EP2433078A1 - Procede de fabrication d'un faisceau de plaques pour un echangeur thermique - Google Patents

Procede de fabrication d'un faisceau de plaques pour un echangeur thermique

Info

Publication number
EP2433078A1
EP2433078A1 EP10728765A EP10728765A EP2433078A1 EP 2433078 A1 EP2433078 A1 EP 2433078A1 EP 10728765 A EP10728765 A EP 10728765A EP 10728765 A EP10728765 A EP 10728765A EP 2433078 A1 EP2433078 A1 EP 2433078A1
Authority
EP
European Patent Office
Prior art keywords
plate
plates
machining
pairs
shoes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10728765A
Other languages
German (de)
English (en)
Inventor
Gilles Francois
Gabriel Merle
Patrice Tochon
Franck Pra
Claude Roussel
Olivier Noel Baron
Pierre-Xavier Bussonnet
Alain Bourgeon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva NP SAS
Alfa Laval Vicarb SAS
Alfa Laval Packinox SAS
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Areva NP SAS
Alfa Laval Vicarb SAS
Alfa Laval Packinox SAS
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Areva NP SAS, Alfa Laval Vicarb SAS, Alfa Laval Packinox SAS, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2433078A1 publication Critical patent/EP2433078A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0006Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the plate-like or laminated conduits being enclosed within a pressure vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/04Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of sheet metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0054Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for nuclear applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49366Sheet joined to sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49366Sheet joined to sheet
    • Y10T29/49369Utilizing bond inhibiting material

