EP2430137B1 - Farbschützendes wasch- oder reinigungsmittel - Google Patents

Farbschützendes wasch- oder reinigungsmittel Download PDF

Info

Publication number
EP2430137B1
EP2430137B1 EP10716362.8A EP10716362A EP2430137B1 EP 2430137 B1 EP2430137 B1 EP 2430137B1 EP 10716362 A EP10716362 A EP 10716362A EP 2430137 B1 EP2430137 B1 EP 2430137B1
Authority
EP
European Patent Office
Prior art keywords
benzoxazine
compounds
polymer
general formula
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10716362.8A
Other languages
English (en)
French (fr)
Other versions
EP2430137A1 (de
Inventor
Paula Barreleiro
Thomas Eiting
Andreas Taden
Siglinde Erpenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP2430137A1 publication Critical patent/EP2430137A1/de
Application granted granted Critical
Publication of EP2430137B1 publication Critical patent/EP2430137B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0021Dye-stain or dye-transfer inhibiting compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam

Definitions

  • the present invention relates to the use of polymers which are accessible by polymerization of benzoxazines, as dye transfer inhibiting agents in the washing and / or cleaning of textiles and detergents or cleaners containing such color transfer inhibiting polymers.
  • Detergents and cleaners in addition to the indispensable for the washing and cleaning process ingredients such as surfactants and builders usually other ingredients that can be summarized under the term washing aids and include as different drug groups such as foam regulators, grayness inhibitors, bleach, bleach activators and enzymes.
  • auxiliaries also include substances which are intended to prevent dyed textile fabrics from causing a changed color impression after washing. This color impression change washed, i. cleaner, textiles can be based on the fact that dye components are removed by the Waschregulatingmoi cleaning process from the textile ("fading"), on the other hand, from other colored textiles detached dyes on the textile precipitate (“discoloration").
  • the discoloration aspect may also play a role in undyed laundry items when washed together with colored laundry items.
  • detergents In order to avoid these undesirable side effects of removing dirt from textiles by treatment with usually surfactant-containing aqueous systems, detergents, especially if they are provided as so-called color or colored laundry detergents for colored textiles, contain active ingredients which prevent the detachment of dyes from the textile or At least the deposition of detached, located in the wash liquor to avoid dyes on textiles.
  • active ingredients which prevent the detachment of dyes from the textile or At least the deposition of detached, located in the wash liquor to avoid dyes on textiles.
  • many of the commonly used polymers have such a high affinity for dyes that they draw more of them from the dyed fiber, resulting in loss of color when used. The same applies to cleaning hard surfaces.
  • Polybenzoxazine compounds as additives for electrolytic membranes are made EP 1760110 known.
  • benzoxazine (co) polymers lead to unexpectedly high color transfer inhibition when used in detergents or cleaners. Particularly pronounced is the prevention of dyeing of white or other colored fabrics by washed out of textiles dyes. It is conceivable that the benzoxazine (co) polymers defined below are applied to the textiles during washing and thereby effectively prevent the dyes from being removed from the textiles and, secondly, they have a repellent effect on dye molecules already present in the liquor.
  • the invention relates to the use of polymers which are obtainable by polymerization of benzoxazine monomers, to avoid the transfer of textile dyes of dyed textiles to undyed or differently colored textiles in their common washing in particular surfactant-containing aqueous solutions.
  • the benzoxazine (co) polymers used according to the invention can be obtained in a basically known manner by polymerization of benzoxazines.
  • the benzoxazine compounds which can be used to prepare the benzoxazine (co) polymers used in the present invention are polymerizable monomers comprising at least one benzoxazine group.
  • Preferred monomers may preferably comprise up to four benzoxazine groups, it being possible to use both individual monomers and mixtures of two or more monomers for the preparation of benzoxazine (co) polymers used according to the invention.
  • Polymerization of the polymerizable benzoxazine compound (to the benzoxazine polymer) or mixture of various polymerizable benzoxazine compounds (to the benzoxazine copolymer) can be accomplished by methods known in the art, for example, at elevated temperatures according to a self-initiating mechanism (thermal polymerization) or by addition of cationic initiators .
  • Suitable cationic initiators are, for example, Lewis acids or other cationic initiators, for example metal halides, organometallic reagents, such as metalloporphyrins, methyl tosylates, methyltriflates or trifluorosulphonic acids.
  • basic reagents can be used to initiate the polymerization of the polymerizable benzoxazine compound or the mixture of various polymerizable benzoxazine compounds.
  • Suitable basic reagents may for example be selected from imidazole or imidazole derivatives.
  • the thermal polymerization is carried out usually at temperatures of 150 ° C to 300 ° C, in particular at temperatures of 160 ° C to 220 ° C. By using the above-mentioned initiators and / or other reagents, the polymerization temperature may also be lower.
  • the polymerization process is based essentially on the thermally-induced ring opening of the oxazine ring of a benzoxazine system
  • R in each repeating unit is independently selected from hydrogen and methyl.
  • the divalent organic compound groups R 1 in formula (I) and / or R 6 in formula (II) preferably comprise 2 to 50, particularly preferably 2 to 25 and in particular 2 to 20 carbon atoms. Furthermore, the divalent organic compound groups R 1 and R 6 may each be selected from linear or branched, optionally substituted alkylene groups comprising 1 to 15 carbon atoms, wherein the alkylene groups are optionally interrupted by at least one heteroatom selected from oxygen, sulfur or nitrogen.
  • the term "interrupted" is understood as meaning that in a divalent alkylene group at least one non-terminal carbon atom of the group mentioned is replaced by a heteroatom, the heteroatom preferably being selected from -SS-- (sulfur), --O-- (oxygen), and --NR a - (nitrogen), wherein R a is in particular hydrogen or a linear or branched, optionally substituted alkyl groups having 1 to 15 carbon atoms.
  • the divalent organic linking groups R 1 and / or R 6 are selected from alkylene groups comprising 2 to 8 C atoms.
  • R 1 and / or R 6 is selected from linear alkylene groups comprising from 2 to 6, especially 2 or 3, carbon atoms, such as ethylene, propylene, butylene, pentylene and hexylene groups.
  • R 1 in formula (I) and / or R 6 in formula (II) may be a covalent bond.
  • the divalent organic linking groups R 1 and / or R 6 may comprise at least one arylene group and / or at least one biphenylene group, each preferably containing from 6 to 12 carbon atoms.
  • the arylene groups and biphenylene groups may be substituted or unsubstituted, suitable substituents being selected, for example, from alkyl, alkenyl, halogen, amine, thiol, carboxyl and hydroxyl groups.
  • at least one carbon atom of the aromatic ring system of said groups can be replaced by a heteroatom, wherein the heteroatom is preferably selected from oxygen, nitrogen and sulfur.
  • radicals R 2 and R 5 in formula (I) and formula (II) are preferably each hydrogen and methyl.
  • the radical A in formula (II) represents a hydroxyl group or a nitrogen-containing heterocycle.
  • nitrogen-containing heterocycle is understood in particular to mean those ring systems which contain 3 to 8 ring atoms, preferably 5 to 6 ring atoms, where the ring system comprises at least one nitrogen atom and at least two carbon atoms.
  • Said nitrogen-containing heterocycle can have a saturated, unsaturated or aromatic structure and, in addition to the abovementioned atoms, also comprise further heteroatoms, for example sulfur and / or oxygen atoms.
  • the nitrogen-containing heterocycle is linked to the nitrogen atom of the oxazine ring of the benzoxazine structure via the divalent compound group R 6 according to formula (II).
  • the divalent linking group R 6 may be linked to any nitrogen or carbon ring atom of the nitrogen-containing heterocycle by R 6 formally replacing a hydrogen atom covalently linked to a nitrogen or carbon ring atom.
  • nitrogen-containing heterocycles are selected, for example, from 5-membered nitrogen-containing heterocycles, such as imidazoles, imidazolidones, tetrazoles, oxazoles, pyrroles, pyrrolidines and pyrazoles or 6-membered nitrogen-containing heterocycles, such as piperidines, piperidones, piperazines, pyridines, diazines and morpholines.
  • 5-membered nitrogen-containing heterocycles such as imidazoles, imidazolidones, tetrazoles, oxazoles, pyrroles, pyrrolidines and pyrazoles
  • 6-membered nitrogen-containing heterocycles such as piperidines, piperidones, piperazines, pyridines, diazines and morpholines.
  • the polymerizable benzoxazine compounds of the general formula (I) are selected from compounds of the general formula (III) where x is a number between 0 and 1000 and y is a number between 0 and 1000, with the proviso that x + y ⁇ 2, where Z, R 2 , Y and q are each as defined above in formula (I).
  • x + y is ⁇ 3, more preferably ⁇ 4, and most preferably ⁇ 5.
  • n and / or x + y therefore takes as the lower limit a value of at least 3, 4, 6, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 80, 100, 150 or 200.
  • a useful upper limit for n and / or x + y in the benzoxazine compounds of the general formula (I) or (III) according to the invention is preferably at a value of at most 10,000, 2000, 1800, 1600, 1400, 1200, 1000, 800, 600 or 400.
  • the benzoxazine compounds of the general formula (II) are selected from compounds of the general formula (IV) and / or from compounds of the general formula (V) wherein R 7 and R 8 are each independently selected from hydrogen, halogen, linear or branched, optionally substituted alkyl groups, alkenyl groups and aryl groups, wherein c, B, R 5 and R 6 are each as defined above in formula (II).
  • R 7 and R 8 in formula (IV) are independently selected from hydrogen, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl and iso-butyl, where R 7 and R 8 are in particular hydrogen or methyl.
  • benzoxazine compounds of the general formula (IV) are selected from the following benzoxazine compounds: wherein c, B, R 5 , R 6 , R 7 and R 8 are as defined above.
  • the illustrated benzoxazine compounds bearing an imidazole ring as a nitrogen-containing heterocycle can be obtained, for example, by the reaction of a phenolic compound with an aldehyde such as formaldehyde and an aminoalkylimidazole compound.
  • Suitable phenolic compounds can be selected, for example, from mono- or biphenolic compounds such as phenol, bisphenol A, bisphenol F, bisphenol S or thiodiphenol.
  • aldehyde in addition to formaldehyde and paraformaldehyde trioxane or polyoxymethylene or any mixtures thereof may be used.
  • preferred aminoalkylimidazole compounds have a primary amino group and can be selected, for example, from compounds of general formula (VI) wherein R 6 , R 7 and R 3 are as defined above.
  • 1-aminoalkylimidazole compounds of the general formula (VII) or 2-aminoalkylimidazole compounds of the general formula (VIII) suitable for the preparation of the corresponding benzoxazine compounds, wherein R 6 , R 7 and R 8 are as defined above.
  • Suitable 1-aminoalkylimidazole compounds of general formula (VII) are known in the art and are commercially available. Examples are about 1- (3-aminopropyl) imidazole, available under the trade name Lupragen® API from BASF SE, 3-imidazol-1-yl-2-methyl-propylamine (Chem Pacific), 2-methyl-1H-imidazole-1-propanamine, (3B Scientific Corporation), 3-imidazole 1-yl-2-hydroxypropylamine (Ambinter, Paris Collection), 1- (4-aminobutyl) imidazole (Ambinter, Paris), 2-ethyl-1H-imidazole-1-propanamine (ChemBridge Corp.).
  • 2-Aminoalkylimidazole compounds of the general formula (VIII) are also known from the prior art.
  • the preparation can be carried out by means of common organic synthesis methods.
  • a practical synthesis is, for example, in Tetrahedron 2005, Vol. 61, at pages 11148-11155 described.
  • the illustrated benzoxazine compounds bearing a free hydroxyl group can be prepared by reacting a phenolic compound with an aldehyde such as formaldehyde and an aminoalcohol.
  • the reaction time can vary from a few minutes to a few hours.
  • Suitable amino alcohols such as 2-aminoethanol, 3-amino-1-propanol, amino-2-propanol, 4-amino-1-butanol, 2-amino-1-butanol, 4-amino-2-butanol, 5-amino 1-pentanol, 6-amino-1-hexanol, 7-amino-1-heptanol, 3-amino-1,2-propanediol, 2- (2-aminoethoxy) ethanol and 2-amino-1,3-propanediol are commercially available and can be obtained, for example, from Sigma-Aldrich or Tokyo Chemical Industry.
  • the polymerizable benzoxazine compounds can be used both alone and in any combination possible to prepare the benzoxazine (co) polymer used in the present invention.
  • the weight ratio of the at least one polymerizable benzoxazine compound of the general formula (I) to the at least one polymerizable benzoxazine compound of the general formula (II) is preferably between 10: 1 and 1:10, particularly preferably between 5: 1 and 1: 5 and in particular between 2: 1 and 1: 2, wherein a weight ratio of 1: 1 may be particularly useful.
  • the weight ratio of the at least one polymerizable benzoxazine compound of the general formula (I) to the at least one polymerizable benzoxazine compound of the general formula (IV) is preferably between 10: 1 and 1:10, particularly preferably between 5: 1 and 1: 5 and in particular between 2: 1 and 1: 2, wherein a weight ratio of 1: 1 may be particularly useful.
  • the weight ratio of the at least one polymerizable benzoxazine compound of the general formula (I) to the at least one polymerizable benzoxazine compound of the general formula (V) is preferably between 10: 1 and 1:10, particularly preferably between 5: 1 and 1: 5 and in particular between 2: 1 and 1: 2, wherein a weight ratio of 1: 1 may be particularly useful.
  • the proportion of the polymerizable benzoxazine compound of the general formula (I) in the total amount of the polymerizable benzoxazine compounds is preferably from 5 to 90% by weight, particularly preferably from 10 to 80% by weight and very particularly preferably from 25 to 50% by weight.
  • the proportion of the polymerizable benzoxazine compound of the general formula (IV) is preferably 5 to 90 wt .-%, particularly preferably 10 to 80 wt .-% and very particularly preferably 25 to 50 wt .-% and the proportion of the polymerizable benzoxazine compound of the general formula (IV) is preferably 5 to 90 wt .-%, particularly preferably 10 to 80 wt .-% and most preferably 25 to 50 wt. -%, in each case based on the total amount of polymerizable benzoxazine compounds.
  • B-IXX general formula
  • benzoxazine compounds are furthermore compounds of the general formula (B-XX) to (B-XXII), wherein R 1 ' and R 4' are as defined above and R 3 and R 2 ' are defined as R 1' .
  • the benzoxazine compounds shown are commercially available and are described, inter alia, by Huntsman Advanced Materials; Georgia-Pacific Resins, Inc. and Shikoku Chemicals Corporation, Chiba, Japan. Regardless, the benzoxazine compounds may also be obtained by reacting a phenolic compound such as bisphenol A, bisphenol F, bisphenol S or thiophenol with an aldehyde such as formaldehyde in the presence of a primary amine. Suitable manufacturing methods are used, for example, in U.S. Patent 5,543,516 , in particular in Examples 1 to 19 in columns 10 to 14 discloses, wherein the reaction time of the corresponding reaction, depending on the concentration, reactivity and reaction temperature may last from a few minutes to a few hours.
  • the benzoxazine (co) polymer used according to the invention has a linear or branched structure. Linear structures are preferred for their high water solubility and good interaction with a variety of surfaces.
  • the weight-average molecular weight "M w " of the benzoxazine (co) polymers used according to the invention is preferably between 500 and 100,000 g / mol, particularly preferably between 1,000 and 100,000 g / mol and very particularly preferably between 3,000 and 50,000 g / mol.
  • the weight-average molecular weight can be determined by gel permeation chromatography (GPC) using polystyrene as standard.
  • the benzoxazine (co) polymers obtainable by polymerization from the benzoxazine compounds are used as such according to the invention as color transfer inhibitors.
  • the alkylation can be carried out in a manner known per se.
  • the benzoxazine (co) polymer is introduced either as a pure substance or as a solution or as a dispersion or emulsion and mixed with the respective alkylating agent or a mixture of different alkylating agents.
  • the reaction can be carried out in alcoholic solution, for example in ethanol or isopropanol, it also being possible to work in the presence of inert emulsifiers or dispersants.
  • the particular reaction conditions and the amount of alkylating agent are preferably chosen so that at least 5% of all nitrogen atoms, based on the total number of nitrogen atoms in the benzoxazine (co) polymer, are converted into permanently quaternary nitrogen atoms.
  • Suitable alkylating agents in this context are preferably alkyl halides, dialkyl sulfates, dialkyl carbonates and alkylene oxides, such as, for example, ethylene oxide - the latter in the presence of dialkyl phosphates.
  • the alkylation is carried out with methyl iodide and / or dialkyl sulfates.
  • Benzoxazine (co) polymer with permanently quaternary nitrogen atoms are referred to in the context of the present invention as cationic benzoxazine (co) polymers.
  • the desired color transfer inhibiting effect occurs except in the washing process in the narrower sense, if one brings the above-defined polymers which are accessible by polymerization of benzoxazines in a Wambasenach aspects Kunststoff, for example as part of a fabric softener, in contact with the textile and the textile thus treated in the next washing process, which can be carried out with a polymer containing the polymer used according to the invention or one which is free of it, in the presence of different colored laundry washes.
  • Another object of the invention is therefore a color-protective cleaning, washing or laundry aftertreatment agent containing a dye transfer inhibitor in the form of a polymer as defined above.
  • An agent according to the invention preferably contains from 0.01% by weight to 10% by weight, in particular from 0.1% by weight to 1% by weight, of said polymer.
  • the polymers used in the present invention contribute to both of the above-mentioned aspects of color constancy, that is, they reduce both discoloration and fading, although the effect of preventing staining, especially when washing white textiles, is most pronounced.
  • Another object of the invention is therefore the use of a corresponding polymer to prevent the change in the color impression of textiles in their washing in particular surfactant-containing aqueous solutions. By changing the color impression is by no means the difference between dirty and clean textile to understand, but the color difference between each clean textile before and after the washing process.
  • Another object of the invention is a process for washing dyed textiles in surfactant-containing aqueous solutions, which is characterized in that one uses a surfactant-containing aqueous solution containing a polymer as defined above.
  • a surfactant-containing aqueous solution containing a polymer as defined above.
  • the color transfer inhibiting effect of polymers used according to the invention in the washing of textiles made of cotton, wherein the type of textile refers to the white or undyed textile.
  • the color transfer inhibiting effect of polymers used according to the invention is particularly pronounced in the washing of textiles dyed with direct, reactive or acid dyeings.
  • An inventive composition can, in addition to the polymer, which is accessible by polymerization of benzoxazines, if desired, additionally a known dye transfer inhibitor, this then preferably in amounts of 0.01 wt .-% to 5 wt .-%, in particular 0.1 wt. % to 1 wt .-%, which in a preferred embodiment of the invention is a polymer of vinylpyrrolidone, vinylimidazole, vinylpyridine-N-oxide or a copolymer thereof.
  • N-polyvinylpyrrolidones N-vinylimidazole / N-vinylpyrrolidone copolymers
  • polyvinyloxazolidones copolymers based on vinyl monomers and carboxamides
  • pyrrolidone-containing polyesters and polyamides grafted polyamidoamines and polyethyleneimines
  • polymers containing amide groups from secondary amines polyamine-N-oxide polymers
  • Polyvinyl alcohols and copolymers based on acrylamidoalkenylsulfonic acids it is also possible to use enzymatic systems comprising a peroxidase and hydrogen peroxide or a substance which produces hydrogen peroxide in water.
  • a mediator compound for the peroxidase for example an acetosyringone, a phenol derivative or a phenotiazine or phenoxazine
  • a mediator compound for the peroxidase for example an acetosyringone, a phenol derivative or a phenotiazine or phenoxazine
  • the above-mentioned polymeric color transfer inhibiting agents being additionally used can.
  • the copolymers useful as additional color transfer inhibiting agents those of vinylpyrrolidone and vinylimidazole in the molar ratio of 5: 1 to 1: 1 are preferred.
  • the detergents according to the invention may in principle contain, in addition to the active ingredient used in accordance with the invention, all known ingredients customary in such agents.
  • the agents according to the invention may in particular be builders, surface-active surfactants, bleaches based on organic and / or inorganic peroxygen compounds, bleach activators, water-miscible organic solvents, enzymes, sequestering agents, electrolytes, pH regulators and other auxiliaries, such as optical brighteners, grayness inhibitors, foam regulators and colorants Contain fragrances.
  • compositions according to the invention may comprise one or more surfactants, in particular anionic surfactants, nonionic surfactants and mixtures thereof, but also cationic, zwitterionic and amphoteric surfactants.
  • Suitable nonionic surfactants are in particular alkyl glycosides and ethoxylation and / or propoxylation of alkyl glycosides or linear or branched alcohols each having 12 to 18 carbon atoms in the alkyl moiety and 3 to 20, preferably 4 to 10 alkyl ether groups. Also suitable are ethoxylation and / or propoxylation products of N-alkylamines, vicinal diols, fatty acid esters and fatty acid amides which correspond to said long-chain alcohol derivatives with respect to the alkyl moiety and of alkylphenols having 5 to 12 carbon atoms in the alkyl radical.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C 12 -C 14 -alcohols with 3 EO or 4 EO, C 9 -C 11 -alcohols with 7 EO, C 13 -C 15 -alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 -C 18 -alkyle with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 -C 14 -alcohol with 3 EO and C 12 -C 18 -alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrowed Homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include (tallow) fatty alcohols with 14 EO, 16 EO, 20 EO, 25 EO, 30 EO or 40 EO.
  • agents for use in mechanical processes usually extremely low-foam compounds are used. These include preferably C 12 -C 18 -Alkylpolyethylenglykolpolypropylenglykolether each with at 8 mol ethylene oxide and propylene oxide in the molecule.
  • the nonionic surfactants also include alkyl glycosides of the general formula RO (G) x , in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is a Glykoseiki with 5 or 6 C-atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number - which, as a variable to be determined analytically, may also assume fractional values - between 1 and 10; preferably x is 1.2 to 1.4.
  • polyhydroxy fatty acid amides of the formula in which R 11 CO is an aliphatic acyl radical having 6 to 22 carbon atoms, R 12 represents hydrogen, an alkyl or hydroxyalkyl having 1 to 4 carbon atoms and [Z] is a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups, stands.
