RU2528225C2 - Способ изготовления набора пластин для теплообменника - Google Patents

Способ изготовления набора пластин для теплообменника Download PDF

Info

Publication number
RU2528225C2
RU2528225C2 RU2011151623/06A RU2011151623A RU2528225C2 RU 2528225 C2 RU2528225 C2 RU 2528225C2 RU 2011151623/06 A RU2011151623/06 A RU 2011151623/06A RU 2011151623 A RU2011151623 A RU 2011151623A RU 2528225 C2 RU2528225 C2 RU 2528225C2
Authority
RU
Russia
Prior art keywords
plates
plate
machining
sides
thickness
Prior art date
Application number
RU2011151623/06A
Other languages
English (en)
Other versions
RU2011151623A (ru
Inventor
Жиль ФРАНСУА
Габриэль МЕРЛЬ
Патрис ТОШОН
Франк ПРА
Клод РУССЕЛЬ
БАРОН Оливье НОЭЛЬ
Пьер-Ксавье БЮССОННЕ
Ален БУРЖЕОН
Original Assignee
Альфа Лаваль Викарб
Альфа Лаваль Пакино
Коммиссариат А Л' Энержи Атомик Э Оз Энержи Альтернатив
Арева Нп
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Альфа Лаваль Викарб, Альфа Лаваль Пакино, Коммиссариат А Л' Энержи Атомик Э Оз Энержи Альтернатив, Арева Нп filed Critical Альфа Лаваль Викарб
Publication of RU2011151623A publication Critical patent/RU2011151623A/ru
Application granted granted Critical
Publication of RU2528225C2 publication Critical patent/RU2528225C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0006Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the plate-like or laminated conduits being enclosed within a pressure vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/04Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of sheet metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0054Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for nuclear applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49366Sheet joined to sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49366Sheet joined to sheet
    • Y10T29/49369Utilizing bond inhibiting material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

Изобретение относится к области теплотехники, а именно к способу изготовления набора (40) пластин для теплообменника, образованного стопой пластин (41). Заявленный способ включает этапы, на которых уменьшают первоначальную толщину каждой пластины (41) посредством механической обработки оставляя на периферии пластины (41), по меньшей мере, один соединительный бортик (45) высотой, превышающей толщину пластины (41) после механической обработки, выполняют в центральной части пластины (41) гофры (42), накладывают пластины (41) парами друг на друга, соединяют находящиеся в контакте бортики (45) пластин (41) каждой пары сварным швом (50), укладывают пары пластин (41) друг на друга, располагая бортики (45) пар пластин (41) друг над другом, и соединяют находящиеся в контакте бортики (45) пар пластин (41) герметичным сварным швом (50), выполняя чередующееся наложение друг на друга открытых или закрытых концов входа или выхода указанной текучей среды. Технический результат - упрощение технологии изготовления, сокращение объема сварки. 2 н. и 13 з.п. ф-лы, 13 ил.

