に利用されている。
従来、これらの素材は、使用される用途と求められる鋼塊清浄度により複数の製造工程が存在するが、例えば航空機部材として使用される場合、所定の成分組成を有した溶湯を真空溶解により鋼塊を製造し、これに少なくとも1回以上の再溶解、例えば真空アーク再溶解(VAR)やエレクトロスラグ再溶解(ESR)を施した後、熱間加工或いは熱間加工と冷間加工を行い製造されている。
Martensitic steel has excellent mechanical properties, high quenching hardness, and excellent wear resistance and fatigue strength. Therefore, steel for mechanical structures such as bearings, steel for knives such as knives and scissors, and for automobiles. It is used in a wide range of fields as sliding parts and aircraft parts.
Conventionally, these materials have a plurality of manufacturing processes depending on the intended use and required steel ingot cleanliness. For example, when used as an aircraft member, a molten metal having a predetermined composition is vacuum-melted into steel. A lump is manufactured, and after it is remelted at least once, such as vacuum arc remelting (VAR) or electroslag remelting (ESR), it is manufactured by hot working or hot working and cold working. Has been.

ところで、上記の航空機部材の製造方法において、求められる機械的特性を得るために、製造工程中或いは最終製品形状に整えた後に施される熱処理方法が例えば特許文献1などに開示されている。
上記の特許文献1に開示されている熱処理方法は、具体的には、素材の軟化を目的とした軟化焼戻し処理、素材中の合金元素を溶かし込む固溶化処理と焼入れ処理、冷却処理後に素材中に残留する未変態のオーステナイトをマルテンサイトへ変化させるためのサブゼロ処理、マルテンサイト変態により生じた素材中の応力を除去する軟化処理及び微細な炭化物や金属間化合物を析出させるための時効処理或いは焼戻し処理からなる方法である。
By the way, in the method for manufacturing an aircraft member described above, for example, Patent Document 1 discloses a heat treatment method that is performed during a manufacturing process or after adjusting to a final product shape in order to obtain required mechanical characteristics.
Specifically, the heat treatment method disclosed in Patent Document 1 includes a softening and tempering treatment for the purpose of softening the material, a solution treatment and a quenching treatment for dissolving alloy elements in the material, and a cooling treatment. Sub-zero treatment to change untransformed austenite remaining in martensite, softening treatment to remove stress in the material caused by martensite transformation, and aging treatment or tempering to precipitate fine carbides and intermetallic compounds It is a method consisting of processing.

特表2008−539331号公報Special table 2008-539331

上述した特許文献1に開示される製造方法によって製造された航空機部材では、時効処理段階において、β−NiAl型の金属間化合物及びMC型の炭化物が析出し、ラスマルテンサイト間に数%の逆変態オーステナイトが形成される。これにより強度と延性に優れたマルテンサイト鋼を得ることが可能である。
しかし、本来、時効処理は素材内部に上述した炭化物や金属間化合物を析出させる処理であり、時効処理によって残留オーステナイト量を調整しようとすると時効処理温度を変化させる必要がある。時効処理温度が変化すると時効析出物の形態や分布が変化する一方で逆変態オーステナイトの分布も変化することから、強度と延性を良い状態でバランスさせることは製造上、非常に困難であるという問題があった。また、逆変態オーステナイトはマルテンサイト中に存在する高密度の転位を引き継いだ状態でオーステナイト変態することから、再結晶で得られるオーステナイト相のような延性は期待できないといった問題があった。
本発明の目的は、マルテンサイト鋼の優れた強度特性を維持した状態で延性を付与する、つまりは、強度と延性を両立させるためのマルテンサイト鋼を提供することである。
In the aircraft member manufactured by the manufacturing method disclosed in Patent Document 1 described above, in the aging treatment stage, β-NiAl type intermetallic compound and M 2 C type carbide precipitate, and several% between the lath martensite. The reverse transformed austenite is formed. Thereby, it is possible to obtain martensitic steel excellent in strength and ductility.
However, the aging treatment is originally a treatment for precipitating the above-described carbides and intermetallic compounds in the material, and it is necessary to change the aging treatment temperature in order to adjust the amount of retained austenite by the aging treatment. When the aging treatment temperature changes, the shape and distribution of aging precipitates change while the distribution of reverse transformed austenite also changes, so it is very difficult to balance strength and ductility in production. was there. Further, since reverse-transformed austenite undergoes austenite transformation in the state of inheriting high-density dislocations existing in martensite, there is a problem that ductility like the austenite phase obtained by recrystallization cannot be expected.
An object of the present invention is to provide martensitic steel for imparting ductility while maintaining the excellent strength characteristics of martensitic steel, that is, to achieve both strength and ductility.