Definitions

  • the present invention relates to a method of manufacturing a compact plate bundle for a heat exchanger operating at high pressure and / or at high temperature.
  • the invention also relates to a plate heat exchanger comprising at least one plate bundle produced by such a method.
  • the plate bundles for this type of heat exchanger generally comprise a stack of plates parallel to each other and which delimit between them circulation circuits of at least two independent fluids.
  • the flow of fluids between the plates can be of the concurrent, cross-flow or countercurrent type and each circuit is connected to intake and return fluid manifolds.
  • the plates of the plate bundle are equipped with different means for increasing the heat exchange coefficient between the fluids,
  • the filler metal having a melting point lower than the base metal the use temperature of the plate bundle is limited and the use of a filler metal whose thermomechanical properties are different from those of the base material creates a weak point at the junction.
  • the fins being very thin, for example a thickness of less than 0.5 mm, the magnification of the grains during soldering can be prohibitive from a mechanical point of view.
  • a plate bundle composed of a stack of plates in which channels are etched is also known.
  • the etching is performed by etching the plates after positioning a protective mask on the parts not to be engraved. A Once etched, the plates are assembled by welding and in particular by diffusion bonding.
  • the plates to be assembled are brought to a temperature greater than 1000O so that this heat treatment leads to a grain magnification , incompatible with the low thicknesses of the sheets.
  • the plate bundle obtained by this technique has a high rigidity because the plates are welded together throughout the exchange zone and is, for this reason, not very tolerant to thermal transients.
  • a plate bundle comprising a stack of metal heat exchange plates parallel to each other having edges with a smooth surface and a central portion provided with corrugations for form with the associated plates, a double circuit of two independent fluids and against the current.
  • the plates of this type of plate bundle are assembled either by welding by means of a set of spacers arranged on the edges of the plates in order to obtain the necessary space between the plates, or by welding a patch. acting as a spacer, itself welded to the longitudinal edge of each plate, and welded together.
  • spacers In the first case, the use of spacers requires the multiplication of the number of welds that are difficult to control after assembly and also the removal of a weld wall on the side walls of the plate bundle.
  • the use of inserts also requires the multiplication of the number of welds and the welds located inside the bundle of plates are controllable during manufacture.
  • the width of the welds may be a lower limit to the distance between the plates and thus limit the compactness of the plate bundle.
  • the invention aims to provide a compact plate bundle for a high temperature heat exchanger that avoids the disadvantages mentioned above and that significantly reduces the number of welds necessary to assemble the different plates together.
  • the subject of the invention is therefore a method for manufacturing a compact plate bundle for a heat exchanger formed by a stack of plates delimiting between them at least two circulation circuits of two independent fluids and comprising a central part of heat exchange. provided with corrugations, characterized in that: - the initial thickness of each plate is reduced by machining by providing at the periphery of the plate, and / or through tubings at least one connecting shoe of height greater than the thickness the plate after machining,
  • the corrugations are formed in the central part of each plate, the plates are superimposed by placing the plates of the slabs on one another,
  • the pairs of plates are superposed by arranging the clogs of the pairs of plates on one another, and
  • the clogs are connected to couples of plates by a sealed weld bead by providing an alternating superposition of open or closed ends of the inlet or outlet of said fluids.
  • each plate is reduced by machining at least one face of the plate
  • the initial thickness of each plate is reduced by machining both sides of the plate
  • the corrugations are formed in the central part of each plate by stamping or by forming; after machining, the thickness of the plates is between 0.2 and 3 mm,
  • the height of the shoes is determined by the amplitude of the corrugations and preferably between 0.5 and 5 mm, and
  • the invention also relates to a plate heat exchanger comprising an enclosure resistant to internal pressure in which is placed at least one plate bundle manufactured by the method as previously defined.
  • FIG. 1 consisting of Figs. 1A and 1B is an axial sectional view of an example of a heat exchanger comprising plate bundles produced by the method, according to the invention
  • FIG. 2 is a schematic perspective view of a plate bundle of the heat exchanger of FIG. 1,
  • FIG. 3 is a schematic view of a pair of plates of the plate bundle
  • FIG. 4 consisting of Figs. 4A-4D is a schematic cross-sectional view of a plate of the plate bundle and showing the various steps of a first embodiment of the manufacturing method according to the invention
  • FIG. 5 consisting of Figs. 5A to 5D is a cross-sectional schematic of a plate of the plate bundle and showing the different sections of a second embodiment of the manufacturing method according to the invention
  • - Figs. 6-9 are schematic cross-sectional views showing the different steps of the method of manufacturing a variant of the plate bundle.
  • the heat exchanger 1 shown in FIG. 1 is given by way of example to show a non-limiting embodiment of implantation of bundles of plates manufactured by the manufacturing method according to the invention.
  • the heat exchanger 1 is intended to be used in a high temperature nuclear reactor, generally greater than 600O, to achieve a heat exchange between a first fluid and a second fluid.
  • the first fluid is the primary fluid of the nuclear reactor, and circulates in a closed loop therein. It crosses the heart of the nuclear reactor, not shown, then passes through the heat exchanger 1 and finally returns to the entrance of the heart.
  • the primary fluid is heated in the reactor core and exits from it for example at a temperature of about 850O. It transfers part of its heat to the secondary fluid in the heat exchanger 1 and leaves it for example at a temperature of 400O approximately.
  • the second fluid is the secondary fluid of the nuclear reactor, and circulates in a closed loop therein. It passes through the heat exchanger 1, then passes into a gas turbine, not shown, driving an electric generator and returns to the input of the heat exchanger 1.
  • the secondary fluid enters the heat exchanger 1 by example at a temperature of about 350O and exits for example at a temperature of 800O.
  • the heat exchanger 1 comprises:
  • an outer enclosure 2 having a substantially vertical central axis X, provided with an inlet 3 and a primary fluid outlet 4, four inlets 5 and four secondary fluid outlets 6,
  • collectors 8 for supplying the bundles of plates 40 with secondary fluid, an annular collector 9 for collecting and discharging the primary fluid leaving the bundles of plates 40,
  • a central collector 10 for collecting and evacuating the secondary fluid leaving the bundles of plates 40, an inlet chamber 11 distributing the secondary fluid in the collectors 8, and an outlet chamber 12 distributing the secondary fluid leaving the collector secondary discharge 10 to the outlets 6,
  • the chamber 2 comprises a tank 20 inside which the bundles of plates 40 and the collectors 7, 8, 9 and 10, presenting towards at the top an opening 21 and a removable cover 22 for sealing the opening 21 of the tank 20.
  • the inputs 5 of the secondary fluid are formed at the top of the tank 20 and are evenly distributed on the same circumference thereof.
  • the outputs of the secondary fluid 6 are formed at the top of the tank 20, slightly below the inlets 5 and are evenly distributed on the same circumference of this tank.
  • the tank 20 comprises in the lower part a single stitching through which are formed the inlet 3 and the outlet 4 of the primary fluid. Input 3 and output 4 are coaxial and output 4 surrounds input 3.
  • the tank 20 is closed downwards by a domed bottom which has a central, round opening, centered on the axis X, in which the fan 14 is fixed.
  • the plate bundles 40 are constituted by a stack of plates 41 delimiting between them two circulation circuits of two fluids, the first fluid A indicated by the solid arrows on the
  • the first and second fluids circulate alternately in a plate on two of the stack.
  • Each plate 41 has a central heat exchange portion provided with corrugations 42 which define between them channels 43 promoting the heat exchange between the fluids.
  • the corrugations 42 consist of patterns obtained by deformation of the plate, such as for example pads, ribs, inserts or others.
  • each plate 41 has protruding on its edges, respectively longitudinal 41 a and / or transverse 41 b a continuous shoe 45 or several discontinuous shoes 45.