Description

Изобретение относится к способу изготовления компактного набора пластин для теплообменника, работающего при высоком давлении и/или при высокой температуре.
Изобретение относится также к пластинчатому теплообменнику, содержащему, по меньшей мере, один набор пластин, изготовленный при помощи такого способа.
Как правило, наборы пластин для теплообменника этого типа содержат стопу пластин, параллельных друг другу и ограничивающих между собой контуры циркуляции, по меньшей мере, двух независимых текучих сред.
Циркуляция текучих сред между пластинами может быть прямоточной, с перекрестными потоками или противоточной, и каждый контур соединен с коллекторами впуска и рециркуляции текучих сред.
Пластины набора оборудованы различными средствами, позволяющими повысить коэффициент теплообмена между текучими средами.
Так, известны наборы плоских пластин, между которыми расположены ребра, выполненные посредством сгибания тонких металлических листов и соединенные с пластинами пайкой.
Для вариантов применения при высокой температуре, например, превышающей 600°С, возникают проблемы использования присадочного материала и тонких ребер.
Действительно, поскольку присадочный металл имеет температуру плавления ниже, чем основной металл, температура использования набора пластин является ограниченной, и применение присадочного металла, термомеханические свойства которого отличаются от термомеханических свойств основного металла, создает слабую точку на уровне соединения. Кроме того, поскольку ребра являются очень тонкими, например имеют толщину менее 0,5 мм, увеличение зерен во время пайки может сказаться отрицательно с механической точки зрения.
Известен также набор пластин, выполненный в виде стопы пластин, в которых вытравлены каналы.
Травление производят посредством химического воздействия на пластины после установки защитного трафарета на не предназначенные для травления части. После травления пластины соединяют посредством пайки, в частности диффузионной пайки.
Изготовление набора пластин по этой технологии является сложной и создает проблемы.
Химическое травление пластин со сплавами на основе никеля является очень сложным, и конструкторы используют технологии механической обработки, которые являются длительными и дорогими и оставляют мало геометрической площади для выполнения каналов на пластинах.
Кроме того, для диффузионной пайки сплавов на основе никеля необходимо сильно нагревать материал. Действительно, если речь идет об изостатическом горячем сжатии или о равномерном осевом сжатии, соединяемые пластины доводят до температуры свыше 1000°С, поэтому такая термическая обработка приводит к росту зерен, несовместимому с малыми толщинами листов.
Набор пластин, полученный при помощи этой технологии, имеет высокую жесткость, поскольку пластины соединяют между собой пайкой во всей зоне обмена, и поэтому является чувствительным к тепловым переходам.
Другим недостатком этих двух типов наборов пластин является то, что сварные или паяные соединения выполняют во всей зоне обмена между каналами, которые имеют небольшой размер, что делает невозможным контроль этих швов как во время изготовления, так и во время использования набора пластин.
Например, из документа FR 2738906 известен также набор пластин, содержащий стопу параллельных металлических теплообменных пластин, содержащих края с гладкой поверхностью и гофрированную центральную часть, образуя со связанными с ними пластинами двойной противоточный контур двух независимых текучих сред.
Соединение пластин в наборе пластин этого типа осуществляют либо посредством пайки при помощи набора распорок, расположенных на краях пластин, чтобы получить необходимое пространство между пластинами, либо посредством крепления сваркой присоединяемой детали, выполняющей функцию распорки, которую в свою очередь крепят на продольном краю каждой пластины и затем пластины соединяют между собой сваркой.
В первом случае использование распорок ведет к увеличению числа сварных швов, которые трудно контролировать после соединения, а также требует выполнения сварного шва в виде стенки на боковых стенках набора пластин.
Во втором случае использование присоединяемых деталей тоже требует увеличения числа сварных швов, и сварные швы, находящиеся внутри набора пластин, можно контролировать только во время изготовления. Кроме того, ширина сварных швов может образовать нижний предел расстояния между пластинами и, следовательно, ограничивать компактность набора пластин.
Задача изобретения состоит в изготовлении компактного набора пластин для высокотемпературного теплообменника, который позволяет избежать вышеупомянутых недостатков и существенно сократить число сварных швов, необходимых для соединения различных пластин между собой.
Поставленная задача решена в способе изготовления компактного набора пластин для теплообменника, образованного стопой пластин, ограничивающих между собой, по меньшей мере, два контура циркуляции двух независимых текучих сред, и содержащего оборудованную гофрами центральную теплообменную часть, при этом согласно изобретению:
- уменьшают первоначальную толщину каждой пластины посредством механической обработки, оставляя на периферии пластины и/или сквозных труб, по меньшей мере, один соединительный бортик высотой, превышающей толщину пластины после механической обработки,
- выполняют гофры в центральной части каждой пластины,