本発明者は、前述の特許文献1に記載されたマルテンサイト鋼において、従来から行われていた熱処理条件の最適化のみによらず、合金元素の添加よって延性を改善することができるかどうかを調査した。その結果、Mgを添加すると強度レベルは変化しないがシャルピー衝撃値や引張試験の伸びや絞り値が向上することを突きとめた。また、このMgの添加は添加量に適正な範囲が存在し、添加量をその範囲内に制御して添加することで延性発現の効果が更に高まることを見出し、本発明に到達した。
すなわち本発明は、質量%でC:0.18〜0.30%、Al:1.0〜2.0%、V:0.3%以下、Cr:2.0〜5.0%、Ni:10.5〜15.0%、但しNi≧7.0+3.5Al、Co:5.0〜7.0%、Mo単独またはMo+W/2:1.0〜4.0%を含有し、残部はFe及び不純物でなる組成を有するマルテンサイト鋼において、Mg:0.0010〜0.0040%を更に含有するマルテンサイト鋼である。
また、本発明は、B:0.0050%以下、Si:0.4%以下、Mn:0.4%以下、Ca:0.05%以下、希土類元素:0.05%以下、Cu:1.0%以下及びNb:0.1%以下から選択された1種又は2種以上の元素を更に含有することができる。
好ましくは、室温下において金属組織がマルテンサイトを主体とし、体積%で3.0〜20.0%のオーステナイトを含むマルテンサイト鋼である。
The present inventor, in the martensitic steel described in the above-mentioned Patent Document 1, whether or not the ductility can be improved by the addition of alloy elements, not only optimization of heat treatment conditions conventionally performed. investigated. As a result, it was found that when Mg was added, the strength level did not change, but the Charpy impact value, the tensile test elongation, and the drawing value improved. Further, the addition of Mg has an appropriate range in the addition amount, and it has been found that the effect of developing ductility is further enhanced by controlling the addition amount within the range and adding it, thereby reaching the present invention.
That is, the present invention, in mass%, C: 0.18-0.30%, Al: 1.0-2.0%, V: 0.3% or less, Cr: 2.0-5.0%, Ni : 10.5 to 15.0%, but Ni ≧ 7.0 + 3.5Al, Co: 5.0 to 7.0%, Mo alone or Mo + W / 2: 1.0 to 4.0%, the balance Is a martensitic steel having a composition comprising Fe and impurities and further containing Mg: 0.0010 to 0.0040 % .
In the present invention, B: 0.0050% or less, Si: 0.4% or less, Mn: 0.4% or less, Ca: 0.05% or less, rare earth element: 0.05% or less, Cu: 1 It may further contain one or more elements selected from 0.0% or less and Nb: 0.1% or less.
Preferably, it is a martensitic steel mainly containing martensite at room temperature and containing 3.0 to 20.0% austenite by volume%.

本発明によれば、マルテンサイト鋼の優れた強度特性を維持した状態で延性を付与する、つまりは、強度と延性を両立させることができる。   According to the present invention, ductility can be imparted while maintaining the excellent strength characteristics of martensitic steel, that is, both strength and ductility can be achieved.