  • the arrangement of the shoes 45 on the longitudinal edges 41a and / or transverse 41b depends on the flow direction of the fluids between the plates 41 of the plate bundle 40 and also the arrangement of the collectors, not shown in the input and output of these fluids.
  • the arrangement of the shoes 45 on the longitudinal edges 41a and / or transverse 41b shown in FIG. 3 is an example of embodiment, other arrangements are obviously possible.
  • the plate 41 is flat and has a constant thickness.
  • the first step of the method consists in reducing by mechanical machining preferably the initial thickness of a plate 30 to obtain the plate 41 by providing at the periphery of this plate or the shoes 45 on the longitudinal edges 41a and / or transverse 41 b of said plate 41.
  • the mechanical machining for example by milling is performed on at least one face of the plate 41.
  • the decrease in the thickness of the plate 30 is achieved by mechanically machining both sides of the plate 30 so as to maintain a central zone 46 after having removed the two outer zones 46a and 46b, as shown in FIG. 4B.
  • the second step of the method consists in forming in the central part of each plate 41, the corrugations 42.
  • the plates 41 are superimposed in pairs by arranging the shoes 45 on top of each other and the shoes 45 in contact with the plates 41 of each pair are connected by a sealed sealing bead 50, and as shown in FIG. 4D.
  • the pairs of plates 41 are superposed by arranging the shoes 45 of the pairs of plates 41 on each other and the shoes 45 in contact are interconnected by a sealing bead 50 sealed.
  • a sealing bead 50 sealed According to a second embodiment shown in FIGS. 5, to obtain the plate 41 the initial thickness of a plate 30 is decreased by machining a single face of this plate mechanically, as shown in FIG. 5A.
  • the unhatched area represents the material removed.
  • a single zone 46a is eliminated and the remaining zone 46 is located on an edge of the shoe 45 while in the previous embodiment, the shoe 45 extends on either side of the remaining zone 46.
  • the following steps of the method are identical to the steps of the preceding embodiment and consist in forming corrugations 42 on the central part of the plate 41, then superimposing the plates 41 in pairs and connecting the shoes 45 in contact with the plates of each pair by a sealing bead 50 sealed.
  • each plate 41 is for example milling and the corrugations 42 in the central portion of each plate 41 are made for example by stamping or forming.
  • the thickness e1 of the plate 41 is between 0.2 and 3 mm
  • the height h1 of the shoes is between 0.5 and 5 mm
  • the thickness e2 of the shoes 45 is included. between 2 and 4 mm.
  • the height h2 of the heels 45a of the shoes 45 situated on each side of the plate 41 (FIG 4C) or one side of the plate 41 (FIG 5C) is between 0.2 and 3 mm.
  • the height of the hooves is determined by the amplitude of the undulations.
  • the heights of the different shoes 45 are not necessarily equal depending on whether they are on the cold side or the hot side of the plate bundle or whether they are located on the cold side of the collectors or on the hot side of the inlet and outlet collectors of the two fluids.
  • the plates 41 are assembled and soldered in pairs, then the pairs of plates thus formed having identical dimensions are assembled and welded to form the final stack.
  • This method avoids having to take into account the problem of shrinkage that occurs during welding. Indeed, if the stack is made by adding plates one by one to the previously welded stack, the new plate to be welded does not have the same dimensions as the already welded plates because of the shrinkage due to welding.
  • the manifolds, not shown, of entry and exit of the fluids associated with the plate bundle 40 can be integrated directly into the bundle of plates 40 or they can be of any type of reported form and welded to the corresponding plate bundle 40.
  • each plate 41 is manufactured by the method according to the invention.
  • the plate bundle is of the through-tube type to form collectors.
  • the plates of the plate bundle 40 are associated two by two, an upper plate 61 and a lower plate 62.
  • the two faces of each plate 61 and 62 are machined mechanically to remove some of the material and keep a portion of determined thickness corresponding to the thickness of each plate 61 or 62 to obtain.
  • One or more shoes 63 are formed on the longitudinal and / or transverse edges of the plate 61 and one or more shoes 64 are also formed on the longitudinal and / or transverse edges of the plate 62.
  • the non-hatched areas correspond to the material removed.
  • the shoes 63 and 64 extend only on one side of the corresponding plate, respectively 61 and 62, below the plate 61 for the shoes 63 and above the plate 62 for the shoes 64.
  • An inlet orifice 65 of the second fluid B is pierced in each of the plates 61 and 62 and an outlet orifice 66 of this second fluid B is also pierced in the plates 61 and 62, as shown in FIG. 6.
  • These orifices 65 and 66 are bordered by a shoe, respectively 67 and 68.
  • corrugations 69 are formed on the central portion of each plate 61 and 62 and these plates are superimposed by torque.
  • the shoes 63 and 64 which are in contact with each other are connected by a sealing bead 70 sealed.
  • pairs of plates 61 and 62 thus formed are superimposed and the shoes 63 and 64 in contact with pairs of plates 61 and 62 superimposed are also connected by a sealing bead 70 sealed.
  • the shoes 67 and 68 in contact around each orifice 65 and 66 are also welded by a sealed sealing bead 70, as shown in FIG. 9.
  • the stack of plates 61 and 62 thus formed is mounted between two thick and opposite plates, respectively 71 and 72, extending parallel to the pairs of plates 61 and 62.
  • the stack of plates 61 and 62 at a lateral face of the plate bundle 40, provides an inlet zone A1 for the first fluid A and, on the opposite face, an exit zone A2 for this first fluid A after its passage in the corresponding circuit of the plate bundle 40.
  • the fluid A flows in the channels formed between two adjacent plates 61 and 62 of a pair of plates out of two.
  • the input zone A1 is connected to a manifold, not shown, for the arrival of the first fluid A and the output zone A2 is connected to a manifold, not shown, for the output of this second fluid A.
  • the orifices 65 formed in the plates 61 and 62 determine two opposite zones B1 of arrival of the second fluid B and the orifices 66 formed in the plates 61 and 62 determine two exit zones B2 of this second fluid B after passing through the corresponding circuit of the plate bundle 40.
  • This second fluid B enters the orifices 65 and flows in the channels formed between the plates 61 and 62, in a pair of plates out of two against the current of the first fluid A.
  • Each zone B1 is connected to a manifold, not shown, d the inlet of the second fluid B and each outlet zone B2 is connected to a manifold, not shown, for outputting this second fluid B after passing through the plate bundle 40.
  • Fluid A and B circulate alternately between two plates out of two of the plate bundle 40.
  • the materials constituting the plates are nickel-based steels or stainless steels.
  • the welds are made by the TIG process or by laser or electron beam.
  • the manufacturing method according to the invention makes it possible, thanks to the machining of the plates, to obtain a greater dimensional accuracy than the bundles of plates comprising inserts or with spacers.
  • the assembly by welding eliminates any risk of assigning the microstructure of the material outside the welded zone and the heat-affected zone.
  • welds are placed only at the periphery of the plate bundle or in the secondary fluid circulation pipes B in the embodiment of FIG. 9, resulting in increased flexibility with respect to thermal transients and ease of possible inspection of all the welds of such a bundle of plates due to access from the outside for the welds located at the periphery and access through the secondary fluid pipes in the example of FIG. 9.
  • the method according to the invention makes it possible to eliminate the laying of a welding wall as well as the use of inserts. This arrangement therefore reduces the number of welds thereby increasing the reliability of the apparatus and to achieve a good quality welding. Finally, the method according to the invention makes it possible to manufacture plate bundles with a small distance separating each plate, less than 3 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un faisceau de plaques (40) pour un échangeur thermique formé par un empilement de plaques (41). Le procédé consiste à diminuer par usinage l'épaisseur initiale de chaque plaque (41) en ménageant au moins à la périphérie de la plaque (41), au moins un sabot de liaison (45) de hauteur supérieure à l'épaisseur de la plaque (41) après usinage, à former sur la partie centrale de la plaque (41), des ondulations (42), à superposer par couple les plaques (41), à relier les sabots (45) en contact des plaques (41) de chaque couple par un cordon de soudure (50), à superposer les couples de plaques (41) et à relier les sabots (45) en contact des couples de plaques (41) par un cordon de soudure (50) étanche en ménageant une superposition alternée d'extrémités ouvertes ou fermées d'entrée ou de sortie dudit fluide.