- пластины парами накладывают друг на друга, располагая бортики пластин друг на друге,
- соединяют герметичным сварным швом находящиеся в контакте бортики пластин каждой пары,
- пары пластин накладывают друг на друга, располагая бортики пар пластин друг на друге,
- соединяют герметичным сварным швом находящиеся в контакте бортики пар пластин, предусматривая чередующееся наложение друг на друга открытых или закрытых концов входа или выхода указанных текучих сред.
Согласно другим отличительным признакам изобретения:
- уменьшают первоначальную толщину каждой пластины посредством механической обработки, по меньшей мере, одной стороны пластины,
- уменьшают первоначальную толщину каждой пластины посредством механической обработки двух сторон пластины,
- выполняют гофры в центральной части каждой пластины посредством вытяжки или формования,
- после механической обработки толщина пластин составляет от 0,2 до 3 мм,
- после механической обработки высота бортиков определена амплитудой гофр и предпочтительно составляет от 0,5 до 5 мм, и
- после механической обработки толщина бортиков составляет от 1 до 6 мм.
Поставленная задача решена также в пластинчатом теплообменнике, содержащем камеру, стойкую к внутреннему давлению, в которой расположен, по меньшей мере, один набор пластин, выполненный при помощи описанного выше способа.
Изобретение будет более понятно из нижеследующего описания, представленного в качестве примера, со ссылками на прилагаемые чертежи.
На фиг.1, 1А и 1В показан вариант теплообменника, содержащего наборы пластин, выполненные при помощи способа в соответствии с настоящим изобретением, вид в осевом разрезе;
на фиг.2 показан набор пластин теплообменника, изображенного на фиг.1, схематичный вид в перспективе;
на фиг.3 схематично показана пара пластин набора пластин;
на фиг.4, 4A-4D показаны пластины набора пластин на различных этапах первого варианта осуществления способа изготовления в соответствии с настоящим изобретением, схематичный вид в поперечном разрезе;
на фиг.5, 5A-5D показаны пластины набора пластин на различных этапах второго варианта осуществления способа изготовления в соответствии с настоящим изобретением, схематичный вид в поперечном разрезе;
на фиг.6-9 показаны различные этапы способа изготовления варианта набора пластин, схематичный вид в поперечном разрезе.
Теплообменник 1, показанный на фиг.1, представлен в качестве примера для иллюстрации неограничивающего варианта осуществления набора пластин, изготовленных при помощи способа изготовления в соответствии с настоящим изобретением.
Теплообменник 1 предназначен для использования в ядерном реакторе, работающем при высокой температуре, как правило, превышающей 600°С, для реализации теплообмена между первой текучей средой и второй текучей средой.
Первая текучая среда является первичной текучей средой ядерного реактора и циркулирует внутри него в замкнутом контуре. Она проходит через не показанную активную зону ядерного реактора, затем через теплообменник 1 и, наконец, возвращается на вход активной зоны. В активной зоне реактора первичная текучая среда нагревается и выходит из него, например, при температуре около 850°С. Она отдает часть своего тепла вторичной текучей среде в теплообменнике 1 и выходит из него, например, при температуре около 400°С.
Вторая текучая среда является вторичной текучей средой ядерного реактора и циркулирует внутри него в замкнутом контуре. Она проходит через не показанную активную зону ядерного реактора, затем поступает в не показанную газовую турбину, вращающую электрический генератор, и возвращается на вход теплообменника 1. Вторичная текучая среда поступает в этот теплообменник 1, например, при температуре около 350°С и выходит из него, например, при температуре около 800°С. Теплообменник 1 содержит:
- внешнюю камеру 2 по существу с вертикальной центральной осью X, оборудованную входом 3 и выходом 4 первичной текучей среды, четырьмя входами 5 и четырьмя выходами 6 вторичной текучей среды,
- восемь наборов 40 пластин теплообмена, расположенных в камере 2, в которых происходит теплообмен между первичной и вторичной текучими средами,
- кольцевой коллектор 7 питания наборов 40 пластин первичной текучей средой,
- коллекторы 8 питания наборов 40 пластин вторичной текучей средой,
- кольцевой коллектор 9 сбора и удаления первичной текучей среды, выходящей из наборов 40 пластин,
- центральный коллектор 10 сбора и удаления вторичной текучей среды, выходящей из наборов 40 пластин,
- входную камеру 11, распределяющую вторичную текучую среду в коллекторы 8, и выходную камеру 2, распределяющую вторичную текучую среду, выходящую из вторичного коллектора 10 удаления, на выходы 6,
- нижние внутренние устройства 11, направляющие первичную текучую среду между коллекторами 7 и 9, с одной стороны, и входом 3 и выходом 4 первичной текучей среды, с другой стороны, и
- вентилятор 14 циркуляции первичной текучей среды, закрепленный в камере 2.
Камера 2 содержит бак 20, внутри которого расположены наборы 40 пластин и коллекторы 7, 8, 9 и 10 и который содержит вверху проем 21 и съемную крышку 22 для герметичного закрывания проема 21 бака 20. Входы 5 вторичной текучей среды выполнены в верхней части бака 20 и равномерно распределены по его окружности.
Выходы 6 вторичной текучей среды выполнены в верхней части бака 20 немного ниже входов 5 и равномерно распределены по его окружности.
