EP2265703B9 - Farbschützendes wasch- oder reinigungsmittel - Google Patents

Farbschützendes wasch- oder reinigungsmittel Download PDF

Info

Publication number
EP2265703B9
EP2265703B9 EP09731692.1A EP09731692A EP2265703B9 EP 2265703 B9 EP2265703 B9 EP 2265703B9 EP 09731692 A EP09731692 A EP 09731692A EP 2265703 B9 EP2265703 B9 EP 2265703B9
Authority
EP
European Patent Office
Prior art keywords
average particle
particle diameter
polyamide particles
acid
porous polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09731692.1A
Other languages
English (en)
French (fr)
Other versions
EP2265703A1 (de
EP2265703B1 (de
Inventor
Birgit GLÜSEN
Thomas Eiting
Stefan Van Der Burgh
Matthias Sunder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to PL09731692T priority Critical patent/PL2265703T3/pl
Publication of EP2265703A1 publication Critical patent/EP2265703A1/de
Application granted granted Critical
Publication of EP2265703B1 publication Critical patent/EP2265703B1/de
Publication of EP2265703B9 publication Critical patent/EP2265703B9/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0021Dye-stain or dye-transfer inhibiting compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3719Polyamides or polyimides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to the use of porous polyamide particles as color transfer inhibiting agents in the washing and / or cleaning of textiles.
  • Detergents and cleaners in addition to the indispensable for the washing and cleaning process ingredients such as surfactants and builders usually other ingredients that can be summarized under the term washing aids and include as different drug groups such as foam regulators, grayness inhibitors, bleach, bleach activators and enzymes.
  • auxiliaries also include substances which are intended to prevent dyed textile fabrics from causing a changed color impression after washing.
  • This color impression change washed, ie cleaner, textiles can be based on the one hand, that dye components are removed by the washing or cleaning process from the textile ("fading"), on the other hand may be deposited by differently colored textiles dyes on the textile ("discoloration" ).
  • the discoloration aspect may also play a role in undyed laundry items when washed together with colored laundry items.
  • detergents In order to avoid these undesirable side effects of removing dirt from textiles by treatment with usually surfactant-containing aqueous systems, detergents, especially if they are provided as so-called color or colored laundry detergents for colored textiles, contain active ingredients which prevent the detachment of dyes from the textile or At least the deposition of detached, located in the wash liquor to avoid dyes on textiles.
  • many of the commonly used - usually water-soluble - polymers have such a high affinity for dyes that they draw them more from the dyed fiber, so that it comes in their use to color loss.
  • some conventional dye transfer inhibitors perform only with some classes of dyes and can not prevent the transfer of other dye classes.
  • porous polyamide particles lead to unexpectedly high color transfer inhibition when used in detergents. Particularly pronounced is the prevention of dyeing of white or other colored fabrics by washed out of textiles dyes. It is conceivable that the polymer particles take up dye molecules detached from the dyed fabrics because of their large surface, which in particularly preferred cases may be dendritic or have a fractal geometry, do not release them again and prevent the deposition of the dyes on white or other-colored textiles.
  • the preparation of such porous polyamide particles can generally be accomplished by mixing a solution of polyamide in a suitable solvent with a liquid phase in which polyamides are insoluble.
  • the liquid phase is water-based, whereby it can be achieved by suitable further solvents that when mixing the liquids first of all a clear solution is formed, from which the polyamide particles precipitate.
  • mixing ratios of polyamide solution to liquid phase of from 1 to 999 to 300 to 700, preferably from 2 to 998 to 250 to 750, have proven useful in the production.
  • Polyamide solutions can be provided, for example, with the solvents o-cresol, m-cresol, p-cresol, chlorophenol, phenol or mixtures thereof.
  • Formic acid has also proven itself.
  • the liquid phase in which polyamides are insoluble is preferably miscible with the aforementioned solvents and, moreover, water-miscible.
  • Preferred liquid phases are aliphatic alcohols, aliphatic ketones and mixtures of these. Methanol, ethanol, n-propanol, isopropanol, acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone and mixtures of these have proven particularly useful.
  • liquid phase Preferably, mixtures of 10 to 98% by weight of aliphatic alcohols and / or ketones with 2 to 90% by weight of water can be used as the liquid phase from which the polyamide particles precipitate.
  • the liquid phase may contain high molecular weight polyalkylene glycols, e.g. PEG or PPG, in amounts of, for example, 0.5 to 10 wt .-% (based on the liquid phase).
  • the formation of the porous polyamide particles by precipitation usually takes place in periods of 1 second to 2 hours and can be assisted by stirring.
  • the mixing of the liquids and formation of the particles takes place at temperatures of 5 to 70 ° C, more preferably at 15 to 60 ° C.
  • the polyamide particles can be easily separated from the solvent mixture by decantation, filtration or centrifugation. This is preferably followed by washing with methanol and / or acetone and drying in vacuo.
  • Very particularly preferred processes for the preparation use a solution of polyamide 11 and / or polyamide 12 in phenol, which contains 0.1 to 50 wt .-% Polymaid (e) based on their weight.
  • a solution of polyamide 11 and / or polyamide 12 in phenol which contains 0.1 to 50 wt .-% Polymaid (e) based on their weight.
  • a mixture of ethanol preferably 50 to 90 wt .-%, based on the liquid phase
  • ethylene glycol preferably 1 to 10 wt .-%, based on the liquid phase
  • glycerol preferably 1 to 12% by weight, based on the liquid phase.
  • the polyamide solution in phenol preferably 30 to 70 wt .-%, based on the mixture
  • the liquid phase preferably 40 to 65 wt .-%, based on the mixture
  • polyethylene glycol and / or polypropylene glycol having molecular weights> 1000 daltons preferably 0.5 to 10 wt .-%, based on the mixture
  • This mixture which ideally has a viscosity below 200 Pas, is stirred at 20 to 80 ° C, preferably at 25 to 65 ° C for 30 to 60 minutes.
  • the spherical porous polyamide particles produced by the processes described above, which are used in preferred embodiments of the invention, usually have number-average particle diameters of from 0.1 .mu.m to 100 .mu.m, preferably from 0.3 .mu.m to 50 .mu.m, in particular from 0.5 .mu.m to 25 ⁇ m.
  • the ratio of volume-average particle diameter (Dv) to number-average particle diameter (Dn), which is also called particle size distribution index (PDI Dv / Dn), is preferably in the range of 1.0 to 1.3.
  • the porous polyamide particles have a BET specific surface area (according to DIN 66131) of 5 m 2 / g or more.
  • Particularly preferred particles according to the invention have a specific surface area according to BET (according to DIN 66131) of 5 m 2 / g to 80 m 2 / g, preferably from 6 m 2 / g to 60 m 2 / g and in particular from 7.5 m 2 / g to 50 m 2 / g
  • Very particularly preferred embodiments of the invention are characterized in that the porous polyamide particles have a BET specific surface area (according to DIN 66131) of 6 m 2 / g or more, preferably 7 m 2 / g or more and in particular 8 m 2 / g or more.
  • the porous polyamide particles have an average pore diameter of 0.01 ⁇ m to 0.20 ⁇ m, particularly 0.02 ⁇ m to 0.1 ⁇ m, and a crystallinity (DSC measurement) of 40% or greater.
  • the standard enthalpy (or specific heat of fusion) of the porous polyamide particles is measured by DSC.
  • the sample is heated under nitrogen atmosphere from room temperature (20 ° C) at a rate of increase of 5 ° C / min.
  • the standard enthalpy is calculated from the area of the heat absorption peak between 120 ° C and 230 ° C.
  • the crystallinity of the porous polyamide particles is the quotient of the measured specific heat of fusion and the standard enthalpy of crystalline polyamide, the latter for polyamide 12 being about 209 J / g.
  • agents according to the invention are preferred in which the porous polyamide particles have an oil absorption capacity (boiled linseed oil) of 160 ml / 100 g or more, preferably 170 ml / 100 g or more.
  • oil absorption capacity boiling linseed oil
  • porous polyamide particles are also disclosed, for example, in Japanese Patent Application 2002-80629.
  • the porous polyamide particles are spherical.
  • the porous polyamide particles can be added separately to the washing solution as part of a manual or mechanical washing or cleaning process, are preferably brought into contact with the textile as part of a pretreatment agent in a step upstream of the actual washing process or are furthermore preferably used as a constituent of a washing or cleaning agent introduced into the washing solution.
  • the porous polyamide particles also develop their positive effect when they are used in the final rinse, in which usually textile softening active ingredients are used.
  • Their use in a laundry pre-treatment step is also possible, in which case the particulate polymer preferably remains on the textile to be subsequently washed or passes together with it into the wash liquor.
  • a color-protective washing, laundry pretreatment, laundry aftertreatment or cleaning agent contains a color transfer inhibitor in the form of porous polyamide particles as defined above in addition to conventional ingredients compatible with this component.
  • An agent preferably contains from 0.05% to 20%, more preferably from 0.1% to 5%, by weight of such porous polyamide particles.
  • the mentioned active ingredients contribute to both previously mentioned aspects of color constancy, that is to say they reduce both discoloration and fading, although the effect of preventing staining, especially when washing white textiles, is most pronounced.
  • Another object of the invention is therefore the use of porous polyamide particles as defined above to avoid the change in the color impression of textiles in their washing in particular surfactant-containing aqueous solutions. By changing the color impression is by no means the difference between dirty and clean textile to understand, but the color difference between each clean textile before and after the washing process.
  • Another object of the invention is a process for washing dyed textiles in surfactant-containing aqueous solutions, which is characterized in that one uses a surfactant-containing aqueous solution containing above-defined porous polyamide particles. In such a method, it is possible to wash white or undyed textiles together with the dyed textile without the white or undyed textile being dyed.
  • an agent may, in addition to the abovementioned dye-transfer-inhibiting active ingredient, additionally comprise a known dye transfer inhibitor, then preferably in amounts of from 0.01% by weight to 5% by weight, in particular from 0.1% by weight to 1% by weight.
  • a known dye transfer inhibitor which, in a preferred embodiment of the invention, is a polymer of vinylpyrrolidone, vinylimidazole, vinylpyridine-N-oxide or a copolymer thereof.
  • polyvinylpyrrolidones having molecular weights of from 15,000 to 50,000 and also polyvinylpyrrolidones having molecular weights of more than 1,000,000, in particular from 1,500,000 to 4,000,000, N-vinylimidazole / N-vinylpyrrolidone copolymers, polyvinyl oxazolidones, polyamine N-oxide Polymers, polyvinyl alcohols and copolymers based on acrylamidoalkenylsulfonic acids.
  • enzymatic systems comprising a peroxidase and hydrogen peroxide or a substance which produces hydrogen peroxide in water.
  • a mediator compound for the peroxidase for example an acetosyringone, a phenol derivative or a phenotiazine or phenoxazine