  • the polyhydroxy fatty acid amides are preferably derived from reducing sugars having 5 or 6 carbon atoms, in particular from glucose.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula in the R 13 is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 14 is a linear, branched or cyclic alkylene radical or an arylene radical having 2 to 8 carbon atoms
  • R 15 is a linear, branched or cyclic alkyl radical or a Aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, wherein C 1 -C 4 alkyl or phenyl radicals are preferred
  • [Z] is a linear polyhydroxyalkyl radical whose alkyl chain is substituted with at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives of this group.
  • [Z] is also obtained here preferably by reductive amination of a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then be converted into the desired polyhydroxy fatty acid amides, for example by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably from 1 to 4 carbon atoms in the alkyl chain, especially fatty acid methyl ester.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • nonionic surfactants are so-called gemini surfactants. These are generally understood as meaning those compounds which have two hydrophilic groups per molecule. These groups are usually separated by a so-called "spacer". This spacer is typically a carbon chain that should be long enough for the hydrophilic groups to be spaced sufficiently apart for them to act independently of each other. Such surfactants are generally characterized by an unusually low critical micelle concentration and the ability to greatly reduce the surface tension of the water. In exceptional cases, the term gemini surfactants not only such "dimer”, but also corresponding to "trimeric” surfactants understood.
  • Suitable gemini surfactants are, for example, sulfated hydroxy mixed ethers or dimer alcohol bis and trimer alcohol tris sulfates and ether sulfates.
  • End-capped dimeric and trimeric mixed ethers are characterized in particular by their bi- and multi-functionality.
  • the end-capped surfactants mentioned have good wetting properties and are low foaming, so that they are particularly suitable for use in machine washing or cleaning processes.
  • gemini-polyhydroxy fatty acid amides or poly-polyhydroxy fatty acid amides it is also possible to use gemini-polyhydroxy fatty acid amides or poly-polyhydroxy fatty acid amides.
  • sulfuric acid monoesters of straight-chain or branched C 7 -C 21 -alcohols ethoxylated with from 1 to 6 mol of ethylene oxide such as 2-methyl-branched C 9 -C 11 -alcohols having on average 3.5 mol of ethylene oxide (EO) or C 12 - C 18 -fatty alcohols with 1 to 4 EO.
  • EO ethylene oxide
  • the preferred anionic surfactants also include the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters, and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 to C 18 fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which are by themselves nonionic surfactants.
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Suitable further anionic surfactants are fatty acid derivatives of amino acids, for example N-methyltaurine (Tauride) and / or N-methylglycine (sarcosides).
  • sarcosides or the sarcosinates and here especially sarcosinates of higher and optionally monounsaturated or polyunsaturated fatty acids such as oleyl sarcosinate.
  • anionic surfactants are particularly soaps into consideration.
  • Particularly suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid and, in particular, soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids. Together with these soaps or as a substitute for soaps, it is also possible to use the known alkenylsuccinic acid salts.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • Cationic surfactants which are used in particular in inventive laundry aftertreatment agents are preferably selected from esterquats and / or quaternary ammonium compounds (QAV) according to general formula (R I ) (R II ) (R III ) (R IV ) N + X - in which R I to R IV are identical or different C 1-22 -alkyl radicals, C 7-28 -arylalkyl radicals or heterocyclic radicals, where two or, in the case of an aromatic incorporation as in pyridine, even three radicals together with the nitrogen atom are the heterocycle , eg a pyridinium or imidazolinium compound, and X - represents halide ions, sulfate ions, hydroxide ions or similar anions.
  • QAV quaternary ammonium compounds
  • QACs can be prepared by reacting tertiary amines with alkylating agents, such as, for example, methyl chloride, benzyl chloride, dimethyl sulfate, dodecyl bromide, but also ethylene oxide.
  • alkylating agents such as, for example, methyl chloride, benzyl chloride, dimethyl sulfate, dodecyl bromide, but also ethylene oxide.
  • alkylating agents such as, for example, methyl chloride, benzyl chloride, dimethyl sulfate, dodecyl bromide, but also ethylene oxide.
  • alkylating agents such as, for example, methyl chloride, benzyl chloride, dimethyl sulfate, dodecyl bromide, but also ethylene oxide.
  • the alkylation of tertiary amines with a long alkyl radical and two methyl groups succeeds particularly easily, and the quaternization of tertiary
  • Candidate QACs are, for example, benzalkonium chloride (N alkyl-N, N dimethyl-benzylammonium chloride), benzalkone B (m, p-dichlorobenzyl-dimethyl-C 12 -alkylammonium chloride, benzoxonium chloride (benzyl-dodecyl-bis (2-hydroxyethyl) -ammonium chloride ) Cetrimonium bromide (N-hexadecyl-N, N-trimethyl-ammonium bromide), Benzetonium chloride (N, N-dimethyl-N [2- [2- [2- [p- (1,1,3,3-tetramethyl-butyl) -phenoxy] -ethoxy] -ethyl ] benzylammonium chloride), dialkyldimethylammonium chlorides such as di-n-decyldimethylammonium chloride, didecyldimethyl
  • Esterquats are here compounds of the general formula, in which R 6 is an alkyl or alkenyl radical having 12 to 22 carbon atoms and 0, 1, 2 or 3 double bonds, R 7 and R 8 are independently H, OH or O (CO) R 6 , s, t and u are each independently of the other the value 1, 2 or 3 and X - is an anion, in particular halide, methosulfate, methophosphate or phosphate and mixtures of these. Preference is given to compounds which contain the group O (CO) R 6 for R 7 and an alkyl radical having 16 to 18 carbon atoms for R 6 . Particularly preferred are compounds in which R 8 is also OH.
  • Examples of compounds of the abovementioned formula are methyl N- (2-hydroxyethyl) -N, N-di (tallowacyl oxyethyl) ammonium methosulfate, bis (palmitoyl) ethyl hydroxyethyl, methyl ammonium methosulfate or methyl N , N-bis (acyloxyethyl) -N- (2-hydroxyethyl) ammonium methosulfate.
  • the acyl groups whose corresponding fatty acids have an iodine number between 5 and 80, preferably between 10 and 60 and in particular between 15 and 45 and / or which have a cis / trans isomer ratio (in mols %) of greater than 30: 70, preferably greater than 50:50 and in particular greater than 70:30.
  • Commercial examples are sold by Stepan under the trade name Stepantex® ® methylhydroxyalkyldialkoyloxyalkylammonium or those known under the trade name Dehyquart® ® products from Cognis Germany GmbH or the known under the name Rewoquat ® products by manufacturer Goldschmidt-Witco.
  • Surfactants are present in inventive compositions in proportions of preferably 5 wt .-% to 50 wt .-%, in particular from 8 wt .-% to 30 wt .-%.
  • An agent according to the invention preferably contains at least one water-soluble and / or water-insoluble, organic and / or inorganic builder.
  • the water-soluble organic builder substances include polycarboxylic acids, in particular citric acid and sugar acids, monomeric and polymeric aminopolycarboxylic acids, in particular methylglycinediacetic acid, nitrilotriacetic acid and ethylenediaminetetraacetic acid and polyaspartic acid, polyphosphonic acids, in particular aminotris (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid) and 1-hydroxyethane-1,1-diphosphonic acid, polymeric hydroxy compounds such as dextrin and also polymeric (poly) carboxylic acids, in particular the polycarboxylates obtainable by oxidation of polysaccharides or dextrins, polymeric acrylic acids, methacrylic acids, maleic acids and copolymers thereof, which may also contain polymerized small amounts of polyme
  • the molecular weight of the homopolymers of unsaturated carboxylic acids is generally between 3,000 and 200,000, of the copolymers between 2,000 and 200,000, preferably 30,000 to 120,000, each based on the free acid.
  • a particularly preferred acrylic acid-maleic acid copolymer has a molecular weight of from 30,000 to 100,000.
  • Commercially available products are, for example, Sokalan® CP 5, CP 10 and PA 30 from BASF.
  • Suitable, although less preferred, compounds of this class are copolymers of acrylic or methacrylic acid with vinyl ethers, such as vinylmethyl ethers, vinyl esters, ethylene, propylene and styrene, in which the acid content is at least 50% by weight.
  • the first acidic monomer or its salt is derived from a monoethylenically unsaturated C 3 -C 8 -carboxylic acid and preferably from a C 3 -C 4 -monocarboxylic acid, in particular from (meth) -acrylic acid.
  • the second acidic monomer or its salt may be a derivative of a C 4 -C 8 -dicarboxylic acid, with maleic acid being particularly preferred, and / or a derivative of an allylsulfonic acid which is substituted in the 2-position by an alkyl or aryl radical.
  • Such polymers generally have a molecular weight between 1,000 and 200,000.
  • Further preferred copolymers are those which preferably have as monomers acrolein and acrylic acid / acrylic acid salts or vinyl acetate.
  • the organic builder substances can be used, in particular for the preparation of liquid agents, in the form of aqueous solutions, preferably in the form of 30 to 50 percent by weight aqueous solutions. All of the acids mentioned are generally used in the form of their water-soluble salts, in particular their alkali metal salts.
  • organic builder substances may be present in amounts of up to 40% by weight, in particular up to 25% by weight and preferably from 1% by weight to 8% by weight. Quantities close to the stated upper limit are preferably used in paste-form or liquid, in particular water-containing, agents according to the invention.
  • Suitable water-soluble inorganic builder materials are, in particular, alkali metal silicates, alkali metal carbonates and alkali metal phosphates, which may be in the form of their alkaline, neutral or acidic sodium or potassium salts.
  • alkali metal silicates alkali metal carbonates and alkali metal phosphates, which may be in the form of their alkaline, neutral or acidic sodium or potassium salts.
  • examples of these are trisodium phosphate, tetrasodium diphosphate, disodium dihydrogen diphosphate, pentasodium triphosphate, so-called sodium hexametaphosphate, oligomeric trisodium phosphate with degrees of oligomerization of from 5 to 1000, in particular from 5 to 50, and the corresponding potassium salts or mixtures of sodium and potassium salts.
  • Crystalline or amorphous alkali metal aluminosilicates in amounts of up to 50% by weight, preferably not more than 40% by weight, and in liquid agents, in particular from 1% by weight to 5% by weight, are particularly suitable as water-insoluble, water-dispersible inorganic builder materials.
  • suitable aluminosilicates have no particles with a particle size greater than 30 .mu.m and preferably consist of at least 80% by weight of particles having a size of less than 10 .mu.m.
  • Their calcium binding capacity is usually in the range of 100 to 200 mg CaO per gram.
  • Suitable substitutes or partial substitutes for the said aluminosilicate are crystalline alkali silicates which may be present alone or in a mixture with amorphous silicates.
  • the alkali metal silicates useful as builders in the compositions according to the invention preferably have a molar ratio of alkali metal oxide to SiO 2 below 0.95, in particular from 1: 1.1 to 1:12, and may be present in amorphous or crystalline form.
  • Preferred alkali metal silicates are the sodium silicates, in particular the amorphous sodium silicates, with a molar ratio of Na 2 O: SiO 2 of 1: 2 to 1: 2.8.
  • the crystalline silicates which may be present alone or in admixture with amorphous silicates, are crystalline layer silicates with the general formula of Na 2 Si x O used 2x + 1 ⁇ y H 2 O in which x, known as the modulus, an integer of 1, 9 to 22, especially 1.9 to 4, and y is a number from 0 to 33 and preferred values for x are 2, 3 or 4.
  • Preferred crystalline phyllosilicates are those in which x in the abovementioned general formula assumes the values 2 or 3. In particular, both ⁇ - and ⁇ -sodium disilicates (Na 2 Si 2 O 5 y H 2 O) are preferred.
  • amorphous alkali silicates practically anhydrous crystalline alkali silicates of the abovementioned general formula in which x is a number from 1.9 to 2.1, can be used in inventive compositions.
  • a crystalline sodium layer silicate with a modulus of 2 to 3 is used, as can be prepared from sand and soda. Crystalline sodium silicates with a modulus in the range from 1.9 to 3.5 are used in a further preferred embodiment of compositions according to the invention.
  • Crystalline layered silicates of the above Formula (I) are marketed by Clariant GmbH under the trade name Na-SKS, eg Na-SKS-1 (Na 2 Si 22 O 45 .xH 2 O), Kenyaite), Na-SKS-2 (Na 2 Si 14 O 29 ⁇ xH 2 O, magadiite), Na-SKS-3 (Na 2 Si 8 O 17 ⁇ xH 2 O) or Na-SKS-4 (Na 2 Si 4 O 9 ⁇ xH 2 O, makatite).
  • Na-SKS eg Na-SKS-1 (Na 2 Si 22 O 45 .xH 2 O), Kenyaite
  • Na-SKS-2 Na 2 Si 14 O 29 ⁇ xH 2 O, magadiite
  • Na-SKS-3 Na 2 Si 8 O 17 ⁇ xH 2 O
  • Na-SKS-4 Na 2 Si 4 O 9 ⁇ xH 2 O, makatite
  • Na-SKS-5 ⁇ -Na 2 Si 2 O 5
  • Na-SKS-7 ⁇ -Na 2 Si 2 O 5 , natrosilite
  • Na-SKS-9 NaHSi 2 O 5 3H 2 O
  • Na-SKS-10 NaHSi 2 O 5 ⁇ 3H 2 O, kanemite
  • Na-SKS-11 t-Na 2 Si 2 O 5
  • Na-SKS-13 NaHSi 2 O 5
  • Na-SKS-6 ⁇ -Na 2 Si 2 O 5
  • composition according to the invention a granular compound of crystalline phyllosilicate and citrate, of crystalline phyllosilicate and of the above-mentioned (co-) polymeric polycarboxylic acid, or of alkali silicate and alkali metal carbonate, such as, for example, commercially available under the name Nabion® 15, is used ,
  • Builder substances are preferably present in the compositions according to the invention in amounts of up to 75% by weight, in particular 5% by weight to 50.
  • suitable peroxygen compounds are in particular organic peracids or pers acid salts of organic acids, such as phthalimidopercaproic acid, perbenzoic acid or salts of diperdodecanedioic acid, hydrogen peroxide and under the washing conditions hydrogen peroxide donating inorganic salts, which include perborate, percarbonate, persilicate and / or persulfate Caroat belong into consideration.
  • organic peracids or pers acid salts of organic acids such as phthalimidopercaproic acid, perbenzoic acid or salts of diperdodecanedioic acid, hydrogen peroxide and under the washing conditions hydrogen peroxide donating inorganic salts, which include perborate, percarbonate, persilicate and / or persulfate Caroat belong into consideration.
  • solid peroxygen compounds are to be used, they can be used in the form of powders or granules, which can also be enveloped in a manner known in principle.
  • an agent according to the invention contains peroxygen compounds, they are present in amounts of preferably up to 50% by weight, in particular from 5% by weight to 30% by weight.
  • bleach stabilizers such as phosphonates, borates or metaborates and metasilicates and magnesium salts such as magnesium sulfate may be useful.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate, 2,5-diacetoxy- 2,5-dihydrofuran and enol ester
  • hydrophilic substituted acyl acetals and the acyl lactams are also preferably used.
  • Combinations of conventional bleach activators can also be used.
  • Such bleach activators can, in particular in the presence of the abovementioned hydrogen peroxide-producing bleach, in the usual amount range, preferably in amounts of from 0.5 wt .-% to 10 wt .-%, in particular 1 wt .-% to 8 wt .-%, based on However, total agent, be included, missing when using percarboxylic acid as the sole bleach, preferably completely.
  • sulfone imines and / or bleach-enhancing transition metal salts or transition metal complexes may also be present as so-called bleach catalysts.
  • Suitable enzymes which can be used in the compositions are those from the class of amylases, proteases, lipases, cutinases, pullulanases, hemicellulases, cellulases, oxidases, laccases and peroxidases and mixtures thereof. Particularly suitable are from fungi or bacteria, such as Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes, Pseudomonas cepacia or Coprinus cinereus derived enzymatic agents.
  • the enzymes may be adsorbed to carriers and / or embedded in encapsulants to protect against premature inactivation. They are preferably present in the detergents or cleaners according to the invention in amounts of up to 5% by weight, in particular from 0.2% by weight to 4% by weight. If the agent of the invention contains protease, it preferably has a proteolytic activity in the range of about 100 PE / g to about 10,000 PE / g, in particular 300 PE / g to 8000 PE / g. If several enzymes are to be used in the agent according to the invention, this can be carried out by incorporation of the two or more separate or in a known manner separately prepared enzymes or by two or more enzymes formulated together in a granule.
  • organic solvents which can be used in addition to water include alcohols having 1 to 4 C atoms, in particular methanol, ethanol, isopropanol and tert-butanol, diols having 2 to 4 C -Atomen, in particular ethylene glycol and propylene glycol, and mixtures thereof and derived from the classes of compounds mentioned ether.
  • Such water-miscible solvents are preferably present in the compositions according to the invention in amounts of not more than 30% by weight, in particular from 6% by weight to 20% by weight.
  • compositions of the invention system and environmentally acceptable acids, in particular citric acid, acetic acid, tartaric acid, malic acid, lactic acid, glycolic acid, succinic acid, glutaric acid and / or adipic acid, but also mineral acids, in particular sulfuric acid, or bases, in particular ammonium or alkali metal hydroxides.
  • environmentally acceptable acids in particular citric acid, acetic acid, tartaric acid, malic acid, lactic acid, glycolic acid, succinic acid, glutaric acid and / or adipic acid, but also mineral acids, in particular sulfuric acid, or bases, in particular ammonium or alkali metal hydroxides.
  • pH regulators are present in the compositions according to the invention in amounts of preferably not more than 20% by weight, in particular from 1.2% by weight to 17% by weight.
  • Graying inhibitors have the task of keeping suspended from the textile fiber dirt suspended in the fleet.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example starch, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or of cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • starch derivatives can be used, for example aldehyde starches.
  • cellulose ethers such as carboxymethylcellulose (Na salt), methylcellulose, hydroxyalkylcellulose and mixed ethers, such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof, for example in amounts of from 0.1 to 5% by weight, based on the compositions.
  • Detergents according to the invention may contain, for example, derivatives of diaminostilbenedisulfonic acid or their alkali metal salts as optical brighteners, although they are preferably free of optical brighteners for use as color detergents.
  • Suitable salts are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulphonic acid or compounds of similar construction which, instead of the morpholino Group carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • brighteners of the substituted diphenylstyrene type may be present, for example, the alkali salts of 4,4'-bis (2-sulfostyryl) -diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) -diphenyl, or 4 - (4-chlorostyryl) -4 '- (2-sulfostyryl).
  • Mixtures of the aforementioned optical brightener can be used.
  • foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of C 18 -C 24 fatty acids.
  • Suitable non-surfactant foam inhibitors are, for example, organopolysiloxanes and mixtures thereof with microfine, optionally silanized silica and paraffins, waxes, microcrystalline waxes and mixtures thereof with silanated silicic acid or bis-fatty acid alkylenediamides. It is also advantageous to use mixtures of various foam inhibitors, for example those of silicones, paraffins or waxes.
  • the foam inhibitors, in particular silicone- and / or paraffin-containing foam inhibitors are preferably bound to a granular, water-soluble or dispersible carrier substance. In particular, mixtures of paraffins and bistearylethylenediamide are preferred.
  • compositions according to the invention presents no difficulties and can be carried out in a known manner, for example by spray-drying or granulation, enzymes and possibly other thermally sensitive ingredients such as, for example, bleaching agents optionally being added separately later.
  • inventive compositions having an increased bulk density in particular in the range from 650 g / l to 950 g / l, a process comprising an extrusion step is preferred.
  • compositions according to the invention in tablet form, which may be monophasic or multiphase, monochromatic or multicolor and in particular consist of one or more layers, in particular two layers
  • the procedure is preferably such that all constituents - if appropriate one per layer - in one Mixer mixed together and the mixture by means of conventional tablet presses, such as eccentric or rotary presses, pressed with compressive forces in the range of about 50 to 100 kN, preferably at 60 to 70 kN.
  • a tablet produced in this way has a weight of 10 g to 50 g, in particular 15 g up to 40 g.
  • the spatial form of the tablets is arbitrary and can be round, oval or angular, with intermediate forms are also possible. Corners and edges are advantageously rounded. Round tablets preferably have a diameter of 30 mm to 40 mm.
  • the size of rectangular or cuboid-shaped tablets, which are introduced predominantly via the metering device, for example the dishwasher, is dependent on the geometry and the volume of this metering device.
  • Exemplary preferred embodiments have a base area of (20 to 30 mm) x (34 to 40 mm), in particular of 26x36 mm or 24x38 mm.
  • Liquid or pasty compositions according to the invention in the form of customary solvent-containing solutions are generally prepared by simply mixing the ingredients, which can be added in bulk or as a solution in an automatic mixer.
  • Example 1.1 Under the conditions described in Example 1.1, paraformaldehyde, p-cresol and ethanolamine were reacted. 328.6 g of the corresponding polymerizable benzoxazine compound B-box III were obtained.
  • benzoxazine (co) polymers were prepared in the composition shown in Table 1.
  • Table 1 Proportion of the respective polymerizable benzoxazine compounds on the benzoxazine (co) polymer polymer Weight fraction of the respective polymerizable benzoxazine compounds in% B-Box I-1.2 B-Box I-1.1 B-Box II B-Box III 1 100 2 100 3 100 4 100 5 30 70 6 50 50 7 30 70 8th 50 50 9 30 70 10 50 11 70 30 12 50 13 30 35 35 14 50 25 25 15 30 35 35 16 50 25 25;
  • Example 3 Alkylation of benzoxazine (co) polymers to prepare cationic benzoxazine (co) polymers
  • NMR spectroscopic methods have shown that at least 5% of all nitrogen atoms, based on the total number of nitrogen atoms in the cationic benzoxazine (co) polymer mentioned above, are in the form of permanent quaternary nitrogen atoms.
  • compositions of compositions E according to the invention and those of a comparative example C 1 Table 2: Formulation [wt .-%] e V1 C 12-18 fatty alcohol with 7 EO 10 10 Na-C 12-18 fatty alcohol with 7 EO sulphate 14.5 14.5 C 12-18 fatty acid 5 5 citric acid 3 3 Na-phosphonate 1 1 Benzoxazine (co) polymer (from Example 2 or 3) 0.1 - polyvinylpyrrolidone - 0.1 caustic soda 4.5 4.5 propylene glycol 9 9 boric acid 1 1 Silicone antifoam 0.1 0.1 water Ad 100 Ad 100 Ad 100 Ad 100
  • compositions E according to the invention which contained a benzoxazine (co) polymer prepared in Examples 2 and 3, showed better ink transfer-inhibiting properties in washing experiments than Comparative Formulation V1.

