EP2431597B1 - Method and device for detecting a fuel in a fuel supply system of a combustion engine - Google Patents

Method and device for detecting a fuel in a fuel supply system of a combustion engine Download PDF

Info

Publication number
EP2431597B1
EP2431597B1 EP11007503.3A EP11007503A EP2431597B1 EP 2431597 B1 EP2431597 B1 EP 2431597B1 EP 11007503 A EP11007503 A EP 11007503A EP 2431597 B1 EP2431597 B1 EP 2431597B1
Authority
EP
European Patent Office
Prior art keywords
fuel
supply system
predetermined position
cavity
fuel supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11007503.3A
Other languages
German (de)
French (fr)
Other versions
EP2431597A1 (en
Inventor
Stefan Schmerbeck
Christian Klüting
Timo Klingemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP2431597A1 publication Critical patent/EP2431597A1/en
Application granted granted Critical
Publication of EP2431597B1 publication Critical patent/EP2431597B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • F02M37/0064Layout or arrangement of systems for feeding fuel for engines being fed with multiple fuels or fuels having special properties, e.g. bio-fuels; varying the fuel composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • F02D19/087Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the invention relates to a method for detecting a viscosity of a fuel in a fuel supply system of an internal combustion engine, according to the preamble of claim 1.
  • the invention further relates to a fuel supply system having a device for determining the viscosity of a fuel in the fuel supply system of an internal combustion engine, according to the preamble of patent claim 15th
  • This fuel currently present in the fuel supply system is, for example, a pure fuel, such as diesel, gasoline, naphtha, kerosene, alcohol, butanol, in particular methanol, GTL (gas to liquid) or BTL (biomass to liquid), or a mixture of at least two clean fuels.
  • From the DE 10 2007 052 096 B4 is a method for detecting a type of fuel, which is injected via an injection system in a combustion chamber of an internal combustion engine, known.
  • a pressure is measured over time and, in phases during which the high-pressure pump does not deliver fuel, integrated the balance equation of the hydraulic system over a period considered.
  • the pressure difference is determined from the integrated balance equation using the values for compressibility modulus and density determined from these characteristics at a pressure measured in the injection phase in a trial-and-error procedure.
  • the pair of compressibility module and density which best reproduces the pressure difference measured over the considered time range is used to detect the fuel.
  • a defined injection is triggered with a known amount from a map. Since not nachge impartt, the compressibility of the fuel causes the amount of known pressure and known temperature.
  • the different compressibilities and densities of the different expected fuels are listed in tables. This can be closed by means of the known volume of the high-pressure region of the injection system to the existing fuel.
  • a method for determining the viscosity and elasticity of viscoelastic media by means of acoustoelectric resonators is known.
  • a function which describes the electrical admittance of the acoustoelectric resonator is optimized by iteratively adapting this function to a measured admittance curve of the acoustoelectric resonator with measurement medium applied thereto.
  • the adjusted function can then be the viscosity and elasticity of the medium to be taken as a parameter.
  • DI fuel distillation performance index
  • the invention has for its object to provide a simple and accurate method for determining the viscosity of a fuel supplied to an internal combustion engine.
  • a displacement body is moved in a bubble filled with the fuel in the fuel supply system of the internal combustion engine cavity from a first predetermined position to a second predetermined position, wherein from the time required for the movement movement and / or from the movement with a viscosity of the fuel present in the fuel supply system of the internal combustion engine is determined at a predetermined speed, the fuel is supplied to the parallel to a fuel line integrated into the fuel supply system cavity by means of an inlet and a 2/2-way valve from the fuel line and by means of a Runoff and a check valve of the fuel line is fed back.
  • a particularly good dependence of the movement time and / or the motive force on the viscosity of the fuel in the fuel supply system of the internal combustion engine is achieved in that the displacer is moved in the cavity such that in a gap between the displacer and the cavity, a shear flow of the fuel results.
  • a particularly accurate determination of the viscosity by means of a movement time over a predetermined distance with constant motive force is achieved by moving the displacer in the form of a piston in the cavity in the form of a capillary tube, the plunger being driven by a spring with constant motive force from the first predetermined one Position moves to the second predetermined position and the movement time for the movement from the first predetermined position to the second predetermined position is determined.
  • a precise determination of the viscosity in a mechanically simplified construction is achieved by moving the displacer in the form of a piston in the cavity in the form of a cylinder open on both sides in such a way that a shear flow results between the piston and the cylinder, the piston being constant Speed is moved from the first predetermined position to the second predetermined position and the movement force required for the movement from the first predetermined position to the second predetermined position is determined.
  • a further improvement in the accuracy of the determination of the viscosity is achieved in that the displacement body is moved in the form of a membrane piston in the cavity in the form of a capillary tube, the diaphragm piston of a spring with a constant motive force (known force-displacement curve is sufficiently constant; Force ideal) is moved from the first predetermined position to the second predetermined position and the movement time for the movement from the first predetermined position to the second predetermined position is determined.
  • known force-displacement curve is sufficiently constant; Force ideal
  • a bubble-free flow through the cavity with fuel from the fuel supply system of the internal combustion engine is achieved, for example, that a flow of fuel into the cavity via a 2/2-way valve fluidly connected to the fuel supply system of the internal combustion engine and that a drain for fuel from the Cavity is fluidly connected via a check valve with the fuel supply system of the internal combustion engine.
  • a particularly fast and reliable determination of the density of the fuel is achieved by reading out the viscosity from a table in which the assignments of travel time and / or motive force are stored with the viscosity of the fuel.
  • fuel types in particular diesel, gasoline, naphtha, kerosene, alcohol, Butanol, in particular methanol, GTL (gas to liquid) or BTL (biomass to liquid)
  • a temperature of the fuel in the region of the displacer and / or a temperature of the displacer is determined simultaneously with the determination of the viscosity, and the viscosity is additionally determined as a function of the temperature.
  • a viscosity of the fuel at a predetermined standard temperature, in particular 15 ° C. is preferably determined by means of the specific temperature.
  • a particularly rapid and effective adaptation of the combustion to the fuel present in the fuel supply system of the internal combustion engine achieved by the fact that for predetermined multi-fuel mixtures, in particular mixtures with at least two of the fuel types diesel, gasoline, naphtha, kerosene, butanol, GTL (gas to liquid) or BTL (biomass to liquid), an energy injection quantity is corrected as a function of the specific viscosity.
  • Art according to the invention provided that it has a bubble-free fillable with the fuel cavity in which a displaceable from a first predetermined position to a second predetermined position displacer is arranged, wherein the cavity is integrated in parallel to a fuel line in the fuel supply system and wherein the cavity means an inlet for the fuel and a 2/2-way valve and by means of a drain for the fuel and a check valve is fluidly connected to the fuel line.
  • a particularly high correlation between the movement of the displacer and the viscosity of the fuel present in the cavity is achieved in that the cavity and the displacer are arranged and formed such that upon movement of the displacer in a gap between the displacer and the cavity forms a shear flow.
  • a mechanically particularly simple structure is achieved in that the displacer is a piston or a diaphragm piston.
  • a determination of the viscosity of the fuel present in the cavity by means of a movement time for a movement of the displacement of the first predetermined position to a second predetermined position is achieved in that in the cavity, a mechanical spring means, in particular a coil spring, leaf spring or a gas spring, such is arranged and designed such that this mechanical spring means moves the displacer with a predetermined motive force from the first predetermined position to a second predetermined position.
  • a mechanical spring means in particular a coil spring, leaf spring or a gas spring
  • a determination of the viscosity of the fuel present in the cavity by means of a necessary motive force for movement of the displacer from the first predetermined position to a second predetermined position at a predetermined speed can be achieved by arranging and forming in the cavity a mechanical translating device said mechanical translating means moves the displacer at a predetermined speed from the first predetermined position to a second predetermined position.
  • the device according to the invention in order to obtain as void-free as possible fuel in the cavity, it can be provided, the device according to the invention as a closed system, i. only with connections (inlet and outlet) to lines of the fuel system or without connection to the atmosphere form. This provides the preferred possibility of keeping the fuel in the cavity under pressure, which effectively prevents (vapor) bubble formation.
  • the provision of the fuel under pressure can be achieved by arranging the device according to the invention in a fuel supply system according to the invention, which comprises, in addition to the device, at least one fuel tank, the fuel line and a return for the fuel, downstream of a pump (for the fuel). at the pump may preferably be a low pressure pump such as a prefeed pump.
  • Fig. 1 shows by way of example and schematically a fuel supply system of an otherwise not shown internal combustion engine with a fuel tank 10, a prefeed pump 12, a fuel line 14, a filter 16, a high-pressure pump 18, a common rail 20, an injector 22 for each working cylinder (not shown) of the internal combustion engine , a first return 24 from the injector 22 into the fuel tank 10 and a second return 26 from the common rail 20 into the fuel tank 10.
  • the first preferred embodiment of a device for determining the viscosity of a fuel in a fuel supply system of an internal combustion engine according to the invention for carrying out the method according to the invention comprises a cavity 28 in the form of a capillary tube, in which a displacement body 30 is arranged in the form of a piston.
  • the piston is movable by a spring 32 from a first predetermined position 44 within the cavity 28 to a second predetermined position 42 within the cavity 28 at a predetermined constant motive force.
  • An inlet 34 for fuel connects the cavity 28 in fluid communication with the fuel line 14 via a 2/2-way valve 36 and a drain 38 for fuel connects the cavity 28 in fluid communication with the fuel line 14 via a check valve 40.
  • Fig. 1 30 denotes the piston at the second predetermined position 42, 30 ', the piston at a position between the first and second positions 42, 44 and 30 "the piston at the first predetermined position 44th
  • a movement time required for this translational movement of the piston from the first predetermined position 44 to the second predetermined position 42 is measured, and from this movement time, a viscosity of the fuel in the cavity 28 is determined.
  • the viscosity is then used to conclude a mixture of the fuel from various fuel types, such as diesel, gasoline, naphtha, kerosene, alcohol, in particular methanol, butanol, GTL (gas to liquid) or BTL (biomass to liquid).
  • fuel types such as diesel, gasoline, naphtha, kerosene, alcohol, in particular methanol, butanol, GTL (gas to liquid) or BTL (biomass to liquid).
  • GTL gas to liquid
  • BTL biomass to liquid
  • a temperature compensation is provided for example with a standard existing fuel temperature sensor.
  • the 2/2-way valve 36 and the check valve 40 ensures that the representative of the tank 10 mixture in the measuring system (free of gas bubbles) is present and that the measurement result is not affected by undefined flow.
  • the piston and the cavity 28 are formed such that a gap 52 results between the two. Through this gap 52 results in a shear flow of the fuel during the movement of the piston.
  • Fig. 2 shows a second preferred embodiment of a fuel supply system according to the invention, with an apparatus for carrying out the method according to the invention, wherein functionally identical parts are designated by the same reference numerals, as in Fig. 1 so that their explanation to the above description of Fig. 1 is referenced.
  • the cavity 28 is formed as an open cylinder and the piston is at a predetermined speed through the cavity 28 moves.
  • the movement force 54 required for this purpose is measured, and from this motive force 54 a viscosity of the fuel in the cavity 28 is determined.
  • This viscosity of the fuel thus determined becomes corresponding as in relation to Fig. 1 further evaluated to determine fuel properties and mixing proportions of fuel types in the fuel.
  • the correlation between viscosity and the required motive force for the translational movement of the piston in the "open" cylinder 28 results, in particular, from the fact that a shear flow 56 in the gap 52 between piston and cylinder 28 changes depending on the viscosity.
  • a temperature compensation is provided for example with the standard existing fuel temperature sensor.
  • the measuring volume is the same as in the first embodiment Fig. 1 To protect against cross-influences by flow, eg by execution as a closed system.
  • Fig. 3 shows a third preferred embodiment of a fuel supply system according to the invention with an apparatus for carrying out the method according to the invention, wherein functionally identical parts are designated by the same reference numerals, as in Fig. 1 so that their explanation to the above description of Fig. 1 is referenced.
  • the displacement body 30 is formed as a diaphragm piston and there is no gap 52 is provided.
  • the spring-loaded displacer 30 in the form of the membrane piston, arranged in the capillary tube 28, points after tightening e.g. by the solenoid valve 46 in response to the viscosity of the fuel at a constant spring restoring force on a characteristic, measurable return time or movement time.
  • a temperature compensation is provided for example with the standard existing fuel temperature sensor.
  • the spring is represented for example by an enclosed gas volume 32 '(gas spring).
  • the bias of the diaphragm piston is designed, for example, such that the diaphragm piston actuates the detector 50 in the state tensioned by the spring forces.
  • the time between the states "E-magnet 46 de-energized” and “microswitch 50 actuated” is characteristic taking into account the fuel temperature in the measuring system for the viscosity of the fuel present in the measuring system. This thus determined from the movement time viscosity of the fuel is, as in relation to Fig. 1 further evaluated to determine fuel properties and mixing proportions of fuel types in the fuel.
  • the device is installed within a component of the fuel supply system according to the invention (tank 10, low pressure line 14, common rail 20, injector 22 or filter 16), which flows through well.
  • a component of the fuel supply system according to the invention
  • the viscosities of the individual fuels and the mixed viscosity are known. From the measured viscosity of the fuel in the cavity 28 can be so, possibly after a temperature correction, determine the mixing ratio of fuel types in the fuel.
  • the temperature correction compensates for the sharp drop in viscosity with the increase in temperature.
  • the devices are as in the Fig. 1 and 3 represented, preferably formed as closed systems, whereby the freedom from bubbles of the fuel to be analyzed can be ensured.
  • the device is preferably integrated into a portion of the fuel supply system, in which at least a portion of the fuel is pumped through the fuel tank permanently in a cycle, ensures that always, for example, after a refueling, the fuel supplied to the injectors also is actually analyzed.
  • a combination with a method for detecting a fuel in a fuel supply system of an internal combustion engine wherein a resonant frequency of an oscillated by the fuel in the fuel supply system of the internal combustion engine oscillator quartz determines and from the resonant frequency, a density of the fuel in the fuel supply system of the internal combustion engine is determined.
  • a particularly simple and functionally reliable determination of the density of the fuel is achieved by comparing the specific resonance frequency with a resonant frequency of the quartz crystal in a reference medium, in particular in vacuum or air, and from a difference between these two resonance frequencies, the density of the fuel in the fuel supply system Internal combustion engine is determined.
  • a particularly fast and functionally reliable determination of the density of the fuel is achieved by reading the density from a table or by determining a known functional equation in which the resonance frequency and density of the fuel are assigned.
  • a determination of different types of fuel in the fuel, which is present in the fuel supply system of the internal combustion engine obtained by the fact that from the specific density all present in the fuel in the fuel supply system of the internal combustion engine fuel types, in particular diesel, gasoline, naphtha, kerosene, alcohol, especially methanol, butanol, GTL (gas to liquid) or BTL (biomass to liquid).
  • fuel types in particular diesel, gasoline, naphtha, kerosene, alcohol, especially methanol, butanol, GTL (gas to liquid) or BTL (biomass to liquid).
  • the fuel in determined the fuel supply system of the internal combustion engine.
  • a temperature of the fuel in the region of the quartz crystal and / or a temperature of the quartz crystal is determined simultaneously with the determination of the resonant frequency, and the density is determined as a function of the resonant frequency and the temperature.
  • a density of the fuel at a predetermined standard temperature in particular 15 ° C., is preferably determined by means of the specific temperature.
  • a particularly rapid and effective adaptation of the combustion to the fuel present in each case in the fuel supply system of the internal combustion engine is achieved in that for predetermined multi-fuel mixtures, in particular mixtures with at least two of the fuel types diesel, gasoline, naphtha, kerosene, GTL (gas to liquid) or BTL ( biomass to liquid), butanol, an energy injection quantity is corrected as a function of the specific resonance frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Detektieren einer Viskosität eines Kraftstoffes in einem Kraftstoffzuführungssystem einer Brennkraftmaschine, gemäß dem Oberbegriff des Patentanspruchs 1. Die Erfindung betrifft ferner ein Kraftstoffzuführungssystem mit einer Vorrichtung zum Bestimmen der Viskosität eines Kraftstoffes in dem Kraftstoffzuführsystem einer Brennkraftmaschine, gemäß dem Oberbegriff des Patentanspruchs 15.The invention relates to a method for detecting a viscosity of a fuel in a fuel supply system of an internal combustion engine, according to the preamble of claim 1. The invention further relates to a fuel supply system having a device for determining the viscosity of a fuel in the fuel supply system of an internal combustion engine, according to the preamble of patent claim 15th