Description

Procédé de fabrication d'un faisceau de plaques pour un échanqeur thermique
La présente invention concerne un procédé de fabrication d'un faisceau de plaques compact pour un échangeur thermique fonctionnant à haute pression et/ou à haute température.
L'invention concerne également un échangeur thermique à plaques comportant au moins un faisceau de plaques fabriqué par un tel procédé.
Les faisceaux de plaques pour ce type d'échangeur thermique comportent généralement un empilement de plaques parallèles les unes aux autres et qui délimitent entre elles des circuits de circulation d'au moins deux fluides indépendants.
La circulation des fluides entre les plaques peut être du type concourante, à courants croisés ou à contre-courant et chaque circuit est relié à des collecteurs d'admission et de retour des fluides. Les plaques du faisceau de plaques sont équipées de différents moyens permettant d'augmenter le coefficient d'échange thermique entre les fluides,
Pour cela, on connaît des faisceaux de plaques planes entre lesquelles sont interposées des ailettes réalisées par pliage de fines feuilles métalliques et assemblées par brasage sur les plaques. Pour les applications à haute température, par exemple supérieure à
600O, l'utilisation d'un métal d'apport et d'ailet tes fines peut poser des problèmes.
En effet, le métal d'apport ayant un point de fusion plus bas que le métal de base, la température d'utilisation du faisceau de plaques est limitée et l'emploi d'un métal d'apport dont les propriétés thermomécaniques sont différentes de celles du matériau de base crée un point faible au niveau de la jonction. De plus, les ailettes étant très fines par exemple une épaisseur inférieure à 0,5 mm, le grossissement des grains lors du brasage peut se révéler rédhibitoire d'un point de vue mécanique.
On connaît également un faisceau de plaques composé d'un empilement de plaques dans lesquelles sont gravés des canaux.
La gravure est réalisée par une attaque chimique des plaques après positionnement d'un masque de protection sur les parties à ne pas graver. Une fois gravées, les plaques sont assemblées par soudure et notamment par soudure par diffusion.
La réalisation d'un faisceau de plaques par cette technique est complexe à mettre en œuvre et pose des problèmes. L'attaque chimique des plaques avec des alliages à base de nickel est très difficile et les constructeurs utilisent des techniques d'usinage mécanique qui sont longues et coûteuses et laissent peu de latitude géométrique pour former des canaux sur les plaques.
Par ailleurs, pour souder par diffusion les alliages à base de nickel, il est nécessaire de chauffer fortement le matériau. En effet, qu'il s'agisse d'un mode de réalisation par compression isostatique à chaud ou par compression unie axiale, les plaques à assembler sont portées à une température supérieure à 1000O si bien que ce traitement thermique conduit à un grossissement des grains, incompatible avec les faibles épaisseurs des tôles. Le faisceau de plaques obtenu par cette technique présente une rigidité importante du fait que les plaques sont soudées entre elles dans toute la zone d'échange et est, pour cette raison, peu tolérant aux transitoires thermiques.
Un autre inconvénient de ces deux types de faisceaux de plaques, réside dans le fait que les jonctions soudées ou brasées sont ménagées dans toute la zone d'échange entre les canaux qui sont de petite taille ce qui rend impossible l'inspection de ces joints, que ce soit en cours de fabrication ou en cours d'utilisation du faisceau de plaques.
On connaît également par exemple dans le FR-A-2 738 906, un faisceau de plaques comprenant un empilement de plaques d'échange thermique métalliques et parallèles les unes aux autres comportant des bords à surface lisse et une partie centrale munie d'ondulations pour former avec les plaques associées, un double circuit de deux fluides indépendants et à contre-courant.
L'assemblage des plaques de ce type de faisceau de plaques est réalisé soit par soudage grâce à un ensemble d'entretoises disposées sur les bords des plaques afin d'obtenir l'espace entre les plaques nécessaire, soit par soudure d'une pièce rapportée faisant office d'entretoise, elle-même soudée sur le bord longitudinal de chaque plaque, puis souder entre elles. Dans le premier cas, l'utilisation d'entretoises impose la multiplication du nombre de soudures qui sont difficiles à contrôler après l'assemblage et également la dépose d'un mur de soudure sur les parois latérales du faisceau de plaques. Dans le deuxième cas, l'utilisation de pièces rapportées impose également la multiplication du nombre de soudures et les soudures situées à l'intérieur du faisceau de plaques ne sont contrôlables qu'en cours de fabrication. De plus, la largeur des soudures peut constituer une limite inférieure à la distance entre les plaques et donc limiter la compacité du faisceau de plaques. L'invention a pour but de proposer un faisceau de plaques compact pour un échangeur de chaleur à haute température qui évite les inconvénients précédemment mentionnés et qui permet de réduire de manière significative le nombre de soudures nécessaires pour assembler les différentes plaques entre elles. L'invention a donc pour objet un procédé de fabrication d'un faisceau de plaques compact pour un échangeur thermique formé par un empilement de plaques délimitant entre elles au moins deux circuits de circulation de deux fluides indépendants et comportant une partie centrale d'échange thermique munie d'ondulations, caractérisé en ce que : - on diminue par usinage l'épaisseur initiale de chaque plaque en ménageant à la périphérie de la plaque, et/ou de tubulures traversantes au moins un sabot de liaison de hauteur supérieure à l'épaisseur de la plaque après usinage,
- on forme dans la partie centrale de chaque plaque, les ondulations, - on superpose par couple les plaques en disposant les sabots des plaques les uns sur les autres,
- on relie les sabots en contact des plaques de chaque couple par un cordon de soudure étanche,
- on superpose les couples de plaques en disposant les sabots des couples de plaques les uns sur les autres, et
- on relie les sabots en contact des couples de plaques par un cordon de soudure étanche en ménageant une superposition alternée d'extrémités ouvertes ou fermées d'entrée ou de sortie desdits fluides. Selon d'autres caractéristiques de l'invention :
- on diminue l'épaisseur initiale de chaque plaque par usinage d'au moins une face de la plaque,
- on diminue l'épaisseur initiale de chaque plaque en usinant les deux faces de la plaque,
- on forme les ondulations dans la partie centrale de chaque plaque par emboutissage ou par formage, - après usinage, l'épaisseur des plaques est comprise entre 0,2 et 3 mm,
- après usinage, la hauteur des sabots est déterminée par l'amplitude des ondulations et de préférence comprise entre 0,5 et 5 mm, et
- après usinage, l'épaisseur des sabots est comprise entre 1 et 6 mm. L'invention a aussi pour objet un échangeur thermique à plaques comportant une enceinte résistant à la pression interne dans laquelle est placé au moins un faisceau de plaques fabriqué par le procédé tel que précédemment défini.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée à titre d'exemple et faite en référence aux dessins annexés, sur lesquels :
- la Fig. 1 composée des Fig. 1A et 1 B est une vue en coupe axiale d'un exemple d'un échangeur thermique comportant des faisceaux de plaques réalisés par le procédé, conforme à l'invention,
- la Fig. 2 est une vue schématique en perspective d'un faisceau de plaques de l'échangeur thermique de la Fig. 1 ,
- la Fig. 3 est une vue schématique d'un couple de plaques du faisceau de plaques,