Description

  • Die vorliegende Erfindung betrifft die Verwendung von Polymeren, die durch Polymerisation von Benzoxazinen zugänglich sind, als farbübertragungsinhibierende Wirkstoffe beim Waschen und/oder Reinigen von Textilien sowie Wasch- oder Reinigungsmittel, welche derartige farbübertragungsinhibierende Polymere enthalten.
  • Wasch- und Reinigungsmittel enthalten neben den für den Wasch- beziehungsweise Reinigungsprozess unverzichtbaren Inhaltsstoffen wie Tensiden und Buildermaterialien in der Regel weitere Bestandteile, die man unter dem Begriff Waschhilfsstoffe zusammenfassen kann und die so unterschiedliche Wirkstoffgruppen wie Schaumregulatoren, Vergrauungsinhibitoren, Bleichmittel, Bleichaktivatoren und Enzyme umfassen. Zu derartigen Hilfsstoffen gehören auch Substanzen, welche verhindern sollen, dass gefärbte textile Flächengebilde nach der Wäsche einen veränderten Farbeindruck hervorrufen. Diese Farbeindrucksveränderung gewaschener, d.h. sauberer, Textilien kann zum einen darauf beruhen, dass Farbstoffanteile durch den Waschbeziehungsweise Reinigungsprozess vom Textil entfernt werden ("Verblassen"), zum anderen können sich von andersfarbigen Textilien abgelöste Farbstoffe auf dem Textil niederschlagen ("Verfärben"). Der Verfärbungsaspekt kann auch bei ungefärbten Wäschesstücken eine Rolle spielen, wenn diese zusammen mit farbigen Wäschestücken gewaschen werden. Um diese unerwünschten Nebeneffekte des Entfernens von Schmutz von Textilien durch Behandeln mit üblicherweise tensidhaltigen wäßrigen Systemen zu vermeiden, enthalten Waschmittel, insbesondere wenn sie als sogenannte Color- oder Buntwaschmittel zum Waschen farbiger Textilien vorgesehen sind, Wirkstoffe, die das Ablösen von Farbstoffen vom Textil verhindern oder zumindest das Ablagern von abgelösten, in der Waschflotte befindlichen Farbstoffen auf Textilien vermeiden sollen. Viele der üblicherweise zum Einsatz kommenden Polymere haben allerdings eine derart hohe Affinität zu Farbstoffen, dass sie diese verstärkt von der gefärbten Faser ziehen, so dass es bei ihrem Einsatz zu Farbverlusten kommt. Für das Reinigen harter Oberflächen gilt sinngemäß das gleiche.
  • Polybenzoxazinverbindungen als Zusätze für elektrolytische Membranen sind aus EP 1760110 bekannt.
  • Überraschenderweise wurde nun gefunden, dass Benzoxazin(co)polymere zu unerwartetet hohen Farbübertragungsinhibierungen führen, wenn man sie in Wasch- oder Reinigungsmitteln einsetzt. Besonders ausgeprägt ist die Verhinderung des Anfärbens von weißen oder auch andersfarbigen Textilien durch aus Textilien herausgewaschene Farbstoffe. Denkbar ist, dass die unten noch näher definierten Benzoxazin(co)polymere beim Waschen auf die Textilien aufziehen und dadurch zum einen effektiv ein Ablösen der Farbstoffe aus den Textilien verhindern wird und sie zum anderen abstoßend auf bereits in der Flotte befindliche Farbstoffmoleküle wirken.
  • Gegenstand der Erfindung ist die Verwendung von Polymeren, die erhältlich sind durch Polymerisation von Benzoxazin-Monomeren, zur Vermeidung der Übertragung von Textilfarbstoffen von gefärbten Textilien auf ungefärbte oder andersfarbige Textilien bei deren gemeinsamer Wäsche in insbesondere tensidhaltigen wäßrigen Lösungen.
  • Die erfindungsgemäß verwendeten Benzoxazin(co)polymere können in grundsätzlich bekannter Weise durch Polymerisation von Benzoxazinen erhalten werden. Die zur Herstellung der erfindungsgemäß verwendeten Benzoxazin(co)polymere verwendbaren Benzoxazin-Verbindungen sind polymerisierbare Monomere, die zumindest eine Benzoxazingruppe umfassen. Bevorzugte Monomere können vorzugsweise bis zu vier Benzoxazingruppen umfassen, wobei zur Herstellung erfindungsgemäß verwendeter Benzoxazin(co)polymere sowohl einzelne Monomere als auch Mischungen von zwei oder mehr Monomeren verwendet werden können. Die Polymerisation der polymerisierbaren Benzoxazin-Verbindung (zum Benzoxazinpolymer) oder der Mischung verschiedener polymerisierbarer Benzoxazin-Verbindungen (zum Benzoxazincopolymer) kann nach im Prinzip bekannten Verfahren, zum Beispiel bei erhöhten Temperaturen nach einem selbstinitiierenden Mechanismus (thermische Polymerisation) oder durch Zugabe von kationischen Initiatoren erfolgen. Geeignete kationische Initiatoren sind beispielsweise Lewissäuren oder andere kationische Initiatoren, wie beispielsweise Metallhalogenide, Organometall-Reagenzien, wie Metalloporphyrine, Methyltosylate, Methyltriflate oder Trifluorsulfonsäuren. Ebenso können basische Reagenzien verwendet werden, um die Polymerisation der polymerisierbaren Benzoxazin-Verbindung oder der Mischung verschiedener polymerisierbarer Benzoxazin-Verbindungen zu initiieren. Geeignete basische Reagenzien können beispielsweise ausgewählt werden aus Imidazol oder Imidazolderivaten. Die thermische Polymerisation wird in der Regel bei Temperaturen von 150 °C bis 300 °C, insbesondere bei Temperaturen von 160 °C bis 220 °C ausgeführt. Durch die Verwendung der oben genannten Initiatoren und/oder anderer Reagenzien kann die Polymerisationstemperatur auch niedriger liegen. Der Polymerisationsvorgang beruht dabei im Wesentlichen auf der thermisch-induzierten Ringöffnung des Oxazinrings eines Benzoxazinsystems
  • In einer besonderen Ausführungsform der vorliegenden Erfindung wird die polymerisierbare Benzoxazin-Verbindung ausgewählt aus Verbindungen der allgemeinen Formel (I) oder aus Verbindungen der allgemeinen Formel (II) oder aus Mischungen von diesen,
    Figure imgb0001
    Figure imgb0002
    • wobei q eine ganze Zahl von 1 bis 4 ist, n eine Zahl von 2 bis 20000, vorzugsweise von 3 bis 10000, besonders bevorzugt von 4 bis 8000 und insbesondere von 5 bis 7000 ist,
    • R in jeder Wiederholungseinheit unabhängig voneinander ausgewählt wird aus Wasserstoff oder linearen oder verzweigten, gegebenenfalls substituierten Alkylgruppen, die 1 bis 8 Kohlenstoffatome umfassen,
    • Z ausgewählt wird aus Wasserstoff (für q = 1), Alkyl (für q = 1), Alkylen (für q = 2 bis 4), Carbonyl (für q = 2), Sauerstoff (für q = 2), Schwefel (für q = 2), Sulfoxid (für q = 2), Sulfon (für q = 2) und einer direkten, kovalenten Bindung (für q = 2),
    • R1 für eine kovalente Bindung steht oder eine divalente Verbindungsgruppe ist, die 1 bis 100 Kohlenstoffatome umfasst,
    • R2 ausgewählt wird aus Wasserstoff, Halogen, Alkyl und Alkenyl oder R2 ein divalenter Rest ist, der aus der Benzoxazin-Struktur eine entsprechende Naphthoxazin-Struktur macht,
    • Y ausgewählt wird aus linearen oder verzweigten, gegebenenfalls substituierten Alkylgruppen, die 1 bis 15 Kohlenstoffatomen umfassen, cycloaliphatischen Resten, die gegebenenfalls ein oder mehrere Heteroatome enthalten, Arylresten, die gegebenenfalls ein oder mehrere Heteroatome enthalten, und -(C=O)R3, wobei R3 aus linearen oder verzweigten, gegebenenfalls substituierten Alkylgruppen mit die 1 bis 15 Kohlenstoffatomen und X-R4 ausgewählt wird, wobei X aus S, O, und NH ausgewählt wird und R4 aus linearen oder verzweigten, gegebenenfalls substituierten Alkylgruppen mit 1 bis 15 Kohlenstoffatomen ausgewählt wird,
    • c eine ganze Zahl von 1 bis 4 ist,
    • B ausgewählt wird aus Wasserstoff (für c = 1), Alkyl (für c = 1), Alkylen (für c = 2 bis 4), Carbonyl (für c = 2), Sauerstoff (für c = 2), Schwefel (für c = 2), Sulfoxid (für c = 2), Sulfon (für c = 2) und einer direkten, kovalenten Bindung (für c = 2), A eine Hydroxylgruppe oder ein stickstoffhaltiger Heterozyklus ist,
    • R5 ausgewählt wird aus Wasserstoff, Halogen, Alkyl und Alkenyl oder R5 ein divalenter Rest ist, der aus der Benzoxazin-Struktur eine entsprechende Naphthoxazin-Struktur macht und R6 für eine kovalente Bindung steht oder eine divalente Verbindungsgruppe ist, die 1 bis 100 Kohlenstoffatome umfasst.
  • In einer Ausführungsform der Erfindung wird in Formel (I) R in jeder Wiederholungseinheit unabhängig voneinander ausgewählt aus Wasserstoff und Methyl.
  • Die divalenten organischen Verbindungsgruppen R1 in Formel (I) und/oder R6 in Formel (II) umfassen vorzugsweise 2 bis 50, besonders bevorzugt 2 bis 25 und insbesondere 2 bis 20 Kohlenstoffatome. Weiterhin können die divalenten organischen Verbindungsgruppen R1 und R6 jeweils aus linearen oder verzweigten, gegebenenfalls substituierten Alkylengruppen ausgewählt werden, die 1 bis 15 Kohlenstoffatome umfassen, wobei die Alkylengruppen gegebenenfalls durch mindestens ein Heteroatom ausgewählt aus Sauerstoff, Schwefel oder Stickstoff unterbrochen sind. Unter dem Begriff "unterbrochen" wird im Sinne der vorliegenden Erfindung verstanden, dass in einer divalenten Alkylengruppe mindestens ein nicht-terminales Kohlenstoffatom der genannten Gruppe durch ein Heteroatom ersetzt wird, wobei das Heteroatom vorzugsweise ausgewählt wird aus --S-- (Schwefel), --O-- (Sauerstoff), und --NRa-- (Stickstoff), wobei Ra insbesondere für Wasserstoff oder für eine linearen oder verzweigten, gegebenenfalls substituierten Alkylgruppen mit 1 bis 15 Kohlenstoffatomen steht. Vorzugsweise werden die divalenten organischen Verbindungsgruppen R1 und/oder R6 aus Alkylengruppen ausgewählt, die 2 bis 8 C-Atome umfassen. In einer bevorzugten Ausführungsform wird R1 und/oder R6 aus linearen Alkylengruppen ausgewählt, die 2 bis 6, insbesondere 2 oder 3 Kohlenstoffatome umfassen, wie beispielsweise Ethylen-, Propylen-, Butylen-, Pentylen- und Hexylengruppen. Alternativ dazu kann R1 in Formel (I) und/oder R6 in Formel (II) für eine kovalente Bindung stehen.
  • Darüber hinaus können die divalenten organischen Verbindungsgruppen R1 und/oder R6 mindestens eine Arylengruppe und/oder mindestens eine Biphenylenguppe umfassen, die vorzugsweise jeweils 6 bis 12 Kohlenstoffatome beinhalten. Die Arylengruppen und Biphenylenguppen können substituiert oder unsubstituiert vorliegen, wobei geeignete Substituenten beispielsweise ausgewählt werden aus Alkyl-, Alkenyl-, Halogen-, Amin, Thiol-, Carboxyl- und Hydroxylgruppen. Weiterhin kann mindestens ein Kohlenstoffatom des aromatischen Ringsystems der genannten Gruppen durch ein Heteroatom ersetzt sein, wobei das Heteroatom vorzugsweise aus Sauerstoff, Stickstoff und Schwefel ausgewählt wird.
  • Die Reste R2 und R5 in Formel (I) und Formel (II) stehen vorzugsweise jeweils für Wasserstoff und Methyl.
  • Der Rest A in Formel (II) steht für eine Hydroxylgruppe oder einen stickstoffhaltigen Heterozyklus. Unter dem Begriff "stickstoffhaltiger Heterozyklus" werden im Sinne der vorliegenden Erfindung insbesondere solche Ringsysteme verstanden, die 3 bis 8 Ringatome, vorzugsweise 5 bis 6 Ringatome beinhalten, wobei das Ringsystem mindestens ein Stickstoffatom und mindestens zwei Kohlenstoffatome umfasst. Der genannte stickstoffhaltige Heterozyklus kann eine gesättigte, ungesättigte oder aromatische Struktur aufweisen und neben den vorgenannten Atomen auch weitere Heteroatome, wie beispielsweise Schwefel- und/oder Sauerstoffatome umfassen. Der stickstoffhaltige Heterozyklus ist gemäß Formel (II) über die divalente Verbindungsgruppe R6 mit dem Stickstoffatom des Oxazinrings der Benzoxazinstruktur verbunden. Die divalente Verbindungsgruppe R6 kann mit jedem Stickstoff- oder Kohlenstoffringatom des stickstoffhaltigen Heterozyklus verknüpft sein, indem R6 ein mit einem Stickstoff- oder Kohlenstoffringatom kovalent verbundenes Wasserstoffatom formal ersetzt. Besonders bevorzugte stickstoffhaltige Heterozyklen werden beispielsweise ausgewählt aus 5- gliedrigen stickstoffhaltigen Heterozyklen, wie etwa Imidazolen, Imidazolidonen, Tetrazolen, Oxazolen, Pyrrolen, Pyrrolidinen und Pyrazolen oder 6-gliedrigen stickstoffhaltigen Heterozyklen, wie etwa Piperidinen, Piperidonen, Piperazinen, Pyridinen, Diazinen und Morpholinen.
  • In einer bevorzugten Ausführungsform der Erfindung werden die polymerisierbaren Benzoxazin-Verbindungen der allgemeinen Formel (I) ausgewählt aus Verbindungen der allgemeinen Formel (III),
    Figure imgb0003
    wobei x eine Zahl zwischen 0 und 1000 und y eine Zahl zwischen 0 und 1000 ist, mit der Maßgabe, dass x+y ≥ 2 ist, wobei Z, R2, Y und q jeweils wie oben in Formel (I) definiert sind. Vorzugsweise ist x+y ≥ 3, besonders bevorzugt ≥ 4 und ganz besonders bevorzugt ≥ 5.
  • Je nach Anwendungsprofil kann es zweckmäßig sein, die Anzahl der Alkylenoxid-Einheiten der Alkylenoxid-Kette in den polymerisierbaren Benzoxazin-Verbindung der allgemeinen Formel (I) und (III) anzupassen. In bestimmten Ausführungsformen der Erfindung nimmt n und/oder x+y daher als Untergrenze einen Wert von mindestens 3, 4, 6, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 80, 100, 150 oder 200 an. Eine zweckmäßige Obergrenze für n und/oder x+y liegt in den erfindungsgemäßen Benzoxazin-Verbindungen der allgemeinen Formel (I) oder (III) vorzugsweise bei einem Wert von maximal 10000, 2000, 1800, 1600, 1400, 1200, 1000, 800, 600 oder 400.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung werden die Benzoxazin-Verbindungen der allgemeinen Formel (II) ausgewählt aus Verbindungen der allgemeinen Formel (IV) und/oder aus Verbindungen der allgemeinen Formel (V),
    Figure imgb0004
    Figure imgb0005
    wobei R7 und R8 jeweils unabhängig voneinander ausgewählt werden aus Wasserstoff, Halogen, linearen oder verzweigten, gegebenenfalls substituierten Alkylgruppen, Alkenylgruppen und Arylgruppen, wobei c, B, R5 und R6 jeweils wie oben in Formel (II) definiert sind.
  • In einer weiteren Ausführungsform der Erfindung werden R7 und R8 in Formel (IV) unabhängig voneinander ausgewählt aus Wasserstoff, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sec-Butyl und iso-Butyl, wobei R7 und R8 insbesondere für Wasserstoff oder Methyl stehen.
  • Besonders bevorzugte Benzoxazin-Verbindungen der allgemeinen Formel (IV) werden aus den folgenden Benzoxazin-Verbindungen ausgewählt:
    Figure imgb0006
    Figure imgb0007
    wobei c, B, R5, R6, R7 und R8 wie oben definiert sind.
  • Spezifische Benzoxazin-Verbindungen der allgemeinen Formel (IV) können exemplarisch aus den folgenden Verbindungen ausgewählt werden:
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
  • Die gezeigten Benzoxazin-Verbindungen, die einen Imdizaolring als stickstoffhaltigen Heterozyklus tragen, können beispielsweise durch die Umsetzung einer phenolischen Verbindung mit einem Aldehyd, wie beispielsweise Formaldehyd und einer Aminoalkylimidazol-Verbindung erhalten werden. Geeignete phenolische Verbindungen können beispielsweise aus mono- oder biphenolischen Verbindungen, wie etwa Phenol, Bisphenol A, Bisphenol F, Bisphenol S oder Thiodiphenol ausgewählt werden. Als Aldehyd können neben Formaldehyd auch Paraformalehyd, Trioxan oder Polyoxymethylen oder deren beliebige Mischungen verwendet werden.
  • Bevorzugte Aminoalkylimidazol-Verbindung weisen insbesondere eine primäre Aminogruppe auf und können beispielsweise aus Verbindungen allgemeine Formel (VI) ausgewählt werden,
    Figure imgb0014
    wobei R6, R7 und R3 wie oben definiert sind.
  • Insbesondere sind 1-Aminoalkylimidazol-Verbindungen der allgemeinen Formel (VII),
    Figure imgb0015
    oder 2-Aminoalkylimidazol-Verbindungen der allgemeinen Formel (VIII)
    Figure imgb0016
    zur Herstellung der entsprechenden Benzoxazin-Verbindungen geeignet, wobei R6, R7 und R8 wie oben definiert sind.
  • Geeignete 1-Aminoalkylimidazol-Verbindung der allgemeinen Formel (VII) sind aus dem Stand der Technik bekannt und kommerziell verfügbar. Beispiele sind etwa 1-(3-Aminopropyl)imidazol, erhältlich unter dem Handelsnamen Lupragen® API von der BASF SE, 3-Imidazol-1-yl-2-methyl-propylamin (ChemPacific), 2-Methyl-1H-imidazol-1-propanamin, (3B Scientific Corporation), 3-Imidazol-1-yl-2-hydroxy-propylamin (Ambinter, ParisCollection), 1-(4-Aminobutyl)imidazol (Ambinter, Paris), 2-Ethyl-1H-imidazol-1-propanamin (ChemBridge Corp.). Neben der Verwendung kommerziell verfügbarer 1-Aminoalkylimidazol-Verbindungen der allgemeinen Formel (VII) können diese auch mit Hilfe gängiger Methoden der organischen Synthese hergestellt werden, wie beispielsweise durch ein Verfahren, das im Houben-Weyl, Methoden der organischen Chemie Vol. E 16d, Georg-Thieme-Verlag Stuttgart, 1992 auf den Seiten 755 ff. beschrieben ist.