Der Einsatz anderer flüssiger Kraftstoffe bzw. derer Gemische als der typischen Kraftstoffe, wie beispielsweise Diesel- und Ottokraftstoff-Mischungen, erfordert im entsprechenden Motor Regelstrategien zur Beherrschung und Optimierung der Verbrennung. Für die Anwendung der Regelstrategien ist die Erkennung des jeweils in dem Kraftstoffzuführungssystem vorhandenen Kraftstoffs bzw. des Kraftstoffgemisches notwendig.The use of other liquid fuels or mixtures thereof as the typical fuels, such as diesel and gasoline mixtures, requires in the corresponding engine control strategies for controlling and optimizing the combustion. For the application of the control strategies, the detection of the respectively present in the fuel supply system fuel or the fuel mixture is necessary.

Bei dem Betrieb einer Brennkraftmaschine mit unterschiedlichen Kraftstoffarten bzw. Kraftstoffsorten ist für die gleichzeitige Erfüllung der Ziele Komfort, Emissionen und Verbrauch eine Ermittlung der für die Verbrennung entscheidenden Kraftstoffkennwerte (z.B. Cetanzahl und Siedelage) des jeweils gerade in einem Kraftstoffzuführungssystem vorhandenen Kraftstoffes, notwendig. Dieser jeweils gerade in dem Kraftstoffzuführungssystem vorhandene Kraftstoff ist beispielsweise ein Reinkraftstoff, wie beispielsweise Diesel, Benzin, Naphtha, Kerosin, Alkohol, Butanol, insbesondere Methanol, GTL (gas to liquid) oder BTL (biomass to liquid), oder ein Gemisch aus mindestens zwei Reinkraftstoffen.In the operation of an internal combustion engine with different types of fuel or fuels is for the simultaneous fulfillment of the objectives comfort, emissions and consumption, a determination of the decisive for combustion fuel characteristics (e.g., cetane number and Siedelage) of each currently present in a fuel supply system fuel necessary. This fuel currently present in the fuel supply system is, for example, a pure fuel, such as diesel, gasoline, naphtha, kerosene, alcohol, butanol, in particular methanol, GTL (gas to liquid) or BTL (biomass to liquid), or a mixture of at least two clean fuels.