本発明において、最も特徴的なMg添加から説明する。以下で示す各元素の含有量の単位は質量%である。
Mg:0.0010〜0.0040
Mgは本発明においてマルテンサイト鋼の強度レベルは維持したまま、延性、靱性を向上することができる特異的な性質を有する元素である。一般に、延性、靱性と強度は相反する特性であるため、一方の特性を高めると他方の特性が低下する。そのため、強度と延性、靱性を両立させることは非常に困難であった。Mg添加により延性、靱性が向上するメカニズムは現段階で明らかになっていないが以下のように考えている。
本発明のマルテンサイト鋼は鋼中に金属間化合物のβ−NiAlやMC(M:Cr、Mo、V等)炭化物を形成し、析出強化により高強度化が成された合金である。一方で合金中に含まれるAlは鋼中のNと容易に結びつき、非金属介在物のAlNを形成する。AlNは微細な状態であれば材料特性への影響度合いは小さいが、10μmを超えるような粗大な介在物となると疲労破壊の起点となり強度を著しく低下させるばかりか延性を低下させる要因となる。そのため、Mgは溶製中に酸化物のMgOとなりAlNの晶出あるいは析出核となりAlNを微細に分散化させAlNによる延性低下を抑制する効果があることが考えられる。
また、不可避的に含まれる不純物元素は熱間加工、熱処理工程において結晶粒界へ拡散し、偏析する傾向がある。このような偏析が生じると、粒界強度が損なわれるため、延性が得られなくなるが、Mgを添加すると不純物元素はMgと析出物を形成し、粒界への偏析を抑制する効果、つまりは不純物元素を析出物として固定化する効果があることが考えられる。このような効果により粒界の延性が向上したものと考えられる。
Mgが無添加であると上述した効果が得られず、一方、Mgが0.0040%を超えるとMgOが多量に生成、あるいは粗大化してしまい、上述したような晶出あるいは析出核としての機能が得られないばかりか、鋼中のAlと結びつき、Al−Mg酸化物を形成し、強度、延性ともに低下してしまう。そのためMgは0.0010〜0.0040%とする。好ましいMgの上限は0.0020%である
In the present invention, the most characteristic addition of Mg will be described. The unit of content of each element shown below is mass%.
Mg: 0.0010 to 0.0040 %
Mg is an element having specific properties that can improve ductility and toughness while maintaining the strength level of martensitic steel in the present invention. In general, ductility, toughness, and strength are contradictory properties, so that when one property is increased, the other property is lowered. Therefore, it has been very difficult to achieve both strength, ductility and toughness. The mechanism by which ductility and toughness are improved by adding Mg has not been clarified at this stage, but is considered as follows.
The martensitic steel of the present invention is an alloy in which β-NiAl or M 2 C (M: Cr, Mo, V, etc.) carbides of intermetallic compounds are formed in the steel and the strength is increased by precipitation strengthening. On the other hand, Al contained in the alloy is easily combined with N in the steel to form nonmetallic inclusion AlN. If AlN is in a fine state, the degree of influence on the material properties is small, but if it is a coarse inclusion exceeding 10 μm, it becomes a starting point of fatigue failure and not only significantly lowers the strength but also causes a reduction in ductility. Therefore, Mg is considered to have an effect of suppressing ductility deterioration due to AlN by becoming MgO as an oxide during melting and becoming AlN crystallization or precipitation nuclei and finely dispersing AlN.
Further, inevitably contained impurity elements tend to diffuse and segregate to the grain boundaries in the hot working and heat treatment steps. When such segregation occurs, the grain boundary strength is impaired, and ductility cannot be obtained. However, when Mg is added, the impurity element forms precipitates with Mg, and the effect of suppressing segregation to the grain boundary, that is, It is considered that there is an effect of fixing the impurity element as a precipitate. It is considered that the grain boundary ductility is improved by such an effect.
If Mg is not added, the above-mentioned effects cannot be obtained. On the other hand, if Mg exceeds 0.0040%, a large amount of MgO is generated or coarsened, and functions as crystallization or precipitation nuclei as described above. Not only can be obtained, but it is combined with Al in the steel to form an Al-Mg oxide, and both strength and ductility are lowered. Therefore, Mg is 0.0010 to 0.0040 % . A preferable upper limit of Mg is 0.0020% .

本発明ではMg以外の成分を以下の範囲に制限する。
C:0.18〜0.30%
CはCr、Mo、W、Vと結合してMC炭化物の形成に必要な元素であり、強度の向上に寄与するものである。Cが0.18%未満であると強度向上に寄与する炭化物量が得られない。一方、Cが0.30%を超えるとオーステナイトが安定化するため、焼入れ時に多量の残留オーステナイトが残存してしまう。そのため、Cは0.18〜0.30%とする。
Al:1.0〜2.0%
Alは時効処理時に金属間化合物のβ−NiAlとして析出し、強度向上に寄与する元素である。Alが1.0%未満であると強度向上に寄与するための十分な金属間化合物量が得らない。一方、Alが2.0%を超えると金属間化合物が多くなり、靭性や延性を大幅に低下させてしまう。そのため、Alは1.0〜2.0%とする。
V:0.3%以下
Vは準安定のMC炭化物を安定化させ、強度向上に寄与する元素である。Vが0%(無添加)である場合、MC炭化物が安定して存在できなくなる。そのため、Vは0%(無添加)を超えて必須で添加する。一方、Vが0.3%を超えるとMC安定化効果に対して過剰になる。そのため、Vの上限を0.3%とする。(出来れば、Vの下限を設定したいところだが。また好ましい上限も。他の元素も好ましい範囲を記載できれば記載しておくと良い)
In the present invention, components other than Mg are limited to the following ranges.
C: 0.18 to 0.30%
C is an element necessary for forming M 2 C carbides by combining with Cr, Mo, W, and V, and contributes to improvement of strength. If C is less than 0.18%, the amount of carbide that contributes to strength improvement cannot be obtained. On the other hand, when C exceeds 0.30%, austenite is stabilized, so that a large amount of retained austenite remains during quenching. Therefore, C is set to 0.18 to 0.30%.
Al: 1.0-2.0%
Al is an element that precipitates as an intermetallic compound β-NiAl during aging treatment and contributes to strength improvement. If the Al content is less than 1.0%, a sufficient amount of intermetallic compound for contributing to strength improvement cannot be obtained. On the other hand, when Al exceeds 2.0%, an intermetallic compound will increase and toughness and ductility will be reduced significantly. Therefore, Al is set to 1.0 to 2.0%.
V: 0.3% or less V is an element that stabilizes metastable M 2 C carbides and contributes to strength improvement. When V is 0% (no addition), M 2 C carbide cannot be present stably. Therefore, V is added in an essential amount exceeding 0% (no addition). On the other hand, if V exceeds 0.3%, the M 2 C stabilizing effect becomes excessive. Therefore, the upper limit of V is set to 0.3%. (If possible, I would like to set the lower limit of V. Also, the upper limit is also preferable. If other elements can also describe the preferable range, it should be described.)