  • 2-Aminoalkylimidazol-Verbindungen der allgemeinen Formel (VIII) sind ebenfalls aus dem Stand der Technik bekannt. Die Herstellung kann mit Hilfe gängiger organischer Syntheseverfahren erfolgen. Eine praktikable Synthese ist beispielsweise in Tetrahedron 2005, Vol. 61, auf den Seiten 11148 bis 11155 beschrieben.
  • Spezifische Benzoxazin-Verbindungen der allgemeinen Formel (V) können exemplarisch aus den folgenden Verbindungen ausgewählt werden:
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
  • Die gezeigten Benzoxazin-Verbindungen, die eine freie Hydroxylgruppe tragen, können durch Umsetzung einer phenolischen Verbindung mit einem Aldehyd, wie beispielsweise Formaldehyd, und einem Aminoalkohol hergestellt werden. Die Reaktionszeit kann dabei von einigen Minuten bis zu einigen Stunden variieren. Geeignete Aminoalkohole, wie etwa 2-Aminoethanol, 3-Amino-1-propanol, Amino-2-propanol, 4-Amino-1-butanol, 2-Amino-1-butanol, 4-Amino-2-butanol, 5-Amino-1-pentanol, 6-Amino-1-hexanol, 7-Amino-1-heptanol, 3-Amino-1,2-propandiol, 2-(2-Aminoethoxy)ethanol und 2-Amino-1,3-propandiol sind kommerziell verfügbar und können beispielsweise von Sigma-Aldrich bzw. Tokyo Chemical Industry bezogen werden.
  • Die polymerisierbaren Benzoxazin-Verbindungen können sowohl alleine als auch in jeder möglichen Kombination zur Herstellung des erfindungsgemäß verwendeten Benzoxazin(co)polymers verwendet werden.
  • In einer Ausführungsform der Erfindung wird zur Herstellung des erfindungsgemäß verwendeten Benzoxazin(co)polymers daher eine Mischung bereitgestellt, die
    • mindestens eine polymerisierbare Benzoxazin-Verbindung der allgemeinen Formel (I), vorzugsweise mindestens eine polymerisierbare Benzoxazin-Verbindung der allgemeinen Formel (III) und
    • mindestens eine polymerisierbare Benzoxazin-Verbindung der allgemeinen Formel (II) umfasst.
  • Das Gewichtsverhältnis der mindestens einen polymerisierbaren Benzoxazin-Verbindung der allgemeinen Formel (I) zur mindestens einen polymerisierbaren Benzoxazin-Verbindung der allgemeinen Formel (II) liegt dabei vorzugsweise zwischen 10:1 und 1:10, besonders bevorzugt zwischen 5:1 und 1:5 und insbesondere zwischen 2:1 und 1:2, wobei ein Gewichtsverhältnis von 1:1 besonders zweckmäßig sein kann.
  • In einer speziellen Ausführungsform der vorliegenden Erfindung wird zur Herstellung des erfindungsgemäß verwendeten Benzoxazin(co)polymers eine Mischung bereitgestellt, die
    • mindestens eine polymerisierbare Benzoxazin-Verbindung der allgemeinen Formel (I), vorzugsweise mindestens eine polymerisierbare Benzoxazin-Verbindung der allgemeinen Formel (III) und
    • mindestens eine polymerisierbare Benzoxazin-Verbindung der allgemeinen Formel (IV) umfasst.
  • Das Gewichtsverhältnis der mindestens einen polymerisierbaren Benzoxazin-Verbindung der allgemeinen Formel (I) zur mindestens einen polymerisierbaren Benzoxazin-Verbindung der allgemeinen Formel (IV) liegt dabei vorzugsweise zwischen 10:1 und 1:10, besonders bevorzugt zwischen 5:1 und 1:5 und insbesondere zwischen 2:1 und 1:2, wobei ein Gewichtsverhältnis von 1:1 besonders zweckmäßig sein kann.
  • In einer weiteren speziellen Ausführungsform der vorliegenden Erfindung wird zur Herstellung des erfindungsgemäß verwendeten Benzoxazin(co)polymers eine Mischung bereitgestellt, die
    • mindestens eine polymerisierbare Benzoxazin-Verbindung der allgemeinen Formel (I), vorzugsweise mindestens eine polymerisierbare Benzoxazin-Verbindung der allgemeinen Formel (III) und
    • mindestens eine polymerisierbare Benzoxazin-Verbindung der allgemeinen Formel (V) umfasst.
  • Das Gewichtsverhältnis der mindestens einen polymerisierbaren Benzoxazin-Verbindung der allgemeinen Formel (I) zur mindestens einen polymerisierbaren Benzoxazin-Verbindung der allgemeinen Formel (V) liegt dabei vorzugsweise zwischen 10:1 und 1:10, besonders bevorzugt zwischen 5:1 und 1:5 und insbesondere zwischen 2:1 und 1:2, wobei ein Gewichtsverhältnis von 1:1 besonders zweckmäßig sein kann.
  • In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung wird zur Herstellung des erfindungsgemäß verwendeten Benzoxazin(co)polymers eine Mischung bereitgestellt, die
    • mindestens eine polymerisierbare Benzoxazin-Verbindung der allgemeinen Formel (I), vorzugsweise mindestens eine polymerisierbare Benzoxazin-Verbindung der allgemeinen Formel (III),
    • mindestens eine polymerisierbare Benzoxazin-Verbindung der allgemeinen Formel (IV) und
    • mindestens eine polymerisierbare Benzoxazin-Verbindung der allgemeinen Formel (II) umfasst.
  • Vorzugsweise beträgt der Anteil der polymerisierbaren Benzoxazin-Verbindung der allgemeinen Formel (I) an der Gesamtmenge der polymerisierbaren Benzoxazin-Verbindungen 5 bis 90 Gew.-%, besonders bevorzugt 10 bis 80 Gew.-% und ganz besonders bevorzugt 25 bis 50 Gew.-%; der Anteil der polymerisierbaren Benzoxazin-Verbindung der allgemeinen Formel (IV) beträgt vorzugsweise 5 bis 90 Gew.-%, besonders bevorzugt 10 bis 80 Gew.-% und ganz besonders bevorzugt 25 bis 50 Gew.-% und der Anteil der polymerisierbaren Benzoxazin-Verbindung der allgemeinen Formel (IV) beträgt vorzugsweise 5 bis 90 Gew.-%, besonders bevorzugt 10 bis 80 Gew.-% und ganz besonders bevorzugt 25 bis 50 Gew.-%, jeweils bezogen auf die Gesamtmenge der polymerisierbaren Benzoxazin-Verbindungen.
  • Darüber hinaus kann es vorteilhaft sein, dass neben den bereits beschriebenen polymerisierbaren Benzoxazin-Verbindungen weitere polymerisierbare Benzoxazin-Verbindungen zur Herstellung des erfindungsgemäß verwendeten Benzoxazin(co)polymers verwendet werden, die sich von den vorgenannten polymerisierbare Benzoxazin-Verbindungen unterscheiden.
  • Geeignete Benzoxazin-Verbindungen werden vorzugsweise durch Formel (B-XVIII) beschrieben,
    Figure imgb0024
    wobei o' eine ganze Zahl zwischen 1 und 4 ist, X' ausgewählt wird aus der Gruppe bestehend aus Alkyl (für o' = 1), Alkylen (für o' = 2 bis 4), Sauerstoff (für o' = 2), Thiol (für o' = 1), Schwefel (für o' = 2), Sulfoxid (für o' = 2), Sulfon (für o' = 2) und einer direkten, kovalenten Bindung (für o' = 2), R1 ausgewählt wird aus der Gruppe bestehend aus Wasserstoff, Alkyl, Alkenyl und Aryl und R4' ausgewählt wird aus der Gruppe bestehend aus Wasserstoff, Halogen, Alkyl und Alkenyl, oder R4' ein divalenter Rest ist, der aus der Benzoxazin-Struktur eine entsprechende Naphthoxazin-Struktur macht.
  • Bevorzugte Benzoxazin-Verbindungen sind weiterhin Verbindungen der allgemeinen Formel (B-IXX),
    Figure imgb0025
    wobei p' = 2 ist und Y' ausgewählt wird aus der Gruppe bestehend aus Biphenyl, Diphenylmethan, Diphenylisopropan, Diphenylsulfid, Diphenylsulfoxid, Diphenylsulfon, Diphenylketon und R4' ausgewählt wird aus der Gruppe bestehend aus Wasserstoff, Halogen, Alkyl und Alkenyl, oder R4' ein divalenter Rest ist, der aus der Benzoxazin-Struktur eine entsprechende Naphthoxazin-Struktur macht.
  • Ebenfalls bevorzugte Benzoxazin-Verbindungen sind weiterhin Verbindungen der allgemeinen Formel (B-XX) bis (B-XXII),
    Figure imgb0026
    Figure imgb0027
    Figure imgb0028
    wobei R1' und R4' wie oben definiert sind und R3 sowie R2' wie R1' definiert sind.
  • Die gezeigten Benzoxazin-Verbindungen sind kommerziell erhältlich und werden u.a. von Huntsman Advanced Materials; Georgia-Pacific Resins, Inc. und Shikoku Chemicals Corporation, Chiba, Japan vertrieben. Ungeachtet dessen können die Benzoxazin-Verbindungen auch durch Umsetzung einer phenolischen Verbindung, etwa Bisphenol A, Bisphenol F, Bisphenol S oder Thiophenol mit einem Aldehyd, etwa Formaldehyd, in Gegenwart eines primären Amins erhalten werden. Geeignete Herstellverfahren werden beispielsweise im US-Patent 5543516 , insbesondere in den Beispielen 1 bis 19 in den Spalten 10 bis 14 offenbart, wobei die Reaktionszeit der entsprechenden Umsetzung je nach Konzentration, Reaktivität und Reaktionstemperatur von einigen Minuten bis zu einigen Stunden dauern kann.
  • Das erfindungsgemäß verwendete Benzoxazin(co)polymer weist je nach Wahl der Benzoxazin-Verbindungen eine lineare oder verzweigte Struktur auf. Lineare Strukturen sind auf Grund ihrer hohen Wasserlöslichkeit und ihres guten Wechselwirkungsvermögens mit einer Vielzahl von Oberflächen bevorzugt. Das gewichtsmittlere Molekulargewicht "Mw" der erfindungsgemäß verwendeten Benzoxazin(co)polymere liegt vorzugsweise zwischen 500 und 100000 g/mol, besonders bevorzugt zwischen 1000 und 100000 g/mol und ganz besonders bevorzugt zwischen 3000 und 50000 g/mol. Das gewichtsmittlere Molekulargewicht kann dabei mittels Gelpermeationschromatographie (GPC) mit Polystyrol als Standard bestimmt werden.
  • Die aus den Benzoxazin-Verbindungen durch Polymerisation erhältlichen Benzoxazin(co)polymere werden als solche erfindungsgemäß als Farbübertragungsinhibitoren verwendet. Verwendbar sind auch die aus ihnen durch Umsetzung mit mindestens einem Alkylierungsmittel zugänglichen kationischen Benzoxazin(co)polymere. Die Alkylierung kann in an sich bekannter Weise durchgeführt werden. Hierzu wird das Benzoxazin(co)polymer entweder als Reinsubstanz oder als Lösung beziehungsweise als Dispersion oder Emulsion vorgelegt und mit dem jeweiligen Alkylierungsmittel oder einer Mischung verschiedener Alkylierungsmittel versetzt. Die Reaktion kann in alkoholischer Lösung, beispielsweise in Ethanol oder Isopropanol, durchgeführt werden, wobei es ebenfalls möglich ist, in Gegenwart inerter Emulgatoren beziehungsweise Dispergatoren zu arbeiten. Dabei werden die jeweiligen Reaktionsbedingungen und die Menge an Alkylierungsmittel vorzugsweise so gewählt, dass mindestens 5% aller Stickstoffatome, bezogen auf die Gesamtanzahl aller Stickstoffatome im Benzoxazin(co)polymer, in permanent quartäre Stickstoffatome überführt werden. Insbesondere sind die jeweiligen Reaktionsbedingungen und die Menge an Alkylierungsmittel so zu wählen, dass mindestens 10%, oder mindestens 15%, oder mindestens 20%, oder mindestens 25%, oder mindestens 30%, oder mindestens 35%, oder mindestens 35%, oder mindestens 40%, oder mindestens 45%, oder mindestens 50%, oder mindestens 55%, oder mindestens 60%, oder mindestens 65%, oder mindestens 70%, oder mindestens 75%, oder mindestens 80%, oder mindestens 85%, oder mindestens 90%, oder mindestens 95% aller Stickstoffatome in permanent quartäre Stickstoffatome überführt werden. Als Alkylierungsmittel kommen in diesem Zusammenhang vorzugsweise Alkylhalogenide, Dialkylsulfate, Dialkylcarbonate und Alkylenoxide, wie beispielsweise Ethylenoxid - letzteres in Gegenwart von Dialkylphosphaten - in Betracht. Vorzugsweise wird die Alkylierung mit Methyliodid und/oder Dialkylsulfaten durchgeführt. Benzoxazin(co)polymer mit permanent quartäre Stickstoffatomen werden im Rahmen der vorliegenden Erfindung als kationische Benzoxazin(co)polymere bezeichnet.
  • Der gewünschte Farbübertragungsinhibitor-Effekt tritt außer beim Waschvorgang im engeren Sinne auch auf, wenn man vorstehend definierte Polymere, die durch Polymerisation von Benzoxazinen zugänglich sind, in einem Wäschenachbehandlungsschritt, beispielsweise als Bestandteil eines Weichspülmittels, mit dem Textil in Kontakt bringt und das so behandelte Textil beim nächsten Waschvorgang, der mit einem das erfindungsgemäß verwendete Polymer enthaltenden Mittel oder einem, welches frei von ihm ist, ausgeführt werden kann, in Gegenwart von andersfarbigen Wäschestücken wäscht.
  • Ein weiterer Gegenstand der Erfindung ist daher ein farbschützendes Reinigungs-, Wasch- oder Wäschenachbehandlungsmittel, enthaltend einen Farbübertragungsinhibitor in Form eines oben definierten Polymers.
  • Ein erfindungsgemäßes Mittel enthält vorzugsweise 0,01 Gew.-% bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 1 Gew.-%, des genannten Polymers.
  • Die erfindungsgemäß verwendeten Polymere leisten bei beiden zuvor angesprochenen Aspekten der Farbkonstanz einen Beitrag, das heißt sie vermindern sowohl das Verfärben wie auch die Verblassung, wenn auch der Effekt der Verhinderung des Anfärbens, insbesondere beim Waschen weißer Textilien, am ausgeprägtesten ist. Ein weiterer Gegenstand der Erfindung ist daher die Verwendung eines entsprechenden Polymeren zur Vermeidung der Veränderung des Farbeindrucks von Textilien bei deren Wäsche in insbesondere tensidhaltigen wäßrigen Lösungen. Unter der Veränderung des Farbeindrucks ist dabei keineswegs der Unterschied zwischen verschmutztem und sauberem Textil zu verstehen, sondern der Farbunterschied zwischen jeweils sauberem Textil vor und nach dem Waschvorgang.
  • Ein weiterer Gegenstand der Erfindung ist ein Verfahren zum Waschen von gefärbten Textilien in tensidhaltigen wäßrigen Lösungen, welches dadurch gekennzeichnet ist, dass man eine tensidhaltige wäßrige Lösung einsetzt, die ein oben definiertes Polymer enthält. In einem solchen Verfahren ist es möglich, zusammen mit dem gefärbten Textil auch weiße beziehungsweise ungefärbte Textilien zu waschen, ohne dass das weiße beziehungsweise ungefärbte Textil angefärbt wird. Besonders ausgeprägt ist die farbübertragungsinhibierende Wirkung erfindungsgemäß verwendeter Polymere beim Waschen von Textilien aus Baumwolle, wobei sich die Textilart auf das weiße beziehungsweise ungefärbte Textil bezieht. Daneben ist die farbübertragungsinhibierende Wirkung erfindungsgemäß verwendeter Polymere besonders ausgeprägt beim Waschen von Textilien, die mit Direkt-, Reaktiv- oder Säurefärbungen angefärbt sind.
  • Ein erfindungsgemäßes Mittel kann neben dem Polymer, das durch Polymerisation von Benzoxazinen zugänglich ist, gewünschtenfalls noch zusätzlich einen bekannten Farbübertragungsinhibitor, diesen dann vorzugsweise in Mengen von 0,01 Gew.-% bis 5 Gew.-%, insbesondere 0,1 Gew.-% bis 1 Gew.-%, enthalten, der in einer bevorzugten Ausgestaltung der Erfindung ein Polymer aus Vinylpyrrolidon, Vinylimidazol, Vinylpyridin-N-Oxid oder ein Copolymer aus diesen ist. Brauchbar sind sowohl N-Polyvinylpyrrolidone N-Vinylimidazol/N-Vinylpyrrolidon-Copolymere, Polyvinyloxazolidone, Copolymere auf Basis von Vinylmonomeren und Carbonsäureamiden, pyrrolidongruppenhaltige Polyester und Polyamide, gepfropfte Polyamidoamine und Polyethylenimine, Polymere mit Amidgruppen aus sekundären Aminen, Polyamin-N-Oxid-Polymere, Polyvinylalkohole und Copolymere auf Basis von Acrylamidoalkenylsulfonsäuren. Eingesetzt werden können aber auch enzymatische Systeme, umfassend eine Peroxidase und Wasserstoffperoxid beziehungsweise eine in Wasser Wasserstoffperoxid-liefernde Substanz. Der Zusatz einer Mediatorverbindung für die Peroxidase, zum Beispiel eines Acetosyringons, eines Phenolderivats oder eines Phenotiazins oder Phenoxazins, ist in diesem Fall bevorzugt, wobei auch zusätzlich obengenannte polymere Farbübertragungsinhibitorwirkstoffe eingesetzt werden können. Unter den als zusätzliche Farbübertragungsinhibitoren brauchbaren Copolymeren sind solche aus Vinylpyrrolidon und Vinylimidazol im Molverhältnis 5:1 bis 1:1 bevorzugt.
  • Die erfindungsgemäßen Waschmittel, die als insbesondere pulverförmige Feststoffe, in nachverdichteter Teilchenform, als homogene Lösungen oder Suspensionen vorliegen können, können außer dem erfindungsgemäß eingesetzten Wirkstoff im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Die erfindungsgemäßen Mittel können insbesondere Buildersubstanzen, oberflächenaktive Tenside, Bleichmittel auf Basis organischer und/oder anorganischer Persauerstoffverbindungen, Bleichaktivatoren, wassermischbare organische Lösungsmittel, Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren und weitere Hilfsstoffe, wie optische Aufheller, Vergrauungsinhibitoren, Schaumregulatoren sowie Farb- und Duftstoffe enthalten.
