EP2435685B1 - Turbomoteur comportant un cone de guidage des gaz d'echappement avec un attenuateur sonore - Google Patents
Turbomoteur comportant un cone de guidage des gaz d'echappement avec un attenuateur sonore Download PDFInfo
- Publication number
- EP2435685B1 EP2435685B1 EP10724370.1A EP10724370A EP2435685B1 EP 2435685 B1 EP2435685 B1 EP 2435685B1 EP 10724370 A EP10724370 A EP 10724370A EP 2435685 B1 EP2435685 B1 EP 2435685B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine engine
- guide cone
- cone
- engine
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007789 gas Substances 0.000 claims description 18
- 238000005192 partition Methods 0.000 claims description 13
- 238000002485 combustion reaction Methods 0.000 claims description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 239000000567 combustion gas Substances 0.000 claims description 2
- 210000003739 neck Anatomy 0.000 description 11
- 230000002238 attenuated effect Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K1/00—Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
- F02K1/78—Other construction of jet pipes
- F02K1/82—Jet pipe walls, e.g. liners
- F02K1/827—Sound absorbing structures or liners
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/10—Aircraft characterised by the type or position of power plants of gas-turbine type
- B64D27/14—Aircraft characterised by the type or position of power plants of gas-turbine type within, or attached to, fuselages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D35/00—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
- B64D35/02—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the invention relates to the field of gas turbines with free turbine and more particularly the attenuation of noise generated by a helicopter engine.
- upstream and downstream are defined according to the direction of flow of the gases in the helicopter engine, the gases flowing from upstream to downstream in said engine.
- a helicopter engine in particular a turbine engine as shown in the figure 1 comprises, in a conventional manner, from upstream to downstream, a compressor 2, an annular combustion chamber 3, a high pressure turbine, and an axial free turbine 4, recovering the energy of the combustion to drive the wing of the helicopter, the exhaust gases from the combustion being exhausted from the engine by an exhaust nozzle 5 formed downstream of the free turbine 4.
- the free turbine 4 is terminated at its downstream end by an axial frustoconical piece 6, and a nozzle, the assembly fulfilling a function of guiding the flow of exhaust gas in order to ensure an aerodynamic flow of the flow at the outlet of the turbine. free 4.
- a helicopter engine During operation, a helicopter engine generates sound waves that form the sound of the engine.
- Engine noise is a significant component of the overall sound emission of a helicopter. To reduce the noise of a helicopter, we try to reduce the noise of the engine.
- the sound waves emitted by the engine downstream, are generated mainly during the combustion and during the rotation of the turbines.
- the sound waves have different frequencies within the audible range of 20Hz to 20kHz.
- Low frequency sound waves ie less than 400 Hz, contribute significantly to the sound of the helicopter engine.
- the invention relates to a gas turbine engine, in which upstream gas flows downstream, comprising a combustion chamber, a high pressure turbine, a free turbine disposed downstream of the high pressure turbine arranged to receive combustion gases from said combustion chamber, and an exhaust gas guiding cone fixed to said free turbine downstream of the latter, the turbine engine emitting sound waves during its operation, a turbine engine characterized in that the guiding cone comprises a sound attenuator arranged to attenuate the sound waves emitted by the turbine engine.
- the guide cone simultaneously performs an exhaust gas guiding function and a function of attenuation of the sound waves emitted by the engine, making it possible to obtain a high-performance, less noisy engine while maintaining a small overall size and an acceptable mass. .
- the sound attenuator has a Helmholtz resonator structure.
- Such a resonator can be realized by taking advantage of the structure of the guide cone without complex modifications and alterations in the guiding performance of the exhaust gas flow.
- a Helmholtz resonator is particularly suitable for attenuating the low frequencies, which is very advantageous in the present case because the low frequency sound waves play a significant role in the formation of the noise.
- the Helmholtz resonator is placed near sources of noise which helps to attenuate the sound waves "at the source” by avoiding their propagation.
- the guide cone comprises an internal cavity of resonance in which extends a neck arranged to put in communication the resonance cavity of the guide cone with the outside of the guide cone.
- the length of the neck, the volume of the resonance cavity and the section of the neck are adapted so that the resonant cavity of the guide cone resonates at a predetermined resonance frequency f, preferably less than 400. Hz.
- the resonator is configurable so that its resonant frequency corresponds perfectly to the frequency of the sound waves to be attenuated.
- the guide cone comprises an internal partition wall arranged to limit the volume of the resonance cavity and to promote this tuning frequency.