Aus der DE 10 2007 052 096 B4 ist ein Verfahren zur Erkennung einer Kraftstoffsorte, die über eine Einspritzanlage in einen Brennraum einer Brennkraftmaschine eingespritzt wird, bekannt. Hierbei wird in einem Hochdruckbereich der Einspritzanlage ein Druck über der Zeit gemessen und in Phasen, während derer die Hochdruckpumpe keinen Kraftstoff fördert, die Bilanzgleichung des hydraulischen Systems über einen betrachteten Zeitraum integriert. Aus für jeden Kraftstoff bekannten Kennkurven des Kompressibilitätsmoduls und der Dichte in Abhängigkeit vom Druck wird unter Verwendung der aus diesen Kennkurven bei einem in der Einspritzphase gemessenen Druck gefundenen Werten für Kompressibilitätsmodul und Dichte in einem Trial-and-Error-Verfahren die Druckdifferenz aus der integrierten Bilanzgleichung bestimmt. Dasjenige Paar von Kompressibilitätsmodul und Dichte, welches am besten die über den betrachteten Zeitbereich gemessene Druckdifferenz reproduziert, wird zur Erkennung des Kraftstoffs herangezogen. Mit anderen Worten wird innerhalb einer Förderpause einer Kraftstoffpumpe eine definierte Einspritzung mit einer aus einem Kennfeld bekannten Menge ausgelöst. Da nicht nachgefördert wird, bedingt die Kompressibilität des Kraftstoffes die Menge bei bekanntem Druck und bekannter Temperatur. Die unterschiedlichen Kompressibilitäten und Dichten der unterschiedlichen, zu erwartenden Kraftstoffe sind in Tabellen abgelegt. Dadurch kann mittels des bekannten Volumens des Hochdruckbereiches der Einspritzanlage auf den vorhandenen Kraftstoff geschlossen werden.From the DE 10 2007 052 096 B4 is a method for detecting a type of fuel, which is injected via an injection system in a combustion chamber of an internal combustion engine, known. In this case, in a high-pressure region of the injection system, a pressure is measured over time and, in phases during which the high-pressure pump does not deliver fuel, integrated the balance equation of the hydraulic system over a period considered. From characteristic curves of the compressibility module and the density in, known for each fuel Depending on the pressure, the pressure difference is determined from the integrated balance equation using the values for compressibility modulus and density determined from these characteristics at a pressure measured in the injection phase in a trial-and-error procedure. The pair of compressibility module and density which best reproduces the pressure difference measured over the considered time range is used to detect the fuel. In other words, within a delivery pause of a fuel pump, a defined injection is triggered with a known amount from a map. Since not nachgefördert, the compressibility of the fuel causes the amount of known pressure and known temperature. The different compressibilities and densities of the different expected fuels are listed in tables. This can be closed by means of the known volume of the high-pressure region of the injection system to the existing fuel.

Aus der DE 10 2008 026 009 A1 ist ein Verfahren zur Bestimmung der Viskosität und Elastizität von viskoelastischen Medien mittels akustoelektrischen Resonatoren bekannt. Hierbei wird eine Funktion, welche die elektrische Admittanz des akustoelektrischen Resonators beschreibt optimiert, indem diese Funktion iterativ an einen gemessenen Admittanzverlauf des akustoelektrischen Resonators mit auf diesem aufgebrachtem Messmedium angepasst wird. Der angepassten Funktion kann dann die Viskosität und Elastizität des Messmediums als Parameter entnommen werden.From the DE 10 2008 026 009 A1 For example, a method for determining the viscosity and elasticity of viscoelastic media by means of acoustoelectric resonators is known. In this case, a function which describes the electrical admittance of the acoustoelectric resonator is optimized by iteratively adapting this function to a measured admittance curve of the acoustoelectric resonator with measurement medium applied thereto. The adjusted function can then be the viscosity and elasticity of the medium to be taken as a parameter.

Aus der DE 10 2004 008 150 A1 ist eine On-Board-Messung von Kraftstoffeigenschaften zum Motormanagement bekannt. Hierbei wird mittels einer Heizung ein definiertes Volumen von Kraftstoff verdampft. Die Zeit und die Heizungsenergie, die hierfür nötig ist, wird gemessen und daraus ein Kraftstoffdestillations-Betriebsverhaltensindex (DI) bestimmt. Der DI-Wert ist ein Maß für die Kraftstoffflüchtigkeit und wird dann dazu verwendet, den Betrieb des Motors zu steuern, um Schadstoffe zu reduzieren und die Leistung zu verbessern.From the DE 10 2004 008 150 A1 An on-board measurement of fuel properties for engine management is known. In this case, a defined volume of fuel is evaporated by means of a heater. The time and heating energy required for this is measured and used to determine a fuel distillation performance index (DI). The DI value is a measure of fuel volatility and is then used to control the operation of the engine to reduce pollutants and improve performance.

Aus der DE 40 19 187 C2 ist es bekannt, eine Treibstoffzusammensetzung mittels eines kapazitiven, dielektrischen Sensors zu bestimmen, welcher die Dielektrizitätskonstante des Treibstoffs misst.From the DE 40 19 187 C2 It is known to determine a fuel composition by means of a capacitive dielectric sensor which measures the dielectric constant of the fuel.

In der DE 10 2007 034585 A1 und der JP 63 313065 A ist offenbart, dass Eigenschaften von Fluiden, u.a. die Viskosität eines Kraftstoffs, dadurch ermittelt werden können, dass ein Körper mit definierter Kraft durch das Fluid bewegt wird und von der für einen definierten Weg erforderlichen Bewegungszeit des Körpers auf die Viskosität geschlossen wird.In the DE 10 2007 034585 A1 and the JP 63 313065 A discloses that properties of fluids, including the viscosity of a fuel, can be determined by moving a body with a defined force through the fluid and is closed by the time required for a defined path travel time of the body on the viscosity.

Der Erfindung liegt die Aufgabe zugrunde, ein einfaches und genaues Verfahren zur Ermittlung der Viskosität eines einer Brennkraftmaschine zugeführten Kraftstoffs zur Verfügung zu stellen.The invention has for its object to provide a simple and accurate method for determining the viscosity of a fuel supplied to an internal combustion engine.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren der o.g. Art mit den in Anspruch 1 gekennzeichneten Merkmalen und durch ein Kraftstoffzuführungssystem der o.g. Art mit den in Anspruch 15 gekennzeichneten Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den weiteren Ansprüchen beschrieben.This object is achieved by a method of o.g. Art having the features characterized in claim 1 and by a fuel supply system of the above-mentioned. Art solved with the features characterized in claim 15. Advantageous embodiments of the invention are described in the further claims.

Dazu ist es bei einem Verfahren der o.g. Art erfindungsgemäß vorgesehen, dass ein Verdrängerkörper in einem mit dem Kraftstoff in dem Kraftstoffzuführungssystem der Brennkraftmaschine blasenfrei befüllten Hohlraum von einer ersten vorbestimmten Position zu einer zweiten vorbestimmten Position bewegt wird, wobei aus der für die Bewegung erforderlichen Bewegungszeit und/oder aus der für die Bewegung mit einer vorbestimmten Geschwindigkeit erforderlichen Bewegungskraft eine Viskosität des in dem Kraftstoffzuführungssystem der Brennkraftmaschine vorhandenen Kraftstoffes bestimmt wird wobei der Kraftstoff dem parallel zu einer Kraftstoffleitung in das Kraftstoffzuführungssystem integrierten Hohlraum mittels eines Zulaufs und über ein 2/2-Wege-Ventil aus der Kraftstoffleitung zugeführt und mittels eines Ablaufs und über ein Rückschlagventil der Kraftstoffleitung wieder zugeführt wird.For this it is in a procedure of o.g. Art according to the invention provided that a displacement body is moved in a bubble filled with the fuel in the fuel supply system of the internal combustion engine cavity from a first predetermined position to a second predetermined position, wherein from the time required for the movement movement and / or from the movement with a viscosity of the fuel present in the fuel supply system of the internal combustion engine is determined at a predetermined speed, the fuel is supplied to the parallel to a fuel line integrated into the fuel supply system cavity by means of an inlet and a 2/2-way valve from the fuel line and by means of a Runoff and a check valve of the fuel line is fed back.

Dies hat den Vorteil, dass mit geringer Komplexität eine funktionssichere Detektion von für die Verbrennung in der Brennkraftmaschine relevanten Eigenschaften des Kraftstoffes mittels der Viskosität zur Verfügung steht.This has the advantage that, with low complexity, a functionally reliable detection of properties of the fuel relevant for combustion in the internal combustion engine is available by means of the viscosity.

Eine besonders gute Abhängigkeit der Bewegungszeit und/oder der Bewegungskraft von der Viskosität des Kraftstoffes in dem Kraftstoffzuführungssystem der Brennkraftmaschine erzielt man dadurch, dass der Verdrängerkörper derart in dem Hohlraum bewegt wird, dass sich in einem Spalt zwischen dem Verdrängerkörper und dem Hohlraum eine Scherströmung des Kraftstoffes ergibt.A particularly good dependence of the movement time and / or the motive force on the viscosity of the fuel in the fuel supply system of the internal combustion engine is achieved in that the displacer is moved in the cavity such that in a gap between the displacer and the cavity, a shear flow of the fuel results.

Eine besonders genaue Bestimmung der Viskosität mittels einer Bewegungszeit über eine vorbestimmte Strecke mit konstanter Bewegungskraft erzielt man dadurch, dass der Verdrängerkörper in Form eines Kolbens in dem Hohlraum in Form eines Kapillarrohres bewegt wird, wobei der Kolben von einer Feder mit konstanter Bewegungskraft von der ersten vorbestimmten Position in die zweite vorbestimmte Position bewegt und die Bewegungszeit für die Bewegung von der ersten vorbestimmten Position in die zweite vorbestimmte Position bestimmt wird.A particularly accurate determination of the viscosity by means of a movement time over a predetermined distance with constant motive force is achieved by moving the displacer in the form of a piston in the cavity in the form of a capillary tube, the plunger being driven by a spring with constant motive force from the first predetermined one Position moves to the second predetermined position and the movement time for the movement from the first predetermined position to the second predetermined position is determined.

Eine genaue Bestimmung der Viskosität bei mechanisch vereinfachtem Aufbau erzielt man dadurch, dass der Verdrängerkörper in Form eines Kolbens in dem Hohlraum in Form eines beidseits offenen Zylinders derart bewegt wird, dass sich zwischen dem Kolben und dem Zylinder eine Scherströmung ergibt, wobei der Kolben mit konstanter Geschwindigkeit von der ersten vorbestimmten Position in die zweite vorbestimmte Position bewegt und die hierfür erforderliche Bewegungskraft für die Bewegung von der ersten vorbestimmten Position in die zweite vorbestimmte Position bestimmt wird.A precise determination of the viscosity in a mechanically simplified construction is achieved by moving the displacer in the form of a piston in the cavity in the form of a cylinder open on both sides in such a way that a shear flow results between the piston and the cylinder, the piston being constant Speed is moved from the first predetermined position to the second predetermined position and the movement force required for the movement from the first predetermined position to the second predetermined position is determined.