  • Die erfindungsgemäßen Mittel können ein Tensid oder mehrere Tenside enthalten, wobei insbesondere anionische Tenside, nichtionische Tenside und deren Gemische, aber auch kationische, zwitterionische und amphotere Tenside in Frage kommen.
  • Geeignete nichtionische Tenside sind insbesondere Alkylglykoside und Ethoxylierungs- und/oder Propoxylierungsprodukte von Alkylglykosiden oder linearen oder verzweigten Alkoholen mit jeweils 12 bis 18 C-Atomen im Alkylteil und 3 bis 20, vorzugsweise 4 bis 10 Alkylethergruppen. Weiterhin sind entsprechende Ethoxylierungs- und/oder Propoxylierungsprodukte von N-Alkyl-aminen, vicinalen Diolen, Fettsäureestern und Fettsäureamiden, die hinsichtlich des Alkylteils den genannten langkettigen Alkoholderivaten entsprechen, sowie von Alkylphenolen mit 5 bis 12 C-Atomen im Alkylrest brauchbar.
  • Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann beziehungsweise lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-C14-Alkohole mit 3 EO oder 4 EO, C9-C11-Alkohole mit 7 EO, C13-C15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-C18-Alköhole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-C14-Alkohol mit 3 EO und C12-C18-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind (Talg-) Fettalkohole mit 14 EO, 16 EO, 20 EO, 25 EO, 30 EO oder 40 EO. Insbesondere in Mitteln für den Einsatz in maschinellen Verfahren werden üblicherweise extrem schaumarme Verbindungen eingesetzt. Hierzu zählen vorzugsweise C12-C18-Alkylpolyethylenglykolpolypropylenglykolether mit jeweils bei zu 8 Mol Ethylenoxid- und Propylenoxideinheiten im Molekül. Man kann aber auch andere bekannt schaumarme nichtionische Tenside verwenden, wie zum Beispiel C12-C18-Alkylpolyethylenglykol-polybutylenglykolether mit jeweils bis zu 8 Mol Ethylenoxid- und Butylenoxideinheiten im Molekül sowie endgruppenverschlossene Alkylpolyalkylenglykolmischether. Besonders bevorzugt sind auch die hydroxylgruppenhaltigen alkoxylierten Alkohole, sogenannte Hydroxymischether. Zu den nichtionischen Tensiden zählen auch Alkylglykoside der allgemeinen Formel RO(G)x, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl - die als analytisch zu bestimmende Größe auch gebrochene Werte annehmen kann - zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4. Ebenfalls geeignet sind Polyhydroxyfettsäureamide der Formel,
    Figure imgb0029
    in der R11CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R12 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Vorzugsweise leiten sich die Polyhydroxyfettsäureamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel
    Figure imgb0030
    in der R13 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R14 für einen linearen, verzweigten oder cyclischen Alkylenrest oder einen Arylenrest mit 2 bis 8 Kohlenstoffatomen und R15 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-C4-Alkyl- oder Phenylreste bevorzugt sind, und [Z] für einen linearen Polyhydroxyalkylrest, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes steht. [Z] wird auch hier vorzugsweise durch reduktive Aminierung eines Zuckers wie Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose erhalten. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden. Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester. Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon. Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im Allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten "Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, dass die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich im Allgemeinen durch eine ungewöhnlich geringe kritische Micellkonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Ausnahmefällen werden unter dem Ausdruck Gemini-Tenside nicht nur derartig "dimere", sondern auch entsprechend "trimere" Tenside verstanden. Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether oder Dimeralkohol-bis- und Trimeralkohol-tris-sulfate und -ethersulfate. Endgruppenverschlossene dimere und trimere Mischether zeichnen sich insbesondere durch ihre Bi- und Multifunktionalität aus. So besitzen die genannten endgruppenverschlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so dass sie sich insbesondere für den Einsatz in maschinellen Wasch- oder Reinigungsverfahren eignen. Eingesetzt werden können aber auch Gemini-Polyhydroxyfettsäureamide oder Poly-Polyhydroxyfettsäureamide. Geeignet sind auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-C21-Alkohole, wie 2-Methylverzweigte C9-C11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-C18-Fettalkohole mit 1 bis 4 EO. Zu den bevorzugten Aniontensiden gehören auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden, und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8- bis C18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen. Als weitere anionische Tenside kommen Fettsäure-Derivate von Aminosäuren, beispielsweise von N-Methyltaurin (Tauride) und/oder von N-Methylglycin (Sarkoside) in Betracht. Insbesondere bevorzugt sind dabei die Sarkoside beziehungsweise die Sarkosinate und hier vor allem Sarkosinate von höheren und gegebenenfalls einfach oder mehrfach ungesättigten Fettsäuren wie Oleylsarkosinat. Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind insbesondere gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierten Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, zum Beispiel Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische. Zusammen mit diesen Seifen oder als Ersatzmittel für Seifen können auch die bekannten Alkenylbernsteinsäuresalze eingesetzt werden.
  • Die anionischen Tenside, einschließlich der Seifen, können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
  • Kationische Tenside, die insbesondere in erfindungsgemäßen Wäschenachbehandlungsmitteln eingesetzt werden, werden vorzugsweise unter den Esterquats und/oder den quaternären Ammoniumverbindungen (QAV) gemäß der allgemeinen Formel (RI)(RII)(RIII)(RIV)N+ X- ausgewählt, in der RI bis RIV für gleiche oder verschiedene C1-22-Alkylreste, C7-28-Arylalkylreste oder heterozyklische Reste stehen, wobei zwei oder im Falle einer aromatischen Einbindung wie im Pyridin sogar drei Reste gemeinsam mit dem Stickstoffatom den Heterozyklus, z.B. eine Pyridinium- oder Imidazoliniumverbindung, bilden, und X- für Halogenidionen, Sulfationen, Hydroxidionen oder ähnliche Anionen steht. QAV sind durch Umsetzung tertiärer Amine mit Alkylierungsmitteln, wie z.B. Methylchlorid, Benzylchlorid, Dimethylsulfat, Dodecylbromid, aber auch Ethylenoxid herstellbar. Die Alkylierung von tertiären Aminen mit einem langen Alkyl-Rest und zwei Methyl-Gruppen gelingt besonders leicht, auch die Quaternierung von tertiären Aminen mit zwei langen Resten und einer Methyl-Gruppe kann mit Hilfe von Methylchlorid unter milden Bedingungen durchgeführt werden. Amine, die über drei lange Alkyl-Reste oder Hydroxysubstituierte Alkyl-Reste verfügen, sind wenig reaktiv und werden beispielsweise mit Dimethylsulfat quaterniert. In Frage kommende QAV sind beispielweise Benzalkoniumchlorid (N Alkyl-N,N dimethyl-benzylammoniumchlorid), Benzalkon B (m,p-Dichlorbenzyl-dimethyl-C12-alkylammoniumchlorid, Benzoxoniumchlorid (Benzyl-dodecyl-bis-(2-hydroxyethyl)-ammoniumchlorid), Cetrimoniumbromid (N-Hexadecyl-N,N-trimethyl-ammoniumbromid), Benzetoniumchlorid (N,N Dimethyl-N [2-[2-[p-(1,1,3,3-tetramethylbutyl)phenoxy]-ethoxy]-ethyl]-benzylammoniumchlorid), Dialkyldimethylammoniumchloride wie Di-n-decyl-dimethylammoniumchlorid, Didecyldimethylammonium-bromid, Dioctyl-dimethyl-ammoniumchlorid, 1-Cetylpyridiniumchlorid und Thiazolinjodid sowie deren Mischungen. Bevorzugte QAV sind die Benzalkoniumchloride mit C8-C22-Alkylresten, insbesondere C12-C14-Alkyl-benzyl-dimethylammoniumchlorid.
  • Unter Esterquats sollen hier Verbindungen der allgemeinen Formel,
    Figure imgb0031
    verstanden werden, in der R6 für einen Alkyl- oder Alkenylrest mit 12 bis 22 Kohlenstoffatomen und 0, 1, 2 oder 3 Doppelbindungen, R7 und R8 unabhängig voneinander für H, OH oder O(CO)R6, s, t und u jeweils unabhängig voneinander für den Wert 1, 2 oder 3 und X- für ein Anion, insbesondere Halogenid, Methosulfat, Methophosphat oder Phosphat sowie Mischungen aus diesen, steht. Bevorzugt sind Verbindungen, die für R7 die Gruppe O(CO)R6 und für R6 einen Alkylrest mit 16 bis 18 Kohlenstoffatomen enthalten. Besonders bevorzugt sind Verbindungen, bei denen R8 zudem für OH steht. Beispiele für Verbindungen der genannten Formel sind Methyl-N-(2-hydroxyethyl)-N,N-di(talgacyl-oxyethyl)ammonium-methosulfat, Bis-(palmitoyl)-ethyl-hydroxyethyl-methyl-ammonium-methosulfat oder Methyl-N,N-bis(acyloxyethyl)-N-(2-hydroxyethyl)ammonium-methosulfat. Werden quarternierte Verbindungen eingesetzt, die ungesättigte Gruppen aufweisen, sind die Acylgruppen bevorzugt, deren korrespondierende Fettsäuren eine Jodzahl zwischen 5 und 80, vorzugsweise zwischen 10 und 60 und insbesondere zwischen 15 und 45 aufweisen und/oder die ein cis/trans-Isomerenverhältnis (in Mol-%) von größer als 30 : 70, vorzugsweise größer als 50 : 50 und insbesondere größer als 70 : 30 haben. Handelsübliche Beispiele sind die von der Firma Stepan unter dem Warenzeichen Stepantex® vertriebenen Methylhydroxyalkyldialkoyloxyalkylammoniummethosulfate oder die unter dem Handelsnamen Dehyquart® bekannten Produkte der Firma Cognis Deutschland GmbH beziehungsweise die unter der Bezeichnung Rewoquat® bekannten Produkte des Herstellers Goldschmidt-Witco.
  • Tenside sind in erfindungsgemäßen Mitteln in Mengenanteilen von vorzugsweise 5 Gew.-% bis 50 Gew.-%, insbesondere von 8 Gew.-% bis 30 Gew.-%, enthalten.
  • Ein erfindungsgemäßes Mittel enthält vorzugsweise mindestens einen wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Buildersubstanzen gehören Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren, monomere und polymere Aminopolycarbonsäuren, insbesondere Methylglycindiessigsäure, Nitrilotriessigsäure und Ethylendiamintetraessigsäure sowie Polyasparaginsäure, Polyphosphonsäuren, insbesondere Aminotris(methylenphosphonsäure), Ethylendiamintetrakis(methylenphosphonsäure) und 1-Hydroxyethan-1,1-diphosphonsäure, polymere Hydroxyverbindungen wie Dextrin sowie polymere (Poly-)carbonsäuren, insbesondere die durch Oxidation von Polysacchariden beziehungsweise Dextrinen zugänglichen Polycarboxylate, polymere Acrylsäuren, Methacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative Molekülmasse der Homopolymeren ungesättiger Carbonsäuren liegt im allgemeinen zwischen 3 000 und 200 000, die der Copolymeren zwischen 2 000 und 200 000, vorzugsweise 30 000 bis 120 000, jeweils bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist eine relative Molekülmasse von 30 000 bis 100 000 auf. Handelsübliche Produkte sind zum Beispiel Sokalan® CP 5, CP 10 und PA 30 der Firma BASF. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vinylethern, wie Vinylmethylethern, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei ungesättigte Säuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/oder einem veresterten Vinylalkohol oder ein Kohlenhydrat enthalten. Das erste saure Monomer beziehungsweise dessen Salz leitet sich von einer monoethylenisch ungesättigten C3-C8-Carbonsäure und vorzugsweise von einer C3-C4-Monocarbonsäure, insbesondere von (Meth)-acrylsäure ab. Das zweite saure Monomer beziehungsweise dessen Salz kann ein Derivat einer C4-C8-Dicarbonsäure, wobei Maleinsäure besonders bevorzugt ist, und/oder ein Derivat einer Allylsulfonsäure, die in 2-Stellung mit einem Alkyl- oder Arylrest substituiert ist, sein. Derartige Polymere weisen im Allgemeinen eine relative Molekülmasse zwischen 1 000 und 200 000 auf. Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze beziehungsweise Vinylacetat aufweisen. Die organischen Buildersubstanzen können, insbesondere zur Herstellung flüssiger Mittel, in Form wäßriger Lösungen, vorzugsweise in Form 30- bis 50-gewichtsprozentiger wäßriger Lösungen eingesetzt werden. Alle genannten Säuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre Alkalisalze, eingesetzt.
  • Derartige organische Buildersubstanzen können gewünschtenfalls in Mengen bis zu 40 Gew.-%, insbesondere bis zu 25 Gew.-% und vorzugsweise von 1 Gew.-% bis 8 Gew.-% enthalten sein. Mengen nahe der genannten Obergrenze werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen, erfindungsgemäßen Mitteln eingesetzt.
  • Als wasserlösliche anorganische Buildermaterialien kommen insbesondere Alkalisilikate, Alkalicarbonate und Alkaliphosphate, die in Form ihrer alkalischen, neutralen oder sauren Natrium- oder Kaliumsalze vorliegen können, in Betracht. Beispiele hierfür sind Trinatriumphosphat, Tetranatriumdiphosphat, Dinatriumdihydrogendiphosphat, Pentanatriumtriphosphat, sogenanntes Natriumhexametaphosphat, oligomeres Trinatriumphosphat mit Oligomerisierungsgraden von 5 bis 1000, insbesondere 5 bis 50, sowie die entsprechenden Kaliumsalze beziehungsweise Gemische aus Natrium- und Kaliumsalzen. Als wasserunlösliche, wasserdispergierbare anorganische Buildermaterialien werden insbesondere kristalline oder amorphe Alkalialumosilikate, in Mengen von bis zu 50 Gew.-%, vorzugsweise nicht über 40 Gew.-% und in flüssigen Mitteln insbesondere von 1 Gew.-% bis 5 Gew.-%, eingesetzt. Unter diesen sind die kristallinen Natriumalumosilikate in Waschmittelqualität, insbesondere Zeolith A, P und gegebenenfalls X, allein oder in Mischungen, beispielsweise in Form eines Co-Kristallisats aus den Zeolithen A und X (Vegobond® AX, ein Handelsprodukt der Condea Augusta S.p.A.), bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchenförmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 µm auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 µm. Ihr Calciumbindevermögen, das nach den Angaben der deutschen Patentschrift DE 24 12 837 bestimmt werden kann, liegt in der Regel im Bereich von 100 bis 200 mg CaO pro Gramm.
  • Geeignete Substitute beziehungsweise Teilsubstitute für das genannte Alumosilikat sind kristalline Alkalisilikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können. Die in den erfindungsgemäßen Mitteln als Gerüststoffe brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu SiO2 unter 0,95, insbesondere von 1:1,1 bis 1:12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na2O:SiO2 von 1:2 bis 1:2,8. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na2SixO2x+1 · y H2O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1,9 bis 22, insbesondere 1,9 bis 4 und y eine Zahl von 0 bis 33 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate (Na2Si2O5 y H2O) bevorzugt. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1,9 bis 2,1 bedeutet, können in erfindungsgemäßen Mitteln eingesetzt werden. In einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie es aus Sand und Soda hergestellt werden kann. Kristalline Natriumsilikate mit einem Modul im Bereich von 1,9 bis 3,5 werden in einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel eingesetzt. Kristalline schichtförmige Silikate der oben angegebenen Formel (I) werden von der Fa. Clariant GmbH unter dem Handelsnamen Na-SKS vertrieben, z.B. Na-SKS-1 (Na2Si22O45˙xH2O), Kenyait), Na-SKS-2 (Na2Si14O29˙xH2O, Magadiit), Na-SKS-3 (Na2Si8O17˙xH2O) oder Na-SKS-4 (Na2Si4O9˙xH2O, Makatit). Von diesen eignen sich vor allem Na-SKS-5 (α-Na2Si2O5), Na-SKS-7 (β-Na2Si2O5, Natrosilit), Na-SKS-9 (NaHSi2O5˙3H2O), Na-SKS-10 (NaHSi2O5·3H2O, Kanemit), Na-SKS-11 (t-Na2Si2O5) und Na-SKS-13 (NaHSi2O5), insbesondere aber Na-SKS-6 (δ-Na2Si2O5). In einer bevorzugten Ausgestaltung erfindungsgemäßer Mittel setzt man ein granulares Compound aus kristallinem Schichtsilikat und Citrat, aus kristallinem Schichtsilikat und oben genannter (co-)polymerer Polycarbonsäure, oder aus Alkalisilikat und Alkalicarbonat ein, wie es beispielsweise unter dem Namen Nabion® 15 im Handel erhältlich ist.
  • Buildersubstanzen sind in den erfindungsgemäßen Mitteln vorzugsweise in Mengen bis zu 75 Gew.-%, insbesondere 5 Gew.-% bis 50 enthalten.