Cr:2.0〜5.0%
Crは準安定のMC炭化物を安定化する効果がある元素である。Crが2.0%未満であるとMCを安定化する効果が得られない。一方、Crが5.0%を超えるとM23を形成してしまい、炭化物構造が変化する。炭化物構造の変化は強度特性を変化させることから、Crは2.0〜5.0%とする。
Ni:10.5〜15.0%(但し、Ni≧7.0+3.5Al)
NiはAlと結びつき金属間化合物のβ−NiAlを形成し強度向上に寄与するとともにマルテンサイトの変態開始温度(Ms点)にも影響する元素である。そのためNiはAl添加量に対して適宜調整する必要がある。Ni量が10.5%未満であると金属間化合物のβ−NiAl量が少なくなり強度が低下する。一方、Niが15.0%を超えるとMs点が大幅に低下して焼入れ時に多量の残留オーステナイトが存在するようになる。そのため、Niは10.5〜15.0%とする。
但し、Niの含有量は、Ni≧7.0+3.5Alを満足させる必要がある。特許文献1に記載されるように、Ni≧7.0+3.5Alは高い強度を維持するために必要な金属間化合物の適正量を得るための指標である。Niが7.0+3.5Al以上とならないと、金属間化合物が少なくなって強度低下を招いてしまう。
Co:5.0〜7.0%
Coはマトリックスのマルテンサイト組織の安定性に大きく影響することなく、固溶化処理時にMo、Al等の時効析出物形成元素の固溶度を増加させ、時効析出温度域でのMo、Alの固溶度を低下させることによって微細な金属間化合物の析出を促進し、時効析出強化に寄与する重要な元素である。Coが5.0%未満であると十分な強度が得られない。一方、Coが7.0%を超えるとオーステナイトが安定化してマルテンサイト組織が得られ難くなる。そのため、Coは5.0〜7.0%とする。
Cr: 2.0-5.0%
Cr is an element that has the effect of stabilizing metastable M 2 C carbides. If Cr is less than 2.0%, the effect of stabilizing M 2 C cannot be obtained. On the other hand, when Cr exceeds 5.0%, M 23 C 6 is formed, and the carbide structure changes. Since the change in the carbide structure changes the strength characteristics, Cr is set to 2.0 to 5.0%.
Ni: 10.5 to 15.0% (However, Ni ≧ 7.0 + 3.5Al)
Ni is an element that combines with Al to form β-NiAl, an intermetallic compound, contributes to improving the strength, and also affects the martensite transformation start temperature (Ms point). Therefore, it is necessary to adjust Ni appropriately with respect to the amount of Al added. If the amount of Ni is less than 10.5%, the amount of β-NiAl in the intermetallic compound decreases and the strength decreases. On the other hand, when Ni exceeds 15.0%, the Ms point is significantly lowered, and a large amount of retained austenite is present during quenching. Therefore, Ni is made 10.5 to 15.0%.
However, the Ni content needs to satisfy Ni ≧ 7.0 + 3.5Al. As described in Patent Document 1, Ni ≧ 7.0 + 3.5Al is an index for obtaining an appropriate amount of an intermetallic compound necessary for maintaining high strength. If Ni does not become 7.0 + 3.5Al or more, the intermetallic compound decreases and the strength decreases.
Co: 5.0-7.0%
Co does not significantly affect the stability of the martensitic structure of the matrix and increases the solid solubility of aging precipitate-forming elements such as Mo and Al during the solution treatment, so that the solid solution of Mo and Al in the aging precipitation temperature range is increased. It is an important element contributing to aging precipitation strengthening by promoting precipitation of fine intermetallic compounds by lowering solubility. If Co is less than 5.0%, sufficient strength cannot be obtained. On the other hand, when Co exceeds 7.0%, austenite is stabilized and it becomes difficult to obtain a martensite structure. Therefore, Co is set to 5.0 to 7.0%.