В нижней части бак 20 содержит единую врезку, через которую проходят вход 3 и выход 4 первичной текучей среды. Вход 3 и выход 4 являются коаксиальными, и выход 4 окружает вход 3.
Бак 20 закрыт снизу выпуклым дном, которое содержит круглый центральный проем с центром на оси X, в котором закреплен вентилятор 14.
Как показано на фиг.2 и 3, наборы 40 пластин образованы стопой пластин 41, ограничивающих между собой два контура циркуляции двух текучих сред, при этом первая текучая среда А показана на фиг.2 сплошными стрелками, а вторая текучая среда В показана на этой фигуре полыми стрелками. В одной из двух чередующихся пластин стопы циркулирует первая текучая среда, а в другой - вторая текучая среда.
Каждая пластина 41 содержит центральную теплообменную часть, оборудованную гофрами 42, которые ограничивают между собой каналы 43, способствующие теплообмену между текучими средами.
Как правило, гофры 42 образованы элементами, выполненными посредством деформации пластины, например, такими как выступы, ребра, вставки и т.д.
Для изготовления открытых 46 или закрытых 47 концов каналов 43, в которых циркулируют первая и вторая текучие среды поочередно в одной пластине 41 из двух в стопе, образующей набор 40 пластин, каждая пластина 41 содержит на своих краях, соответственно продольных 41 а и/или поперечных 41b, выступающий сплошной бортик 45 или несколько прерывистых бортиков 45. Расположение бортиков 45 на продольных 41 а и/или поперечных 41b краях зависит от направления циркуляции текучих сред между пластинами 41 набора 40 пластин, а также от расположения не показанных коллекторов входа и выхода этих текучих сред.
Расположение бортиков 45 на продольных 41 а и/или поперечных 41b краях, показанное на фиг.3, является лишь примером осуществления, и, разумеется, можно предусмотреть и другие варианты расположения.
Далее со ссылками на фиг.4 и 5 следует описание двух вариантов осуществления способа изготовления набора 40 пластин.
Как показано на фиг.4А, изначально пластина 41 является плоской и имеет постоянную толщину.
На первом этапе способа предпочтительно посредством механической обработки уменьшают первоначальную толщину пластины 30, чтобы получить пластину 41, оставляя на периферии этой пластины бортик или бортики 45 на продольных 41а и/или поперечных 41b краях указанной пластины 41. Механическую обработку, например, фрезерование, осуществляют, по меньшей мере, на одной стороне пластины 41.
Согласно первому варианту осуществления, показанному на фиг.4, уменьшение толщины пластины 30 осуществляют посредством механической обработки двух сторон пластины 30 таким образом, чтобы сохранить центральную зону 46 после снятия двух внешних зон 46а и 46b, как показано на фиг.4В. Незаштрихованные зоны символизируют снятый материал.
После этого на втором этапе способа в центральной части каждой пластины 41 выполняют гофры 42.
После выполнения пластин 41 их накладывают друг на друга парами, располагая бортики 45 друг над другом, и находящиеся в контакте бортики 45 пластин 41 каждой пары соединяют герметичным сварным швом 50, как показано на фиг.4D.
Затем пары пластин 41 укладывают друг на друга, располагая бортики 45 пар пластин 41 друг над другом, и находящиеся в контакте бортики 45 соединяют герметичным сварным швом 50.
Согласно второму варианту осуществления, показанному на фиг.5, для получения пластины 41 первоначальную толщину пластины 30 уменьшают посредством механической обработки только одной стороны этой пластины, как показано на фиг.5В. Незаштрихованные зоны символизируют снятый материал.
В этом случае удаляют только одну зону 46а, и оставшаяся зона 46 находится на одном краю бортика 45, тогда как в предыдущем варианте осуществления бортик 45 расположен с двух сторон оставшейся зоны 46. В этом втором варианте осуществления следующие этапы способа являются идентичными этапам предыдущего варианта осуществления и состоят в формировании гофр 42 на центральной части пластины 41, затем в наложении парами пластин 41 и в соединении находящихся в контакте бортиков 45 пластин каждой пары герметичным сварным швом 50.
После этого пары пластин укладывают друг на друга, располагая бортики 45 пар пластин 41 друг над другом, и находящиеся в контакте бортики 45 пар пластин 41 соединяют герметичным сварным швом 50.
Механической обработкой каждой пластины 41 является, например, обработка фрезерованием, а гофры 42 в центральной части каждой пластины 41 выполняют посредством вытяжки или формования.
Например, после механической обработки толщина e1 пластины 41 составляет от 0,2 до 3 мм, высота hi бортиков составляет от 0,5 до 5 мм, толщина e2 бортиков составляет от 2 до 4 мм. Высота h2 пяток 45а бортиков 45, расположенных с каждой стороны пластины 41 (фиг.4С) или только с одной стороны пластины 41 (фиг.5С), составляет от 0,2 до 3 мм.
Как правило, высота бортиков определена амплитудой гофр.
Значения высоты различных бортиков не обязательно должны быть равными, в зависимости от того, находятся они с холодной стороны или с горячей стороны набора пластин или находятся они с холодной стороны или с горячей стороны коллекторов входа и выхода текучих сред.
Предпочтительно пластины 41 соединяют и сваривают парами, затем полученные таким образом пары пластин, имеющие одинаковые размеры, соединяют и сваривают, чтобы получить конечную стопу. Этот способ позволяет не учитывать проблему усадки, которая происходит во время сварки. Действительно, если стопу выполнять путем добавления пластин одна за другой к предварительно сваренной стопе, новая свариваемая пластина не будет иметь такие же размеры, как уже сваренные пластины по причине усадки при сварке.