  • Als für den Einsatz in erfindungsgemäßen Mitteln geeignete Persauerstoffverbindungen kommen insbesondere organische Persäuren beziehungsweise persaure Salze organischer Säuren, wie Phthalimidopercapronsäure, Perbenzoesäure oder Salze der Diperdodecandisäure, Wasserstoffperoxid und unter den Waschbedingungen Wasserstoffperoxid abgebende anorganische Salze, zu denen Perborat, Percarbonat, Persilikat und/oder Persulfat wie Caroat gehören, in Betracht. Sofern feste Persauerstoffverbindungen eingesetzt werden sollen, können diese in Form von Pulvern oder Granulaten verwendet werden, die auch in im Prinzip bekannter Weise umhüllt sein können. Falls ein erfindungsgemäßes Mittel Persauerstoffverbindungen enthält, sind diese in Mengen von vorzugsweise bis zu 50 Gew.-%, insbesondere von 5 Gew.-% bis 30 Gew.-%, vorhanden. Der Zusatz geringer Mengen bekannter Bleichmittelstabilisatoren wie beispielsweise von Phosphonaten, Boraten beziehungsweise Metaboraten und Metasilikaten sowie Magnesiumsalzen wie Magnesiumsulfat kann zweckdienlich sein.
  • Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran und Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren beschriebene Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Die hydrophil substituierten Acylacetale und die Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Derartige Bleichaktivatoren können, insbesondere bei Anwesenheit obengenannter Wasserstoffperoxid-liefernder Bleichmittel, im üblichen Mengenbereich, vorzugsweise in Mengen von 0,5 Gew.-% bis 10 Gew.-%, insbesondere 1 Gew.-% bis 8 Gew.-%, bezogen auf gesamtes Mittel, enthalten sein, fehlen bei Einsatz von Percarbonsäure als alleinigem Bleichmittel jedoch vorzugsweise ganz.
  • Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch Sulfonimine und/oder bleichverstärkende Übergangsmetallsalze beziehungsweise Übergangsmetallkomplexe als sogenannte Bleichkatalysatoren enthalten sein.
  • Als in den Mitteln verwendbare Enzyme kommen solche aus der Klasse der Amylasen, Proteasen, Lipasen, Cutinasen, Pullulanasen, Hemicellulasen, Cellulasen, Oxidasen, Laccasen und Peroxidasen sowie deren Gemische in Frage. Besonders geeignet sind aus Pilzen oder Bakterien, wie Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes, Pseudomonas cepacia oder Coprinus cinereus gewonnene enzymatische Wirkstoffe. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in den erfindungsgemäßen Wasch- oder Reinigungsmitteln vorzugsweise in Mengen bis zu 5 Gew.-%, insbesondere von 0,2 Gew.-% bis 4 Gew.-%, enthalten. Falls das erfindungsgemäße Mittel Protease enthält, weist es vorzugsweise eine proteolytische Aktivität im Bereich von etwa 100 PE/g bis etwa 10 000 PE/g, insbesondere 300 PE/g bis 8000 PE/g auf. Falls mehrere Enzyme in dem erfindungsgemäßen Mittel eingesetzt werden sollen, kann dies durch Einarbeitung der zwei oder mehreren separaten beziehungsweise in bekannter Weise separat konfektionierten Enzyme oder durch zwei oder mehrere gemeinsam in einem Granulat konfektionierte Enzyme durchgeführt werden.
  • Zu den in den erfindungsgemäßen Mitteln, insbesondere wenn sie in flüssiger oder pastöser Form vorliegen, neben Wasser verwendbaren organischen Lösungsmitteln gehören Alkohole mit 1 bis 4 C-Atomen, insbesondere Methanol, Ethanol, Isopropanol und tert.-Butanol, Diole mit 2 bis 4 C-Atomen, insbesondere Ethylenglykol und Propylenglykol, sowie deren Gemische und die aus den genannten Verbindungsklassen ableitbaren Ether. Derartige wassermischbare Lösungsmittel sind in den erfindungsgemäßen Mitteln vorzugsweise in Mengen nicht über 30 Gew.-%, insbesondere von 6 Gew.-% bis 20 Gew.-%, vorhanden.
  • Zur Einstellung eines gewünschten, sich durch die Mischung der übrigen Komponenten nicht von selbst ergebenden pH-Werts können die erfindungsgemäßen Mittel system- und umweltverträgliche Säuren, insbesondere Citronensäure, Essigsäure, Weinsäure, Äpfelsäure, Milchsäure, Glykolsäure, Bernsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Mineralsäuren, insbesondere Schwefelsäure, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH-Regulatoren sind in den erfindungsgemäßen Mitteln in Mengen von vorzugsweise nicht über 20 Gew.-%, insbesondere von 1,2 Gew.-% bis 17 Gew.-%, enthalten.
  • Vergrauungsinhibitoren haben die Aufgabe, den von der Textilfaser abgelösten Schmutz in der Flotte suspendiert zu halten. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Stärke, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich andere als die obengenannten Stärkederivate verwenden, zum Beispiel Aldehydstärken. Bevorzugt werden Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
  • Erfindungsgemäße Textilwaschmittel können als optische Aufheller beispielsweise Derivate der Diaminostilbendisulfonsäure beziehungsweise deren Alkalimetallsalze enthalten, obgleich sie für den Einsatz als Colorwaschmittel vorzugsweise frei von optischen Aufhellern sind. Geeignet sind zum Beispiel Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, zum Beispiel die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten optischen Aufheller können verwendet werden.
  • Insbesondere beim Einsatz in maschinellen Verfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bisfettsäurealkylendiamiden. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, zum Beispiel solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granulare, in Wasser lösliche beziehungsweise dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamid bevorzugt.
  • Die Herstellung erfindungsgemäßer fester Mittel bietet keine Schwierigkeiten und kann auf bekannte Weise, zum Beispiel durch Sprühtrocknen oder Granulation, erfolgen, wobei Enzyme und eventuelle weitere thermisch empfindliche Inhaltsstoffe wie zum Beispiel Bleichmittel gegebenenfalls später separat zugesetzt werden. Zur Herstellung erfindungsgemäßer Mittel mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/l bis 950 g/l, ist ein einen Extrusionschritt aufweisendes Verfahren bevorzugt.
  • Zur Herstellung von erfindungsgemäßen Mitteln in Tablettenform, die einphasig oder mehrphasig, einfarbig oder mehrfarbig und insbesondere aus einer Schicht oder aus mehreren, insbesondere aus zwei Schichten bestehen können, geht man vorzugsweise derart vor, dass man alle Bestandteile - gegebenenfalls je einer Schicht - in einem Mischer miteinander vermischt und das Gemisch mittels herkömmlicher Tablettenpressen, beispielsweise Exzenterpressen oder Rundläuferpressen, mit Preßkräften im Bereich von etwa 50 bis 100 kN, vorzugsweise bei 60 bis 70 kN verpreßt. Insbesondere bei mehrschichtigen Tabletten kann es von Vorteil sein, wenn mindestens eine Schicht vorverpreßt wird. Dies wird vorzugsweise bei Preßkräften zwischen 5 und 20 kN, insbesondere bei 10 bis 15 kN durchgeführt. Man erhält so problemlos bruchfeste und dennoch unter Anwendungsbedingungen ausreichend schnell lösliche Tabletten mit Bruch- und Biegefestigkeiten von normalerweise 100 bis 200 N, bevorzugt jedoch über 150 N. Vorzugsweise weist eine derart hergestellte Tablette ein Gewicht von 10 g bis 50 g, insbesondere von 15 g bis 40 g auf. Die Raumform der Tabletten ist beliebig und kann rund, oval oder eckig sein, wobei auch Zwischenformen möglich sind. Ecken und Kanten sind vorteilhafterweise abgerundet. Runde Tabletten weisen vorzugsweise einen Durchmesser von 30 mm bis 40 mm auf. Insbesondere die Größe von eckig oder quaderförmig gestalteten Tabletten, welche überwiegend über die Dosiervorrichtung beispielsweise der Geschirrspülmaschine eingebracht werden, ist abhängig von der Geometrie und dem Volumen dieser Dosiervorrichtung. Beispielhaft bevorzugte Ausführungsformen weisen eine Grundfläche von (20 bis 30 mm) x (34 bis 40 mm), insbesondere von 26x36 mm oder von 24x38 mm auf.
  • Flüssige beziehungsweise pastöse erfindungsgemäße Mittel in Form von übliche Lösungsmittel enthaltenden Lösungen werden in der Regel durch einfaches Mischen der Inhaltsstoffe, die in Substanz oder als Lösung in einen automatischen Mischer gegeben werden können, hergestellt.
  • Beispiele Beispiel 1: Herstellung polymerisierbarer Benzoxazin-Verbindungen unter Verwendung von Jeffaminen
  • Im Folgenden wird die Herstellung verschiedener polymerisierbarer Benzoxazin-Verbindungen der Formel (B-Box-I) beschieben
    Figure imgb0032
  • 1.1. Herstellung einer polymerisierbaren Benzoxazin-Verbindung unter Verwendung von Jeffamin M2070 (PO/EO 10/31); Bezeichnung (B-Box-I-1.1)
  • Ansatz: 9,38 g Paraformaldehyd (96%ig) 0,30 mol
    in 50 ml Essigsäureethylester
    309,9g Jeffamin M2070 (Fa. Huntsman) 0,15 mol
    in 200 m Essigsäureethylester
    16,22 g p-Kresol 0,15 mol
    in 50 ml Essigsäureethylester
  • Paraformaldehyd wurde in Ethylacetat vorgelegt und das ebenfalls in Ethylacetat gelöste p-Kresol innerhalb von 10 Minuten zugetropft. Anschließend wurde innerhalb von 30 Minuten Jeffamin M-2070 zugegeben, wobei die Temperatur unterhalb von 10 °C gehalten wurde. Nach 10-minütigem Nachrühren wurde die Reaktionsmischung für 6 h unter Rückfluss erhitzt. Nach dem Abkühlen wurde die Reaktionsmischung filtriert und das Lösungsmittel sowie entstandenes Wasser im Vakuum entfernt. Man erhielt 318,90 g der entsprechenden polymerisierbaren Benzoxazin-Verbindung B-Box-I-1.1.
  • 1.2 Herstellung einer polymerisierbaren Benzoxazin-Verbindung unter Verwendung von Jeffamin M1000 (PO/EO 3/19), Bezeichnung (B-Box-I-1.2)
  • Ansatz: 18,7 g Paraformaldehyd (96%ig) 0,60 mol
    in 50 ml Essigsäureethylester
    312,9 g Jeffamin M1000 (Fa. Huntsman) 0,30 mol
    in 250 m Essigsäureethylester
    32,44 g p-Kresol 0,30 mol
    in 60ml Essigsäureethylester
  • Unter den in Beispiel 1.1 beschriebenen Bedingungen wurden Paraformaldehyd, p-Kresol und Jeffamin M-100 umgesetzt. Man erhielt 352,57 g der entsprechenden polymerisierbaren Benzoxazin-Verbindung B-Box-I-1.2.
  • 1.2 Herstellung einer polymerisierbaren Benzoxazin-Verbindungen unter Verwendung von N-(3-Aminopropyl)imidazol
  • Im Folgenden wird die Herstellung einer polymerisierbaren Benzoxazin-Verbindung der Formel (B-Box-II) beschieben:
    Figure imgb0033
    Ansatz: 78,20 g Paraformaldehyd (96%ig) 2,50 mol
    in 100 ml Essigsäureethylester
    157,5 g N-(3-Aminopropyl)-imidazol (Lupragen®API) 1,25 mol
    in 10 ml Essigsäureethylester
    135,17 g p-Kresol 1,25 mol
    in 100 ml Essigsäureethylester
  • Unter den in Beispiel 1.1 beschriebenen Bedingungen wurden Paraformaldehyd, p-Kresol und Lupragen®-API (BASF SE) umgesetzt Man erhielt 322,74 g der entsprechenden polymerisierbaren Benzoxazin-Verbindung B-Box-II.
  • 1.3 Herstellung einer polymerisierbaren Benzoxazin-Verbindungen unter Verwendung von Ethanolamin
  • Im Folgenden wird die Herstellung einer polymerisierbaren Benzoxazin-Verbindung der Formel (B-Box-III) beschieben:
    Figure imgb0034
    Ansatz: 106,35 g Paraformaldehyd (96%ig) 3,40 mol
    in 100 ml Essigsäureethylester
    103,87 g Ethanolamin 1,70 mol
    in 30 ml Essigsäureethylester
    183,84 g p-Kresol 1,70 mol
    in 80 ml Essigsäureethylester
  • Unter den in Beispiel 1.1 beschriebenen Bedingungen wurden Paraformaldehyd, p-Kresol und Ethanolamin umgesetzt. Man erhielt 328,6 g der entsprechenden polymerisierbaren Benzoxazin-Verbindung B-Box-III.
  • Beispiel 2: Polymerisation zur Herstellung von nicht-kationischen Benzoxazin(co)polymeren
  • Die oben beschriebenen polymerisierbaren Benzoxazin-Verbindungen wurden als Mischungen oder alleine in einem Trockenschrank mit Luftzirkulation in Formkörpern bei 180°C innerhalb von 2 h thermisch ausgehärtet. Anschließend wurden die Proben aus den Formkörpern entnommen und auf Raumtemperatur abgekühlt. Dadurch wurden Benzoxazin(co)polymere in der in Tabelle 1 gezeigten Zusammensetzung hergestellt. Tabelle 1: Anteil der jeweiligen polymerisierbaren Benzoxazin-Verbindungen am Benzoxazin(co)polymer
    Polymer Gewichtsanteil der jeweiligen polymerisierbaren Benzoxazin-Verbindungen in %
    B-Box-I-1.2 B-Box-I-1.1 B-Box-II B-Box-III
    1 100
    2 100
    3 100
    4 100
    5 30 70
    6 50 50
    7 30 70
    8 50 50
    9 30 70
    10 50 50
    11 70 30
    12 50 50
    13 30 35 35
    14 50 25 25
    15 30 35 35
    16 50 25 25
  • Beispiel 3: Alkylierung von Benzoxazin(co)polymeren zur Herstellung kationischer Benzoxazin(co)polymere 3.1 Alkylierung des nicht-kationischen Benzoxazin(co)polymers 3 mit Dimethylsulfat zur Herstellung des kationischen Benzoxazin(co)polymers alk-3
  • 28,0 g des Benzoxazin(co)polymers 3 aus Beispiel 2 (100 Gew.-% B-Box-II) in 60 ml Ethanol wurden unter Rühren langsam mit 26,3 g Dimethylsulfat versetzt. Nach 10-minütigem Nachrühren wurde die Reaktionsmischung für 3,5 h unter Rückfluss erhitzt. Anschließend wurde die Reaktionsmischung 4 Tage bei 22 °C unter einer Stickstoffatmosphäre gerührt und anschließend auf 600 ml Diethylether gegossen. Der Niederschlag wurde abgetrennt und 24 h bei 80 °C in einem Vakuumtrockenschrank getrocknet. Man erhielt 48,7g des kationischen Benzoxazin(co)polymers alk-3. Durch NMR-spektroskopische Methoden wurde gezeigt, dass mindestens 5% aller Stickstoffatome, bezogen auf die Gesamtanzahl aller Stickstoffatome im o.g. kationischen Benzoxazin(co)polymer, in Form permanent quartärer Stickstoffatome vorliegen.
  • 3.2 Alkylierung des Benzoxazin(co)polymers 8 mit Methyliodid zur Herstellung des kationischen Benzoxazin(co)polymers alk-8
  • 5,0 g des nicht-kationischen Benzoxazin(co)polymers 8 aus Beispiel 2 (50 Gew.-% B-Box-1.2 und 50 Gew.-% B-Box-III) in 6 ml Ethanol wurden unter Rühren langsam mit einer Lösung von 6,86 g Methyliodid in 4 ml Ethanol versetzt. Anschließend wurde die Reaktionsmischung 24 h bei 22 °C unter einer Stickstoffatmosphäre gerührt und anschließend auf 60 ml Diethylether gegossen. Der Niederschlag wurde abgetrennt und 24 h bei 120 °C in einem Vakuumtrockenschrank getrocknet. Man erhielt 5,2g des kationischen Benzoxazin(co)polymers alk-8. Durch NMR-spektroskopische Methoden wurde gezeigt, dass mindestens 5% aller Stickstoffatome, bezogen auf die Gesamtanzahl aller Stickstoffatome im o.g. kationischen Benzoxazin(co)polymer, in Form permanent quartärer Stickstoffatome vorliegen.
  • 3.3 Alkylierung des Benzoxazin(co)polymers 11 mit Dimethylsulfat zur Herstellung des kationischen Benzoxazin(co)polymers alk-11
  • 10,6 g des Benzoxazin(co)polymers 11 aus Beispiel 2 (70 Gew.-% B-Box-1.2 und 30 Gew.-% B-Box-II) in 10 ml Ethanol wurden unter Rühren langsam mit 1,9 g versetzt. Nach 10-minütigem Nachrühren wurde die Reaktionsmischung für 3,5 h unter Rückfluss erhitzt. Anschließend wurde die Reaktionsmischung 24 h bei 22 °C unter einer Stickstoffatmosphäre gerührt und anschließend auf 100 ml Diethylether gegossen. Der Niederschlag wurde abgetrennt und 24 h bei 80 °C in einem Vakuumtrockenschrank getrocknet. Man erhielt das kationische Benzoxazin(co)polymer alk-11. Durch NMR-spektroskopische Methoden wurde gezeigt, dass mindestens 5% aller Stickstoffatome, bezogen auf die Gesamtanzahl aller Stickstoffatome im o.g. kationischen Benzoxazin(co)polymer, in Form permanent quartärer Stickstoffatome vorliegen.
  • Beispiel 4: Farbübertragungsinhibierung
  • In der folgenden Tabelle sind die Zusammensetzungen erfindungsgemäßer Mittel E sowie die eines Vergleichsbeispiels V1 gezeigt: Tabelle 2: Rezeptur [Gew.-%]
    E V1
    C12-18-Fettalkohol mit 7 EO 10 10
    Na-C12-18-Fettalkohol mit 7 EO-Sulfat 14,5 14,5
    C12-18-Fettsäure 5 5
    Zitronensäure 3 3
    Na-Phosphonat 1 1
    Benzoxazin(co)polymer (aus Beispiel 2 oder 3) 0,1 --
    Polyvinylpyrrolidon -- 0,1
    Natronlauge 4,5 4,5
    Propylenglykol 9 9
    Borsäure 1 1
    Silikon-Entschäumer 0,1 0,1
    Wasser Ad 100 Ad 100
  • Erfindungsgemäße Mittel E, die ein in den Beispielen 2 und 3 hergestelltes Benzoxazin(co)polymer enthielten, zeigten in Waschversuchen bessere farbübertragungsinhibierende Eigenschaften als die Vergleichsrezeptur V1.