Eine weitere Verbesserung der Genauigkeit der Bestimmung des Viskosität erzielt man dadurch, dass der Verdrängerkörper in Form eines Membrankolbens in dem Hohlraum in Form eines Kapillarrohres bewegt wird, wobei der Membrankolben von einer Feder mit konstanter Bewegungskraft (bekannter Kraft-Weg-Verlauf ist hinreichend konstant; Kraft ideal) von der ersten vorbestimmten Position in die zweite vorbestimmte Position bewegt und die Bewegungszeit für die Bewegung von der ersten vorbestimmten Position in die zweite vorbestimmte Position bestimmt wird.A further improvement in the accuracy of the determination of the viscosity is achieved in that the displacement body is moved in the form of a membrane piston in the cavity in the form of a capillary tube, the diaphragm piston of a spring with a constant motive force (known force-displacement curve is sufficiently constant; Force ideal) is moved from the first predetermined position to the second predetermined position and the movement time for the movement from the first predetermined position to the second predetermined position is determined.

Eine blasenfreie Durchströmung des Hohlraumes mit Kraftstoff aus dem Kraftstoffzuführungssystem der Brennkraftmaschine erzielt man beispielsweise dadurch, dass ein Zufluss für Kraftstoff in den Hohlraum über ein 2/2-Wege-Ventil mit dem Kraftstoffzuführungssystem der Brennkraftmaschine fluidleitend verbunden ist und dass ein Abfluss für Kraftstoff aus dem Hohlraum über ein Rückschlagventil mit dem Kraftstoffzuführungssystem der Brennkraftmaschine fluidleitend verbunden ist.A bubble-free flow through the cavity with fuel from the fuel supply system of the internal combustion engine is achieved, for example, that a flow of fuel into the cavity via a 2/2-way valve fluidly connected to the fuel supply system of the internal combustion engine and that a drain for fuel from the Cavity is fluidly connected via a check valve with the fuel supply system of the internal combustion engine.

Eine besonders schnelle und funktionssichere Bestimmung der Dichte des Kraftstoffes erzielt man dadurch, dass die Viskosität aus einer Tabelle ausgelesen wird, in der Zuordnungen von Bewegungszeit und/oder Bewegungskraft mit der Viskosität des Kraftstoffes hinterlegt sind.A particularly fast and reliable determination of the density of the fuel is achieved by reading out the viscosity from a table in which the assignments of travel time and / or motive force are stored with the viscosity of the fuel.

Eine Bestimmung von verschiedenen Kraftstoffsorten in dem Kraftstoff, welcher in dem Kraftstoffzuführungssystem der Brennkraftmaschine vorhanden ist, erzielt man dadurch, dass aus der bestimmten Viskosität alle in dem Kraftstoff in dem Kraftstoffzuführungssystem der Brennkraftmaschine vorhandenen Kraftstoffarten, insbesondere Diesel, Benzin, Naphtha, Kerosin, Alkohol, Butanol, insbesondere Methanol, GTL (gas to liquid) oder BTL (biomass to liquid), bestimmt werden.A determination of different types of fuel in the fuel, which is present in the fuel supply system of the internal combustion engine, obtained by the fact that from the specific viscosity all present in the fuel in the fuel supply system of the internal combustion engine fuel types, in particular diesel, gasoline, naphtha, kerosene, alcohol, Butanol, in particular methanol, GTL (gas to liquid) or BTL (biomass to liquid), are determined.

Zum optimalen Einstellen von Parametern für die Verbrennung, wie Einspritzzeitpunkt und/oder Ansteuerdauer, im Hinblick auf den momentan in dem Kraftstoffzuführungssystem der Brennkraftmaschine vorhandenen Kraftstoff wird aus der bestimmten Viskosität mindestens ein motorrelevanter Parameter, insbesondere eine Cetanzahl und/oder eine Siedelage, des Kraftstoffes in dem Kraftstoffzuführungssystem der Brennkraftmaschine bestimmt.For optimum setting of parameters for the combustion, such as injection timing and / or activation duration, with regard to the currently present in the fuel supply system of the internal combustion engine fuel from the determined viscosity at least one engine-relevant parameter, in particular a cetane number and / or a boiling position of the fuel determined the fuel supply system of the internal combustion engine.

Zur Korrektur des Ausdehnungskoeffizienten des Kraftstoffes wird gleichzeitig mit der Bestimmung der Viskosität eine Temperatur des Kraftstoffes im Bereich des Verdrängerkörpers und/oder eine Temperatur des Verdrängerkörpers bestimmt und die Viskosität zusätzlich in Abhängigkeit von der Temperatur bestimmt. Hierbei wird bevorzugt mittels der bestimmten Temperatur eine Viskosität des Kraftstoffes bei einer vorbestimmen Standardtemperatur, insbesondere 15°C, bestimmt.To correct the coefficient of expansion of the fuel, a temperature of the fuel in the region of the displacer and / or a temperature of the displacer is determined simultaneously with the determination of the viscosity, and the viscosity is additionally determined as a function of the temperature. In this case, a viscosity of the fuel at a predetermined standard temperature, in particular 15 ° C., is preferably determined by means of the specific temperature.

Eine besonders schnelle und effektive Anpassung der Verbrennung an den jeweils im Kraftstoffzuführungssystem der Brennkraftmaschine vorhandenen Kraftstoff erzielt man dadurch, dass für vorbestimmte Mehrkraftstoffgemische, insbesondere Gemische mit mindestens zwei der Kraftstoffsorten Diesel, Benzin, Naphtha, Kerosin, Butanol, GTL (gas to liquid) oder BTL (biomass to liquid), eine energetische Einspritzmenge in Abhängigkeit von der bestimmten Viskosität korrigiert wird.A particularly rapid and effective adaptation of the combustion to the fuel present in the fuel supply system of the internal combustion engine achieved by the fact that for predetermined multi-fuel mixtures, in particular mixtures with at least two of the fuel types diesel, gasoline, naphtha, kerosene, butanol, GTL (gas to liquid) or BTL (biomass to liquid), an energy injection quantity is corrected as a function of the specific viscosity.

Weiterhin ist bei einer Vorrichtung eines Kraftstoffzuführungssystems der o.g. Art erfindungsgemäß vorgesehen, dass diese einen mit dem Kraftstoff blasenfrei befüllbaren Hohlraum aufweist, in dem ein von einer ersten vorbestimmten Position zu einer zweiten vorbestimmten Position verschiebbarer Verdrängerkörper angeordnet ist, wobei der Hohlraum parallel zu einer Kraftstoffleitung in das Kraftstoffzuführungssystem integriert ist und wobei der Hohlraum mittels eines Zulaufs für den Kraftstoff und über ein 2/2-Wege-Ventil sowie mittels eines Ablaufs für den Kraftstoff und über ein Rückschlagventil fluidleitend mit der Kraftstoffleitung verbunden ist.Furthermore, in an apparatus of a fuel supply system of the above-mentioned. Art according to the invention provided that it has a bubble-free fillable with the fuel cavity in which a displaceable from a first predetermined position to a second predetermined position displacer is arranged, wherein the cavity is integrated in parallel to a fuel line in the fuel supply system and wherein the cavity means an inlet for the fuel and a 2/2-way valve and by means of a drain for the fuel and a check valve is fluidly connected to the fuel line.

Dies hat den Vorteil, dass eine einfache Bestimmung der Viskosität des Kraftstoffes über eine Bewegungszeit des Verdrängerkörpers bei konstanter auf diesen wirkenden Bewegungskraft und/oder eine auf den Verdrängerkörper wirkende Bewegungskraft für eine vorbestimmte translatorische Bewegung, beispielsweise eine translatorische Bewegung mit vorbestimmter Geschwindigkeit, erzielt wird.This has the advantage that a simple determination of the viscosity of the fuel over a movement time of the displacer at constant acting on this moving force and / or acting on the displacer movement force for a predetermined translational movement, for example, a translational movement at a predetermined speed is achieved.

Eine besonders hohe Korrelation zwischen der Bewegung des Verdrängerkörpers und der Viskosität des in dem Hohlraum vorhandenen Kraftstoffes erzielt man dadurch, dass der Hohlraum und der Verdrängerkörper derart angeordnet und ausgebildet sind, dass sich bei einer Bewegung des Verdrängerkörpers in einem Spalt zwischen dem Verdrängerkörper und dem Hohlraum eine Scherströmung ausbildet.A particularly high correlation between the movement of the displacer and the viscosity of the fuel present in the cavity is achieved in that the cavity and the displacer are arranged and formed such that upon movement of the displacer in a gap between the displacer and the cavity forms a shear flow.

Einen mechanisch besonders einfachen Aufbau erzielt man dadurch, dass der Verdrängerkörper ein Kolben oder ein Membrankolben ist.A mechanically particularly simple structure is achieved in that the displacer is a piston or a diaphragm piston.

Eine Bestimmung der Viskosität des in dem Hohlraum vorhandenen Kraftstoffes mittels einer Bewegungszeit für eine Bewegung des Verdrängerkörpers von der ersten vorbestimmten Position zu einer zweiten vorbestimmten Position erzielt man dadurch, dass in dem Hohlraum eine mechanische Federeinrichtung, insbesondere eine Schraubenfeder, Blattfeder oder eine Gasdruckfeder, derart angeordnet und ausgebildet ist, dass diese mechanische Federeinrichtung den Verdrängerkörper mit einer vorbestimmten Bewegungskraft von der ersten vorbestimmten Position zu einer zweiten vorbestimmten Position bewegt.A determination of the viscosity of the fuel present in the cavity by means of a movement time for a movement of the displacement of the first predetermined position to a second predetermined position is achieved in that in the cavity, a mechanical spring means, in particular a coil spring, leaf spring or a gas spring, such is arranged and designed such that this mechanical spring means moves the displacer with a predetermined motive force from the first predetermined position to a second predetermined position.