  • a mediator compound for the peroxidase for example an acetosyringone, a phenol derivative or a phenotiazine or phenoxazine
  • Polyvinylpyrrolidone preferably has an average molecular weight in the range from 10,000 to for use in agents according to the invention 60,000, in particular in the range of 25,000 to 50,000.
  • those of vinylpyrrolidone and vinylimidazole in a molar ratio of 5: 1 to 1: 1 having an average molecular weight in the range of 5,000 to 50,000, especially 10,000 to 20,000 are preferred.
  • the detergents which may be solid or liquid and may be in the form of homogeneous solutions or suspensions, in particular in the form of pulverulent solids, may in principle contain, in addition to the porous polyamide particles used in accordance with the invention, all known ingredients customary in such compositions.
  • the agents may, in particular, builders, surface-active surfactants, bleaches based on organic and / or inorganic peroxygen compounds, bleach activators, water-miscible organic solvents, enzymes, sequestering agents, electrolytes, pH regulators and other auxiliaries, such as optical brighteners, grayness inhibitors, foam regulators and colorants and fragrances contain.
  • porous polyamide particles it is also possible to apply the porous polyamide particles to a water-insoluble cloth or to introduce them, optionally with other customary ingredients, into a particularly well-sealed bag of water-insoluble but water-permeable material and thus as an additive, if desired several times, in particular twice, 3 times or 4 time to use in the washing process.
  • the porous polyamide particles or the agents containing them may be packed in portions in a water-soluble material, e.g. a polyvinyl alcohol film, are introduced into the washing process.
  • the agents may contain one or more surfactants, in particular anionic surfactants, nonionic surfactants and mixtures thereof, but also cationic, zwitterionic and amphoteric surfactants.
  • Suitable nonionic surfactants are in particular alkyl glycosides and ethoxylation and / or propoxylation of alkyl glycosides or linear or branched alcohols each having 12 to 18 carbon atoms in the alkyl moiety and 3 to 20, preferably 4 to 10 alkyl ether groups. Also suitable are ethoxylation and / or propoxylation products of N-alkylamines, vicinal diols, fatty acid esters and fatty acid amides which correspond to said long-chain alcohol derivatives with respect to the alkyl moiety and of alkylphenols having 5 to 12 carbon atoms in the alkyl radical.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C 12 -C 14 -alcohols with 3 EO or 4 EO, C 9 -C 11 -alcohols with 7 EO, C 13 -C 15 -alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 -C 18 -alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 -C 14 -alcohol with 3 EO and C 12 -C 18 -alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include (tallow) fatty alcohols with 14 EO, 16 EO, 20 EO, 25 EO, 30 EO or 40 EO.
  • agents for use in mechanical processes usually extremely low-foam compounds are used. These include preferably C 12 -C 18 -alkylpolyethylenglykol-polypropylene glycol ethers with in each case at to 8 mol ethylene oxide and propylene oxide units in the molecule.
  • the nonionic surfactants also include alkyl glycosides of the general formula RO (G) x in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number - which, as a variable to be determined analytically, may also assume fractional values - between 1 and 10; preferably x is 1.2 to 1.4.
  • polyhydroxy fatty acid amides of the formula (I) in which R 1 is CO for an aliphatic acyl radical having 6 to 22 carbon atoms, R 2 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms and [Z] is a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms: and 3 to 10 hydroxyl groups:
  • the polyhydroxy fatty acid amides are preferably derived from reducing sugars having 5 or 6 carbon atoms, in particular from glucose.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (II) in the R 3 is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 4 is a linear, branched or cyclic alkylene radical or an arylene radical having 2 to 8 Carbon atoms
  • R 5 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms, preference being given to C 1 -C 4 -alkyl or phenyl radicals
  • [Z] is a linear polyhydroxyalkyl radical, whose alkyl chain is substituted with at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives of this group.
  • [Z] is also obtained here preferably by reductive amination of a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then be converted into the desired polyhydroxy fatty acid amides, for example by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably from 1 to 4 carbon atoms in the alkyl chain, especially fatty acid methyl ester.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • nonionic surfactants are so-called gemini surfactants. These are generally understood as meaning those compounds which have two hydrophilic groups per molecule. These groups are usually separated by a so-called "spacer". This spacer is typically a carbon chain that should be long enough for the hydrophilic groups to be spaced sufficiently apart for them to act independently of each other. Such surfactants are generally characterized by an unusually low critical micelle concentration and the ability to greatly reduce the surface tension of the water. In exceptional cases, the term gemini surfactants not only such "dimer”, but also corresponding to "trimeric” surfactants understood.
  • Suitable gemini surfactants are, for example, sulfated hydroxy mixed ethers or dimer alcohol bis and trimer alcohol tris sulfates and ether sulfates.
  • End-capped dimeric and trimeric mixed ethers are characterized in particular by their bi- and multi-functionality.
  • the end-capped surfactants mentioned have good wetting properties and are low foaming, so that they are particularly suitable for use in machine washing or cleaning processes.
  • gemini-polyhydroxy fatty acid amides or poly-polyhydroxy fatty acid amides it is also possible to use gemini-polyhydroxy fatty acid amides or poly-polyhydroxy fatty acid amides.
  • sulfuric acid monoesters of straight-chain or branched C 7 -C 21 -alcohols ethoxylated with from 1 to 6 mol of ethylene oxide such as 2-methyl-branched C 9 -C 11 -alcohols having on average 3.5 mol of ethylene oxide (EO) or C 12 - C 18 -fatty alcohols with 1 to 4 EO.
  • EO ethylene oxide
  • the preferred anionic surfactants also include the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters, and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 to C 18 fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue other than derived ethoxylated fatty alcohols, which are considered by themselves nonionic surfactants.
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Suitable further anionic surfactants are fatty acid derivatives of amino acids, for example N-methyltaurine (Tauride) and / or N-methylglycine (sarcosides).
  • sarcosides or the sarcosinates and here especially sarcosinates of higher and optionally monounsaturated or polyunsaturated fatty acids such as oleyl sarcosinate.
  • anionic surfactants are particularly soaps into consideration.
  • Particularly suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid and, in particular, soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids. Together with these soaps or as a substitute for soaps, it is also possible to use the known alkenylsuccinic acid salts.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • Surfactants are present in the detergents in proportions of preferably from 5% by weight to 50% by weight, in particular from 8% by weight to 30% by weight.
  • An agent preferably contains at least one water-soluble and / or water-insoluble, organic and / or inorganic builder.
  • the water-soluble organic builder substances include polycarboxylic acids, in particular citric acid and sugar acids, monomeric and polymeric aminopolycarboxylic acids, in particular methylglycinediacetic acid, nitrilotriacetic acid and ethylenediaminetetraacetic acid and polyaspartic acid, polyphosphonic acids, in particular aminotris (methylenephosphonic acid), ethylenediaminetetrakis (methy) enphosphonic acid) and 1-hydroxyethane-1,1- diphosphonic acid, polymeric hydroxy compounds such as dextrin and also polymeric (poly) carboxylic acids, in particular the polycarboxylates obtainable by oxidation of polysaccharides or dextrins, polymeric acrylic acids, methacrylic acids, maleic acids and copolymers thereof, which may also contain polymerized small amounts of polymeriz
  • the molecular weight of the homopolymers of unsaturated carboxylic acids is generally between 3,000 and 200,000, of the copolymers between 2,000 and 200,000, preferably 30,000 to 120,000, each based on the free acid.
  • a particularly preferred acrylic acid-maleic acid copolymer has a molecular weight of from 30,000 to 100,000.
  • Commercially available products are, for example, Sokalan® CP 5, CP 10 and PA 30 from BASF.
  • Suitable, although less preferred compounds of this class are copolymers of acrylic acid or methacrylic acid with vinyl ethers, such as vinyl methyl ethers, vinyl esters, ethylene, propylene and styrene, in which the proportion of the acid is at least 50% by weight.
  • the first acidic monomer or its salt is derived from a monoethylenically unsaturated C 3 -C 8 -carboxylic acid and preferably from a C 3 -C 4 -monocarboxylic acid, in particular from (meth) -acrylic acid.
  • the second acidic monomer or its salt may be a derivative of a C 4 -C 8 -dicarboxylic acid, with maleic acid being particularly preferred, and / or a derivative of an allylsulfonic acid which is substituted in the 2-position by an alkyl or aryl radical.
  • Such polymers generally have a molecular weight between 1,000 and 200,000.
  • Further preferred copolymers are those which preferably have as monomers acrolein and acrylic acid / acrylic acid salts or vinyl acetate.
  • the organic builder substances can be used, in particular for the preparation of liquid agents, in the form of aqueous solutions, preferably in the form of 30 to 50 percent by weight aqueous solutions. All of the acids mentioned are generally used in the form of their water-soluble salts, in particular their alkali metal salts.
  • organic builder substances may be present in amounts of up to 40% by weight, in particular up to 25% by weight and preferably from 1% by weight to 8% by weight. Quantities close to the stated upper limit are preferably used in pasty or liquid, in particular water-containing agents.
  • Suitable water-soluble inorganic builder materials are, in particular, alkali metal silicates, alkali metal carbonates and alkali metal phosphates, which may be in the form of their alkaline, neutral or acidic sodium or potassium salts.
  • alkali metal silicates alkali metal carbonates and alkali metal phosphates, which may be in the form of their alkaline, neutral or acidic sodium or potassium salts.
  • examples of these are trisodium phosphate, tetrasodium diphosphate, disodium dihydrogen diphosphate, pentasodium triphosphate, so-called sodium hexametaphosphate, oligomeric trisodium phosphate with degrees of oligomerization of from 5 to 1000, in particular from 5 to 50, and the corresponding potassium salts or mixtures of sodium and potassium salts.
  • Crystalline or amorphous alkali metal aluminosilicates in amounts of up to 50% by weight, preferably not more than 40% by weight, and in liquid agents, in particular from 1% by weight to 5% by weight, are particularly suitable as water-insoluble, water-dispersible inorganic builder materials.
  • suitable aluminosilicates have no particles with a particle size greater than 30 .mu.m and preferably consist of at least 80% by weight of particles having a size of less than 10 .mu.m.
  • Their calcium binding capacity is usually in the range of 100 to 200 mg CaO per gram.
  • Suitable substitutes or partial substitutes for the said aluminosilicate are crystalline alkali silicates which may be present alone or in a mixture with amorphous silicates.
  • the alkali metal silicates useful as builders in the compositions according to the invention preferably have a molar ratio of alkali metal oxide to SiO 2 below 0.95, in particular from 1: 1.1 to 1:12, and may be present in amorphous or crystalline form.