Mo単独またはMo+W/2:1.0〜4.0%
Mo及びWはCと結合して強度向上に寄与するMC炭化物を形成する元素である。Mo単独またはMo及びW/2の総量が1.0%未満であると炭化物の形成が不十分になる。一方、Mo単独またはMo及びW/2の総量が4.0%を超えると金属間化合物のμ相(FeMo)を形成して鍛造性を低下させる。そのため、Mo単独またはMo+W/2の総量を1.0〜4.0%とする。
以上、説明する元素が本発明の必須元素であり、残部はFeと不純物である。但し、更なる強度向上の効果を得ようとすると、B、Si、Mn、Ca、希土類元素、Cu、Nbの何れか1種又は2種以上の元素を含有することができる。なお、以下に示す各元素の上限を超えると強度が低下してしまうので、選択的に添加するのであれば、次の成分範囲に限定する。
B:≦0.0050%、Si:≦0.4%、Mn:≦0.4%、Ca:≦0.05%、希土類元素:≦0.05%、Cu:≦1.0%、Nb:≦0.1%
Mo alone or Mo + W / 2: 1.0 to 4.0%
Mo and W are elements that combine with C to form M 2 C carbides that contribute to strength improvement. If Mo alone or the total amount of Mo and W / 2 is less than 1.0%, carbide formation is insufficient. On the other hand, when Mo alone or the total amount of Mo and W / 2 exceeds 4.0%, a μ phase (Fe 7 Mo 6 ) of an intermetallic compound is formed and forgeability is lowered. Therefore, the total amount of Mo alone or Mo + W / 2 is set to 1.0 to 4.0%.
The elements described above are essential elements of the present invention, and the balance is Fe and impurities. However, when it is going to acquire the effect of the further strength improvement, it can contain any 1 type, or 2 or more types of elements of B, Si, Mn, Ca, rare earth elements, Cu, and Nb. In addition, since intensity | strength will fall when it exceeds the upper limit of each element shown below, if it adds selectively, it will limit to the following component range.
B: ≦ 0.0050%, Si: ≦ 0.4%, Mn: ≦ 0.4%, Ca: ≦ 0.05%, rare earth element: ≦ 0.05%, Cu: ≦ 1.0%, Nb : ≦ 0.1%

本発明のマルテンサイト鋼は室温下においてマルテンサイトを主体とした金属組織を有している。この金属組織中に体積%で3.0〜20.0%のオーステナイト相を含むことが好ましい。これは、強度水準を低下させることなくより確実に延性(特に引張試験の伸び)を高めるには加工性に富む金属組織を導入することが好ましいためである。
本発明ではマルテンサイト中に体積%で3.0〜20.0%のオーステナイト相を形成させることで、更に延性を高めることができる。オーステナイト相の体積率が3.0%未満だと延性付与効果が得にくくなる。一方、オーステナイト相が20.0%より多くなると延性は高まるが、強度が低下してしまうおそれがある。更に好ましいオーステナイト相の体積率の下限は4.0%であり、更に好ましいオーステナイト相の体積率の上限は15.0%である。
なお、このオーステナイト相の形成は、サブゼロ処理を−50℃以上で0℃以下の温度範囲で0.5〜5時間とすることで、体積%で3.0〜20.0%の残留オーステナイトとして形成することが可能である。
The martensitic steel of the present invention has a metal structure mainly composed of martensite at room temperature. The metal structure preferably contains 3.0 to 20.0% austenite phase by volume. This is because it is preferable to introduce a metal structure rich in workability in order to more reliably increase ductility (particularly elongation in tensile testing) without lowering the strength level.
In the present invention, the ductility can be further enhanced by forming an austenite phase of 3.0 to 20.0% by volume in martensite. When the volume fraction of the austenite phase is less than 3.0%, it becomes difficult to obtain the effect of imparting ductility. On the other hand, if the austenite phase is more than 20.0%, the ductility increases, but the strength may decrease. A more preferred lower limit of the volume fraction of the austenite phase is 4.0%, and a more preferred upper limit of the volume fraction of the austenite phase is 15.0%.
In addition, formation of this austenite phase is made into 3.0 to 20.0% residual austenite by volume% by making subzero treatment into the temperature range of -50 degreeC or more and 0 degreeC or less for 0.5 to 5 hours. It is possible to form.