Eine Bestimmung der Viskosität des in dem Hohlraum vorhandenen Kraftstoffes mittels einer notwendigen Bewegungskraft für eine Bewegung des Verdrängerkörpers von der ersten vorbestimmten Position zu einer zweiten vorbestimmten Position mit vorbestimmter Geschwindigkeit erzielt man dadurch, dass in dem Hohlraum eine mechanische Translationseinrichtung derart angeordnet und ausgebildet ist, dass diese mechanische Translationseinrichtung den Verdrängerkörper mit einer vorbestimmten Geschwindigkeit von der ersten vorbestimmten Position zu einer zweiten vorbestimmten Position bewegt.A determination of the viscosity of the fuel present in the cavity by means of a necessary motive force for movement of the displacer from the first predetermined position to a second predetermined position at a predetermined speed can be achieved by arranging and forming in the cavity a mechanical translating device said mechanical translating means moves the displacer at a predetermined speed from the first predetermined position to a second predetermined position.

Um einen möglichst blasenfreien Kraftstoff in dem Hohlraum zu erhalten, kann vorgesehen sein, die erfindungsgemäße Vorrichtung als geschlossenes System, d.h. lediglich mit Anschlüssen (Zulauf und Ablauf) an Leitungen des Kraftstoffsystems bzw. ohne Anschluss an die Atmosphäre auszubilden. Dadurch wird die bevorzugt verwirklichte Möglichkeit geschaffen, den Kraftstoff in dem Hohlraum unter Druck vorzuhalten, was eine (Dampf-)Blasenbildung wirksam verhindert.In order to obtain as void-free as possible fuel in the cavity, it can be provided, the device according to the invention as a closed system, i. only with connections (inlet and outlet) to lines of the fuel system or without connection to the atmosphere form. This provides the preferred possibility of keeping the fuel in the cavity under pressure, which effectively prevents (vapor) bubble formation.

Das Vorhalten des Kraftstoffs unter Druck kann dadurch erreicht werden, dass die erfindungsgemäße Vorrichtung in einem erfindungsgemäßen Kraftstoffzuführungssystem, das neben der Vorrichtung zumindest noch einen Kraftstofftank, die Kraftstoffleitung und einen Rücklauf für den Kraftstoff umfasst, stromab einer Pumpe (für den Kraftstoff) angeordnet ist. Bei der Pumpe kann es sich vorzugsweise um eine Niederdruck-Pumpe wie beispielsweise eine Vorförderpumpe handeln.The provision of the fuel under pressure can be achieved by arranging the device according to the invention in a fuel supply system according to the invention, which comprises, in addition to the device, at least one fuel tank, the fuel line and a return for the fuel, downstream of a pump (for the fuel). at the pump may preferably be a low pressure pump such as a prefeed pump.

Die Erfindung wird im Folgenden anhand der Zeichnungen näher erläutert. Diese zeigen in

Fig. 1
eine erste bevorzugte Ausführungsform eines erfindungsgemäßen Kraftstoffzuführungssystems einer Brennkraftmaschine mit einer Vorrichtung zum Ausführen des erfindungsgemäßen Verfahrens in einem schematischen Blockschaltbild ,
Fig. 2
eine zweite bevorzugte Ausführungsform eines erfindungsgemäßen Kraftstoffzuführungssystems mit einer Vorrichtung zum Ausführen des erfindungsgemäßen Verfahrens in einem schematischen Blockschaltbild und
Fig. 3
eine dritte bevorzugte Ausführungsform eines erfindungsgemäßen Kraftstoffzuführungssystems mit einer Vorrichtung zum Ausführen des erfindungsgemäßen Verfahrens in einem schematischen Blockschaltbild.
The invention will be explained in more detail below with reference to the drawings. These show in
Fig. 1
A first preferred embodiment of a fuel supply system according to the invention of an internal combustion engine with an apparatus for carrying out the method according to the invention in a schematic block diagram,
Fig. 2
a second preferred embodiment of a fuel supply system according to the invention with an apparatus for carrying out the method according to the invention in a schematic block diagram and
Fig. 3
A third preferred embodiment of a fuel supply system according to the invention with an apparatus for carrying out the method according to the invention in a schematic block diagram.

Fig. 1 zeigt beispielhaft und schematisch ein Kraftstoffzuführungssystem einer ansonsten nicht näher dargestellten Brennkraftmaschine mit einem Kraftstofftank 10, einer Vorförderpumpe 12, einer Kraftstoffleitung 14, einem Filter 16, einer Hockdruckpumpe 18, einem Common Rail 20, einem Injektor 22 für jeden Arbeitszylinder (nicht dargestellt) der Brennkraftmaschine, einem ersten Rücklauf 24 aus dem Injektor 22 in den Kraftstofftank 10 und einem zweiten Rücklauf 26 aus dem Common Rail 20 in den Kraftstofftank 10. Fig. 1 shows by way of example and schematically a fuel supply system of an otherwise not shown internal combustion engine with a fuel tank 10, a prefeed pump 12, a fuel line 14, a filter 16, a high-pressure pump 18, a common rail 20, an injector 22 for each working cylinder (not shown) of the internal combustion engine , a first return 24 from the injector 22 into the fuel tank 10 and a second return 26 from the common rail 20 into the fuel tank 10.

Die in Fig. 1 dargestellte, erste bevorzugte Ausführungsform einer Vorrichtung zum Bestimmen der Viskosität eines Kraftstoffes in einem erfindungsgemäßen Kraftstoffzuführungssystem einer Brennkraftmaschine zum Ausführen des erfindungsgemäßen Verfahrens umfasst einen Hohlraum 28 in Form eines Kapillarrohres, in dem ein Verdrängerkörper 30 in Form eines Kolbens angeordnet ist. Der Kolbens ist mittels einer Feder 32 von einer ersten vorbestimmten Position 44 innerhalb des Hohlraumes 28 zu einer zweiten vorbestimmten Position 42 innerhalb des Hohlraumes 28 mit einer vorbestimmten konstanten Bewegungskraft bewegbar. Ein Zulauf 34 für Kraftstoff verbindet den Hohlraum 28 fluidleitend mit der Kraftstoffleitung 14 über ein 2/2-Wege-Ventil 36 und ein Ablauf 38 für Kraftstoff verbindet den Hohlraum 28 fluidleitend mit der Kraftstoffleitung 14 über ein Rückschlagventil 40. Über den Zulauf 34 und den Ablauf 38 strömt Kraftstoff aus dem Kraftstoffzuführungssystem über den Hohlraum 28 und füllt diesen blasenfrei. Ein Elektromagnet 46 bewegt den Kolben entgegen einer Rückstellkraft der Feder 32 in die erste vorbestimmte Position 44. Die Feder 32 bringt eine vorbestimmte Bewegungskraft auf, um den Kolben von der ersten vorbestimmten Position 44 durch den Kraftstoff im Hohlraum 28 hindurch über eine Wegstrecke 48 bis zur zweiten vorbestimmten Position 42 zu bewegen, wo ein Detektor 50, beispielsweise ein Mikroschalter, die Ankunft des Kolbens an der zweiten vorbestimmten Position 42 detektiert. In Fig. 1 bezeichnet 30 den Kolben an der zweiten vorbestimmten Position 42, 30' den Kolben an einer Position zwischen der ersten und zweiten Position 42, 44 und 30" den Kolben an der ersten vorbestimmten Position 44.In the Fig. 1 illustrated, the first preferred embodiment of a device for determining the viscosity of a fuel in a fuel supply system of an internal combustion engine according to the invention for carrying out the method according to the invention comprises a cavity 28 in the form of a capillary tube, in which a displacement body 30 is arranged in the form of a piston. The piston is movable by a spring 32 from a first predetermined position 44 within the cavity 28 to a second predetermined position 42 within the cavity 28 at a predetermined constant motive force. An inlet 34 for fuel connects the cavity 28 in fluid communication with the fuel line 14 via a 2/2-way valve 36 and a drain 38 for fuel connects the cavity 28 in fluid communication with the fuel line 14 via a check valve 40. About the inlet 34 and the Outflow 38 flows fuel from the fuel supply system via the cavity 28 and fills it bubbles. An electromagnet 46 moves the piston against a restoring force of the spring 32 in the first predetermined position 44. The spring 32 applies a predetermined motive force to the piston from the first predetermined position 44 through the fuel in the cavity 28 through a distance 48 to the second predetermined position 42, where a detector 50, such as a microswitch, detects the arrival of the piston at the second predetermined position 42. In Fig. 1 30 denotes the piston at the second predetermined position 42, 30 ', the piston at a position between the first and second positions 42, 44 and 30 "the piston at the first predetermined position 44th

Eine für diese Translationsbewegung des Kolbens von der ersten vorbestimmten Position 44 zur zweiten vorbestimmten Position 42 erforderliche Bewegungszeit wird gemessen und aus dieser Bewegungszeit wird eine Viskosität des Kraftstoffs in dem Hohlraum 28 bestimmt. Aus der Viskosität wird dann auf eine Mischung des Kraftstoffes aus verschiedenen Kraftstoffarten, wie beispielsweise Diesel, Benzin, Naphtha, Kerosin, Alkohol, insbesondere Methanol, Butanol, GTL (gas to liquid) oder BTL (biomass to liquid), geschlossen. Hierzu sind beispielsweise entsprechende Tabellen mit Zuordnungen von Mischungsverhältnissen und Viskositäten vorgesehen. Aus der Viskosität werden ggf. auch direkt entsprechende verbrennungsrelevante Eigenschaften des Kraftstoffes bestimmt.A movement time required for this translational movement of the piston from the first predetermined position 44 to the second predetermined position 42 is measured, and from this movement time, a viscosity of the fuel in the cavity 28 is determined. The viscosity is then used to conclude a mixture of the fuel from various fuel types, such as diesel, gasoline, naphtha, kerosene, alcohol, in particular methanol, butanol, GTL (gas to liquid) or BTL (biomass to liquid). For this purpose, for example, appropriate tables are provided with assignments of mixing ratios and viscosities. If necessary, directly corresponding combustion-relevant properties of the fuel are also determined from the viscosity.