  • Preferred alkali metal silicates are the sodium silicates, in particular the amorphous sodium silicates, with a molar ratio of Na 2 O: SiO 2 of 1: 2 to 1: 2.8.
  • the crystalline silicates which may be present alone or in admixture with amorphous silicates, are crystalline layer silicates with the general formula of Na 2 Si x O used 2x + 1 ⁇ y H 2 O in which x, known as the modulus, an integer of 1, 9 to 22, especially 1.9 to 4, and y is a number from 0 to 33 and preferred values for x are 2, 3 or 4.
  • Preferred crystalline phyllosilicates are those in which x in the abovementioned general formula assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred.
  • amorphous alkali silicates practically anhydrous crystalline alkali silicates of the abovementioned general formula in which x is a number from 1.9 to 2.1, can be used in inventive compositions.
  • a crystalline sodium layer silicate with a modulus of 2 to 3 is used, as can be prepared from sand and soda. Crystalline sodium silicates with a modulus in the range from 1.9 to 3.5 are used in a further preferred embodiment of compositions according to the invention.
  • Crystalline layer-form silicates of formula (I) given above are sold by Clariant GmbH under the trade name Na-SKS, eg Na-SKS-1 (Na 2 Si 22 O 45 .xH 2 O, Kenyaite), Na-SKS 2 (Na 2 S 14 O 29 ⁇ xH 2 O, magadiite), Na-SKS-3 (Na 2 Si 8 O 17 .xH 2 O) or Na-SKS-4 (Na 2 Si 4 O 9 .xH 2 O , Makatit).
  • Na-SKS eg Na-SKS-1 (Na 2 Si 22 O 45 .xH 2 O, Kenyaite)
  • Na-SKS 2 Na 2 S 14 O 29 ⁇ xH 2 O, magadiite
  • Na-SKS-3 Na 2 Si 8 O 17 .xH 2 O
  • Na-SKS-4 Na 2 Si 4 O 9 .xH 2 O , Makatit).
  • Na-SKS-5 ⁇ -Na 2 Si 2 O 5
  • Na-SKS-7 ⁇ -Na 2 Si 2 O 5 , Natrosilit
  • Na-SKS-9 NaHSi 2 O 5 ⁇ 3H 2 O
  • Na-SKS-10 NaHSi 2 O 5 ⁇ 3H 2 O, kanemite
  • Na-SKS-11 t-Na 2 Si 2 O 5
  • Na-SKS-13 NaHSi 2 O 5
  • Na-SKS-6 ⁇ -Na 2 Si 2 O 5
  • composition according to the invention a granular compound of crystalline phyllosilicate and citrate, of crystalline phyllosilicate and of the above-mentioned (co-) polymeric polycarboxylic acid, or of alkali silicate and alkali metal carbonate, such as, for example, commercially available under the name Nabion® 15, is used ,
  • Builder substances are preferably present in the compositions in amounts of up to 75% by weight, in particular 5% by weight to 50% by weight.
  • Suitable peroxygen compounds for use in the compositions are in particular organic peracids or persalts of organic acids, such as phthalimidopercaproic acid, perbenzoic acid or salts of diperdodecanedioic acid, hydrogen peroxide and hydrogen peroxide under the washing conditions inorganic salts, which include perborate, percarbonate, persilicate and / or persulfate Caroat belong into consideration.
  • organic peracids or persalts of organic acids such as phthalimidopercaproic acid, perbenzoic acid or salts of diperdodecanedioic acid, hydrogen peroxide and hydrogen peroxide under the washing conditions inorganic salts, which include perborate, percarbonate, persilicate and / or persulfate Caroat belong into consideration.
  • solid peroxygen compounds are to be used, they can be used in the form of powders or granules, which can also be enveloped in a manner known in principle
  • an agent according to the invention contains peroxygen compounds, they are present in amounts of preferably up to 50% by weight, in particular from 5% by weight to 30% by weight.
  • Bleach stabilizers such as phosphonates, borates or metaborates and metasilicates and magnesium salts such as magnesium sulfate may be useful.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N -Acylimide, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or Isononanoyloxybenzolsulfonat (n- or iso-NOBS), carboxylic anhydrides, especially phthalic anhydride, acylated polyhydric alcohols, especially triacetin, ethylene glycol diacetate, 2,5-diacetoxy 2,5-dihydrofuran and enol esters,
  • TAED
  • the hydrophilic substituted acyl acetals and the acyl lactams are also preferably used.
  • Combinations of conventional bleach activators can also be used.
  • Such bleach activators can, in particular in the presence of the abovementioned hydrogen peroxide-supplying bleach, in the usual amount range, preferably in amounts of 0.5 wt .-% to 10 wt .-%, in particular 1 wt .-% to 8 wt .-%, based on the total agent
  • percarboxylic acid as the sole bleaching agent, it is preferable that it be completely contained.
  • sulfone imines and / or bleach-enhancing transition metal salts or transition metal complexes may also be present as so-called bleach catalysts.
  • Suitable enzymes which can be used in the compositions are those from the class of amylases, proteases, lipases, cutinases, pullulanases, hemicellulases, cellulases, oxidases, laccases and peroxidases and mixtures thereof. Particularly suitable are from fungi or bacteria, such as Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes, Pseudomonas cepacia or Coprinus cinereus derived enzymatic agents.
  • the enzymes may be adsorbed to carriers and / or embedded in encapsulants to protect against premature inactivation. They are preferably present in the detergents or cleaners according to the invention in amounts of up to 5% by weight, in particular from 0.2% by weight to 4% by weight. If the agent of the invention contains protease, it preferably has a proteolytic activity in the range of about 100 PE / g to about 10,000 PE / g, in particular 300 PE / g to 8000 PE / g. If several enzymes are to be used in the agent can this can be carried out by incorporation of the two or more separate or in a known manner separately prepared enzymes or by two or more together in a granule ready-made enzymes.
  • organic solvents include alcohols having 1 to 4 carbon atoms, in particular methanol, ethanol, isopropanol and tert-butanol, diols having 2 to 4 C Atoms, in particular ethylene glycol and propylene glycol, and mixtures thereof and derived from the said classes of compounds ethers.
  • Such water-miscible solvents are preferably present in the compositions according to the invention in amounts of not more than 30% by weight, in particular from 6% by weight to 20% by weight.
  • compositions of the invention system and environmentally acceptable acids, in particular citric acid, acetic acid, tartaric acid, malic acid, lactic acid, glycolic acid, succinic acid, glutaric acid and / or adipic acid, but also mineral acids, in particular sulfuric acid, or bases, in particular ammonium or alkali metal hydroxides.
  • environmentally acceptable acids in particular citric acid, acetic acid, tartaric acid, malic acid, lactic acid, glycolic acid, succinic acid, glutaric acid and / or adipic acid, but also mineral acids, in particular sulfuric acid, or bases, in particular ammonium or alkali metal hydroxides.
  • pH regulators are present in the compositions according to the invention in amounts of preferably not more than 20% by weight, in particular from 1.2% by weight to 17% by weight.
  • Graying inhibitors have the task of keeping suspended from the textile fiber dirt suspended in the fleet.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example starch, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or of cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • starch derivatives can be used, for example aldehyde starches.
  • cellulose ethers such as carboxymethylcellulose (Na salt), methylcellulose, hydroxyalkylcellulose and mixed ethers, such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof, for example in amounts of from 0.1 to 5% by weight, based on the compositions.
  • the textile detergents may contain, for example, derivatives of diaminostilbenedisulfonic acid or their alkali metal salts as optical brighteners, although they are preferably free of optical brighteners for use as color detergents.
  • Suitable salts are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulphonic acid or compounds of similar construction which, instead of the morpholino Group carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • brighteners of the type of substituted diphenylstyrene may be present, for example the alkali metal salts of 4,4'-bis (2-sulfostinyl) -diphenyls, 4,4'-bis (4-chloro-3-sulfostyryl) -diphenyls, or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl) - biphenyl. Mixtures of the aforementioned optical brightener can be used.
  • foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of C 18 -C 24 fatty acids.
  • Suitable non-surfactant foam inhibitors are, for example, organopolysiloxanes and mixtures thereof with microfine, optionally silanized silica and paraffins, waxes, microcrystalline waxes and mixtures thereof with silanated silicic acid or bis-fatty acid alkylenediamides. It is also advantageous to use mixtures of various foam inhibitors, for example those of silicones, paraffins or waxes.
  • the foam inhibitors, in particular silicone- and / or paraffin-containing foam inhibitors are preferably bound to a granular, water-soluble or dispersible carrier substance. In particular, mixtures of paraffins and bistearylethylenediamide are preferred.
  • dyes In order to improve the aesthetic impression of the agents, they can be dyed with suitable dyes.
  • Preferred dyes the selection of which presents no difficulty to the skilled person, have a high storage stability and insensitivity to the other ingredients of the agents and to light and, in the case of use in laundry detergents, no pronounced substantivity to textile fibers, so as not to stain them.
  • compositions having an increased bulk density in particular in the range from 650 g / l to 950 g / l, a process comprising an extrusion step is preferred.
  • compositions in tablet form which may be monophasic or multiphase, monochromatic or multicolor and in particular consist of one or more layers, in particular two layers
  • the procedure is preferably such that all components - optionally one layer at a time - in a mixer mixed together and the mixture by means of conventional tablet presses, such as eccentric or rotary presses, pressed with compressive forces in the range of about 50 to 100 kN, preferably at 60 to 70 kN.
  • a tablet produced in this way has a weight of 10 g to 50 g, in particular 15 g up to 40 g.
  • the spatial form of the tablets is arbitrary and can be round, oval or be angular, with intermediate forms are possible. Corners and edges are advantageously rounded. Round tablets preferably have a diameter of 30 mm to 40 mm.
  • the size of rectangular or cuboid-shaped tablets, which are introduced predominantly via the metering device, for example the dishwasher, is dependent on the geometry and the volume of this metering device.
  • Exemplary preferred embodiments have a base area of (20 to 30 mm) x (34 to 40 mm), in particular of 26x36 mm or 24x38 mm.
  • Liquid or pasty compositions in the form of conventional solvents, in particular water, containing solutions are usually prepared by simply mixing the ingredients that can be added in bulk or as a solution in an automatic mixer.
  • a staining scale rating which is based on ISO 105-A04, was carried out.
  • Two white fabrics (A: 6 ⁇ 16 cm standard cotton fabric wfk, B: 6 ⁇ 16 cm standard polyamide fabric) were mixed with a colorant (1: Acid Blue 113, 2: Disperse Red 60, 3: Disperse Blue 79) whose concentration was 3 g / l (Farbgeber 1) and 10 g / l (colorants 2 and 3) in the wash liquor, using a color transfer inhibitor-free detergent composition (dosage 5.0 g / l) and adding (I.) 1 g / l or (II.) 10 g / l porous polyamide particles in a Linitest device at 60 ° C, then rinsed with water and dried hanging at room temperature. Subsequently, the degree of discoloration of the two tissues was determined spectrophotometrically. In addition, for comparison,
  • the degree of discoloration was then given in values from 1 (strong discoloration) to 5 (no discoloration).
  • compositions according to the invention have better dye transfer-inhibiting properties than the formulation without the dye transfer inhibiting active ingredient: Fabric: cotton inking W W + I W + II 1 4.5 4.7 4.9 2 4.8 nb 4.9 3 4.0 4.1 4.7 inking W W + I W + II 1 1.9 2.7 4.5 2 3.4 3.7 4.4 3 2.6 2.7 3.9