Claims (12)

  1. Verwendung von Polymeren, erhältlich durch Polymerisation von Benzoxazin-Monomeren, zur Vermeidung der Übertragung von Textilfarbstoffen von gefärbten Textilien auf ungefärbte oder andersfarbige Textilien bei deren gemeinsamer Wäsche in insbesondere tensidhaltigen wäßrigen Lösungen.
  2. Verwendung von Polymeren, erhältlich durch Polymerisation von Benzoxazin-Monomeren, zur Vermeidung der Veränderung des Farbeindrucks von Textilien bei deren Wäsche in insbesondere tensidhaltigen wäßrigen Lösungen.
  3. Reinigungs-, Wasch- oder Wäschenachbehandlungsmittel, enthaltend einen Farbübertragungsinhibitor in Form eines Polymers, erhältlich durch Polymerisation von Benzoxazin-Monomeren.
  4. Mittel nach Anspruch 3, dadurch gekennzeichnet, dass es es 0,01 Gew.-% bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 1 Gew.-%, des Polymers enthält.
  5. Mittel nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass es zusätzlich ein Polymer aus Vinylpyrrolidon, Vinylimidazol, Vinylpyridin-N-Oxid oder ein Copolymer aus diesen enthält.
  6. Verfahren zum Waschen von Textilien in tensidhaltigen wäßrigen Lösungen, dadurch gekennzeichnet, dass man eine tensidhaltige wäßrige Lösung einsetzt, die ein Polymer, erhältlich durch Polymerisation von Benzoxazin-Monomeren, enthält.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man das Polymer in einem Wäschenachbehandlungsschritt, beispielsweise als Bestandteil eines Weichspülmittels, mit dem Textil in Kontakt bringt und das so behandelte Textil beim nächsten Waschvorgang, der mit einem das erfindungsgemäß verwendete Polymer enthaltenden Mittel oder einem, welches frei von ihm ist, ausgeführt werden kann, in Gegenwart von andersfarbigen Wäschestücken wäscht.
  8. Mittel, Verwendung oder Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer erhältlich ist durch Polymerisation von Benzoxazin-Verbindungen, ausgewählt aus Verbindungen der allgemeinen Formel (I) oder aus Verbindungen der allgemeinen Formel (II) oder aus Mischungen von diesen,
    Figure imgb0035
    Figure imgb0036
    wobei q eine ganze Zahl von 1 bis 4 ist,
    n eine Zahl von 2 bis 20000 ist,
    R in jeder Wiederholungseinheit unabhängig voneinander ausgewählt wird aus Wasserstoff oder linearen oder verzweigten, gegebenenfalls substituierten Alkylgruppen, die 1 bis 8 Kohlenstoffatome umfassen,
    Z ausgewählt wird aus Wasserstoff (für q = 1), Alkyl (für q = 1), Alkylen (für q = 2 bis 4), Carbonyl (für q = 2), Sauerstoff (für q = 2), Schwefel (für q = 2), Sulfoxid (für q = 2), Sulfon (für q = 2) und einer direkten, kovalenten Bindung (für q = 2),
    R1 für eine kovalente Bindung steht oder eine divalente Verbindungsgruppe ist, die 1 bis 100 Kohlenstoffatome umfasst,
    R2 ausgewählt wird aus Wasserstoff, Halogen, Alkyl und Alkenyl oder R2 ein divalenter Rest ist, der aus der Benzoxazin-Struktur eine entsprechende Naphthoxazin-Struktur macht,
    Y ausgewählt wird aus linearen oder verzweigten, gegebenenfalls substituierten Alkylgruppen, die 1 bis 15 Kohlenstoffatomen umfassen, cycloaliphatischen Resten, die gegebenenfalls ein oder mehrere Heteroatome enthalten, Arylresten, die gegebenenfalls ein oder mehrere Heteroatome enthalten, und -(C=O)R3, wobei R3 aus linearen oder verzweigten, gegebenenfalls substituierten Alkylgruppen mit die 1 bis 15 Kohlenstoffatomen und X-R4 ausgewählt wird, wobei X aus S, O, und NH ausgewählt wird und R4 aus linearen oder verzweigten, gegebenenfalls substituierten Alkylgruppen mit 1 bis 15 Kohlenstoffatomen ausgewählt wird,
    c eine ganze Zahl von 1 bis 4 ist,
    B ausgewählt wird aus Wasserstoff (für c = 1), Alkyl (für c = 1), Alkylen (für c = 2 bis 4), Carbonyl (für c = 2), Sauerstoff (für c = 2), Schwefel (für c = 2), Sulfoxid (für c = 2), Sulfon (für c = 2) und einer direkten, kovalenten Bindung (für c = 2), A eine Hydroxylgruppe oder ein stickstoffhaltiger Heterozyklus ist,
    R5 ausgewählt wird aus Wasserstoff, Halogen, Alkyl und Alkenyl oder R5 ein divalenter Rest ist, der aus der Benzoxazin-Struktur eine entsprechende Naphthoxazin-Struktur macht und R6 für eine kovalente Bindung steht oder eine divalente Verbindungsgruppe ist, die 1 bis 100 Kohlenstoffatome umfasst.
  9. Mittel, Verwendung oder Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Benzoxazin-Verbindungen der allgemeinen Formel (I) ausgewählt werden aus Verbindungen der allgemeinen Formel (III),
    Figure imgb0037
    wobei x eine Zahl zwischen 0 und 1000 und y eine Zahl zwischen 0 und 1000 ist, mit der Maßgabe, dass x+y ≥ 2 ist, wobei Z, R2, Y und q jeweils wie in Formel (I) definiert sind.
  10. Mittel, Verwendung oder Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Benzoxazin-Verbindungen der allgemeinen Formel (II) ausgewählt werden aus Verbindungen der allgemeinen Formel (IV) und/oder aus Verbindungen der allgemeinen Formel (V),
    Figure imgb0038
    Figure imgb0039
    wobei R7 und R8 jeweils unabhängig voneinander ausgewählt werden aus Wasserstoff, Halogen, linearen oder verzweigten, gegebenenfalls substituierten Alkylgruppen, Alkenylgruppen und Arylgruppen, wobei c, B, R5 und R6 jeweils wie oben in Formel (II) definiert sind.
  11. Mittel, Verwendung oder Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das gewichtsmittlere Molekulargewicht "Mw" der Benzoxazin(co)polymere zwischen 500 und 100000 g/mol liegt.
  12. Mittel, Verwendung oder Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass es sich bei dem Benzoxazin(co)polymer um ein durch Umsetzung mit mindestens einem Alkylierungsmittel zugängliches kationisches Benzoxazin(co)polymer handelt.
EP10716362.8A 2009-05-12 2010-05-06 Farbschützendes wasch- oder reinigungsmittel Not-in-force EP2430137B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009003034A DE102009003034A1 (de) 2009-05-12 2009-05-12 Farbschützendes Wasch-oder Reinigungsmittel
PCT/EP2010/056175 WO2010130624A1 (de) 2009-05-12 2010-05-06 Farbschützendes wasch- oder reinigungsmittel