Eine Temperaturkompensation ist beispielsweise mit einem serienmäßig vorhandenen Kraftstofftemperaturgeber vorgesehen. Durch das 2/2-Wege-Ventil 36 und das Rückschlagventil 40 ist sichergestellt, dass die für den Tank 10 repräsentative Mischung im Messsystem (frei von Gasblasen) vorhanden ist und dass das Messergebnis nicht durch undefinierte Durchströmung beeinflusst wird.A temperature compensation is provided for example with a standard existing fuel temperature sensor. By the 2/2-way valve 36 and the check valve 40 ensures that the representative of the tank 10 mixture in the measuring system (free of gas bubbles) is present and that the measurement result is not affected by undefined flow.

Optional sind der Kolben und der Hohlraum 28 derart ausgebildet, dass sich zwischen diesen beiden ein Spalt 52 ergibt. Durch diesen Spalt 52 ergibt sich eine Scherströmung des Kraftstoffes während der Bewegung des Kolbens.Optionally, the piston and the cavity 28 are formed such that a gap 52 results between the two. Through this gap 52 results in a shear flow of the fuel during the movement of the piston.

Fig. 2 zeigt eine zweite bevorzugte Ausführungsform eines erfindungsgemäßen Kraftstoffzuführungssystems, mit einer Vorrichtung zur Ausführung des erfindungsgemäßen Verfahrens, wobei funktionsgleiche Teile mit gleichen Bezugszeichen bezeichnet sind, wie in Fig. 1, so dass zu deren Erläuterung auf die obige Beschreibung der Fig. 1 verwiesen wird. Im Gegensatz zur ersten Ausführungsform gemäß Fig. 1 ist der Hohlraum 28 als offener Zylinder ausgebildet und der Kolben wird mit einer vorbestimmten Geschwindigkeit durch den Hohlraum 28 bewegt. Die hierfür erforderliche Bewegungskraft 54 wird gemessen und aus dieser Bewegungskraft 54 wird eine Viskosität des Kraftstoffs in dem Hohlraum 28 bestimmt. Diese so bestimmte Viskosität des Kraftstoffs wird entsprechend, wie in Bezug auf Fig. 1 beschrieben, weiter ausgewertet, um Kraftstoffeigenschaften und Mischungsanteile von Kraftstoffarten in dem Kraftstoff zu bestimmen. Fig. 2 shows a second preferred embodiment of a fuel supply system according to the invention, with an apparatus for carrying out the method according to the invention, wherein functionally identical parts are designated by the same reference numerals, as in Fig. 1 so that their explanation to the above description of Fig. 1 is referenced. In contrast to the first embodiment according to Fig. 1 the cavity 28 is formed as an open cylinder and the piston is at a predetermined speed through the cavity 28 moves. The movement force 54 required for this purpose is measured, and from this motive force 54 a viscosity of the fuel in the cavity 28 is determined. This viscosity of the fuel thus determined becomes corresponding as in relation to Fig. 1 further evaluated to determine fuel properties and mixing proportions of fuel types in the fuel.

Die Korrelation zwischen Viskosität und der erforderlichen Bewegungskraft zur translatorischen Bewegung des Kolbens in dem "offenen" Zylinder 28 ergibt sich insbesondere daraus, dass sich eine Scherströmung 56 im Spalt 52 zwischen Kolben und Zylinder 28 abhängig von der Viskosität ändert. Eine Temperaturkompensation ist beispielsweise mit dem serienmäßig vorhandenen Kraftstofftemperaturgeber vorzusehen. Das Messvolumen ist ebenso wie bei der ersten Ausführungsform gemäß Fig. 1 gegen Quereinflüsse durch Strömung abzusichern, z.B. durch Ausführung als geschlossenes System.The correlation between viscosity and the required motive force for the translational movement of the piston in the "open" cylinder 28 results, in particular, from the fact that a shear flow 56 in the gap 52 between piston and cylinder 28 changes depending on the viscosity. A temperature compensation is provided for example with the standard existing fuel temperature sensor. The measuring volume is the same as in the first embodiment Fig. 1 To protect against cross-influences by flow, eg by execution as a closed system.

Fig. 3 zeigt eine dritte bevorzugte Ausführungsform eines erfindungsgemäßen Kraftstoffzuführungssystems mit einer Vorrichtung zur Ausführung des erfindungsgemäßen Verfahrens, wobei funktionsgleiche Teile mit gleichen Bezugszeichen bezeichnet sind, wie in Fig. 1, so dass zu deren Erläuterung auf die obige Beschreibung der Fig. 1 verwiesen wird. Im Gegensatz zur ersten Ausführungsform gemäß Fig. 1 ist der Verdrängerkörper 30 als Membrankolben ausgebildet und es ist kein Spalt 52 vorgesehen. Fig. 3 shows a third preferred embodiment of a fuel supply system according to the invention with an apparatus for carrying out the method according to the invention, wherein functionally identical parts are designated by the same reference numerals, as in Fig. 1 so that their explanation to the above description of Fig. 1 is referenced. In contrast to the first embodiment according to Fig. 1 the displacement body 30 is formed as a diaphragm piston and there is no gap 52 is provided.

Der in dem Kapillarrohr 28 angeordnete, federbelastete Verdrängerkörper 30 in Form des Membrankolbens weist nach Anzug z.B. durch das Magnetventil 46 in Abhängigkeit von der Viskosität des Kraftstoffs bei konstanter Federrückstellkraft eine charakteristische, messbare Rücklaufzeit bzw. Bewegungszeit auf. Eine Temperaturkompensation ist beispielsweise mit dem serienmäßig vorhandenen Kraftstofftemperaturgeber vorgesehen. Die Feder ist beispielsweise durch ein eingeschlossenes Gasvolumen 32' (Gasdruckfeder) dargestellt.The spring-loaded displacer 30 in the form of the membrane piston, arranged in the capillary tube 28, points after tightening e.g. by the solenoid valve 46 in response to the viscosity of the fuel at a constant spring restoring force on a characteristic, measurable return time or movement time. A temperature compensation is provided for example with the standard existing fuel temperature sensor. The spring is represented for example by an enclosed gas volume 32 '(gas spring).

Die Vorspannung des Membrankolbens ist beispielsweise derart ausgelegt, dass der Membrankolben im durch die Federkräfte gespannten Zustand den Detektor 50 betätigt. Die Zeit zwischen den Zuständen "E-Magnet 46 stromlos" und "Mikroschalter 50 betätigt" ist unter Berücksichtigung der Kraftstofftemperatur im Messsystem für die Viskosität des im Messsystems vorhandenen Kraftstoffs charakteristisch. Diese so aus der Bewegungszeit bestimmte Viskosität des Kraftstoffs wird entsprechend, wie in Bezug auf Fig. 1 beschrieben, weiter ausgewertet, um Kraftstoffeigenschaften und Mischungsanteile von Kraftstoffarten in dem Kraftstoff zu bestimmen.The bias of the diaphragm piston is designed, for example, such that the diaphragm piston actuates the detector 50 in the state tensioned by the spring forces. The time between the states "E-magnet 46 de-energized" and "microswitch 50 actuated" is characteristic taking into account the fuel temperature in the measuring system for the viscosity of the fuel present in the measuring system. This thus determined from the movement time viscosity of the fuel is, as in relation to Fig. 1 further evaluated to determine fuel properties and mixing proportions of fuel types in the fuel.

Die Vorrichtung wird innerhalb eines Bauteils des erfindungsgemäßen Kraftstoffzuführungssystems (Tank 10, Niederdruckleitung 14, Common-Rail 20, Injektor 22 oder Filter 16), das gut durchströmt wird, eingebaut. Für ein binäres Kraftstoffgemisch sind die Viskositäten der einzelnen Kraftstoffe und die Mischviskosität bekannt. Aus der gemessenen Viskosität des Kraftstoffes im Hohlraum 28 lässt sich so, ggf. nach einer Temperaturkorrektur, das Mischungsverhältnis von Kraftstoffarten im Kraftstoff bestimmen. Die Temperaturkorrektur kompensiert den starken Abfall der Viskosität mit dem Anstieg der Temperatur.The device is installed within a component of the fuel supply system according to the invention (tank 10, low pressure line 14, common rail 20, injector 22 or filter 16), which flows through well. For a binary fuel mixture, the viscosities of the individual fuels and the mixed viscosity are known. From the measured viscosity of the fuel in the cavity 28 can be so, possibly after a temperature correction, determine the mixing ratio of fuel types in the fuel. The temperature correction compensates for the sharp drop in viscosity with the increase in temperature.

Die Vorrichtungen sind, wie in den Fig. 1 und 3 dargestellt, vorzugsweise als geschlossene Systeme ausgebildet, wodurch die Blasenfreiheit des zu analysierenden Kraftstoffs gewährleistet werden kann. Insbesondere besteht die Möglichkeit, den Kraftstoff in der Vorrichtung mit einem definierten (Über-)Druck zu beaufschlagen, um den Erhalt eines blasenfreien Kraftstoffs zu unterstützen. Im übrigen wird dadurch, dass die Vorrichtung vorzugsweise in einen Abschnitt des Kraftstoffzuführungssystems integriert wird, in dem zumindest ein Teil des Kraftstoffs über den Kraftstofftank dauerhaft in einem Kreislauf gepumpt wird, sichergestellt, dass stets, z.B. nach einem Tankvorgang, der den Injektoren zugeführte Kraftstoff auch tatsächlich analysiert wird.The devices are as in the Fig. 1 and 3 represented, preferably formed as closed systems, whereby the freedom from bubbles of the fuel to be analyzed can be ensured. In particular, it is possible to pressurize the fuel in the device with a defined (over) pressure in order to assist in obtaining a bubble-free fuel. Moreover, the fact that the device is preferably integrated into a portion of the fuel supply system, in which at least a portion of the fuel is pumped through the fuel tank permanently in a cycle, ensures that always, for example, after a refueling, the fuel supplied to the injectors also is actually analyzed.