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

  • Die vorliegende Erfindung betrifft die Verwendung von porösen Polyamidpartikeln als farbübertragungsinhibierende Wirkstoffe beim Waschen und/oder Reinigen von Textilien.
  • Wasch- und Reinigungsmittel enthalten neben den für den Wasch- beziehungsweise Reinigungsprozess unverzichtbaren Inhaltsstoffen wie Tensiden und Buildermaterialien in der Regel weitere Bestandteile, die man unter dem Begriff Waschhilfsstoffe zusammenfassen kann und die so unterschiedliche Wirkstoffgruppen wie Schaumregulatoren, Vergrauungsinhibitoren, Bleichmittel, Bleichaktivatoren und Enzyme umfassen. Zu derartigen Hilfsstoffen gehören auch Substanzen, welche verhindern sollen, dass gefärbte textile Flächengebilde nach der Wäsche einen veränderten Farbeindruck hervorrufen. Diese Farbeindrucksveränderung gewaschener, das heißt sauberer, Textilien kann zum einen darauf beruhen, dass Farbstoffanteile durch den Wasch- beziehungsweise Reinigungsprozess vom Textil entfernt werden ("Verblassen"), zum anderen können sich von andersfarbigen Textilien abgelöste Farbstoffe auf dem Textil niederschlagen ("Verfärben"). Der Verfärbungsaspekt kann auch bei ungefärbten Wäschesstücken eine Rolle spielen, wenn diese zusammen mit farbigen Wäschestücken gewaschen werden. Um diese unerwünschten Nebeneffekte des Entfernens von Schmutz von Textilien durch Behandeln mit üblicherweise tensidhaltigen wäßrigen Systemen zu vermeiden, enthalten Waschmittel, insbesondere wenn sie als sogenannte Color- oder Buntwaschmittel zum Waschen farbiger Textilien vorgesehen sind, Wirkstoffe, die das Ablösen von Farbstoffen vom Textil verhindern oder zumindest das Ablagern von abgelösten, in der Waschflotte befindlichen Farbstoffen auf Textilien vermeiden sollen. Viele der üblicherweise zum Einsatz kommenden - in der Regel wasserlöslichen - Polymere haben allerdings eine derart hohe Affinität zu Farbstoffen, dass sie diese verstärkt von der gefärbten Faser ziehen, so dass es bei ihrem Einsatz zu Farbverlusten kommt. Außerdem zeigen manche konventionellen Farbübertragungsinhibitoren nur bei einigen Farbstoffklassen eine Leistung und können die Übertragung anderer Farbstoffklassen nicht verhindern.
  • Überraschenderweise wurde nun gefunden, dass poröse Polyamidpartikel zu unerwartetet hohen Farbübertragungsinhibierungen führen, wenn man sie in Waschmitteln einsetzt. Besonders ausgeprägt ist die Verhinderung des Anfärbens von weißen oder auch andersfarbigen Textilien durch aus Textilien herausgewaschene Farbstoffe. Denkbar ist, dass die Polymerpartikel von den gefärbten Geweben abgelöste Farbstoffmoleküle durch ihre große Oberfläche, die in besonders bevorzugten Fällen dentritisch ausgebildet sein kann oder eine fraktale Geometrie aufweist, aufnehmen, sie nicht wieder abgeben und die Ablagerung der Farbstoffe auf weiße beziehungsweise andersfarbige Textilien verhindern.
  • Gegenstand der Erfindung ist die Verwendung von porösen Polyamidpartikeln, welche
    • einen zahlenmittleren Partikeldurchmesser von 1 bis 30 µm,
    • eine spezifische Oberfläche nach BET (gemäß DIN 66131) von 5 m2/g oder mehr,
    • eine Ölabsorptionskapazität (boiled linseed oil) von 160 ml/100 g oder mehr,
    • eine Kristallinität (DSC-Messung) von 40% oder größer, und
    • einen Quotienten von volumenmittlerem Partikeldurchmesser zu zahlenmittlerem Partikeldurchmesser von 1,0 bis 1,5 aufweisen,
    zur Vermeidung der Übertragung von Textilfarbstoffen von gefärbten Textilien auf ungefärbte oder andersfarbige Textilien bei deren gemeinsamer Wäsche in insbesondere tensidhaltigen wäßrigen Lösungen.
  • Die Herstellung solcher poröser Polyamidpartikel kann allgemein durch Vermischen einer Lösung von Polyamid in einem geeigneten Lösungsmittel mit einer flüssigen Phase erfolgen, in der Polyamide unlöslich sind. Üblicherweise ist die flüssige Phase wasserbasiert, wobei durch geeignete weitere Lösungsmittel erreicht werden kann, dass beim Vermischen der Flüssigkeiten zunächst eine klare Lösung entsteht, aus der die Polyamidpartikel ausfallen. Bei der Herstellung haben sich insbesondere Mischungsverhältnisse von Polyamidlösung zu flüssiger Phase von 1 zu 999 bis 300 zu 700, vorzugsweise von 2 zu 998 bis 250 zu 750, bewährt.
  • Polyamidlösungen können beispielsweise mit den Lösungsmitteln o-Cresol, m-Cresol, p-Cresol, Chlorphenol, Phenol oder Mischungen aus diesen bereitgestellt werden. Auch Ameisensäure hat sich bewährt.
  • Die flüssige Phase, in der Polyamide unlöslich sind, ist vorzugsweise mischbar mit den vorstehend genannten Lösungsmitteln und darüber hinaus wassermischbar. Bevorzugte flüssige Phasen sind aliphatische Alkohole, aliphatische Ketone und Mischungen aus diesen. Besonders bewährt haben sich Methanol, Ethanol, n-Propanol, Isopropanol, Aceton, Methylethylketon, Methylisopropylketon, Methylisobutylketon und Mischungen aus diesen.
  • Vorzugsweise können Mischungen aus 10 bis 98 Gew.-% aliphatischer Alkohole und/oder Ketone mit 2 bis 90 Gew.-% Wasser als flüssige Phase eingesetzt werden, aus der die Polyamidpartikel ausfallen. Zur Keimbildung kann die flüssige Phase hochmolekulare Polyalkylenglykole, z.B. PEG oder PPG, in Mengen von beispielsweise 0,5 bis 10 Gew.-% (bezogen auf die flüssige Phase) enthalten.
  • Die Reihenfolge der Mischung ist für das Herstellungsverfahren nicht kritisch. In bevorzugten Verfahren
    • werden aliphatische Alkohole und/oder Ketone und Wasser gleichzeitig aber getrennt voneinander zu einer Polyamidlösung gegeben oder
    • wird eine zuvor bereitete Mischung aus aliphatischen Alkoholen und/oder Ketonen und Wasser zu einer Polyamidlösung gegeben oder
    • werden aliphatische Alkohole und/oder Ketone zu einer Polyamidlösung gegeben, wonach Wasser hinzugefügt wird oder
    • wird Wasser zu einer Polyamidlösung gegeben, wonach aliphatische Alkohole und/oder Ketone zugegeben werden oder
    • wird eine Polyamidlösung zu einer zuvor bereiteten Mischung aus aliphatischen Alkoholen und/oder Ketonen und Wasser gegeben oder
    • wird eine Polyamidlösung zu aliphatischen Alkoholen und/oder Ketonen und Wasser gegeben und anschließen Wasser hinzugefügt.
  • Die Ausbildung der porösen Polyamidpartikel durch Niederschlagsbildung erfolgt in der Regel in Zeiträumen von 1 Sekunde bis zu 2 Stunden und kann durch Rühren unterstützt werden. Vorzugsweise erfolgt die Vermischung der Flüssigkeiten und Ausbildung der Partikel bei Temperaturen von 5 bis 70°C, besonders bevorzugt bei 15 bis 60°C.
  • Nach dem vorstehend genannten Zeitraum können die Polyamidpartikel auf einfache Weise durch Dekantieren, Filtration oder Zentrifugieren vom Lösungsmittelgemisch getrennt werden. Es folgt vorzugsweise ein Waschen mit Methanol und/oder Aceton und eine Trocknung im Vakuum.
  • Ganz besonders bevorzugte Verfahren zur Herstellung nutzen eine Lösung von Polyamid 11 und/oder Polyamid 12 in Phenol, die bezogen auf ihr Gewicht 0,1 bis 50 Gew.-% Polymaid(e) enthält. Als flüssige Phase wird in solchen bevorzugten Verfahren eine Mischung aus Ethanol (vorzugsweise 50 bis 90 Gew.-%, bezogen auf die flüssige Phase), Ethylenglycol (vorzugsweise 1 bis 10 Gew.-%, bezogen auf die flüssige Phase) und Glycerin (vorzugsweise 1 bis 12 Gew.-%, bezogen auf die flüssige Phase) eingesetzt. Die Polyamidlösung in Phenol (vorzugsweise 30 bis 70 Gew.-%, bezogen auf die Mischung), die flüssige Phase (vorzugsweise 40 bis 65 Gew.-%, bezogen auf die Mischung) und Polyethylenglycol und/oder Polypropylenglycol mit Molmassen > 1000 Dalton (vorzugsweise 0,5 bis 10 Gew.-%, bezogen auf die Mischung) werden miteinander zu einer Mischung verrührt, die 0,05 bis 20 Gew.-% Polyamid(e) enthält. Diese Mischung, die idealerweise eine Viskosität unter 200 Pas aufweist, wird bei 20 bis 80°C, vorzugsweise bei 25 bis 65°C 30 bis 60 Minuten gerührt.
  • Die durch die vorstehend beschriebenen Verfahren erzeugten sphärischen porösen Polyamidpartikel, welche in bevorzugten Ausgestaltungen der Erfindung eungesetzt werden, besitzen üblicherweise zahlenmittlere Partikeldurchmesser von 0,1 µm bis 100 µm, vorzugsweise von 0,3 µm bis 50 µm, insbesondere von 0,5 µm bis 25 µm. Das Verhältnis von volumenmittlerem Partikeldurchmesser (Dv) zu zahlenmittlerem Partikeldurchmesser (Dn), das auch Partikelgrößenverteilungsindex (PDI=Dv/Dn) genannt wird, liegt vorzugsweise im Bereich von 1,0 bis 1,3.
  • Die porösen Polyamidpartikel besitzen eine spezifische Oberfläche nach BET (gemäß DIN 66131) von 5 m2/g oder mehr. Erfindungsgemäß besonders bevorzugte Partikel weisen eine spezifische Oberfläche nach BET (gemäß DIN 66131) von 5 m2/g bis 80 m2/g, vorzugsweise von 6 m2/g bis 60 m2/g und insbesondere von 7,5 m2/g bis 50 m2/g auf. Ganz besonders bevorzugte Ausgestaltungen der Erfindung sind dadurch gekennzeichnet, dass die porösen Polyamidpartikel eine spezifische Oberfläche nach BET (gemäß DIN 66131) von 6 m2/g oder mehr, vorzugsweise von 7 m2/g oder mehr und insbesondere von 8 m2/g oder mehr aufweisen.
  • Bevorzugte poröse Polyamidpartikel besitzen einen Porositätsindex RI (RI=S/S0, worin S0 die spezifische Oberfläche, basierend auf dem zahlenmittleren Partikeldurchmesser ist und durch die Formel S0=6/ (p×Dn) beschrieben wird, in der ρ die Dichte der Partikel und Dn der zahlenmittlere Partikeldurchmesser ist, und worin S die spezifische Oberfläche nach BET ist) im Bereich von 3 bis 100, insbesondere im Bereich von 5 bis 70.
  • Die porösen Polyamidpartikel besitzen einen durchschnittlichen Porendurchmesser von 0,01 µm bis 0,20 µm, insbesondere von 0,02 µm bis 0,1 µm, und eine Kristallinität (DSC-Messung) von 40% oder größer.
  • Die Standardenthalpie (oder spezifische Schmelzwärme) der porösen Polyamidpartikel wird mittels DSC gemessen. Hierbei wird die Probe unter Stickstoffatmosphäre von Raumtemperatur (20°C) ausgehend mit einer Temperatursteigerungsrate von 5 °C/min erhitzt. Die Standardenthalpie wird aus der Fläche des Wärmeabsorptionspeaks zwischen 120 °C und 230 °C berechnet. Die Kristallinität der porösen Polyamidpartikel ist der Quotient aus der gemessenen spezifischen Schmelzwärme und der Standardenthalpie kristallinen Polyamids, wobei letztere für Polyamid 12 etwa 209 J/g beträgt.
  • Bezüglich der Ölabsorptionskapazität der in den erfindungsgemäßen Mittel eingesetzten Partikel sind erfindungsgemäße Mittel bevorzugt, bei denen die porösen Polyamid-partikel eine Ölabsorptionskapazität (boiled linseed oil) von 160 ml/100 g oder mehr, vorzugsweise von 170 ml/100 g oder mehr aufweisen.
  • Die Herstellung poröser Polyamidpartikel ist auch beispielsweise in der japanischen Offentegungsschrift 2002-80629 offenbart. Vorzugsweise sind die porösen Polyamidpartikel sphärisch.
  • Die porösen Polyamidpartikel können im Rahmen eines manuellen oder maschinellen Wasch- beziehungsweise Reinigungsverfahrens der Waschlösung separat zugesetzt werden, werden vorzugsweise als Bestandteil eines Vorbehandlungsmittels in einem dem eigentlichen Waschvorgang vorgelagerten Schritt mit dem Textil in Kontakt gebracht oder werden weiterhin vorzugsweise als Bestandteil eines Wasch- beziehungsweise Reinigungsmittels in die Waschlösung eingebracht. Die porösen Polyamidpartikel entfalten ihre positive Wirkung auch, wenn man sie im Nachspülgang, in welchem üblicherweise textilweichmachende Wirkstoffe eingesetzt werden, zum Einsatz bringt. Auch ihr Einsatz in einem Wäschevorbehandlungsschritt ist möglich, wobei dann das partikuläre Polymer vorzugsweise auf dem anschließend zu waschenden Textil verbleibt beziehungsweise gemeinsam mit diesem in die Waschlauge gelangt.
  • Ein farbschützendes Wasch-, Wäschevorbehandlungs-, Wäschenachbehandlungs- oder Reinigungsmittel, enthält einen Farbübertragungsinhibitor in Form von oben definierten porösen Polyamidpartikeln neben üblichen mit diesem Bestandteil verträglichen Inhaltsstoffen.
  • Ein Mittel enthält vorzugsweise 0,05 Gew.-% bis 20 Gew.-%, insbesondere 0,1 Gew.-% bis 5 Gew.-%, an derartigen porösen Polyamidpartikeln.
  • Die angesprochenen Wirkstoffe leisten bei beiden zuvor angesprochenen Aspekten der Farbkonstanz einen Beitrag, das heißt sie vermindern sowohl das Verfärben wie auch die Verblassung, wenn auch der Effekt der Verhinderung des Anfärbens, insbesondere beim Waschen weißer Textilien, am ausgeprägtesten ist. Ein weiterer Gegenstand der Erfindung ist daher die Verwendung von porösen Polyamidpartikeln wie oben definiert zur Vermeidung der Veränderung des Farbeindrucks von Textilien bei deren Wäsche in insbesondere tensidhaltigen wäßrigen Lösungen. Unter der Veränderung des Farbeindrucks ist dabei keineswegs der Unterschied zwischen verschmutztem und sauberem Textil zu verstehen, sondern der Farbunterschied zwischen jeweils sauberem Textil vor und nach dem Waschvorgang.