Не показанные коллекторы входа и выхода текучих сред, связанные с набором 40 пластин, можно интегрировать непосредственно в набор 40 пластин или можно присоединять и закреплять сваркой на соответствующем наборе 40 пластин.
На фиг.6-9 представлен другой пример набора 40 пластин, каждая пластина 41 которого выполнена при помощи способа в соответствии с настоящим изобретением.
В этом примере осуществления набор пластин представляет собой сквозные трубы, образующие коллекторы.
В этом случае пластины набора 40 пластин соединяют попарно, то есть верхнюю пластину 61 соединяют с нижней пластиной 62.
В этом случае две стороны каждой пластины 61 и 62 тоже обрабатывают механически для снятия части материала и оставляют часть определенной толщины, соответствующей толщине получаемой пластины 61 или 62. На продольных и/или поперечных краях пластины 61 выполняют один или несколько бортиков 63, а также выполняют один или несколько бортиков 64 на продольных и/или поперечных краях пластины 62. Не заштрихованные зоны соответствуют снятому материалу. В этом примере осуществления бортики 63 и 64 находятся с одной стороны соответствующей пластины, 61 и 62, под пластиной 61 в случае бортиков 63 и над пластиной 62 для бортиков 64.
В каждой из пластин 61 и 62 просверливают отверстие 65 входа и выхода второй текучей среды В и в пластинах 61 и 62 просверливают также отверстие 66 выхода этой второй текучей среды В, как показано на фиг.6.
Входные отверстия 65 и выходные отверстия 66 при наложении друг на друга образуют сквозные трубы.
После этого на центральной части каждой пластины 61 и 62 выполняют гофры 69 и эти пластины укладывают парами друг на друга. Находящиеся друг с другом в контакте бортики 63 и 64 соединяют герметичным сварным швом 70.
Полученные таким образом пары пластин 61 и 62 укладывают друг на друга и входящие друг с другом в контакт бортики 63 и 64 пар пластин 61 и 62 тоже соединяют герметичным сварным швом 70.
Бортики 67 и 68, входящие друг с другом в контакт вокруг каждого отверстия 65 и 66, тоже соединяют герметичным сварным швом 70, как показано на фиг.9. Полученную таким образом стопу пластин 61 и 62 устанавливают между двумя толстыми противоположными пластинами, соответственно 71 и 72, проходящими параллельно парам пластин 61 и 62.
В примере осуществления, показанном на фиг.9, стопа пластин 61 и 62 содержит на уровне боковой стороны набора 40 пластин входную зону А1 для первой текучей среды А и на противоположной стороне - выходную зону A2 для этой первой текучей среды А после ее прохождения в соответствующем контуре набора 40 пластин. Текучая среда А циркулирует в каналах, остающихся между двумя смежными пластинами 61 и 62 одной пары пластин из двух. Входная зона А1 соединена с не показанным коллектором входа первой текучей среды А, и выходная зона A2 соединена с не показанным коллектором выхода этой первой текучей среды А.
Отверстия 65, выполненные в пластинах 61 и 62, образуют две противоположные зоны B1 входа второй текучей среды В, и отверстия 66, выполненные в пластинах 61 и 62, образуют две зоны B2 выхода этой второй текучей среды В после ее прохождения в соответствующем контуре набора 40 пластин. Эта вторая текучая среда В заходит через отверстия 65 и циркулирует в каналах, образованных между пластинами 61 и 62 в одной паре пластин из двух, противотоком относительно первой текучей среды А. Каждая зона B1 соединена с не показанным коллектором входа второй текучей среды В, и каждая выходная зона В2 соединена с не показанным коллектором выхода этой второй текучей среды В после ее прохождения в наборе 40 пластин.
В одной из двух чередующихся пластин набора 40 циркулирует первая текучая среда А, а в другой - вторая текучая среда В.
Разумеется, можно предусмотреть и другие варианты.
Например, материалами пластин являются стали на основе никеля или нержавеющие стали. Сварные швы выполняют методом TIG или лазером, или электронным пучком.
Благодаря механической обработке пластин, способ изготовления в соответствии с настоящим изобретением позволяет добиваться размерной точности, превышающей точность наборов пластин, содержащих присоединяемые детали или выполненных с распорками.
Соединение сваркой позволяет избежать любого риска ухудшения микроструктуры материала за пределами сварной зоны и зоны, подверженной тепловому воздействию.
Кроме того, сварные швы располагают только на периферии набора пластин или в трубах циркуляции вторичной текучей среды В в примере осуществления, показанном на фиг.9, за счет чего добиваются большей гибкости относительно тепловых переходов и обеспечивают возможность контроля всех сварных швов такого набора пластин, благодаря доступу снаружи к сварным швам, находящимся на периферии, и доступу через трубы вторичной текучей среды в примере, показанном на фиг.9.
Способ в соответствии с настоящим изобретением позволяет отказаться от выполнения стенки из сварного шва, а также от использования присоединяемых деталей. Таким образом, этот отличительный признак позволяет уменьшить число сварных швов и за счет этого повысить надежность устройства и выполнять качественную сварку.
Наконец, способ в соответствии с настоящим изобретением позволяет получать наборы пластин с небольшим расстоянием, разделяющим каждую пластину, составляющим менее 3 мм.