Alternativ erfolgt zusätzlich eine Kombination mit einem Verfahren zum Detektieren eines Kraftstoffes in einem Kraftstoffzuführungssystem einer Brennkraftmaschine, wobei eine Resonanzfrequenz eines von dem Kraftstoff in dem Kraftstoffzuführungssystem der Brennkraftmaschine umspülten Schwingquarzes bestimmt und aus der Resonanzfrequenz eine Dichte des Kraftstoffes in dem Kraftstoffzuführungssystem der Brennkraftmaschine bestimmt wird.Alternatively, in addition, a combination with a method for detecting a fuel in a fuel supply system of an internal combustion engine, wherein a resonant frequency of an oscillated by the fuel in the fuel supply system of the internal combustion engine oscillator quartz determines and from the resonant frequency, a density of the fuel in the fuel supply system of the internal combustion engine is determined.

Dies hat den Vorteil, dass mit geringer Komplexität eine funktionssichere und schnelle Detektion von für die Verbrennung in der Brennkraftmaschine relevanten Eigenschaften des Kraftstoffes zur Verfügung steht.This has the advantage that with low complexity, a functionally reliable and rapid detection of relevant for the combustion in the internal combustion engine properties of the fuel is available.

Eine besonders einfache und funktionssichere Bestimmung der Dichte des Kraftstoffes erzielt man dadurch, dass die bestimmte Resonanzfrequenz mit einer Resonanzfrequenz des Schwingquarzes in einem Referenzmedium, insbesondere in Vakuum oder Luft, verglichen und aus einer Differenz zwischen diesen beiden Resonanzfrequenzen die Dichte des Kraftstoffes in dem Kraftstoffzuführungssystem der Brennkraftmaschine bestimmt wird.A particularly simple and functionally reliable determination of the density of the fuel is achieved by comparing the specific resonance frequency with a resonant frequency of the quartz crystal in a reference medium, in particular in vacuum or air, and from a difference between these two resonance frequencies, the density of the fuel in the fuel supply system Internal combustion engine is determined.

Eine besonders schnelle und funktionssichere Bestimmung der Dichte des Kraftstoffes erzielt man dadurch, dass die Dichte aus einer Tabelle ausgelesen oder eine bekannte Funktionsgleichung bestimmt wird, in der Zuordnungen von Resonanzfrequenz und Dichte des Kraftstoffes hinterlegt sind.A particularly fast and functionally reliable determination of the density of the fuel is achieved by reading the density from a table or by determining a known functional equation in which the resonance frequency and density of the fuel are assigned.

Eine Bestimmung von verschiedenen Kraftstoffsorten in dem Kraftstoff, welcher in dem Kraftstoffzuführungssystem der Brennkraftmaschine vorhanden ist, erzielt man dadurch, dass aus der bestimmten Dichte alle in dem Kraftstoff in dem Kraftstoffzuführungssystem der Brennkraftmaschine vorhandenen Kraftstoffarten, insbesondere Diesel, Benzin, Naphtha, Kerosin, Alkohol, insbesondere Methanol, Butanol, GTL (gas to Liquid) oder BTL (biomass to liquid), bestimmt werden.A determination of different types of fuel in the fuel, which is present in the fuel supply system of the internal combustion engine, obtained by the fact that from the specific density all present in the fuel in the fuel supply system of the internal combustion engine fuel types, in particular diesel, gasoline, naphtha, kerosene, alcohol, especially methanol, butanol, GTL (gas to liquid) or BTL (biomass to liquid).

Zum optimalen Einstellen von Parametern für die Verbrennung, wie Einspritzzeitpunkt und/oder Einspritzparametrierung, im Hinblick auf den momentan in dem Kraftstoffzuführungssystem der Brennkraftmaschine vorhandenen Kraftstoff wird aus der bestimmten Dichte mindestens ein motorrelevanter Parameter, insbesondere eine Cetanzahl und/oder eine Siedelage, des Kraftstoffes in dem Kraftstoffzuführungssystem der Brennkraftmaschine bestimmt.For optimal setting of parameters for the combustion, such as injection timing and / or injection parameterization, with regard to the currently present in the fuel supply system of the internal combustion engine from the specific density at least one engine-relevant parameter, in particular a cetane number and / or a boiling position, the fuel in determined the fuel supply system of the internal combustion engine.

Zur Korrektur des Ausdehnungskoeffizienten des Kraftstoffes wird gleichzeitig mit der Bestimmung der Resonanzfrequenz eine Temperatur des Kraftstoffes im Bereich des Schwingquarzes und/oder eine Temperatur des Schwingquarzes bestimmt und die Dichte in Abhängigkeit von der Resonanzfrequenz und der Temperatur bestimmt. Hierbei wird bevorzugt mittels der bestimmten Temperatur eine Dichte des Kraftstoffes bei einer vorbestimmen Standardtemperatur, insbesondere 15°C, bestimmt.To correct the expansion coefficient of the fuel, a temperature of the fuel in the region of the quartz crystal and / or a temperature of the quartz crystal is determined simultaneously with the determination of the resonant frequency, and the density is determined as a function of the resonant frequency and the temperature. In this case, a density of the fuel at a predetermined standard temperature, in particular 15 ° C., is preferably determined by means of the specific temperature.

Eine besonders schnelle und effektive Anpassung der Verbrennung an den jeweils im Kraftstoffzuführungssystem der Brennkraftmaschine vorhandenen Kraftstoff erzielt man dadurch, dass für vorbestimmte Mehrkraftstoffgemische, insbesondere Gemische mit mindestens zwei der Kraftstoffsorten Diesel, Benzin, Naphtha, Kerosin, GTL (gas to Liquid) oder BTL (biomass to liquid), Butanol, eine energetische Einspritzmenge in Abhängigkeit von der bestimmten Resonanzfrequenz korrigiert wird.A particularly rapid and effective adaptation of the combustion to the fuel present in each case in the fuel supply system of the internal combustion engine is achieved in that for predetermined multi-fuel mixtures, in particular mixtures with at least two of the fuel types diesel, gasoline, naphtha, kerosene, GTL (gas to liquid) or BTL ( biomass to liquid), butanol, an energy injection quantity is corrected as a function of the specific resonance frequency.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
KraftstofftankFuel tank
1212
Vorförderpumpeprefeed
1414
KraftstoffleitungFuel line
1616
Filterfilter
1818
HockdruckpumpeHigh pressure pump
2020
Common RailCommon rail
2222
Injektorinjector
2424
erster Rücklauffirst return
2626
zweiter Rücklaufsecond return
2828
Hohlraumcavity
3030
Verdrängerkörper an zweiter vorbestimmter Position 42Displacer at the second predetermined position 42nd
30'30 '
Verdrängerkörper zwischen erster vorbestimmter Position 442 und zweiter vorbestimmter Position 42Displacer between the first predetermined position 442 and second predetermined position 42nd
30"30 "
Verdrängerkörper an erster vorbestimmter Position 44Displacer at the first predetermined position 44th
3232
Federfeather
32'32 '
GasdruckfederGas spring
3434
ZulaufIntake
3636
2/2-Wege-Ventil2/2 way valve
3838
Ablaufprocedure
4040
Rückschlagventilcheck valve
4242
zweite vorbestimmte Positionsecond predetermined position
4444
erste vorbestimmte Positionfirst predetermined position
4646
Elektromagnetelectromagnet
4848
Wegstreckepath
5050
Detektordetector
5252
Spaltgap
5454
Bewegungskraftmoving force
5656
Scherströmungshear flow

Claims (22)