  • Ein weiterer Gegenstand der Erfindung ist ein Verfahren zum Waschen von gefärbten Textilien in tensidhaltigen wäßrigen Lösungen, welches dadurch gekennzeichnet ist, dass man eine tensidhaltige wäßrige Lösung einsetzt, die oben definierte porösen Polyamidpartikel enthält. In einem solchen Verfahren ist es möglich, zusammen mit dem gefärbten Textil auch weiße beziehungsweise ungefärbte Textilien zu waschen, ohne dass das weiße beziehungsweise ungefärbte Textil angefärbt wird.
  • Ein Mittel kann neben dem genannten farbübertragungsinhibierenden Wirkstoff gewünschtenfalls noch zusätzlich einen bekannten Farbübertragungsinhibitor, diesen dann vorzugsweise in Mengen von 0,01 Gew.-% bis 5 Gew.-%, insbesondere 0,1 Gew.-% bis 1 Gew.-%, enthalten, der in einer bevorzugten Ausgestaltung der Erfindung ein Polymer aus Vinylpyrrolidon, Vinylimidazol, Vinylpyridin-N-Oxid oder ein Copolymer aus diesen ist. Brauchbar sind sowohl Polyvinylpyrrolidone mit Molgewichten von 15 000 bis 50 000 wie auch Polyvinylpyrrolidone mit Molgewichten über 1 000 000, insbesondere von 1 500 000 bis 4 000 000, N-Vinylimidazol/N-Vinylpyrrolidon-Copolymere, Polyvinyloxazolidone, Polyamin-N-Oxid-Polymere, Polyvinylalkohole und Copolymere auf Basis von Acrylamidoalkenylsulfonsäuren. Eingesetzt werden können aber auch enzymatische Systeme, umfassend eine Peroxidase und Wasserstoffperoxid beziehungsweise eine in Wasser Wasserstoffperoxid-liefernde Substanz. Der Zusatz einer Mediatorverbindung für die Peroxidase, zum Beispiel eines Acetosyringons, eines Phenolderivats oder eines Phenotiazins oder Phenoxazins, ist in diesem Fall bevorzugt, wobei noch zusätzlich obengenannte konventionelle polymere Farbübertragungsinhibitorwirkstoffe eingesetzt werden können. Polyvinylpyrrolidon weist zum Einsatz in erfindungsgemäßen Mitteln vorzugsweise eine durchschnittliche Molmasse im Bereich von 10 000 bis 60 000, insbesondere im Bereich von 25 000 bis 50 000 auf. Unter den Copolymeren sind solche aus Vinylpyrrolidon und Vinylimidazol im Molverhältnis 5:1 bis 1:1 mit einer durchschnittlichen Molmasse im Bereich von 5 000 bis 50 000, insbesondere 10 000 bis 20 000 bevorzugt.
  • Die Waschmittel, die fest oder flüssig sein können und insbesondere als pulverförmige Feststoffe, in nachverdichteter Teilchenform, als homogene Lösungen oder Suspensionen vorliegen können, können außer den erfindungsgemäß eingesetzten porösen Polyamidpartikeln im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Die Mittel können insbesondere Buildersubstanzen, oberflächenaktive Tenside, Bleichmittel auf Basis organischer und/oder anorganischer Persauerstoffverbindungen, Bleichaktivatoren, wassermischbare organische Lösungsmittel, Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren und weitere Hilfsstoffe, wie optische Aufheller, Vergrauungsinhibitoren, Schaumregulatoren sowie Farb- und Duftstoffe enthalten. Dabei ist auch möglich, die porösen Polyamidpartikel auf ein wasserunlösliches Tuch aufzubringen oder sie, gegebenenfalls mit weiteren der üblichen Inhaltstoffe, in einen insbesondere allseits verschlossenen Beutel aus wasserunlöslichem aber wasserdurchlässigem Material einzubringen und sie so als Additiv, gewünschtenfalls mehrfach, insbesondere 2mal, 3mal oder 4 mal, im Waschvorgang einzusetzen. Alternativ zur letztgenannten Ausführungsform können die porösen Polyamidpartikel beziehungsweise die diese enthaltenden Mittel portionsweise verpackt in ein wasserlösliches Material, z.B. eine Polyvinylalkohol-Folie, in den Waschprozeß eingebracht werden.
  • Die Mittel können ein Tensid oder mehrere Tenside enthalten, wobei insbesondere anionische Tenside, nichtionische Tenside und deren Gemische, aber auch kationische, zwitterionische und amphotere Tenside in Frage kommen.
  • Geeignete nichtionische Tenside sind insbesondere Alkylglykoside und Ethoxylierungs- und/oder Propoxylierungsprodukte von Alkylglykosiden oder linearen oder verzweigten Alkoholen mit jeweils 12 bis 18 C-Atomen im Alkylteil und 3 bis 20, vorzugsweise 4 bis 10 Alkylethergruppen. Weiterhin sind entsprechende Ethoxylierungs- und/oder Propoxylierungsprodukte von N-Alkyl-aminen, vicinalen Diolen, Fettsäureestern und Fettsäureamiden, die hinsichtlich des Alkylteils den genannten langkettigen Alkoholderivaten entsprechen, sowie von Alkylphenolen mit 5 bis 12 C-Atomen im Alkylrest brauchbar.
  • Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann beziehungsweise lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-C14-Alkohole mit 3 EO oder 4 EO, C9-C11-Alkohole mit 7 EO, C13-C15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-C18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-C14-Alkohol mit 3 EO und C12-C18-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind (Talg-) Fettalkohole mit 14 EO, 16 EO, 20 EO, 25 EO, 30 EO oder 40 EO. Insbesondere in Mitteln für den Einsatz in maschinellen Verfahren werden üblicherweise extrem schaumarme Verbindungen eingesetzt. Hierzu zählen vorzugsweise C12-C18-Alkylpolyethylenglykol-polypropylenglykolether mit jeweils bei zu 8 Mol Ethylenoxid- und Propylenoxideinheiten im Molekül. Man kann aber auch andere bekannt schaumarme nichtionische Tenside verwenden, wie zum Beispiel C12-C18-Alkylpolyethylenglykol-polybutylenglykolether mit jeweils bis zu 8 Mol Ethylenoxid- und Butylenoxideinheiten im Molekül sowie endgruppenverschlossene Alkylpolyalkylenglykolmischether. Besonders bevorzugt sind auch die hydroxylgruppenhaltigen alkoxylierten Alkohole, wie sie in der europäischen Patentanmeldung EP 0 300 305 beschrieben sind, sogenannte Hydroxymischether. Zu den nichtionischen Tensiden zählen auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl - die als analytisch zu bestimmende Größe auch gebrochene Werte annehmen kann - zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4. Ebenfalls geeignet sind Polyhydroxyfettsäureamide der Formel (I), in der R1CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen: und 3 bis 10 Hydroxylgruppen steht:
    Figure imgb0001
  • Vorzugsweise leiten sich die Polyhydroxyfettsäureamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
    Figure imgb0002
    in der R3 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R4 für einen linearen, verzweigten oder cyclischen Alkylenrest oder einen Arylenrest mit 2 bis 8 Kohlenstoffatomen und R5 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-C4-Alkyl- oder Phenylreste bevorzugt sind, und [Z] für einen linearen Polyhydroxyalkylrest, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes steht. [Z] wird auch hier vorzugsweise durch reduktive Aminierung eines Zuckers wie Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose erhalten. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden. Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester. Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon. Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im Allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten "Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, dass die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich im Allgemeinen durch eine ungewöhnlich geringe kritische Micellkonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Ausnahmefällen werden unter dem Ausdruck Gemini-Tenside nicht nur derartig "dimere", sondern auch entsprechend "trimere" Tenside verstanden. Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether oder Dimeralkohol-bis- und Trimeralkohol-tris-sulfate und -ethersulfate. Endgruppenverschlossene dimere und trimere Mischether zeichnen sich insbesondere durch ihre Bi- und Multifunktionalität aus. So besitzen die genannten endgruppenverschlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so dass sie sich insbesondere für den Einsatz in maschinellen Wasch- oder Reinigungsverfahren eignen. Eingesetzt werden können aber auch Gemini-Polyhydroxyfettsäureamide oder Poly-Polyhydroxyfettsäureamide. Geeignet sind auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-C21-Alkohole, wie 2-Methylverzweigte C9-C11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-C18-Fettalkohole mit 1 bis 4 EO. Zu den bevorzugten Aniontensiden gehören auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden, und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8- bis C18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen. Als weitere anionische Tenside kommen Fettsäure-Derivate von Aminosäuren, beispielsweise von N-Methyltaurin (Tauride) und/oder von N-Methylglycin (Sarkoside) in Betracht. Insbesondere bevorzugt sind dabei die Sarkoside beziehungsweise die Sarkosinate und hier vor allem Sarkosinate von höheren und gegebenenfalls einfach oder mehrfach ungesättigten Fettsäuren wie Oleylsarkosinat. Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind insbesondere gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierten Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, zum Beispiel Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische. Zusammen mit diesen Seifen oder als Ersatzmittel für Seifen können auch die bekannten Alkenylbernsteinsäuresalze eingesetzt werden.
  • Die anionischen Tenside, einschließlich der Seifen, können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
  • Tenside sind in den Waschmitteln in Mengenanteilen von vorzugsweise 5 Gew.-% bis 50 Gew.-%, insbesondere von 8 Gew.-% bis 30 Gew.-%, enthalten.
  • Ein Mittel enthält vorzugsweise mindestens einen wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Buildersubstanzen gehören Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren, monomere und polymere Aminopolycarbonsäuren, insbesondere Methylglycindiessigsäure, Nitrilotriessigsäure und Ethylendiamintetraessigsäure sowie Polyasparaginsäure, Polyphosphonsäuren, insbesondere Aminotris(methylenphosphonsäure), Ethylendiamintetrakis(methy)enphosphonsäure) und 1-Hydroxyethan-1,1-diphosphonsäure, polymere Hydroxyverbindungen wie Dextrin sowie polymere (Poly-)carbonsäuren, insbesondere die durch Oxidation von Polysacchariden beziehungsweise Dextrinen zugänglichen Polycarboxylate, polymere Acrylsäuren, Methacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative Molekülmasse der Homopolymeren ungesättiger Carbonsäuren liegt im allgemeinen zwischen 3 000 und 200 000, die der Copolymeren zwischen 2 000 und 200 000, vorzugsweise 30 000 bis 120 000, jeweils bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist eine relative Molekülmasse von 30 000 bis 100 000 auf. Handelsübliche Produkte sind zum Beispiel Sokalan® CP 5, CP 10 und PA 30 der Firma BASF. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vinylethern, wie Vinylmethylethern, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei ungesättigte Säuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/oder einem veresterten Vinylalkohol oder ein Kohlenhydrat enthalten. Das erste saure Monomer beziehungsweise dessen Salz leitet sich von einer monoethylenisch ungesättigten C3-C8-Carbonsäure und vorzugsweise von einer C3-C4-Monocarbonsäure, insbesondere von (Meth)-acrylsäure ab. Das zweite saure Monomer beziehungsweise dessen Salz kann ein Derivat einer C4-C8-Dicarbonsäure, wobei Maleinsäure besonders bevorzugt ist, und/oder ein Derivat einer Allylsulfonsäure, die in 2-Stellung mit einem Alkyl- oder Arylrest substituiert ist, sein. Derartige Polymere weisen im Allgemeinen eine relative Molekülmasse zwischen 1 000 und 200 000 auf. Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze beziehungsweise Vinylacetat aufweisen. Die organischen Buildersubstanzen können, insbesondere zur Herstellung flüssiger Mittel, in Form wäßriger Lösungen, vorzugsweise in Form 30- bis 50-gewichtsprozentiger wäßriger Lösungen eingesetzt werden. Alle genannten Säuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre Alkalisalze, eingesetzt.
  • Derartige organische Buildersubstanzen können gewünschtenfalls in Mengen bis zu 40 Gew.-%, insbesondere bis zu 25 Gew.-% und vorzugsweise von 1 Gew.-% bis 8 Gew.-% enthalten sein. Mengen nahe der genannten Obergrenze werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen Mitteln eingesetzt.