- la Fig. 4 composée des Fig. 4A à 4D est une vue schématique en coupe transversale d'une plaque du faisceau de plaques et montrant les différentes étapes d'un premier mode de réalisation du procédé de fabrication, conforme à l'invention, - la Fig. 5 composée des Fig. 5A à 5D est une schématique en coupe transversale d'une plaque du faisceau de plaques et montrant les différentes coupes d'un second mode de réalisation du procédé de fabrication, conforme à l'invention, et - les Fig. 6 à 9 sont des vues schématiques en coupe transversale montrant les différentes étapes du procédé de fabrication d'une variante du faisceau de plaques.
L'échangeur thermique 1 représenté à la Fig. 1 est donné à titre d'exemple pour montrer un mode de réalisation, non limitatif, d'implantation de faisceaux de plaques fabriqués par le procédé de fabrication, conforme à l'invention.
L'échangeur thermique 1 est destiné à être utilisé dans un réacteur nucléaire à haute température, généralement supérieure à 600O, pour réaliser un échange de chaleur entre un premier fluide et un second fluide. Le premier fluide est le fluide primaire du réacteur nucléaire, et circule en boucle fermée dans celui-ci. Il traverse le cœur du réacteur nucléaire, non représenté, puis traverse l'échangeur thermique 1 et revient enfin à l'entrée du cœur. Le fluide primaire s'échauffe dans le cœur du réacteur et sort de celui-ci par exemple à une température d'environ 850O. Il cède une partie de sa chaleur au fluide secondaire dans l'échangeur thermique 1 et sort de celui-ci par exemple à une température de 400O environ.
Le second fluide est le fluide secondaire du réacteur nucléaire, et circule en boucle fermée dans celui-ci. Il traverse l'échangeur thermique 1 , puis passe dans une turbine à gaz, non représentée, d'entraînement d'un générateur électrique et revient à l'entrée de l'échangeur thermique 1. Le fluide secondaire entre dans cet échangeur thermique 1 par exemple à une température de 350O environ et en sort par exemple à une température de 800O.
L'échangeur thermique 1 comprend :
- une enceinte extérieure 2 présentant un axe central X sensiblement vertical, pourvue d'une entrée 3 et d'une sortie 4 de fluide primaire, de quatre entrées 5 et de quatre sorties 6 de fluide secondaire,
- huit faisceaux de plaques 40 d'échange de chaleur disposés dans l'enceinte 2, dans lesquels sont réalisés des échanges de chaleur entre les fluides primaire et secondaire, - un collecteur annulaire 7 d'alimentation des faisceaux de plaques 40 en fluide primaire,
- des collecteurs 8 d'alimentation des faisceaux de plaques 40 en fluide secondaire, - un collecteur annulaire 9 de collecte et d'évacuation du fluide primaire sortant des faisceaux de plaques 40,
- un collecteur central 10 de collecte et d'évacuation du fluide secondaire sortant des faisceaux de plaques 40, - une chambre d'entrée 11 distribuant le fluide secondaire dans les collecteurs 8, et une chambre de sortie 12 distribuant le fluide secondaire sortant du collecteur d'évacuation secondaire 10 aux sorties 6,
- des équipements internes inférieurs 11 canalisant le fluide primaire entre les collecteurs 7 et 9, d'une part, et l'entrée 3 et la sortie 4 du fluide primaire, d'autre part, et
- un ventilateur 14 de circulation du fluide primaire fixé dans l'enceinte 2. L'enceinte 2 comprend une cuve 20 à l'intérieur de laquelle sont disposés les faisceaux de plaques 40 et les collecteurs 7, 8, 9 et 10, présentant vers le haut une ouverture 21 et un couvercle 22 amovible de fermeture étanche de l'ouverture 21 de la cuve 20. Les entrées 5 du fluide secondaire sont ménagées en haut de la cuve 20 et sont régulièrement réparties sur une même circonférence de celle-ci. Les sorties du fluide secondaire 6 sont ménagées en haut de la cuve 20, légèrement en dessous des entrées 5 et sont régulièrement réparties sur une même circonférence de cette cuve. La cuve 20 comprend en partie basse un unique piquage par lequel sont réalisées l'entrée 3 et la sortie 4 du fluide primaire. L'entrée 3 et la sortie 4 sont coaxiales et la sortie 4 entoure l'entrée 3.
La cuve 20 est fermée vers le bas par un fond bombé qui présente une ouverture centrale, ronde, centrée sur l'axe X, dans laquelle est fixé le ventilateur 14.
Comme on le voit sur les Figs. 2 et 3, les faisceaux de plaques 40 sont constitués par un empilement de plaques 41 délimitant entre elles deux circuits de circulation de deux fluides, le premier fluide A indiqué par les flèches pleines sur la
Fig. 2 et le second fluide B indiqué par les flèches évidées sur cette figure. Les premier et second fluides circulent alternativement dans une plaque sur deux de l'empilement. Chaque plaque 41 comporte une partie centrale d'échange thermique munie d'ondulations 42 qui déterminent entre elles des canaux 43 favorisant l'échange thermique entre les fluides.
D'une manière générales, les ondulations 42 sont constituées par des motifs obtenus par déformation de la plaque, comme par exemple des plots, des nervures, des inserts ou autres.
Pour déterminer les extrémités ouvertes 46 ou fermées 47 des canaux 43 dans lesquels circulent les premier et second fluides, alternativement dans une plaque 41 sur deux de l'empilement formant le faisceau de plaques 40, chaque plaque 41 comporte en saillie sur ses bords, respectivement longitudinaux 41 a et/ou transversaux 41 b un sabot 45 continu ou plusieurs sabots 45 discontinus. La disposition des sabots 45 sur les bords longitudinaux 41 a et/ou transversaux 41 b dépend du sens de circulation des fluides entre les plaques 41 du faisceau de plaques 40 et également de la disposition des collecteurs, non représentés d'entrée et de sortie de ces fluides.
La disposition des sabots 45 sur les bords longitudinaux 41 a et/ou transversaux 41 b représentée à la Fig. 3 est un exemple de réalisation, d'autres dispositions sont bien évidemment envisageables.
En se reportant maintenant aux Fig. 4 et 5, on va décrire deux modes de réalisation du procédé de fabrication du faisceau de plaques 40.
Ainsi que montré à la Fig. 4A, à l'origine la plaque 41 est plane et présente une épaisseur constante.
La première étape du procédé consiste à diminuer par usinage de préférence mécanique, l'épaisseur initiale d'une plaque 30 pour obtenir la plaque 41 en ménageant à la périphérie de cette plaque ou les sabots 45 sur les bords longitudinaux 41 a et/ou transversaux 41 b de ladite plaque 41. L'usinage mécanique par exemple par fraisage est réalisé sur au moins une face de la plaque 41.
Selon un premier mode de réalisation représenté sur les Fig. 4, la diminution de l'épaisseur de la plaque 30 est réalisée en usinant mécaniquement les deux faces de la plaque 30 de façon à conserver une zone centrale 46 après avoir enlevé les deux zones extérieures 46a et 46b, comme montré sur la Fig. 4B.
Les zones non hachurées représentent la matière enlevée. Ensuite, la deuxième étape du procédé consiste à former dans la partie centrale de chaque plaque 41 , les ondulations 42.
Une fois les plaques 41 ainsi réalisées, les plaques 41 sont superposées par couple en disposant les sabots 45 les uns au-dessus des autres et les sabots 45 en contact des plaques 41 de chaque couple sont reliés par un cordon de soudure 50 étanche, ainsi que montré sur la Fig. 4D.
Ensuite, les couples de plaques 41 sont superposés en disposant les sabots 45 des couples de plaques 41 les uns sur les autres et les sabots 45 en contact sont reliés entre eux par un cordon de soudure 50 étanche. Selon un seconde mode de réalisation représenté sur les Figs. 5, pour obtenir la plaque 41 l'épaisseur initiale d'une plaque 30 est diminuée en usinant mécaniquement une seule face de cette plaque, comme montré à la Fig. 5A. La zone non hachurée représente la matière enlevée.