Claims (15)

1. Способ изготовления компактного набора (40) пластин для теплообменника, образованного стопой пластин (41; 61, 62), ограничивающих между собой, по меньшей мере, два контура циркуляции двух независимых текучих сред, и содержащего оборудованную гофрами (42; 69) центральную теплообменную часть, отличающийся тем, что содержит этапы, на которых
- уменьшают первоначальную толщину каждой пластины (41; 61, 62) посредством механической обработки, оставляя на периферии пластины (41; 61, 62) и/или на уровне сквозных труб (65, 66), по меньшей мере, один соединительный бортик (45; 63, 64; 67, 68) высотой, превышающей толщину пластины (41; 61, 62) после механической обработки,
- выполняют гофры (42; 69) в центральной части каждой пластины (41; 61, 62),
- накладывают пластины (41; 61, 62) парами друг на друга, располагая бортики (45; 63, 64; 67, 68) пластин (41; 61, 62) друг над другом,
- соединяют находящиеся в контакте бортики (45; 63, 64; 67, 68) пластин (41; 61, 62) каждой пары герметичным сварным швом (50; 70),
- накладывают друг на друга пары пластин (41; 61, 62), располагая бортики (45; 63, 64; 67, 68) пар пластин (41; 61, 62) друг над другом,
- соединяют находящиеся в контакте бортики (45; 63, 64; 67, 68) пар пластин (41; 61, 62) герметичным сварным швом (50; 70), выполняя чередующееся наложение друг на друга открытых или закрытых концов входа или выхода указанных текучих сред.
2. Способ по п.1, отличающийся тем, что уменьшают первоначальную толщину каждой пластины (41; 61, 62) посредством механической обработки, по меньшей мере, одной стороны пластины (41; 61, 62).
3. Способ по п.1, отличающийся тем, что уменьшают первоначальную толщину каждой пластины (41; 61, 62) посредством механической обработки двух сторон пластины (41; 61, 62).
4. Способ по любому из пп.1-3, отличающийся тем, что выполняют гофры (42, 69) в центральной части каждой пластины (41; 61, 62) посредством вытяжки или формования.
5. Способ по любому из пп.1-3, отличающийся тем, что после механической обработки толщина пластин (41; 61, 62) составляет от 0,2 до 6 мм.
6. Способ по п.4, отличающийся тем, что после механической обработки толщина пластин (41; 61, 62) составляет от 0,2 до 6 мм.
7. Способ по любому из пп.1-3, 6, отличающийся тем, что после механической обработки высота бортиков (45; 63, 64; 67, 68) определена амплитудой гофр (42; 69) и предпочтительно составляет от 0,5 до 5 мм.
8. Способ по п.4, отличающийся тем, что после механической обработки высота бортиков (45; 63, 64; 67, 68) определена амплитудой гофр (42; 69) и предпочтительно составляет от 0,5 до 5 мм.
9. Способ по п.5, отличающийся тем, что после механической обработки высота бортиков (45; 63, 64; 67, 68) определена амплитудой гофр (42; 69) и предпочтительно составляет от 0,5 до 5 мм.
10. Способ по любому из пп.1-3, 6, 8, 9, отличающийся тем, что после механической обработки толщина бортиков (45; 63, 64; 67, 68) составляет от 1 до 4 мм.
11. Способ по п.4, отличающийся тем, что после механической обработки толщина бортиков (45; 63, 64; 67, 68) составляет от 1 до 4 мм.
12. Способ по п.5, отличающийся тем, что после механической обработки толщина бортиков (45; 63, 64; 67, 68) составляет от 1 до 4 мм.
13. Способ по п.7, отличающийся тем, что после механической обработки толщина бортиков (45; 63, 64; 67, 68) составляет от 1 до 4 мм.
14. Пластинчатый теплообменник, содержащий камеру, стойкую к внутреннему давлению, в которой расположен, по меньшей мере, один набор (40) пластин, выполненный способом по любому из пп.1-13.
15. Пластинчатый теплообменник по п.14, отличающийся тем, что предназначен для применения в высокотемпературном ядерном реакторе.
RU2011151623/06A 2009-05-18 2010-05-17 Способ изготовления набора пластин для теплообменника RU2528225C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0953264A FR2945612B1 (fr) 2009-05-18 2009-05-18 Procede de fabrication d'un faisceau de plaques pour un echangeur thermique
FR0953264 2009-05-18
PCT/FR2010/050945 WO2010133791A1 (fr) 2009-05-18 2010-05-17 Procede de fabrication d'un faisceau de plaques pour un echangeur thermique