  • Als wasserlösliche anorganische Buildermaterialien kommen insbesondere Alkalisilikate, Alkalicarbonate und Alkaliphosphate, die in Form ihrer alkalischen, neutralen oder sauren Natrium- oder Kaliumsalze vorliegen können, in Betracht. Beispiele hierfür sind Trinatriumphosphat, Tetranatriumdiphosphat, Dinatriumdihydrogendiphosphat, Pentanatriumtriphosphat, sogenanntes Natriumhexametaphosphat, oligomeres Trinatriumphosphat mit Oligomerisierungsgraden von 5 bis 1000, insbesondere 5 bis 50, sowie die entsprechenden Kaliumsalze beziehungsweise Gemische aus Natrium- und Kaliumsalzen. Als wasserunlösliche, wasserdispergierbare anorganische Buildermaterialien werden insbesondere kristalline oder amorphe Alkalialumosilikate, in Mengen von bis zu 50 Gew.-%, vorzugsweise nicht über 40 Gew.-% und in flüssigen Mitteln insbesondere von 1 Gew.-% bis 5 Gew.-%, eingesetzt. Unter diesen sind die kristallinen Natriumalumosilikate in Waschmittelqualität, insbesondere Zeolith A, P und gegebenenfalls X, allein oder in Mischungen, beispielsweise in Form eines Co-Kristallisats aus den Zeolithen A und X (Vegobond® AX, ein Handelsprodukt der Condea Augusta S.p.A.), bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchenförmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 µm auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 µm. Ihr Calciumbindevermögen, das nach den Angaben der deutschen Patentschrift DE 24 12 837 bestimmt werden kann, liegt in der Regel im Bereich von 100 bis 200 mg CaO pro Gramm.
  • Geeignete Substitute beziehungsweise Teilsubstitute für das genannte Alumosilikat sind kristalline Alkalisilikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können. Die in den erfindungsgemäßen Mitteln als Gerüststoffe brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu SiO2 unter 0,95, insbesondere von 1:1,1 bis 1:12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na2O:SiO2 von 1:2 bis 1:2,8. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na2SixO2x+1 · y H2O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1,9 bis 22, insbesondere 1,9 bis 4 und y eine Zahl von 0 bis 33 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate (Na2Si2O5 · y H2O) bevorzugt. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1,9 bis 2,1 bedeutet, können in erfindungsgemäßen Mitteln eingesetzt werden. In einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie es aus Sand und Soda hergestellt werden kann. Kristalline Natriumsilikate mit einem Modul im Bereich von 1,9 bis 3,5 werden in einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel eingesetzt. Kristalline schichtförmige Silikate der oben angegebenen Formel (I) werden von der Fa. Clariant GmbH unter dem Handelsnamen Na-SKS vertrieben, z.B. Na-SKS-1 (Na2Si22O45·xH2O, Kenyait), Na-SKS-2 (Na2S14O29˙xH2O, Magadiit), Na-SKS-3 (Na2Si8O17·xH2O) oder Na-SKS-4 (Na2Si4OxH2O, Makatit). Von diesen eignen sich vor allem Na-SKS-5 (α-Na2Si2O5), Na-SKS-7 (ß-Na2Si2O5, Natrosilit), Na-SKS-9 (NaHSi2O5·3H2O), Na-SKS-10 (NaHSi2O5·3H2O, Kanemit), Na-SKS-11 (t-Na2Si2O5) und Na-SKS-13 (NaHSi2O5), insbesondere aber Na-SKS-6 (δ-Na2Si2O5). In einer bevorzugten Ausgestaltung erfindungsgemäßer Mittel setzt man ein granulares Compound aus kristallinem Schichtsilikat und Citrat, aus kristallinem Schichtsilikat und oben genannter (co-)polymerer Polycarbonsäure, oder aus Alkalisilikat und Alkalicarbonat ein, wie es beispielsweise unter dem Namen Nabion® 15 im Handel erhältlich ist.
  • Buildersubstanzen sind in den Mitteln vorzugsweise in Mengen bis zu 75 Gew.-%, insbesondere 5 Gew.-% bis 50 Gew.-% enthalten.
  • Als für den Einsatz in den Mitteln geeignete Persauerstoffverbindungen kommen insbesondere organische Persäuren beziehungsweise persaure Salze organischer Säuren, wie Phthalimidopercapronsäure, Perbenzoesäure oder Salze der Diperdodecandisäure, Wasserstoffperoxid und unter den Waschbedingungen Wasserstoffperoxid abgebende anorganische Salze, zu denen Perborat, Percarbonat, Persilikat und/oder Persulfat wie Caroat gehören, in Betracht. Sofern feste Persauerstoffverbindungen eingesetzt werden sollen, können diese in Form von Pulvern oder Granulaten verwendet werden, die auch in im Prinzip bekannter Weise umhüllt sein können. Falls ein erfindungsgemäßes Mittel Persauerstoffverbindungen enthält, sind diese in Mengen von vorzugsweise bis zu 50 - Gew.-%, insbesondere von 5 Gew.-% bis 30 Gew.-%, vorhanden. Der Zusatz geringer Mengen bekannter Bleichmittelstabilisatoren wie beispielsweise von Phosphonaten, Boraten beziehungsweise Metaboraten und Metasilikaten sowie Magnesiumsalzen wie Magnesiumsulfat kann zweckdienlich sein.
  • Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril-(TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran und Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren beschriebene Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Die hydrophil substituierten Acylacetale und die Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Derartige Bleichaktivatoren können, insbesondere bei Anwesenheit obengenannter Wasserstoffperoxidliefernder Bleichmittel, im üblichen Mengenbereich, vorzugsweise in Mengen von 0,5 Gew.-% bis 10 Gew.-%, insbesondere 1 Gew.-% bis 8 Gew.-%, bezogen auf gesamtes Mittel, enthalten sein, fehlen bei Einsatz von Percarbonsäure als alleinigem Bleichmittel jedoch vorzugsweise ganz.
  • Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch Sulfonimine und/oder bleichverstärkende Übergangsmetallsalze beziehungsweise Übergangsmetallkomplexe als sogenannte Bleichkatalysatoren enthalten sein.
  • Als in den Mitteln verwendbare Enzyme kommen solche aus der Klasse der Amylasen, Proteasen, Lipasen, Cutinasen, Pullulanasen, Hemicellulasen, Cellulasen, Oxidasen, Laccasen und Peroxidasen sowie deren Gemische in Frage. Besonders geeignet sind aus Pilzen oder Bakterien, wie Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes, Pseudomonas cepacia oder Coprinus cinereus gewonnene enzymatische Wirkstoffe. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in den erfindungsgemäßen Wasch- oder Reinigungsmitteln vorzugsweise in Mengen bis zu 5 Gew.-%, insbesondere von 0,2 Gew.-% bis 4 Gew.-%, enthalten. Falls das erfindungsgemäße Mittel Protease enthält, weist es vorzugsweise eine proteolytische Aktivität im Bereich von etwa 100 PE/g bis etwa 10 000 PE/g, insbesondere 300 PE/g bis 8000 PE/g auf. Falls mehrere Enzyme in dem Mittel eingesetzt werden sollen, kann dies durch Einarbeitung der zwei oder mehreren separaten beziehungsweise in bekannter Weise separat konfektionierten Enzyme oder durch zwei oder mehrere gemeinsam in einem Granulat konfektionierte Enzyme durchgeführt werden.
  • Zu den in den Mitteln, insbesondere wenn sie in flüssiger oder pastöser Form vorliegen, neben Wasser verwendbaren organischen Lösungsmitteln gehören Alkohole mit 1 bis 4 C-Atomen, insbesondere Methanol, Ethanol, Isopropanol und tert.-Butanol, Diole mit 2 bis 4 C-Atomen, insbesondere Ethylenglykol und Propylenglykol, sowie deren Gemische und die aus den genannten Verbindungsklassen ableitbaren Ether. Derartige wassermischbare Lösungsmittel sind in den erfindungsgemäßen Mitteln vorzugsweise in Mengen nicht über 30 Gew.-%, insbesondere von 6 Gew.-% bis 20 Gew.-%, vorhanden.
  • Zur Einstellung eines gewünschten, sich durch die Mischung der übrigen Komponenten nicht von selbst ergebenden pH-Werts können die erfindungsgemäßen Mittel system- und umweltverträgliche Säuren, insbesondere Citronensäure, Essigsäure, Weinsäure, Äpfelsäure, Milchsäure, Glykolsäure, Bernsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Mineralsäuren, insbesondere Schwefelsäure, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH-Regulatoren sind in den erfindungsgemäßen Mitteln in Mengen von vorzugsweise nicht über 20 Gew.-%, insbesondere von 1,2 Gew.-% bis 17 Gew.-%, enthalten.
  • Vergrauungsinhibitoren haben die Aufgabe, den von der Textilfaser abgelösten Schmutz in der Flotte suspendiert zu halten. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Stärke, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich andere als die obengenannten Stärkederivate verwenden, zum Beispiel Aldehydstärken. Bevorzugt werden Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
  • Die Textilwaschmittel können als optische Aufheller beispielsweise Derivate der Diaminostilbendisulfonsäure beziehungsweise deren Alkalimetallsalze enthalten, obgleich sie für den Einsatz als Colorwaschmittel vorzugsweise frei von optischen Aufhellern sind. Geeignet sind zum Beispiel Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, zum Beispiel die Alkalisalze des 4,4'-Bis(2-sulfostynyl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten optischen Aufheller können verwendet werden.
  • Insbesondere beim Einsatz in maschinellen Verfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bisfettsäurealkylendiamiden. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, zum Beispiel solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granulare, in Wasser lösliche beziehungsweise dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamid bevorzugt.
  • Um den ästhetischen Eindruck der Mittel zu verbessern können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie, im Fall des Einsatzes in Textilwaschmitteln, keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
  • Die Herstellung fester Mittel bietet keine Schwierigkeiten und kann auf bekannte Weise, zum Beispiel durch Sprühtrocknen oder Granulation, erfolgen, wobei Enzyme und eventuelle weitere thermisch empfindliche Inhaltsstoffe wie zum Beispiel Bleichmittel gegebenenfalls später separat zugesetzt werden. Zur Herstellung erfindungsgemäßer Mittel mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/l bis 950 g/l, ist ein einen Extrusionschritt aufweisendes Verfahren bevorzugt.
  • Zur Herstellung von Mitteln in Tablettenform, die einphasig oder mehrphasig, einfarbig oder mehrfarbig und insbesondere aus einer Schicht oder aus mehreren, insbesondere aus zwei Schichten bestehen können, geht man vorzugsweise derart vor, dass man alle Bestandteile - gegebenenfalls je einer Schicht - in einem Mischer miteinander vermischt und das Gemisch mittels herkömmlicher Tablettenpressen, beispielsweise Exzenterpressen oder Rundläuferpressen, mit Preßkräften im Bereich von etwa 50 bis 100 kN, vorzugsweise bei 60 bis 70 kN verpreßt. Insbesondere bei mehrschichtigen Tabletten kann es von Vorteil sein, wenn mindestens eine Schicht vorverpreßt wird. Dies wird vorzugsweise bei Preßkräften zwischen 5 und 20 kN, insbesondere bei 10 bis 15 kN durchgeführt. Man erhält so problemlos bruchfeste und dennoch unter Anwendungsbedingungen ausreichend schnell lösliche Tabletten mit Bruch- und Biegefestigkeiten von normalerweise 100 bis 200 N, bevorzugt jedoch über 150 N. Vorzugsweise weist eine derart hergestellte Tablette ein Gewicht von 10 g bis 50 g, insbesondere von 15 g bis 40 g auf. Die Raumform der Tabletten ist beliebig und kann rund, oval oder eckig sein, wobei auch Zwischenformen möglich sind. Ecken und Kanten sind vorteilhafterweise abgerundet. Runde Tabletten weisen vorzugsweise einen Durchmesser von 30 mm bis 40 mm auf. Insbesondere die Größe von eckig oder quaderförmig gestalteten Tabletten, welche überwiegend über die Dosiervorrichtung beispielsweise der Geschirrspülmaschine eingebracht werden, ist abhängig von der Geometrie und dem Volumen dieser Dosiervorrichtung. Beispielhaft bevorzugte Ausführungsformen weisen eine Grundfläche von (20 bis 30 mm) x (34 bis 40 mm), insbesondere von 26x36 mm oder von 24x38 mm auf.
  • Flüssige beziehungsweise pastöse Mittel in Form von übliche Lösungsmittel, insbesondere Wasser, enthaltenden Lösungen werden in der Regel durch einfaches Mischen der Inhaltsstoffe, die in Substanz oder als Lösung in einen automatischen Mischer gegeben werden können, hergestellt.
  • Beispiele
  • Zur Bestimmung der farbübertragungsinhibierenden Eigenschaften der einzelnen Waschmittel wurde ein Staining Scale Rating (SSR), welches an die ISO 105-A04 angelehnt ist, durchgeführt. Dazu wurden zwei weiße Gewebe (A: 6x16 cm Standardbaumwollgewebe wfk; B: 6x16 cm Standardpolyamidgewebe) mit einem Farbgeber (1: Acid Blue 113; 2: Disperse Red 60; 3: Disperse Blue 79), dessen Konzentration 3 g/l (Farbgeber 1) beziehungsweise 10 g/l (Farbgeber 2 und 3) in der Waschflotte betrug, unter Verwendung einer farbübertragungsinhibitorfreien Waschmittelzusammensetzung (Dosierung 5,0 g/l) und Zugabe von (I.) 1 g/l beziehungsweise (II.) 10 g/l porösen Polyamidpartikeln in einem Linitest-Gerät bei 60 °C gewaschen, anschließend mit Wasser gespült und bei Raumtemperatur hängend getrocknet. Anschließend wurde der Grad der Verfärbung der beiden Gewebe spektralphotometrisch bestimmt. Außerdem wurde zum Vergleich die farbübertragungsinhibitorfreie Waschmittelzusammensetzung W ohne Zusatz von Polyamidpartikeln auf die gleiche Weise getestet.
  • Der Grad der Verfärbung wurde dann in Werten von 1 (starkes Verfärben) bis 5 (keine Verfärbung) angegeben.
  • Aus dem in den nachfolgenden Tabellen wiedergegebenen SSR wird deutlich, dass die erfindungsgemäßen Mittel bessere farbübertragungsinhibierende Eigenschaften aufweisen als die Rezeptur ohne den Farbübertragungsinhibitorwirkstoff: Gewebe: Baumwolle
    Farbgeber W W+I W+II
    1 4,5 4,7 4,9
    2 4,8 n.b 4,9
    3 4,0 4,1 4,7
    Gewebe: Polyamid
    Farbgeber W W+I W+II
    1 1,9 2,7 4,5
    2 3,4 3,7 4,4
    3 2,6 2,7 3,9