Dans ce cas, une seule zone 46a est éliminée et la zone restante 46 est située sur un bord du sabot 45 alors que le dans le mode de réalisation précédent, le sabot 45 s'étend de part et d'autre de la zone restante 46. Dans ce second mode de réalisation, les étapes suivantes du procédé sont identiques aux étapes du précédent mode de réalisation et consistent à former des ondulations 42 sur la partie centrale de la plaque 41 , puis à superposer par couple les plaques 41 et à relier les sabots 45 en contact des plaques de chaque couple par un cordon de soudure 50 étanche.
Les couples de plaques sont ensuite superposés en disposant les sabots 45 des couples de plaques 41 les uns sur les autres et les sabots 45 en contact des couples de plaques 41 sont reliés par un cordon de soudure 50 étanche. L'usinage de chaque plaque 41 est par exemple un usinage par fraisage et les ondulations 42 dans la partie centrale de chaque plaque 41 sont réalisées par exemple par emboutissage ou par formage.
A titre d'exemple, après usinage, l'épaisseur e1 de la plaque 41 est comprise entre 0,2 et 3 mm, la hauteur h1 des sabots est comprise entre 0,5 et 5mm, l'épaisseur e2 des sabots 45 est comprise entre 2 et 4 mm. La hauteur h2 des talons 45a des sabots 45, situés de chaque côté de la plaque 41 (Fig. 4C) ou d'un seul côté de la plaque 41 (Fig. 5C) est comprise entre 0,2 et 3 mm. D'une façon générale, la hauteur des sabots est déterminée par l'amplitude des ondulations.
Les hauteurs des différents sabots 45 ne sont pas nécessairement égales selon si ils sont du côté froid ou du côté chaud du faisceau de plaques ou si ils sont situés du côté froid des collecteurs ou du côté chaud des collecteurs d'entrée et de sortie des deux fluides.
De préférence, les plaques 41 sont assemblées et soudées deux par deux, puis les couples de plaques ainsi constitués ayant des dimensions identiques sont assemblés et soudés afin de constituer l'empilement final. Cette méthode permet d'éviter d'avoir à prendre en compte le problème du retrait qui se produit lors du soudage. En effet, si l'empilement est réalisé par adjonction de plaques une à une à l'empilement préalablement soudé, la nouvelle plaque à souder n'a pas les mêmes dimensions que les plaques déjà soudées du fait du retrait dû à la soudure. Les collecteurs, non représentés, d'entrée et de sortie des fluides associés au faisceau de plaques 40 peuvent être intégrés directement dans le faisceau de plaques 40 ou ils peuvent être de tout type de forme rapportée et soudés sur le faisceau de plaques 40 correspondant.
Sur les Fig. 6 à 9, on a représenté un autre exemple d'un faisceau de plaques 40 dont chaque plaque 41 est fabriquée par le procédé selon l'invention.
Dans cet exemple de réalisation, le faisceau des plaques est du type à tubulures traversantes pour former des collecteurs.
Dans ce cas, les plaques du faisceau de plaques 40 sont associées deux par deux, une plaque supérieure 61 et une plaque inférieure 62. Dans ce cas également les deux faces de chaque plaque 61 et 62 sont usinées mécaniquement pour enlever une partie de la matière et conserver une partie d'épaisseur déterminée correspondant à l'épaisseur de chaque plaque 61 ou 62 à obtenir. Un ou plusieurs sabots 63 sont ménagés sur les bords longitudinaux et/ou transversaux de la plaque 61 et un ou plusieurs sabots 64 sont également ménagés sur les bords longitudinaux et/ou transversaux de la plaque 62. Les zones non hachurées correspondent à la matière enlevée. Dans cet exemple de réalisation, les sabots 63 et 64 s'étendent que d'un côté de la plaque correspondante, respectivement 61 et 62, au-dessous de la plaque 61 pour les sabots 63 et au-dessus de la plaque 62 pour les sabots 64.
Un orifice 65 d'entrée du second fluide B est percé dans chacune des plaques 61 et 62 et un orifice 66 de sortie de ce deuxième fluide B est également percé dans les plaques 61 et 62, comme représenté à la Fig. 6. Ces orifices 65 et 66 sont bordés par un sabot, respectivement 67 et 68.
Les orifices 65 d'entrée et les orifices 66 de sortie lorsqu'ils sont superposés forment les tubulaires traversantes.
Ensuite, des ondulations 69 sont formées sur la partie centrale de chaque plaque 61 et 62 et ces plaques sont superposées par couple. Les sabots 63 et 64 qui sont en contact les uns avec les autres sont reliés par un cordon de soudure 70 étanche.
Les couples de plaques 61 et 62 ainsi constitués sont superposés et les sabots 63 et 64 en contact des couples de plaques 61 et 62 superposés sont reliés également par un cordon de soudure 70 étanche.
Les sabots 67 et 68 en contact autour de chaque orifice 65 et 66 sont également soudés par un cordon de soudure 70 étanche, ainsi que représenté à la Fig. 9. L'empilement de plaques 61 et 62 ainsi constitué est monté entre deux plaques épaisses et opposées, respectivement 71 et 72, s'étendant parallèlement aux couples de plaques 61 et 62.
Dans l'exemple de réalisation représenté à la Fig. 9, l'empilement des plaques 61 et 62 ménage, au niveau d'une face latérale du faisceau de plaques 40, une zone d'entrée A1 pour le premier fluide A et, sur la face opposée, une zone de sortie A2 pour ce premier fluide A après son passage dans le circuit correspondant du faisceau de plaques 40. Le fluide A circule dans les canaux ménagés entre deux plaques 61 et 62 adjacents d'un couple de plaques sur deux. La zone d'entrée A1 est raccordée à un collecteur, non représenté, d'arrivée du premier fluide A et la zone de sortie A2 est raccordée à un collecteur, non représenté, de sortie de ce second fluide A. Les orifices 65 ménagés dans les plaques 61 et 62 déterminent deux zones opposées B1 d'arrivée du second fluide B et les orifices 66 ménagés dans les plaques 61 et 62 déterminent deux zones de sortie B2 de ce second fluide B après son passage dans le circuit correspondant du faisceau de plaques 40. Ce second fluide B entre par les orifices 65 et circule dans les canaux ménagés entre les plaques 61 et 62, dans un couple de plaques sur deux à contre-courant du premier fluide A. Chaque zone B1 est raccordée à un collecteur, non représenté, d'entrée du second fluide B et chaque zone de sortie B2 est raccordée à un collecteur, non représenté, de sortie de ce second fluide B après son passage dans le faisceau de plaques 40.
Les fluides A et B circulent alternativement entre deux plaques sur deux du faisceau de plaques 40.
D'autres dispositions peuvent bien évidemment être envisagées. A titre d'exemple les matériaux constituant les plaques sont des aciers à base de nickel ou des aciers inoxydables. Les soudures sont réalisées par le procédé TIG ou par laser ou par faisceau d'électrons.
Le procédé de fabrication selon l'invention permet, grâce à l'usinage des plaques, d'obtenir une précision dimensionnelle supérieure aux faisceaux de plaques comportant des pièces rapportées ou avec des entretoises.
L'assemblage par soudage permet de supprimer tout risque d'affectation de la microstructure du matériau en dehors de la zone soudée et de la zone affectée thermiquement.
Par ailleurs, les soudures sont placées uniquement en périphérie du faisceau de plaques ou dans les tubulures de circulation du fluide secondaire B dans l'exemple de réalisation de la Fig. 9, d'où une souplesse accrue vis-à-vis des transitoires thermiques et une facilité d'une inspection éventuelle de l'ensemble des soudures d'un tel faisceau de plaques du fait d'un accès par l'extérieur pour les soudures situées en périphérie et d'un accès par les tubulures du fluide secondaire dans l'exemple de la Fig. 9.
Le procédé selon l'invention permet de supprimer la pose d'un mur de soudure ainsi que l'utilisation de pièces rapportées. Cette disposition réduit donc le nombre de soudures augmentant de ce fait la fiabilité de l'appareil et permettant de réaliser une soudure de bonne qualité. Enfin, le procédé selon l'invention permet de fabriquer des faisceaux de plaques avec une faible distance séparant chaque plaque, inférieure à 3 mm.