- the guide cone comprises at least one internal partition wall arranged to compartmentalize the total internal volume of the guide cone in at least a first resonance cavity and a second resonance cavity respectively having a first resonance frequency f 1 and a second resonance frequency f 2 .
- the first and second resonant frequencies f 1 , f 2 are different and less than 400 Hz.
- This treatment differs from an acoustic treatment inside the central body of a turbojet nozzle as described in the patent application in the name of Snecma FR-A-2898940 .
- the central body has a single resonance cavity communicating through a plurality of orifices along the wall with the annular gas stream guided in the nozzle.
- a helicopter turbine engine 1 comprises from upstream to downstream, a compressor 2, an annular combustion chamber 3 and an axial free turbine 4, recovering the energy of the combustion to drive the wing of the helicopter, in particular the blades of rotors.
- the exhaust gases from combustion are removed from the engine by a circumferential exhaust nozzle 5 formed downstream of the free turbine 4.
- the free turbine 4 is terminated at its downstream end by a hollow axial frustoconical part.
- This part together with the nozzle, fulfills a function of guiding the flow of exhaust gas in order to ensure a healthy aerodynamic flow flow, without creating turbulence at the outlet of the free turbine
- the hollow axial frustoconical piece or guide cone 7 is in the form of a shell of revolution comprising an upstream transversal wall 72 in the form of a disc, and a downstream transverse wall 74, in the form of a portion here concave, but may be convex or flat, connected by a frustoconical lateral surface 73, to the upstream transverse wall 72.
- the hollow axial frustoconical part 7 delimits a single internal cavity 71, called a resonance cavity 71, in which a resonance neck 75 extends, one end of which opens into the resonance cavity 71 and the other end of which The end opens into the lateral surface 73 of the cone 7 via an orifice 76.
- the resonant neck 75 is in the form of a straight cylinder of circular section, but it goes without saying that a rectangular section or oval could also to suit, the surface of the section being adapted so that the axial frustoconical piece 7 forms a Helmholtz resonator arranged to attenuate the sound waves from the engine.
- the axial frustoconical piece 7 is a noise-canceling system, called “spring-masses”, to strongly attenuate the sound waves having a given resonant frequency.
- spring-masses a noise-canceling system
- the waves sound, emitted by the motor and whose frequency is close to that of the resonator, are attenuated by the axial frustoconical piece 7 which reduces the noise of the engine.
- the axial frustoconical piece 7 is particularly adapted to attenuate the low frequency waves, that is to say less than 400 Hz. This is very advantageous because it is the low frequency waves that contribute mainly to the noise of the motor.
- the resonator Since the resonator is integrated into the motor, the sound waves are attenuated at the source of their emission, thus avoiding propagation of the sound waves.
- the axial frustoconical piece or guide cone 8 is compartmentalized, an internal partition wall 87 delimiting a first resonance cavity 81 and a second resonance cavity 81 ', the partition 87 being in this embodiment substantially perpendicular to a transverse plane .
- This partition can be made so as to obtain two longitudinal cavities, but also as illustrated on the Figure 2B , thanks to a partition placed parallel to the axis. Indeed, only the volume of each cavity thus formed contributes to driving the acoustic tuning frequency: it is mechanical stresses that dictate the form of the partitioning, the acoustic objectives fixing the volumes of each cavity.
- a first resonant neck 85 one end of which opens into the interior of the first resonance cavity 81 and the other end of which opens into the lateral surface 83 of the cone 8 via an orifice 86, extends into the first resonance cavity 81.
- a second resonant neck 85 ' one end of which opens into the interior of the second resonant cavity 81 and the other end of which opens into the lateral surface 83 of the cone 8 via an orifice 86 ', extends into the second resonance cavity 81'.
- the volumes of the resonant cavities 81, 81 ', the lengths and the sections of the necks 85, 85' are here different so that each compartment of the cone 8 forms a Helmholtz resonator each having a resonance frequency of its own.
- the axial frustoconical piece 8 has two resonance frequencies f 1 and f 2 of similar values in order to attenuate the sound waves over a bandwidth of width between f 1 and f 2 .
- the guide cone makes it possible to attenuate frequencies between 250 Hz and 350 Hz.
- the resonance frequencies f 1 and f 2 can also be chosen to correspond to the most critical frequencies of the frequency spectrum of the engine noise.
- the waves which contribute significantly to the noise of the engine are attenuated directly by the axial frustoconical piece 8.