(実施例1)
真空誘導溶解炉によって表1に示すマルテンサイト鋼のインゴット各10kgを作製し、均質化焼鈍、熱間鍛造を経て断面形状が30mm×30mmとなる棒材を得た。
その後、大気中で870℃、1hの焼ならしを行って焼鈍用素材を得た。前述の焼鈍用素材を用いて650℃×8hの焼鈍を行って焼鈍材を得た後、前記焼鈍材を用いて900℃×1hの固溶化処理を施して固溶化処理材を得た。
前記固溶化処理材を用いて、サブゼロ温度の−78℃に調整したエチルアルコール液中で2時間保持するサブゼロ処理を行ってサブゼロ材を得た後、更に200℃×8hの低温時効処理と495℃×10hの時効硬化処理を施した。
Example 1
10 kg of each ingot of martensite steel shown in Table 1 was produced by a vacuum induction melting furnace, and a bar having a cross-sectional shape of 30 mm × 30 mm was obtained through homogenization annealing and hot forging.
Thereafter, normalization was performed at 870 ° C. for 1 hour in the air to obtain a material for annealing. An annealing material was obtained by annealing at 650 ° C. × 8 h using the annealing material described above, and then a solid solution treatment was performed at 900 ° C. × 1 h using the annealing material to obtain a solid solution treatment material.
Using the solution treatment material, a sub-zero material was obtained by performing a sub-zero treatment for 2 hours in an ethyl alcohol solution adjusted to a sub-zero temperature of −78 ° C., and then a low temperature aging treatment of 200 ° C. × 8 h and 495 An age hardening treatment at 10 ° C. for 10 hours was performed.

Figure 0005692622
Figure 0005692622

時効硬化処理を行ったマルテンサイト鋼の棒材から各種の試験片を切り出して、引張試験、シャルピー衝撃試験を行った。
引張試験は、マルテンサイト鋼の棒材から任意のサイズのブロック材を切出し、平行部長32mm、平行部径6.35mm、試験片全長90mm、掴み部径10mmの引張試験片形状に加工した後、ASTM−E8に準じて実施した。シャルピー衝撃試験は、マルテンサイト鋼棒材から任意のサイズのブロック材を切出し、10mm×10mm×5mm、深さ2mmのVノッチ加工を施し試験片とし、JIS−Z2242に準じて実施した。なお、引張試験およびシャルピー衝撃試験は室温にて実施した。それぞれの測定、試験結果を表2に示す。
Various test pieces were cut out from the martensitic steel rods subjected to age hardening treatment, and subjected to a tensile test and a Charpy impact test.
In the tensile test, a block material of an arbitrary size was cut out from the bar material of martensite steel, and after processing into a tensile test piece shape having a parallel part length of 32 mm, a parallel part diameter of 6.35 mm, a test piece total length of 90 mm, and a grip part diameter of 10 mm, It carried out according to ASTM-E8. The Charpy impact test was carried out in accordance with JIS-Z2242, by cutting out a block material of an arbitrary size from a martensitic steel bar and applying a V-notch process of 10 mm × 10 mm × 5 mm and 2 mm in depth. The tensile test and Charpy impact test were performed at room temperature. Table 2 shows the measurement and test results.

Figure 0005692622
Figure 0005692622

表2に示す通り、Mg添加量が変化しても引張強さはほとんど変化せず一定であるのに対し、引張試験で得られた伸びおよびシャルピー衝撃値はMg添加量が18、32ppmで最大値を示すことが分かる。このように適正範囲のMg添加は強度レベルを維持したまま、延性の向上が図れる手法であり、強度と延性を両立するものであることが分かる。   As shown in Table 2, the tensile strength hardly changes even when the Mg addition amount changes, and is constant, whereas the elongation and the Charpy impact value obtained in the tensile test are maximum when the Mg addition amount is 18 and 32 ppm. It can be seen that the value is shown. Thus, it can be seen that the addition of Mg in an appropriate range is a technique capable of improving the ductility while maintaining the strength level, and achieves both strength and ductility.