Claims (8)

  1. Verwendung von porösen Polyamidpartikeln, welche
    - einen zahlenmittleren Partikeldurchmesser von 1 bis 30 µm,
    - eine spezifische Oberfläche nach BET (gemäß DIN 66131) von 5 m2/g oder mehr,
    - eine Ölabsorptionskapazität (boiled linseed oil) von 160 ml/100 g oder mehr,
    - eine Kristallinität (DSC-Messung) von 40% oder größer, und
    - einen Quotienten von volumenmittlerem Partikeldurchmesser zu zahlenmittlerem Partikeldurchmesser von 1,0 bis 1,5 aufweisen,
    zur Vermeidung der Übertragung von Textilfarbstoffen von gefärbten Textilien auf ungefärbte oder andersfarbige Textilien bei deren gemeinsamer Wäsche in insbesondere tensidhaltigen wäßrigen Lösungen.
  2. Verwendung von porösen Polyamidpartikeln, welche
    - einen zahlenmittleren Partikeldurchmesser von 1 bis 30 µm,
    - eine spezifische Oberfläche nach BET (gemäß DIN 66131) von 5 m2/g oder mehr,
    - eine Ölabsorptionskapazität (boiled linseed oil) von 160 ml/100 g oder mehr,
    - eine Kristallinität (DSC-Messung) von 40% oder größer, und
    - einen Quotienten von volumenmittlerem Partikeldurchmesser zu zahlenmittlerem Partikeldurchmesser von 1,0 bis 1,5 aufweisen,
    zur Vermeidung der Veränderung des Farbeindrucks von Textilien bei deren Wäsche in insbesondere tensidhaltigen wäßrigen Lösungen.
  3. Verfahren zum Waschen von gefärbten Textilien in tensidhaltigen wäßrigen Lösungen, dadurch gekennzeichnet, dass man eine tensidhaltige wäßrige Lösung einsetzt, die poröse Polyamidpartikel, welche
    - einen zahlenmittleren Partikeldurchmesser von 1 bis 30 µm,
    - eine spezifische Oberfläche nach BET (gemäß DIN 66131) von 5 m2/g oder mehr,
    - eine Ölabsorptionskapazität (boiled linseed oil) von 160 ml/100 g oder mehr,
    - eine Kristallinität (DSC-Messung) von 40% oder größer, und
    - einen Quotienten von volumenmittlerem Partikeldurchmesser zu zahlenmittlerem Partikeldurchmesser von 1,0 bis 1,5 aufweisen,
    enthält.
  4. Verwendung oder Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die sphärischen porösen Polyamidpartikel zahlenmittlere Partikeldurchmesser von 0,1 µm bis 100 µm, vorzugsweise von 0,3 µm bis 50 µm, insbesondere von 0,5 µm bis 25 µm besitzen.
  5. Verwendung oder Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass bei den porösen Polyamidpartikeln das Verhältnis von volumenmittlerem Partikeldurchmesser (Dv) zu zahlenmittlerem Partikeldurchmesser (Dn), das auch Partikelgrößenverteilungsindex (PDI=Dv/Dn) genannt wird, im Bereich von 1,0 bis 1,3 liegt.
  6. Verwendung oder Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die porösen Polyamidpartikel eine spezifische Oberfläche nach BET (gemäß DIN 66131) von 5 m2/g bis 80 m2/g, vorzugsweise von 6 m2/g bis 60 m2/g und insbesondere von 7,5 m2/g bis 50 m2/g aufweisen.
  7. Verwendung oder Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die porösen Polyamidpartikel einen Porositätsindex RI im Bereich von 3 bis 100, insbesondere im Bereich von 5 bis 70 besitzen.
  8. Verwendung oder Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die porösen Polyamidpartikel einen durchschnittlichen Porendurchmesser von 0,01 µm bis 0,20 µm, insbesondere von 0,02 µm bis 0,1 µm, und eine Kristallinität (DSC-Messung) von 40% oder größer besitzen.
EP09731692.1A 2008-04-17 2009-04-09 Farbschützendes wasch- oder reinigungsmittel Not-in-force EP2265703B9 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09731692T PL2265703T3 (pl) 2008-04-17 2009-04-09 Chroniący barwę środek piorący lub czyszczący