Publications (2)

Publication Number Publication Date
RU2011151623A RU2011151623A (ru) 2013-06-27
RU2528225C2 true RU2528225C2 (ru) 2014-09-10

Family

ID=41582123

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011151623/06A RU2528225C2 (ru) 2009-05-18 2010-05-17 Способ изготовления набора пластин для теплообменника

Country Status (10)

Country Link
US (1) US9140498B2 (ru)
EP (1) EP2433078A1 (ru)
JP (1) JP5671013B2 (ru)
KR (1) KR20120030089A (ru)
CN (1) CN102575905B (ru)
BR (1) BRPI1009064A2 (ru)
CA (1) CA2762518A1 (ru)
FR (1) FR2945612B1 (ru)
RU (1) RU2528225C2 (ru)
WO (1) WO2010133791A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2623346C1 (ru) * 2016-06-22 2017-06-23 Общество с ограниченной ответственностью "Куранты" (ООО "Куранты") Универсальная пластина пластинчатого теплообменника и способ изготовления пакета пластин пластинчатого теплообменника
RU187573U1 (ru) * 2018-07-11 2019-03-12 Акционерное общество "Институт нефтехимпереработки " (АО "ИНХП ") Теплообменный элемент сварного пластинчатого теплообменника

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2601068C2 (ru) * 2011-07-28 2016-10-27 Нестек С.А. Способы и устройства для нагревания или охлаждения вязких материалов
CN102313469A (zh) * 2011-09-30 2012-01-11 茂名重力石化机械制造有限公司 一种组焊板翅式空气预热器
CN102661670B (zh) * 2012-05-17 2014-09-03 程宝华 一种超导纳米传热板式换热器及其制造方法
RU2635960C2 (ru) * 2012-09-18 2017-11-17 Басф Се Способ и установка для разогрева природного газа
DE112014000721T5 (de) * 2013-02-08 2015-10-29 Dana Canada Corporation Wärmetauscher mit ringförmigem Einlass/Auslass-Anschlussstück
CN104677147A (zh) * 2013-11-28 2015-06-03 天津华赛尔传热设备有限公司 一种多股流气气换热用全焊接板式换热器
CN103978291A (zh) * 2014-02-10 2014-08-13 上海楷鼎化工科技有限公司 波纹板、波纹板板束及焊接方法
WO2015129936A1 (ko) * 2014-02-26 2015-09-03 주식회사 포스비 반응기 및 열교환기용 체널형 스텍 및 그 제조 방법
FR3020135A1 (fr) * 2014-04-16 2015-10-23 Commissariat Energie Atomique Module d'echangeur de chaleur a echange thermique et compacite ameliores, utilisation avec du metal liquide et du gaz.
US20160109189A1 (en) * 2014-10-17 2016-04-21 Rolls-Royce Power Engineering Plc Heat exchanger
CN106288922B (zh) * 2016-08-15 2018-05-11 安徽天祥空调科技有限公司 一种散热管座及其制造方法
JP6911469B2 (ja) * 2017-03-31 2021-07-28 株式会社Ihi 熱処理装置
EP3415239B1 (en) 2017-06-15 2020-05-06 Alfa Laval Corporate AB Centrifugal separator and method of operating a centrifugal separator
US10823511B2 (en) 2017-06-26 2020-11-03 Raytheon Technologies Corporation Manufacturing a heat exchanger using a material buildup process
EP3816566B1 (en) * 2018-06-27 2023-04-19 Welcon Inc. Heat transport device and method for manufacturing same
CN110057220A (zh) * 2019-05-08 2019-07-26 上海发电设备成套设计研究院有限责任公司 一种板翅式换热器
CN116329900B (zh) * 2023-05-25 2023-07-28 甘肃蓝科石化高新装备股份有限公司 一种空气储能用板式热交换器板束的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738906A1 (fr) * 1995-09-19 1997-03-21 Packinox Sa Faisceau de plaques pour un echangeur thermique et echangeur thermique comportant un tel faisceau de plaques
US5699856A (en) * 1992-05-22 1997-12-23 Packinox Bank of plates for heat exchanger and method of assembling such a bank of plates
RU2118777C1 (ru) * 1996-07-16 1998-09-10 Акционерное общество открытого типа "Радиатор" Пластина теплообменника
FR2898404A1 (fr) * 2006-03-13 2007-09-14 Areva Np Sas Ensemble d'echange de chaleur entre un premier et un second fluides.
RU2007105643A (ru) * 2007-02-14 2008-08-20 ООО "Агат" (RU) Теплообменная поверхность, способ и инструмент ее изготовления (варианты), устройство для осуществления способа (варианты)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1501568B2 (de) * 1966-10-12 1971-05-13 Linde Ag, 6200 Wiesbaden Plattenwaermetauscher
DE3709278A1 (de) * 1987-03-20 1988-09-29 Kernforschungsz Karlsruhe Verfahren zur herstellung von feinstrukturkoerpern
CN2127782Y (zh) * 1992-06-22 1993-03-03 中国科学院工程热物理研究所 原表面全逆流式热交换器
US5228515A (en) * 1992-07-31 1993-07-20 Tran Hai H Modular, compact heat exchanger
US5626188A (en) * 1995-04-13 1997-05-06 Alliedsignal Inc. Composite machined fin heat exchanger
US5775412A (en) * 1996-01-11 1998-07-07 Gidding Engineering, Inc. High pressure dense heat transfer area heat exchanger
JP2916129B1 (ja) * 1998-02-04 1999-07-05 曙機械株式会社 溝付き板状部材の製造方法
CN2357307Y (zh) * 1998-12-09 2000-01-05 徐旻晖 一种热交换器
US6516874B2 (en) * 2001-06-29 2003-02-11 Delaware Capital Formation, Inc. All welded plate heat exchanger
FR2880106B1 (fr) * 2004-12-29 2007-06-01 Framatome Anp Sas Dispositif d'echange de chaleur entre deux fluides comportant des couches de mousse metallique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5699856A (en) * 1992-05-22 1997-12-23 Packinox Bank of plates for heat exchanger and method of assembling such a bank of plates
FR2738906A1 (fr) * 1995-09-19 1997-03-21 Packinox Sa Faisceau de plaques pour un echangeur thermique et echangeur thermique comportant un tel faisceau de plaques
RU2118777C1 (ru) * 1996-07-16 1998-09-10 Акционерное общество открытого типа "Радиатор" Пластина теплообменника
FR2898404A1 (fr) * 2006-03-13 2007-09-14 Areva Np Sas Ensemble d'echange de chaleur entre un premier et un second fluides.
RU2007105643A (ru) * 2007-02-14 2008-08-20 ООО "Агат" (RU) Теплообменная поверхность, способ и инструмент ее изготовления (варианты), устройство для осуществления способа (варианты)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2623346C1 (ru) * 2016-06-22 2017-06-23 Общество с ограниченной ответственностью "Куранты" (ООО "Куранты") Универсальная пластина пластинчатого теплообменника и способ изготовления пакета пластин пластинчатого теплообменника
RU187573U1 (ru) * 2018-07-11 2019-03-12 Акционерное общество "Институт нефтехимпереработки " (АО "ИНХП ") Теплообменный элемент сварного пластинчатого теплообменника