(実施例2)
表1に示す本発明のマルテンサイト鋼であるNo.1、2の固溶化処理材を、オーステナイトを残存させるために従来条件よりも高い−12℃に調整したエチルアルコール液中で2時間保持するサブゼロ処理を施し、更に200℃×8hの低温時効処理と495℃×10hの時効硬化処理を施した。処理後のマルテンサイト鋼をNo.1A、2Aとする。
時効硬化処理を行ったマルテンサイト鋼の棒材から各種の試験片を切り出して、残留オーステナイト量の計測および引張試験、シャルピー衝撃試験を行った。
オーステナイト量の測定は、マルテンサイト鋼棒材から10mm×10mm×5mmサイズの試験片を切出し、試験片表面を機械研磨した後、電解研磨により表面の残留応力を除去し、X線回折法のピーク強度比較により計測した。残留オーステナイト量はRigaku製のX線回折装置(RINT200)を用いて、Co線源、電圧40kV、電流200mAの条件下で(110)α、(200)α、(211)α、(200)γ、(220)γ、(311)γのそれぞれの面から得られる回折線強度比を用いて算出した。
引張試験は、マルテンサイト鋼の棒材から任意のサイズのブロック材を切出し、平行部長32mm、平行部径6.35mm、試験片全長90mm、掴み部径10mmの引張試験片形状に加工した後、ASTM−E8に準じて実施した。シャルピー衝撃試験は、マルテンサイト鋼棒材から任意のサイズのブロック材を切出し、10mm×10mm×5mm、深さ2mmのVノッチ加工を施し試験片とし、JIS−Z2242に準じて実施した。なお、引張試験およびシャルピー衝撃試験は室温にて実施した。それぞれの測定、試験結果を表3に示す。
(Example 2)
No. 1 which is the martensitic steel of the present invention shown in Table 1. 1 and 2 were subjected to sub-zero treatment for 2 hours in an ethyl alcohol solution adjusted to -12 ° C., which is higher than the conventional conditions in order to leave austenite, and further low temperature aging treatment at 200 ° C. × 8 h. And an age hardening treatment of 495 ° C. × 10 h. The martensitic steel after the treatment is No. 1A and 2A.
Various test pieces were cut out from the martensitic steel bar subjected to age hardening treatment, and the amount of retained austenite was measured, a tensile test, and a Charpy impact test were performed.
The amount of austenite is measured by cutting a 10 mm x 10 mm x 5 mm size test piece from a martensitic steel bar, mechanically polishing the surface of the test piece, removing residual stress on the surface by electrolytic polishing, and measuring the peak of the X-ray diffraction method. Measured by intensity comparison. The amount of retained austenite was measured using a Rigaku X-ray diffractometer (RINT200) under the conditions of a Co source, a voltage of 40 kV, and a current of 200 mA (110) α, (200) α, (211) α, (200) γ , (220) γ, and (311) γ were calculated using the diffraction line intensity ratio obtained from each surface.
In the tensile test, a block material of an arbitrary size was cut out from the bar material of martensite steel, and after processing into a tensile test piece shape having a parallel part length of 32 mm, a parallel part diameter of 6.35 mm, a test piece total length of 90 mm, and a grip part diameter of 10 mm, It carried out according to ASTM-E8. The Charpy impact test was carried out in accordance with JIS-Z2242, by cutting out a block material of an arbitrary size from a martensitic steel bar and applying a V-notch process of 10 mm × 10 mm × 5 mm and 2 mm in depth. The tensile test and Charpy impact test were performed at room temperature. Table 3 shows the measurement and test results.

Figure 0005692622
Figure 0005692622

表3に示す通り、オーステナイト量が高い本発明のNo.1A、2Aは引張強さが従来例と同じ水準であるが、引張試験の伸び、絞りやシャルピー衝撃値は従来例より増加しており、延性が向上することが分かる。また、本発明のNo.1A、2Aは同じく本発明のNo.1、2と比較してもシャルピー衝撃値や引張試験の絞り値は同じ水準であるが、伸びが高く、延性が向上していることが確認できる。オーステナイトは強度特性を維持した状態で延性を高める効果を高める効果があることが分かる。なお、試験片の金属組織は、炭化物等の析出物を除くと、表3に示す量の残留オーステナイト(γ)以外は、マルテンサイト組織であった。As shown in Table 3, the No. of the present invention having a high austenite amount. 1A and 2A have the same tensile strength as that of the conventional example, but the elongation, drawing and Charpy impact value of the tensile test are increased as compared with the conventional example, and it can be seen that the ductility is improved. In addition, No. of the present invention 1A and 2A are also No. 1 of the present invention. Compared with 1 and 2, the Charpy impact value and the drawing value of the tensile test are the same level, but it can be confirmed that the elongation is high and the ductility is improved. It can be seen that austenite has the effect of enhancing the effect of increasing ductility while maintaining the strength characteristics. The metal structure of the test piece was a martensite structure except for the retained austenite (γ R ) in the amount shown in Table 3 except for precipitates such as carbides.

以上、説明する通り、本発明によれば、マルテンサイト鋼の優れた強度特性を維持した状態で優れた延性の両立が可能である。

As described above, according to the present invention, it is possible to achieve both excellent ductility while maintaining the excellent strength characteristics of martensitic steel.

Claims (3)