Claims

REVENDICATIONS
1.- Procédé de fabrication d'un faisceau de plaques (40) compact pour un échangeur thermique formé par un empilement de plaques (41 ; 61 , 62) délimitant entre elles au moins deux circuits de circulation de deux fluides indépendants et comportant une partie centrale d'échange thermique munie d'ondulations (42 ;
69), caractérisé en ce que :
- on diminue par usinage l'épaisseur initiale de chaque plaque (41 ; 61 , 62) en ménageant à la périphérie de la plaque (41 ; 61 , 62) et/ou au niveau de tubulures (65, 66) traversantes au moins un sabot de liaison (45 ; 63, 64 ; 67, 68) de hauteur supérieure à l'épaisseur de la plaque (41 ; 61 , 62) après usinage,
- on forme dans la partie centrale de chaque plaque (41 ; 61 , 62), les ondulations (42 ; 69),
- on superpose par couple les plaques (41 ; 61 , 62) en disposant les sabots (45 ; 63, 64 ; 67, 68) des plaques (41 ; 61 , 62) les uns sur les autres, - on relie les sabots (45 ; 63, 64 ; 67, 68) en contact des plaques (41 ; 61 ,
62) de chaque couple par un cordon de soudure (50 ; 70),
- on superpose les couples de plaques (41 ; 61 , 62) en disposant les sabots (45 ; 63, 64 ; 67, 68) des couples de plaques (41 ; 61 , 62) les uns sur les autres, et
- on relie les sabots (45 ; 63, 64 ; 67, 68) en contact des couples de plaques (41 ; 61 , 62) par un cordon de soudure (50 ; 70) étanche en ménageant une superposition alternée d'extrémités ouverte ou fermée d'entrée ou de sortie desdits fluides.
2. Procédé selon la revendication 1 , caractérisé en ce que l'on diminue l'épaisseur initiale de chaque plaque (41 ; 61 , 62) par un usinage d'au moins une face de la plaque (41 ; 61 , 62).
3. Procédé selon la revendication 1 , caractérisé en ce que l'on diminue l'épaisseur initiale de chaque plaque (41 ; 61 , 62) en usinant les deux faces de la plaque (41 ; 61 , 62).
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'on forme les ondulations (42, 69) dans la partie centrale de chaque plaque (41 ; 61 , 62) par emboutissage ou par formage.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en en ce qu'après usinage, l'épaisseur des plaques (41 ; 61 , 62) est comprise entre à 0,2 et 6 mm.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'après usinage, la hauteur des sabots (45 ; 63, 64 ; 67, 68) est déterminée par l'amplitude des ondulations (42 ; 69) et de préférence comprise entre 0, 5 et 5mm.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que qu'après usinage, l'épaisseur des sabots (45 ; 63, 64 ; 67, 68) est comprise entre 1 et 4 mm.
8. Echangeur thermique à plaques du type, comportant une enceinte résistant à la pression interne dans laquelle est placé au moins un faisceau de plaques (40) fabriqué par le procédé selon l'une quelconque des revendications précédentes.
9.- Echangeur thermique à plaques selon la revendication 8, caractérisé en ce qu'il est destiné à être utilisé dans un réacteur nucléaire à haute température.
EP10728765A 2009-05-18 2010-05-17 Procede de fabrication d'un faisceau de plaques pour un echangeur thermique Withdrawn EP2433078A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0953264A FR2945612B1 (fr) 2009-05-18 2009-05-18 Procede de fabrication d'un faisceau de plaques pour un echangeur thermique
PCT/FR2010/050945 WO2010133791A1 (fr) 2009-05-18 2010-05-17 Procede de fabrication d'un faisceau de plaques pour un echangeur thermique

Publications (1)

Publication Number Publication Date
EP2433078A1 true EP2433078A1 (fr) 2012-03-28

Family

ID=41582123

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10728765A Withdrawn EP2433078A1 (fr) 2009-05-18 2010-05-17 Procede de fabrication d'un faisceau de plaques pour un echangeur thermique

Country Status (10)

Country Link
US (1) US9140498B2 (fr)
EP (1) EP2433078A1 (fr)
JP (1) JP5671013B2 (fr)
KR (1) KR20120030089A (fr)
CN (1) CN102575905B (fr)
BR (1) BRPI1009064A2 (fr)
CA (1) CA2762518A1 (fr)
FR (1) FR2945612B1 (fr)
RU (1) RU2528225C2 (fr)
WO (1) WO2010133791A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2694021T3 (es) 2011-07-28 2018-12-17 Nestec S.A. Métodos y dispositivos para calentar o enfriar materiales viscosos
CN102313469A (zh) * 2011-09-30 2012-01-11 茂名重力石化机械制造有限公司 一种组焊板翅式空气预热器
CN102661670B (zh) * 2012-05-17 2014-09-03 程宝华 一种超导纳米传热板式换热器及其制造方法
CN104620039B (zh) * 2012-09-18 2018-02-13 巴斯夫欧洲公司 用于加热天然气的方法和装置
DE112014000721T5 (de) * 2013-02-08 2015-10-29 Dana Canada Corporation Wärmetauscher mit ringförmigem Einlass/Auslass-Anschlussstück
CN104677147A (zh) * 2013-11-28 2015-06-03 天津华赛尔传热设备有限公司 一种多股流气气换热用全焊接板式换热器
CN103978291A (zh) * 2014-02-10 2014-08-13 上海楷鼎化工科技有限公司 波纹板、波纹板板束及焊接方法
KR101849540B1 (ko) * 2014-02-26 2018-04-18 주식회사 포스비 반응기 및 열교환기용 체널형 스텍 및 그 제조 방법
FR3020135A1 (fr) * 2014-04-16 2015-10-23 Commissariat Energie Atomique Module d'echangeur de chaleur a echange thermique et compacite ameliores, utilisation avec du metal liquide et du gaz.
EP3009781B1 (fr) * 2014-10-17 2018-08-29 Rolls-Royce Power Engineering PLC Échangeur de chaleur
RU2623346C1 (ru) * 2016-06-22 2017-06-23 Общество с ограниченной ответственностью "Куранты" (ООО "Куранты") Универсальная пластина пластинчатого теплообменника и способ изготовления пакета пластин пластинчатого теплообменника
CN106288922B (zh) * 2016-08-15 2018-05-11 安徽天祥空调科技有限公司 一种散热管座及其制造方法
JP6911469B2 (ja) * 2017-03-31 2021-07-28 株式会社Ihi 熱処理装置
EP3415239B1 (fr) 2017-06-15 2020-05-06 Alfa Laval Corporate AB Séparateur centrifuge et procédé de fonctionnement d'un séparateur centrifuge
US10823511B2 (en) 2017-06-26 2020-11-03 Raytheon Technologies Corporation Manufacturing a heat exchanger using a material buildup process
CN112368537B (zh) * 2018-06-27 2022-10-04 株式会社威尔康 热传输装置和其制造方法
RU187573U1 (ru) * 2018-07-11 2019-03-12 Акционерное общество "Институт нефтехимпереработки " (АО "ИНХП ") Теплообменный элемент сварного пластинчатого теплообменника
CN110057220A (zh) * 2019-05-08 2019-07-26 上海发电设备成套设计研究院有限责任公司 一种板翅式换热器
CN116329900B (zh) * 2023-05-25 2023-07-28 甘肃蓝科石化高新装备股份有限公司 一种空气储能用板式热交换器板束的制造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1501568B2 (de) * 1966-10-12 1971-05-13 Linde Ag, 6200 Wiesbaden Plattenwaermetauscher
DE3709278A1 (de) * 1987-03-20 1988-09-29 Kernforschungsz Karlsruhe Verfahren zur herstellung von feinstrukturkoerpern
FR2691528B1 (fr) * 1992-05-22 1997-05-23 Packinox Sa Faisceau de plaques pour echangeur thermique et procede d'assemblage d'un tel faisceau de plaques.
CN2127782Y (zh) * 1992-06-22 1993-03-03 中国科学院工程热物理研究所 原表面全逆流式热交换器
US5228515A (en) * 1992-07-31 1993-07-20 Tran Hai H Modular, compact heat exchanger
US5626188A (en) * 1995-04-13 1997-05-06 Alliedsignal Inc. Composite machined fin heat exchanger
FR2738906B1 (fr) * 1995-09-19 1997-12-12 Packinox Sa Faisceau de plaques pour un echangeur thermique et echangeur thermique comportant un tel faisceau de plaques
US5775412A (en) * 1996-01-11 1998-07-07 Gidding Engineering, Inc. High pressure dense heat transfer area heat exchanger
RU2118777C1 (ru) * 1996-07-16 1998-09-10 Акционерное общество открытого типа "Радиатор" Пластина теплообменника
JP2916129B1 (ja) * 1998-02-04 1999-07-05 曙機械株式会社 溝付き板状部材の製造方法
CN2357307Y (zh) * 1998-12-09 2000-01-05 徐旻晖 一种热交换器
US6516874B2 (en) * 2001-06-29 2003-02-11 Delaware Capital Formation, Inc. All welded plate heat exchanger
FR2880106B1 (fr) * 2004-12-29 2007-06-01 Framatome Anp Sas Dispositif d'echange de chaleur entre deux fluides comportant des couches de mousse metallique
FR2898404B1 (fr) * 2006-03-13 2008-09-05 Areva Np Sas Ensemble d'echange de chaleur entre un premier et un second fluides.
RU2007105643A (ru) * 2007-02-14 2008-08-20 ООО "Агат" (RU) Теплообменная поверхность, способ и инструмент ее изготовления (варианты), устройство для осуществления способа (варианты)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010133791A1 *