- the resonance frequencies f 1 and f 2 of the hollow axial frustoconical part 8 are advantageously parameterizable by modifying the position of the partition 87 and / or by modifying the length and the section of the neck 85, 85 'in each of the resonance cavities 81 , 81 '.
- the hollow axial frustoconical part 8 allows simultaneously guiding the flow of exhaust gas at the outlet of the free turbine while forming a Helmholtz resonator having several configurable frequencies.
- a Helmholtz resonator has the advantage of being fully integrated into the motor, without increasing the bulk.
- the hollow axial frustoconical piece or guiding cone 9 is modified so as to increase the overall volume of the guiding cone 9. This makes it possible to reduce the resonance frequency of the resonator while retaining a quality correct attenuation. Indeed, the resonance frequencies of the guide cone 9 are inversely proportional to those related to the volume of the resonance cavities as delimited by the internal partition wall 97.
- a frustoconical piece 9 of larger volume makes it possible to increase the parameterization range of the resonator resonance frequency or frequencies.
- the modification of the volume of the cone does not have the disadvantage that the cone fulfills only a function of guiding the flow of exhaust gas.
- downstream transverse wall of the axial frustoconical part 9 may be convex, the shape of the cone resulting from a compromise between its mass, its guiding performance and its sound attenuation performance.
- FIG. 1 Another embodiment is shown on the 2D figure representing the view in the axial direction of an alternative embodiment.
- the internal volume of the guide cone 10 is subdivided into three compartments by longitudinal partition partitions 107, 107 'and 107 "arranged radially in Y.
- Resonance collars 105, 105' and 105" are adapted to form the resonance cavities. 101, 101 'and 101 "associated with the compartments.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Exhaust Silencers (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL10724370T PL2435685T3 (pl) | 2009-05-27 | 2010-05-27 | Silnik turbinowy zawierający stożek prowadzący gazów spalinowych, z tłumikiem akustycznym |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0953495A FR2946090B1 (fr) | 2009-05-27 | 2009-05-27 | Turbomoteur comportant un cone de guidage des gaz d'echappement avec un attenuateur sonore. |
PCT/EP2010/057363 WO2010136545A1 (fr) | 2009-05-27 | 2010-05-27 | Turbomoteur comportant un cone de guidage des gaz d'echappement avec un attenuateur sonore |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2435685A1 EP2435685A1 (fr) | 2012-04-04 |
EP2435685B1 true EP2435685B1 (fr) | 2017-03-29 |
Family
ID=41600309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10724370.1A Active EP2435685B1 (fr) | 2009-05-27 | 2010-05-27 | Turbomoteur comportant un cone de guidage des gaz d'echappement avec un attenuateur sonore |
Country Status (11)
Country | Link |
---|---|
US (1) | US20120055169A1 (ru) |
EP (1) | EP2435685B1 (ru) |
JP (1) | JP2012528266A (ru) |
KR (1) | KR101809281B1 (ru) |
CN (1) | CN102428263B (ru) |
CA (1) | CA2761601C (ru) |
ES (1) | ES2623388T3 (ru) |
FR (1) | FR2946090B1 (ru) |
PL (1) | PL2435685T3 (ru) |
RU (1) | RU2546140C2 (ru) |
WO (1) | WO2010136545A1 (ru) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2956445B1 (fr) | 2010-02-12 | 2012-08-24 | Turbomeca | Revetement d'attenuation de bruit pour un conduit de guidage de gaz, tuyere et moteur a turbine a gaz avec le revetement |
EP2642203A1 (en) * | 2012-03-20 | 2013-09-25 | Alstom Technology Ltd | Annular Helmholtz damper |
FR3122695A1 (fr) * | 2021-05-04 | 2022-11-11 | Safran Aircraft Engines | Cône de diffusion à double paroi définissant un plenum de refroidissement pour partie arrière de turboréacteur |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2405367A1 (fr) * | 1977-10-07 | 1979-05-04 | Mtu Muenchen Gmbh | Turbine a gaz combinee pour engin volant ayant des caracteristiques v/stol |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB846329A (en) * | 1957-12-12 | 1960-08-31 | Napier & Son Ltd | Combustion turbine power units |
US3710890A (en) * | 1971-09-27 | 1973-01-16 | Boeing Co | Aircraft engine noise suppression |
FR2191025B1 (ru) * | 1972-07-04 | 1975-03-07 | Aerospatiale | |