質量%でC:0.18〜0.30%、Al:1.0〜2.0%、V:0.3%以下、Cr:2.0〜5.0%、Ni:10.5〜15.0%、但しNi≧7.0+3.5Al、Co:5.0〜7.0%、Mo単独またはMo+W/2:1.0〜4.0%を含有し、残部はFe及び不純物でなる組成を有するマルテンサイト鋼において、
Mg:0.0010〜0.0040%を更に含有することを特徴とするマルテンサイト鋼。
C: 0.18 to 0.30% by mass, Al: 1.0 to 2.0%, V: 0.3% or less, Cr: 2.0 to 5.0%, Ni: 10.5 to 15.0%, but Ni ≧ 7.0 + 3.5Al, Co: 5.0-7.0%, Mo alone or Mo + W / 2: 1.0-4.0%, the balance being Fe and impurities In martensitic steel having the composition
Mg: A martensitic steel characterized by further containing 0.0010 to 0.0040 % .
B:0.0050%以下、Si:0.4%以下、Mn:0.4%以下、Ca:0.05%以下、希土類元素:0.05%以下、Cu:1.0%以下及びNb:0.1%以下から選択された1種又は2種以上の元素を更に含有することを特徴とする請求項1に記載のマルテンサイト鋼。   B: 0.0050% or less, Si: 0.4% or less, Mn: 0.4% or less, Ca: 0.05% or less, rare earth element: 0.05% or less, Cu: 1.0% or less, and Nb The martensitic steel according to claim 1, further comprising one or more elements selected from 0.1% or less. 金属組織がマルテンサイトを主体とし、体積%で3.0〜20.0%のオーステナイトを含むことを特徴とする請求項1または2に記載のマルテンサイト鋼。   The martensitic steel according to claim 1 or 2, wherein the metal structure is mainly composed of martensite and contains 3.0 to 20.0% austenite by volume.
JP2014525653A 2013-03-26 2014-02-07 Martensite steel Active JP5692622B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014525653A JP5692622B1 (en) 2013-03-26 2014-02-07 Martensite steel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013063779 2013-03-26
JP2013063779 2013-03-26
JP2014525653A JP5692622B1 (en) 2013-03-26 2014-02-07 Martensite steel
PCT/JP2014/052885 WO2014156327A1 (en) 2013-03-26 2014-02-07 Martensite steel

Publications (2)

Publication Number Publication Date
JP5692622B1 true JP5692622B1 (en) 2015-04-01
JPWO2014156327A1 JPWO2014156327A1 (en) 2017-02-16

Family

ID=51623328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014525653A Active JP5692622B1 (en) 2013-03-26 2014-02-07 Martensite steel

Country Status (2)

Country Link
JP (1) JP5692622B1 (en)
WO (1) WO2014156327A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113136527A (en) * 2021-04-16 2021-07-20 中国工程物理研究院机械制造工艺研究所 Martensitic steel, preparation method thereof and manufacturing method of martensitic steel part
CN115181835B (en) * 2022-08-08 2023-12-22 江阴苏威精密线材有限公司 High-strength high-wear-resistance stainless steel wire and preparation method thereof
CN116926442B (en) * 2023-07-24 2024-02-23 北京理工大学 Nanophase synergistic precipitation strengthening low yield ratio ultrahigh strength steel and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539331A (en) * 2005-04-27 2008-11-13 オウベル・アンド・デュヴァル Tempered martensitic steel, method for producing parts from the steel, and parts so obtained
JP2012531525A (en) * 2009-07-03 2012-12-10 スネクマ Low temperature treatment of martensitic steel in mixed hardening

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539331A (en) * 2005-04-27 2008-11-13 オウベル・アンド・デュヴァル Tempered martensitic steel, method for producing parts from the steel, and parts so obtained
JP2012531525A (en) * 2009-07-03 2012-12-10 スネクマ Low temperature treatment of martensitic steel in mixed hardening

Also Published As

Publication number Publication date
JPWO2014156327A1 (en) 2017-02-16
WO2014156327A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP6064955B2 (en) Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking
JP4955496B2 (en) High-strength hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability
JP6111763B2 (en) Steam turbine blade steel with excellent strength and toughness
JP5655366B2 (en) Bainite steel
JP5541418B2 (en) Spring steel and spring
JP2005298932A (en) Metastable austenitic stainless steel wire used for high strength steel wire for spring excellent in rigidity
JP4739105B2 (en) High toughness hot work tool steel and manufacturing method thereof
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JPWO2016052403A1 (en) Method for producing martensitic precipitation strengthened stainless steel
JP5692622B1 (en) Martensite steel
CN109790602B (en) Steel
JP6436232B2 (en) Spring steel
JP2009256771A (en) High strength spring steel having excellent delayed fracture resistance, and method for producing the same
RU2383649C2 (en) Precipitation hardening steel (versions) and item out of steel (versions)
JP6620490B2 (en) Age-hardening steel
JP6506978B2 (en) Method of manufacturing NiCrMo steel and NiCrMo steel material
JPWO2016158470A1 (en) Age-hardening steel and method for producing parts using age-hardening steel
WO2015159650A1 (en) Hot-rolled wire
JP5692623B2 (en) Method for producing martensitic steel
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JP5681333B1 (en) Forged parts, manufacturing method thereof, and connecting rod
JP2020041208A (en) Precipitation-hardening martensitic stainless steel
WO2015108067A1 (en) Age-hardenable steel
JPH08302445A (en) Boron-containing steel excellent in workability and strength, and production of forged parts made of the same
JPH05230597A (en) Roll made of forged steel for metal rolling

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150121

R150 Certificate of patent or registration of utility model

Ref document number: 5692622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350