Publications (2)

Publication Number Publication Date
EP2430137A1 EP2430137A1 (de) 2012-03-21
EP2430137B1 true EP2430137B1 (de) 2014-11-12

Family

ID=42644885

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10716362.8A Not-in-force EP2430137B1 (de) 2009-05-12 2010-05-06 Farbschützendes wasch- oder reinigungsmittel

Country Status (4)

Country Link
US (1) US8580726B2 (de)
EP (1) EP2430137B1 (de)
DE (1) DE102009003034A1 (de)
WO (1) WO2010130624A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130139327A1 (en) * 2010-08-03 2013-06-06 Henkel Ag & Co. Kgaa Textile treatment composition for removal of deodorant stains
US20130111675A1 (en) 2011-11-03 2013-05-09 Ecolab Usa Inc. Sustainable laundry sour compositions with iron control
WO2015112341A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Fabric treatment composition
WO2015112339A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Fabric treatment composition
EP3097174A1 (de) 2014-01-22 2016-11-30 The Procter & Gamble Company Verfahren zur behandlung von textilstoffen
WO2015112338A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Method of treating textile fabrics
MX2017006377A (es) 2014-11-17 2017-08-21 Procter & Gamble Composiciones de suministro de agentes beneficos.
PL3088503T3 (pl) 2015-04-29 2018-10-31 The Procter & Gamble Company Sposób prania tkanin
US20160319227A1 (en) 2015-04-29 2016-11-03 The Procter & Gamble Company Method of treating a fabric
EP3088502B1 (de) 2015-04-29 2018-05-23 The Procter and Gamble Company Verfahren zur behandlung eines stoffes
HUE039245T2 (hu) 2015-04-29 2018-12-28 Procter & Gamble Mosószerkészítmény
DK3088505T3 (da) 2015-04-29 2020-08-03 Procter & Gamble Fremgangsmåde til behandling af et tekstilstof
JP2019502779A (ja) 2015-11-26 2019-01-31 ザ プロクター アンド ギャンブル カンパニー プロテアーゼを含む液体洗剤組成物及び封入リパーゼ
EP4112707A1 (de) 2021-06-30 2023-01-04 The Procter & Gamble Company Textilbehandlung
CA3234192A1 (en) 2022-07-11 2024-01-18 Ming Tang Laundry detergent composition containing graft copolymer and perfume raw material
WO2022214113A2 (en) 2022-07-11 2022-10-13 The Procter & Gamble Company Laundry detergent composition containing graft copolymer and dye transfer inhibitor polymer
WO2024011345A1 (en) 2022-07-11 2024-01-18 The Procter & Gamble Company Laundry detergent composition containing graft copolymer and benefit agent
WO2024011343A1 (en) 2022-07-11 2024-01-18 The Procter & Gamble Company Laundry detergent composition containing polyalkylene oxide graft copolymer and dye transfer inhibitor polymer
EP4306628A1 (de) 2022-07-11 2024-01-17 The Procter & Gamble Company Waschmittelzusammensetzung, die zwei pfropfcopolymerisate enthält

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT330930B (de) 1973-04-13 1976-07-26 Henkel & Cie Gmbh Verfahren zur herstellung von festen, schuttfahigen wasch- oder reinigungsmitteln mit einem gehalt an calcium bindenden substanzen
DE3434820A1 (de) 1984-09-22 1986-04-03 Bayer Ag, 5090 Leverkusen Alterungsbestaendige polyamidlegierungen
CA2187176C (en) * 1994-04-07 2000-07-04 Michael Eugene Burns Bleach compositions comprising bleach activators and bleach catalysts
US5755992A (en) * 1994-04-13 1998-05-26 The Procter & Gamble Company Detergents containing a surfactant and a delayed release peroxyacid bleach system
US5543516A (en) 1994-05-18 1996-08-06 Edison Polymer Innovation Corporation Process for preparation of benzoxazine compounds in solventless systems
EP1760110B1 (de) * 2005-09-03 2011-11-02 Samsung SDI Co., Ltd. Polybenzoxazin Verbindung, Elektrolyt-Membran enthaltend dieser Verbindung und Elektrolyt-Membran benutzende Brenndstofzell
DE102009003032A1 (de) * 2009-05-12 2010-11-18 Henkel Ag & Co. Kgaa Kationische Benzoxazin(co)polymere

Also Published As

Publication number Publication date
DE102009003034A1 (de) 2010-11-18
WO2010130624A1 (de) 2010-11-18
EP2430137A1 (de) 2012-03-21
US8580726B2 (en) 2013-11-12
US20120047664A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
EP2430137B1 (de) Farbschützendes wasch- oder reinigungsmittel
EP2265703B9 (de) Farbschützendes wasch- oder reinigungsmittel
EP2262884B1 (de) Farbschützendes wasch- oder reinigungsmittel
EP1915438B1 (de) Farbschützendes waschmittel
DE102009001144A1 (de) Farbschützendes Wasch- oder Reinigungsmittel
EP2129759B1 (de) Farbschützendes wasch- oder reinigungsmittel
DE102011008526A1 (de) Farbschützende Waschmittel
EP2021451A1 (de) Farbschützendes waschmittel
WO2008110469A1 (de) Farbschützendes waschmittel
WO2018210591A1 (de) Farbschützende waschmittel
DE102013021276A1 (de) Farbschützende Waschmittel
EP1994133B1 (de) Farbschützendes waschmittel
DE102012219403A1 (de) Farbschützende Waschmittel
DE102022200097A1 (de) Farbschützende Waschmittel
WO2023131463A1 (de) Farbschützende waschmittel
DE102022200094A1 (de) Farbschützende Waschmittel
DE102022200095A1 (de) Farbschützende Waschmittel
DE102019217963A1 (de) Polymere oberflächenaktive Wirkstoffe und Wasch- und Reinigungsmittel, welche diese enthalten
DE102014220662A1 (de) Farbschützende Waschmittel
DE102013226008A1 (de) Farbschützende Waschmittel
WO2017021112A1 (de) Neue anionische tenside und waschmittel, welche diese enthalten
EP3009498A2 (de) Farbschützende waschmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140703

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 695763

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010008241

Country of ref document: DE

Effective date: 20141224

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150312

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150312

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010008241

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150813

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150506

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150506

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 695763

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180522

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180530

Year of fee payment: 9

Ref country code: FR

Payment date: 20180522

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010008241

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190506

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531