Also Published As

Publication number Publication date
FR2945612B1 (fr) 2011-07-22
CN102575905B (zh) 2015-01-21
WO2010133791A1 (fr) 2010-11-25
US20120090822A1 (en) 2012-04-19
US9140498B2 (en) 2015-09-22
EP2433078A1 (fr) 2012-03-28
KR20120030089A (ko) 2012-03-27
FR2945612A1 (fr) 2010-11-19
CA2762518A1 (fr) 2010-11-25
CN102575905A (zh) 2012-07-11
RU2011151623A (ru) 2013-06-27
JP2012527596A (ja) 2012-11-08
BRPI1009064A2 (pt) 2019-09-24
JP5671013B2 (ja) 2015-02-18

Similar Documents

Publication Publication Date Title
RU2528225C2 (ru) Способ изготовления набора пластин для теплообменника
US10399191B2 (en) Method for producing a heat exchanger module having at least two fluid flow circuits
US8371365B2 (en) Heat exchange device and method for manufacture
RU2557964C2 (ru) Пластинчатый теплообменник
JP5985471B2 (ja) プレート熱交換器及びプレート熱交換器の製造方法
US6802365B2 (en) Method for assembling the plates of a plate pack and resulting plate pack
JP2010510473A (ja) プレート熱交換器
JPH074885A (ja) 熱交換器
US3894581A (en) Method of manifold construction for formed tube-sheet heat exchanger and structure formed thereby
JPS58136994A (ja) 波形板型熱交換器
KR20160060837A (ko) 열교환 반응기 및 이의 제조방법
JP3968466B2 (ja) 円筒型熱交換器
CN107167000A (zh) 板式热交换器和制造板式热交换器的方法
US20070251925A1 (en) Method for manufacturing a heat exchanger
US20230168044A1 (en) A heat exchanger comprising a plate package and a hollow manifold
RU2707237C2 (ru) Пластинчатый теплообменник для химических реакторов с автоматически привариваемыми коллекторами
EP2257758A1 (en) A plate heat exchanger
EP3650796B1 (en) Heat exchanger
JPH07190650A (ja) 熱交換器
EP3470762A1 (en) Plate-type heat exchanger
US20230003464A1 (en) Heat exchanger and manufacturing method thereof
RU2789573C1 (ru) Способ изготовления пластинчатых теплообменных аппаратов
JP2012200760A (ja) 熱交換器の製造方法
JP4097997B2 (ja) 原子炉用熱交換器および原子炉用熱交換器の製造方法
JP2001099582A (ja) プレート式熱交換器及びその製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170518