  1. Method for detecting the viscosity of a fuel in a fuel supply system of an internal combustion engine, wherein an expeller body (30) is moved into a cavity (28), filled without bubbles with the fuel in the fuel supply system of the internal combustion engine, from a first predetermined position (44) to a second predetermined position (42), wherein a viscosity of the fuel which is present in the fuel supply system of the internal combustion engine is determined from the movement time necessary for the movement and/or from the movement force which is necessary for the movement with a predetermined speed, characterized in that the fuel is supplied to the cavity (28) integrated into the fuel supply system parallel to a fuel line (14), by means of an inflow (34) and via a 2/2-way valve (36) from the fuel line (14) and is fed back to the fuel line (14) by means of an outflow (38) and via a non-return valve (40).
  2. Method according to Claim 1, characterized in that the expeller body (30) is moved in the cavity (28) in such a way that a shear flow of the fuel is produced in a gap (52) between the expeller body (30) and the cavity (28).
  3. Method according to at least one of the preceding claims, characterized in that the expeller body (30) in the form of a piston is moved in the cavity (28) in the form of a capillary tube, wherein the piston is moved by a spring (32) with a constant movement force from the first predetermined position (44) into the second predetermined position (42), and the movement time for the movement from the first predetermined position (44) into the second predetermined position (42) is determined.
  4. Method according to at least one of Claims 1 and 2, characterized in that the expeller body (30) in the form of a piston is moved in the cavity (28) in the form of a cylinder which is open on both sides in such a way that a shear flow is produced between the piston and the cylinder, wherein the piston is moved with a constant speed from the first predetermined position (44) into the second predetermined position (42), and the movement force which is necessary for this for the movement from the first predetermined position (44) into the second predetermined position (42) is determined.
  5. Method according to at least one of Claims 1 and 2, characterized in that the expeller body (30) in the form of a diaphragm piston is moved in the cavity (28) in the form of a capillary tube, wherein the diaphragm piston is moved by a spring (32) with a constant movement force from the first predetermined position (44) into the second predetermined position (42), and the movement time for the movement from the first predetermined position (44) into the second predetermined position (42) is determined.
  6. Method according to at least one of the preceding claims, characterized in that an inflow for fuel leading to the cavity (28) is connected in a fluid-conducting fashion to the fuel supply system of the internal combustion engine via a 2/2-way valve (36).
  7. Method according to at least one of the preceding claims, characterized in that an outflow for fuel out of the cavity (28) is connected in a fluid-conducting fashion to the fuel supply system of the internal combustion engine via a non-return valve (40).
  8. Method according to at least one of the preceding claims, characterized in that the viscosity is read out from a table or determined from a set of equations in which assignments of movement time and/or movement force to the viscosity of the fuel are stored.
  9. Method according to at least one of the preceding claims, characterized in that all the types of fuel, in particular diesel, petrol, naphtha, kerosene, butanol, alcohol, in particular methanol, GTL (gas to liquid) or BTL (biomass to liquid) which are present in the fuel in the fuel supply system of the internal combustion engine are determined from the determined viscosity.
  10. Method according to at least one of the preceding claims, characterized in that at least one engine-relevant parameter, in particular a cetane number and/or a boiling point of the fuel in the fuel supply system of the internal combustion engine is determined from the determined viscosity.
  11. Method according to at least one of the preceding claims, characterized in that at the same time as the determination of the viscosity a temperature of the fuel in the region of the expeller body (30) and/or a temperature of the expeller body (30) is determined, and the viscosity is additionally determined as a function of the temperature.
  12. Method according to Claim 11, characterized in that a viscosity of the fuel at a predetermined standard temperature, in particular 15°C, is determined by means of the determined temperature.
  13. Method according to at least one of the preceding claims, characterized in that an energetic injection quantity for predetermined mixtures of additional fuel, in particular mixtures having at least two of the types of fuel of diesel, petrol, naphtha, butanol, kerosene, GTL (gas to liquid) or BTL (biomass to liquid) is corrected as a function of the determined viscosity.
  14. Method according to at least one of the preceding claims, characterized in that the fuel is kept in the cavity (28) under an excess pressure.
  15. Fuel supply system for an internal combustion engine having a device for determining the viscosity of a fuel in the fuel supply system, wherein the device has a cavity (28) which can be filled without bubbles with the fuel and in which an expeller body (30) which can be shifted from a first predetermined position (44) to a second predetermined position (42) is arranged, characterized in that the cavity (28) is integrated, parallel to a fuel line (14), into the fuel supply system, wherein the cavity (28) is connected in a fluid-conducting fashion to the fuel line (14) by means of an inflow (34) for the fuel and via a 2/2-way valve (36) as well as by means of an outflow (38) for the fuel and via a non-return valve (40).
  16. Fuel supply system according to Claim 15, characterized in that the cavity (28) and the expeller body (30) are arranged and embodied in such a way that during a movement of the expeller body (30) in a gap (52) a shear flow is formed between the expeller body (30) and the cavity (28).
  17. Fuel supply system according to Claim 15 or 16, characterized in that the expeller body (30) is a piston or a diaphragm piston.
  18. Fuel supply system according to at least one of Claims 15 to 17, characterized in that a mechanical spring device, in particular a helical spring or a gas pressure spring (32') is arranged in the cavity (28) and embodied in such a way that this mechanical spring device moves the expeller body (30) with a predetermined movement force (54) from the first predetermined position (44) to a second predetermined position (42).
  19. Fuel supply system according to at least one of Claims 15 to 18, characterized in that a mechanical translation device is arranged in the cavity (28) and embodied in such a way that this mechanical translation device moves the expeller body (30) with a predetermined speed from the first predetermined position (44) to a second predetermined position (42).
  20. Fuel supply system according to at least one of Claims 15 to 19, characterized in that the device is embodied as a closed system.
  21. Fuel supply system according to at least one of Claims 15 to 20, characterized by a fuel tank (10) and at least one return line (24, 26) for the fuel, wherein fuel is fed into a circuit via the fuel tank (10), the fuel line (14) and the return line (24, 26), and wherein the device is integrated into the circuit of the fuel.
  22. Fuel supply system according to Claim 21, characterized in that the device is arranged downstream of a pump.
EP11007503.3A 2010-09-15 2011-09-14 Method and device for detecting a fuel in a fuel supply system of a combustion engine Not-in-force EP2431597B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010045520A DE102010045520A1 (en) 2010-09-15 2010-09-15 Method and device for detecting a fuel in a fuel supply system of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2431597A1 EP2431597A1 (en) 2012-03-21
EP2431597B1 true EP2431597B1 (en) 2015-07-15

Family

ID=44883043

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11007503.3A Not-in-force EP2431597B1 (en) 2010-09-15 2011-09-14 Method and device for detecting a fuel in a fuel supply system of a combustion engine

Country Status (2)

Country Link
EP (1) EP2431597B1 (en)
DE (1) DE102010045520A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12085216B2 (en) 2022-02-17 2024-09-10 Arctic Cat Inc. Multi-use fuel filler tube

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012107596B4 (en) * 2012-08-20 2016-05-04 Denso Corporation High pressure pump and method for operating a high pressure pump
US9599082B2 (en) 2013-02-12 2017-03-21 Ford Global Technologies, Llc Direct injection fuel pump
US9422898B2 (en) 2013-02-12 2016-08-23 Ford Global Technologies, Llc Direct injection fuel pump
US9429124B2 (en) 2013-02-12 2016-08-30 Ford Global Technologies, Llc Direct injection fuel pump
DE102013218953A1 (en) * 2013-09-20 2015-03-26 Robert Bosch Gmbh Method for operating a fuel injection system, intake valve for a fuel injection system and fuel injection system
US9683512B2 (en) 2014-05-23 2017-06-20 Ford Global Technologies, Llc Pressure device to reduce ticking noise during engine idling
JP6032244B2 (en) 2014-05-29 2016-11-24 株式会社デンソー Fuel property determination device and fuel property determination method
DE102015214600A1 (en) * 2015-07-31 2017-02-02 Robert Bosch Gmbh Method for determining fuel properties
CN105510183B (en) * 2015-10-28 2018-03-16 浙江天蓝环保技术股份有限公司 A kind of heating wire coordinates the method and apparatus of thermal imaging system detection gas fluidized―bed furnace

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2446475A1 (en) * 1979-01-12 1980-08-08 Centre Tech Ind Aerauliq VISCOSIMETER AND VISCOSISTAT
FR2564974B1 (en) * 1984-05-23 1987-04-24 Thibonnet Bernard DEVICE FOR CONTINUOUSLY MEASURING THE VISCOSITY OF A FLUID
FR2588083B1 (en) * 1985-09-27 1988-07-08 Elf France DEVICE FOR THE CONTINUOUS MEASUREMENT OF THE VISCOSITY OF A MOVING FLUID
JP2541225B2 (en) * 1987-06-16 1996-10-09 三菱自動車工業株式会社 Different fuel mixture ratio detector
DE4019187C2 (en) 1989-06-16 1995-11-09 Gen Motors Corp Multi-component machine control with initial delay
US7220386B2 (en) 2003-03-13 2007-05-22 General Motors Corporation On-board fuel properties measurement for engine management
DE102007034585A1 (en) * 2007-07-25 2009-01-29 Continental Automotive Gmbh Arrangement for determining a characteristic of a fluid, sensor device and use in a motor vehicle
DE102007052096B4 (en) 2007-10-31 2009-07-09 Continental Automotive Gmbh Method of identifying a fuel grade
DE102008026009B4 (en) 2008-05-29 2010-09-16 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Method for determining the viscosity and elasticity of viscoelastic media
DE102009012446B4 (en) * 2009-03-12 2011-02-24 Porep Gmbh Method for determining the viscosity of fuel / water and water / fuel emulsions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12085216B2 (en) 2022-02-17 2024-09-10 Arctic Cat Inc. Multi-use fuel filler tube

Also Published As

Publication number Publication date
EP2431597A1 (en) 2012-03-21
DE102010045520A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
EP2431597B1 (en) Method and device for detecting a fuel in a fuel supply system of a combustion engine
DE69130867T2 (en) METHOD AND DEVICE FOR INJECTING FUEL
DE102010034133B4 (en) Method for detecting a fuel in a fuel supply system of an internal combustion engine
EP2572096B1 (en) Method and device for determining the actual start of injection of a piezo fuel injection valve
DE102007052096B4 (en) Method of identifying a fuel grade
DE102010000623B4 (en) Diagnostic system for a fuel supply route
DE102011077404B4 (en) Method for determining the fuel type in a high-pressure injection device of an internal combustion engine
DE102005036192A1 (en) Fuel injection system e.g. high pressure-based fuel injection system, controlling method for e.g. self-ignition internal combustion engine, involves implementing compression wave correction based on periodic model that models masses wave
WO2014060292A1 (en) Method for operating a fuel injection system with a fuel filter heating process, and fuel injection system
DE112008000687T5 (en) Arrangement and method for controlling combustion in an internal combustion engine
EP2080888A2 (en) Automatic fuel detection
DE102010045517A1 (en) Method for detecting e.g. diesel in fuel delivery system of internal combustion engine, involves determining density of fuel in fuel delivery system of engine based on resonance frequency of quartz crystal
WO2019243003A1 (en) Cooling system for an internal combustion engine, and operating method
EP2529098A1 (en) Process and device for testing a fuel injector
DE102015207578B3 (en) Method for determining the fuel temperature and / or the fuel quality
DE102009028875A1 (en) Method for determining composition of fuel mixture of two fuels, particularly gasoline and ethanol, for operating internal combustion engine, involves determining two parameters of two composition values of fuel mixture
DE102009000070A1 (en) Method for determining e.g. ethanol and/or methanol content of petrol for internal-combustion engine of motor vehicle, involves calculating alcohol content based on conveying parameter and pressure parameter
DE102007009565A1 (en) Method for determining fuel composition in injection system of internal-combustion engine particularly of motor vehicle, involves determining physical parameter assigned to fuel pressure wave
DE102016225435B3 (en) Method for operating an internal combustion engine with fuel detection
DE102010045521B4 (en) Method for detecting a fuel
DE10016474B4 (en) Method for controlling an injection valve with a piezoelectric actuator
DE102017126852B4 (en) Fuel system control apparatus
DE10305525A1 (en) Method and device for adapting the pressure wave correction in a high-pressure injection system of a motor vehicle while driving
DE10331241B4 (en) Method for injector balance (IMA) in pilot injections in a fuel injection system of an internal combustion engine
DE10256240A1 (en) Method for controlling a fuel metering system of an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

17P Request for examination filed

Effective date: 20120921

17Q First examination report despatched

Effective date: 20130906

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 736938

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011007315

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150715

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151016

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151015

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151116

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011007315

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150914

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

26N No opposition filed

Effective date: 20160418

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150914

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110914

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 736938

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190926

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190930

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011007315

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930