US4064961A (en) * | 1976-04-05 | 1977-12-27 | Rohr Industries, Incorporated | Slanted cavity resonator |
US4100993A (en) * | 1976-04-15 | 1978-07-18 | United Technologies Corporation | Acoustic liner |
US4137992A (en) * | 1976-12-30 | 1979-02-06 | The Boeing Company | Turbojet engine nozzle for attenuating core and turbine noise |
US4226297A (en) * | 1979-01-12 | 1980-10-07 | United Technologies Corporation | Acoustic treated exhaust plug for turbine engine |
US4240519A (en) * | 1979-07-02 | 1980-12-23 | United Technologies Corporation | Acoustical turbine engine tail pipe plug |
US4258822A (en) * | 1979-07-27 | 1981-03-31 | United Technologies Corporation | Muffler plug for gas turbine power plant |
US4244441A (en) * | 1979-07-31 | 1981-01-13 | The Garrett Corporation | Broad band acoustic attenuator |
US4631914A (en) * | 1985-02-25 | 1986-12-30 | General Electric Company | Gas turbine engine of improved thermal efficiency |
US4944362A (en) * | 1988-11-25 | 1990-07-31 | General Electric Company | Closed cavity noise suppressor |
FR2752392B1 (fr) * | 1996-08-14 | 1999-04-23 | Hispano Suiza Sa | Panneau sandwich en nid d'abeille ventile et procede de ventilation d'un tel panneau |
JPH10187162A (ja) * | 1996-12-26 | 1998-07-14 | Inoac Corp | レゾネータ |
FR2787513B1 (fr) * | 1998-12-17 | 2001-01-19 | Turbomeca | Dispositif d'echappement multicanal de turbomachine traite acoustiquement |
JP2002054503A (ja) * | 2000-08-10 | 2002-02-20 | Isamu Nemoto | 亜音速機用高バイパス比・可変サイクルエンジン |
GB0105349D0 (en) * | 2001-03-03 | 2001-04-18 | Rolls Royce Plc | Gas turbine engine exhaust nozzle |
RU2269018C1 (ru) * | 2004-06-16 | 2006-01-27 | Открытое акционерное общество "Авиадвигатель" | Энергетическая газотурбинная установка |
US7322195B2 (en) * | 2005-04-19 | 2008-01-29 | United Technologies Corporation | Acoustic dampers |
FR2898940B1 (fr) * | 2006-03-24 | 2008-05-30 | Snecma Sa | Corps central de tuyere de turboreacteur |
US7784283B2 (en) * | 2006-05-03 | 2010-08-31 | Rohr, Inc. | Sound-absorbing exhaust nozzle center plug |
FR2956446B1 (fr) * | 2010-02-12 | 2012-07-27 | Turbomeca | Dispositif d'ejection de gaz d'un moteur a turbine a gaz et moteur a turbine a gaz |
FR2956445B1 (fr) * | 2010-02-12 | 2012-08-24 | Turbomeca | Revetement d'attenuation de bruit pour un conduit de guidage de gaz, tuyere et moteur a turbine a gaz avec le revetement |
DE102010026834A1 (de) * | 2010-07-12 | 2012-01-12 | Rolls-Royce Deutschland Ltd & Co Kg | Gasturbinenabgaskonus |
DE102011008921A1 (de) * | 2011-01-19 | 2012-07-19 | Rolls-Royce Deutschland Ltd & Co Kg | Gasturbinenabgaskonus |
-
2009
- 2009-05-27 FR FR0953495A patent/FR2946090B1/fr not_active Expired - Fee Related
-
2010
- 2010-05-27 JP JP2012512384A patent/JP2012528266A/ja active Pending
- 2010-05-27 CN CN201080022030.2A patent/CN102428263B/zh active Active
- 2010-05-27 US US13/319,125 patent/US20120055169A1/en not_active Abandoned
- 2010-05-27 ES ES10724370.1T patent/ES2623388T3/es active Active
- 2010-05-27 RU RU2011153375/06A patent/RU2546140C2/ru not_active IP Right Cessation
- 2010-05-27 CA CA2761601A patent/CA2761601C/fr active Active
- 2010-05-27 PL PL10724370T patent/PL2435685T3/pl unknown
- 2010-05-27 WO PCT/EP2010/057363 patent/WO2010136545A1/fr active Application Filing
- 2010-05-27 KR KR1020117029339A patent/KR101809281B1/ko active IP Right Grant
- 2010-05-27 EP EP10724370.1A patent/EP2435685B1/fr active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2405367A1 (fr) * | 1977-10-07 | 1979-05-04 | Mtu Muenchen Gmbh | Turbine a gaz combinee pour engin volant ayant des caracteristiques v/stol |
Also Published As
Publication number | Publication date |
---|---|
CN102428263B (zh) | 2014-12-10 |
FR2946090B1 (fr) | 2016-01-22 |
FR2946090A1 (fr) | 2010-12-03 |
CA2761601A1 (fr) | 2010-12-02 |
KR20120027317A (ko) | 2012-03-21 |
ES2623388T3 (es) | 2017-07-11 |
RU2011153375A (ru) | 2013-07-10 |
CA2761601C (fr) | 2019-03-19 |
US20120055169A1 (en) | 2012-03-08 |
RU2546140C2 (ru) | 2015-04-10 |
KR101809281B1 (ko) | 2017-12-14 |
JP2012528266A (ja) | 2012-11-12 |
PL2435685T3 (pl) | 2017-07-31 |
EP2435685A1 (fr) | 2012-04-04 |
WO2010136545A1 (fr) | 2010-12-02 |
CN102428263A (zh) | 2012-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3963192B1 (fr) | Intégration d'un amortisseur de flottement du fan dans un carter moteur | |