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008019443A DE102008019443A1 (de) 2008-04-17 2008-04-17 Farbschützendes Wasch- oder Reinigungsmittel
PCT/EP2009/054278 WO2009127587A1 (de) 2008-04-17 2009-04-09 Farbschützendes wasch- oder reinigungsmittel

Publications (3)

Publication Number Publication Date
EP2265703A1 EP2265703A1 (de) 2010-12-29
EP2265703B1 EP2265703B1 (de) 2014-03-05
EP2265703B9 true EP2265703B9 (de) 2014-06-25

Family

ID=40843273

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09731692.1A Not-in-force EP2265703B9 (de) 2008-04-17 2009-04-09 Farbschützendes wasch- oder reinigungsmittel

Country Status (5)

Country Link
US (1) US20110034364A1 (de)
EP (1) EP2265703B9 (de)
DE (1) DE102008019443A1 (de)
PL (1) PL2265703T3 (de)
WO (1) WO2009127587A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009004524A1 (de) * 2009-01-09 2010-07-15 Henkel Ag & Co. Kgaa Farbschützendes maschinelles Geschirrspülmittel
CN102817208B (zh) * 2011-06-09 2017-03-01 塞罗斯有限公司 洗涤用固体颗粒及其洗涤方法
CN106566735A (zh) * 2011-09-07 2017-04-19 塞罗斯有限公司 洗涤用固体颗粒及其洗涤方法
JP2015508111A (ja) 2012-02-13 2015-03-16 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se 色保護洗剤または清浄剤
KR20140114076A (ko) 2012-02-13 2014-09-25 헨켈 아게 운트 코 카게아아 색-보호 세척제 또는 세정제
WO2015112341A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Fabric treatment composition
WO2015112339A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Fabric treatment composition
EP3097172A1 (de) 2014-01-22 2016-11-30 The Procter & Gamble Company Verfahren zur behandlung von textilstoffen
WO2015112340A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Method of treating textile fabrics
CA2967658A1 (en) 2014-11-17 2016-05-26 The Procter & Gamble Company Benefit agent delivery compositions
EP3088504B1 (de) 2015-04-29 2021-07-21 The Procter & Gamble Company Verfahren zur behandlung eines stoffes
EP3088506B1 (de) 2015-04-29 2018-05-23 The Procter and Gamble Company Reinigungsmittelzusammensetzung
WO2016176280A1 (en) 2015-04-29 2016-11-03 The Procter & Gamble Company Method of treating a fabric
US20160319225A1 (en) 2015-04-29 2016-11-03 The Procter & Gamble Company Method of treating a fabric
EP3088503B1 (de) 2015-04-29 2018-05-23 The Procter and Gamble Company Verfahren zur behandlung eines stoffes
UA124416C2 (uk) 2015-07-29 2021-09-15 Басф Се Очищаючі частинки та їх застосування
JP2019502779A (ja) 2015-11-26 2019-01-31 ザ プロクター アンド ギャンブル カンパニー プロテアーゼを含む液体洗剤組成物及び封入リパーゼ
EP4112707A1 (de) 2021-06-30 2023-01-04 The Procter & Gamble Company Textilbehandlung
EP4306628A1 (de) 2022-07-11 2024-01-17 The Procter & Gamble Company Waschmittelzusammensetzung, die zwei pfropfcopolymerisate enthält
WO2024011345A1 (en) 2022-07-11 2024-01-18 The Procter & Gamble Company Laundry detergent composition containing graft copolymer and benefit agent
WO2024011343A1 (en) 2022-07-11 2024-01-18 The Procter & Gamble Company Laundry detergent composition containing polyalkylene oxide graft copolymer and dye transfer inhibitor polymer
WO2022214113A2 (en) 2022-07-11 2022-10-13 The Procter & Gamble Company Laundry detergent composition containing graft copolymer and dye transfer inhibitor polymer
WO2024011341A1 (en) 2022-07-11 2024-01-18 The Procter & Gamble Company Laundry detergent composition containing graft copolymer and perfume raw material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT330930B (de) 1973-04-13 1976-07-26 Henkel & Cie Gmbh Verfahren zur herstellung von festen, schuttfahigen wasch- oder reinigungsmitteln mit einem gehalt an calcium bindenden substanzen
US4493783A (en) * 1981-04-20 1985-01-15 Alcon Laboratories, Inc. Cleaning agent for optical surfaces
DE3723873A1 (de) * 1987-07-18 1989-01-26 Henkel Kgaa Verwendung von hydroxyalkylpolyethylenglykolethern in klarspuelmitteln fuer die maschinelle geschirreinigung
DE4328254A1 (de) * 1993-08-23 1995-03-02 Henkel Kgaa Verfärbungsinhibitoren für Waschmittel
DE4420880A1 (de) * 1994-06-15 1995-12-21 Wella Ag Festigendes Haarreinigungsmittel
MY125395A (en) * 1999-07-08 2006-07-31 Kao Corp Personal cleansing sheet
JP2002080629A (ja) 2000-06-14 2002-03-19 Ube Ind Ltd ポリアミド多孔質球状粒子およびその製造方法
KR101050988B1 (ko) * 2002-11-14 2011-07-22 우베 고산 가부시키가이샤 화장품 조성물
CN100549153C (zh) * 2003-05-07 2009-10-14 西巴特殊化学制品控股公司 漂白剂组合物和漂白洗涤剂组合物
EP1939242B1 (de) * 2005-09-27 2011-09-21 Ube Industries, Ltd. Poröse kugelförmige teilchen aus polyamid
JP2011512437A (ja) * 2008-02-15 2011-04-21 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 球状多孔質ポリアミド粒子を含有する洗剤および清浄剤

Also Published As

Publication number Publication date
DE102008019443A1 (de) 2009-10-29
WO2009127587A1 (de) 2009-10-22
US20110034364A1 (en) 2011-02-10
EP2265703A1 (de) 2010-12-29
EP2265703B1 (de) 2014-03-05
PL2265703T3 (pl) 2014-08-29

Similar Documents

Publication Publication Date Title
EP2265703B9 (de) Farbschützendes wasch- oder reinigungsmittel
EP2262884B1 (de) Farbschützendes wasch- oder reinigungsmittel
EP1915438B1 (de) Farbschützendes waschmittel
EP2129759B1 (de) Farbschützendes wasch- oder reinigungsmittel
EP2430137B1 (de) Farbschützendes wasch- oder reinigungsmittel
WO2012095354A1 (de) Farbschützende waschmittel
EP2021451A1 (de) Farbschützendes waschmittel
WO2008110469A1 (de) Farbschützendes waschmittel
EP3625318A1 (de) Farbschützende waschmittel
DE102013021276A1 (de) Farbschützende Waschmittel
EP1084219A1 (de) Amylase und percarbonat enthaltende wasch- und reinigungsmittel
EP1994133B1 (de) Farbschützendes waschmittel
WO2023131461A1 (de) Farbschützende waschmittel
WO2023131462A1 (de) Farbschützende waschmittel
DE102022200881A1 (de) Farbschützende Waschmittel
WO2023131528A1 (de) Farbschützende waschmittel
DE102013226008A1 (de) Farbschützende Waschmittel
DE102007016391A1 (de) Farbschützendes Wasch- oder Reinigungsmittel
DE102007023828A1 (de) Farbschützendes Wasch- oder Reinigungsmittel
DE102007038450A1 (de) Farbschützendes Wasch- oder Reinigungsmittel
DE102014220662A1 (de) Farbschützende Waschmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VAN DER BURGH, STEFAN

Inventor name: EITING, THOMAS

Inventor name: GLUESEN, BIRGIT

Inventor name: SUNDER, MATTHIAS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120829

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131015

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 654911

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009008929

Country of ref document: DE

Effective date: 20140417

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140605

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140605

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009008929

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140707

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

26N No opposition filed

Effective date: 20141208

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140605

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009008929

Country of ref document: DE

Effective date: 20141208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140605

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 654911

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090409

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140409

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20180406

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190409

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20200324

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220420

Year of fee payment: 14

Ref country code: FR

Payment date: 20220421

Year of fee payment: 14

Ref country code: DE

Payment date: 20220420

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210409

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009008929

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230409