Also Published As

Publication number Publication date
FR2945612B1 (fr) 2011-07-22
FR2945612A1 (fr) 2010-11-19
RU2528225C2 (ru) 2014-09-10
WO2010133791A1 (fr) 2010-11-25
US9140498B2 (en) 2015-09-22
RU2011151623A (ru) 2013-06-27
US20120090822A1 (en) 2012-04-19
CN102575905B (zh) 2015-01-21
KR20120030089A (ko) 2012-03-27
JP2012527596A (ja) 2012-11-08
CA2762518A1 (fr) 2010-11-25
JP5671013B2 (ja) 2015-02-18
BRPI1009064A2 (pt) 2019-09-24
CN102575905A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
EP2433078A1 (fr) Procede de fabrication d'un faisceau de plaques pour un echangeur thermique
EP1827749B1 (fr) Procede de realisation d'un element comportant des canaux de circulation de fluide
EP0119502B1 (fr) Installation thermoélectrique
EP2994711A1 (fr) Procede de realisation d'un module d'echangeur de chaleur a au moins deux circuits de circulation de fluide
EP3178598B1 (fr) Procédé de réalisation d'un échangeur de chaleur à au moins deux circuits de circulation de fluide, à grand nombre de canaux et/ou de grandes dimensions
WO2001071268A1 (fr) Procede d'assemblage des plaques d'un faisceau de plaques et faisceau de plaques realise par un tel procede
FR2809484A1 (fr) Bloc echangeur de chaleur
EP1426722B1 (fr) Plaque d'un échangeur thermique et échangeur thermique à plaques
FR2838509A1 (fr) Echangeur de chaleur a plaques presentant des passages de fluide en saillie
WO1999017070A1 (fr) Plaques d'un faisceau de plaques d'echange thermique
EP2893278B1 (fr) Élément d'échangeur pour échangeur de chaleur, échangeur de chaleur comprenant un tel élément d'échangeur et procédé de fabrication d'un tel élément d'échangeur
EP3656492B1 (fr) Procede de realisation d'un collecteur d'echangeur de chaleur avec compression isostatique a chaud (cic), application a la realisation d'absorbeur pour centrale solaire thermique a concentration
FR2880106A1 (fr) Dispositif d'echange de chaleur entre deux fluides comportant des couches de mousse metallique
EP3006156B1 (fr) Procede de realisation d'un module d'echangeur de chaleur a au moins deux circuits de circulation de fluide, echangeur de chaleur et reacteur-echangeur associes
FR3043454A1 (fr) Procede de realisation d'un module d'echangeur de chaleur a au moins deux circuits de circulation de fluide, avec etape de compression isostatique a chaud de plaques
EP3762670B1 (fr) Echangeur thermique, ainsi que procédé de fabrication d'un tel échangeur thermique
WO2024189172A1 (fr) Dispositif de régulation thermique pour un composant, notamment un module électronique de puissance
FR2925374A1 (fr) Procede de soudure d'elements tubulaires pour radiateur a fluide caloporteur et radiateur ainsi realise
EP0851998A1 (fr) Faisceau de plaques pour un echangeur thermique et echangeur thermique comportant un tel faisceau de plaques
FR3119670A1 (fr) Echangeur thermique et son procédé de fabrication
WO2023237473A1 (fr) Procédé de réalisation d'un module d'échangeur de chaleur à au moins un circuit de circulation de fluide, de forme générale incurvée; echangeur de chaleur intégrant une pluralité de modules d'échangeurs incurvés obtenus selon le procédé
FR2764973A1 (fr) Procede d'assemblage des plaques d'un faisceau de plaques et faisceau de plaques realise par un tel procede
FR2945581A1 (fr) Divergent de moteur pour un vehicule capable de se deplacer dans l'air ou dans l'espace et son procede de fabrication.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B21D 53/04 20060101ALN20160418BHEP

Ipc: B23P 15/26 20060101ALN20160418BHEP

Ipc: F28D 9/00 20060101AFI20160418BHEP

Ipc: F28F 3/02 20060101ALI20160418BHEP

Ipc: B21D 53/02 20060101ALI20160418BHEP

Ipc: B23P 15/16 20060101ALI20160418BHEP

Ipc: F28F 3/04 20060101ALI20160418BHEP

Ipc: F28D 21/00 20060101ALN20160418BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: B23P 15/16 20060101ALI20160426BHEP

Ipc: F28D 21/00 20060101ALN20160426BHEP

Ipc: F28D 9/00 20060101AFI20160426BHEP

Ipc: B21D 53/04 20060101ALN20160426BHEP

Ipc: B21D 53/02 20060101ALI20160426BHEP

Ipc: B23P 15/26 20060101ALN20160426BHEP

Ipc: F28F 3/02 20060101ALI20160426BHEP

Ipc: F28F 3/04 20060101ALI20160426BHEP

INTG Intention to grant announced

Effective date: 20160512

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160923