EP1591643B1 (fr) | Ensemble réducteur de bruit pour turboréacteur d'aéronef | |
EP3850616B1 (fr) | Panneau de traitement acoustique pour turboréacteur | |
EP3839238B1 (fr) | Cône de sortie d'un ensemble propulsif d'aéronef formant un système de traitement acoustique à au moins deux degrés de liberté | |
FR3055662A1 (fr) | Structure interne d'un conduit d'ejection primaire d'une turbomachine comprenant une structure absorbante de sons basses frequences | |
EP3534360B1 (fr) | Revêtement insonorisant comportant une structure alvéolaire à cellules courbes formées de part et d'autre d'une même paroi intérieure | |
WO2022129778A1 (fr) | Panneau de traitement acoustique à encombrement réduit pour turboréacteur | |
FR3069579A1 (fr) | Panneau acoustique et ensemble propulsif associe | |
EP2435685B1 (fr) | Turbomoteur comportant un cone de guidage des gaz d'echappement avec un attenuateur sonore | |
CA3134310A1 (fr) | Grille d'inverseur de poussee incluant un traitement acoustique | |
CA3135239A1 (fr) | Grille d'inverseur de poussee incluant un traitement acoustique | |
EP2534358B1 (fr) | Dispositif d'ejection de gaz d'un moteur a turbine a gaz et moteur a turbine a gaz | |
FR3065754B1 (fr) | Cellule d'absorption acoustique pour turboreacteur et panneau de traitement acoustique associe | |
FR3074227A1 (fr) | Structure interne d'un conduit d'ejection primaire | |
EP1433948B1 (fr) | Dispositif d'atténuation des bruits sur un circuit d'admission d'air | |
EP3963197B1 (fr) | Grille d'inverseur de poussee incluant un traitement acoustique | |
FR3073561A1 (fr) | Anneau d'aubes fixes d'un turboreacteur comprenant une structure de traitement acoustique | |
EP1553284B1 (fr) | Dispositif d'atténuation des bruits sur un circuit d'admission d'air pour moteur à combustion interne ainsi que circuit d'admission d'air pour moteur équipé d'un tel dispositif d'atténuation des bruits | |
CA3097008A1 (fr) | Panneau de traitement acoustique pour turboreacteur | |
EP3693597A1 (fr) | Resonateur acoustique | |
FR3076318A1 (fr) | Dispositif de génération de son et système d’échappement de véhicule | |
FR3105553A1 (fr) | Système de traitement acoustique à au moins deux degrés de liberté comportant un revêtement quart d’onde permettant le passage d’ondes acoustiques dans un résonateur à mode de cavité | |
FR2856441A1 (fr) | Dispositif de ventilation centrifuge. | |
FR2913464A1 (fr) | Dispositif de filtration acoustique pour vehicule |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111114 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20121217 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SAFRAN HELICOPTER ENGINES |
|
INTG | Intention to grant announced |
Effective date: 20161212 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 880015 Country of ref document: AT Kind code of ref document: T Effective date: 20170415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010041103 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2623388 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170629 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170630 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170329 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 880015 Country of ref document: AT Kind code of ref document: T Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170629 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170729 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170731 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010041103 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 |
|
26N | No opposition filed |
Effective date: 20180103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170527 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100527 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20190122 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20190425 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200528 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20211006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200528 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20230421 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20230424 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240419 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240418 Year of fee payment: 15 Ref country code: FR Payment date: 20240418 Year of fee payment: 15 |