EP2418354A1 - Verfahren zur Herstellung einer innengekühlten Turbinenschaufel und Gasturbine mit einer so hergestellten Turbinenschaufel - Google Patents

Verfahren zur Herstellung einer innengekühlten Turbinenschaufel und Gasturbine mit einer so hergestellten Turbinenschaufel Download PDF

Info

Publication number
EP2418354A1
EP2418354A1 EP10172358A EP10172358A EP2418354A1 EP 2418354 A1 EP2418354 A1 EP 2418354A1 EP 10172358 A EP10172358 A EP 10172358A EP 10172358 A EP10172358 A EP 10172358A EP 2418354 A1 EP2418354 A1 EP 2418354A1
Authority
EP
European Patent Office
Prior art keywords
turbine blade
cavity
metal balls
turbine
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10172358A
Other languages
English (en)
French (fr)
Inventor
Thomas Beck
Jerry Klopf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP10172358A priority Critical patent/EP2418354A1/de
Publication of EP2418354A1 publication Critical patent/EP2418354A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling

Definitions

  • the invention relates to a method for producing an internally cooled turbine blade according to claim 1, and to a corresponding gas turbine according to claim 4.
  • turbine blades Internally cooled turbine blades are used, among other things, in the hot gas flow of gas turbines.
  • Such H mustgasbeetzte devices must be cooled as effectively as possible to maintain their functionality and to increase the efficiency of the gas turbine. Therefore, the turbine blade has a cavity inside, into which cooling air is introduced during operation of the gas turbine.
  • the cooling air flows at the, forming the cavity, the outer wall of the turbine blade along. This convection flow along the inner surface of the outer wall thus leads to a surface cooling of this wall.
  • a plurality of cooling holes are provided in the outer wall, can also pass through the cooling air from the cavity to the outer surface of the outer wall of the turbine blade.
  • the cooling air thus flowing through the cooling holes and flowing out on the outer surface creates a film cooling between the hot gas flowed turbine blade and the hot gas itself.
  • EP 1 155 760 A1 is a method for producing a thermally loaded casting, in particular a turbine blade, known, in which an integrated in the outer wall of the turbine blade cooling system is provided, which is completely or partially filled with an open-pore metal foam. Through this open-pored structure can now also cooling air get out of the cavity to the outer surface of the wall of the turbine blade, so as to improve the film cooling and thus to increase the efficiency of the gas turbine.
  • the object of the invention is to provide a method for producing an internally cooled turbine blade, which enables a higher efficiency of a gas turbine.
  • the method according to the invention thus leads to an improvement in the efficiency of a gas turbine with a turbine blade arranged in the hot gas stream.
  • the distribution of the cooling air in the cavity can be advantageously controlled by the size of the metal balls.
  • the cavity can be subdivided into subregions which each have balls with the same or at least substantially identical diameter, but differ from those of other subregions.
  • portions of differently filled metal balls and thus different cavities form. This results in different areas, on the one hand with a large cooling air throughput and on the other with larger surfaces.
  • the cooling air flow and cooling air flow rate in the cavity can thus be selectively controlled spatially.
  • the individual metal balls may consist of different materials, but have an approximately same melting temperature.
  • the melting temperature must be above the operating temperature of the gas turbine.
  • the gas turbine according to the invention results with a turbine blade arranged in the hot gas flow and produced by the process according to the invention.
  • the sintering step according to the invention can be controlled such that it is broken off as soon as the balls merge at their points of contact.
  • maximum voids are formed between the metal spheres which are inseparably connected to one another at the points of contact, whereby a maximum cooling effect is achieved is reached.
  • the metal balls have a diameter of 1 to 5 mm for a spatially good filling of the entire cavity.
  • FIG. 1 A typical gas turbine blade 1 for a gas turbine is shown in perspective.
  • the gas turbine blade 1 in this case has along a blade longitudinal axis X a blade root 11 and a wing-shaped in cross-section blade profile with an outer wall 10.
  • the turbine blade is hollow in its interior for guiding cooling air.
  • the thus formed cavity 20 is determined by the outer wall contour, that is, by the wall shape and wall thickness.
  • this surface of the outer wall 10 directed toward the hollow space 20 and thus the entire outer wall 10 are cooled.
  • the cavity 20 is filled with metal balls 30.
  • the cavity 20 is filled with the metal balls 30 so that the Metal balls 30 touch each other and in a second step, the metal balls 30 are then connected by means of a sintering process at their points of contact B inextricably.
  • Cooling air can continue to flow in the direction of the blade longitudinal axis X through the interspaces between the interconnected metal balls 30 and cause convection cooling at the spherical surfaces and the inner surface of the outer wall 10.
  • FIG. 2 shows an almost identical structure of a gas turbine blade 1.
  • a support rib 110 is provided, which connects the two walls together.
  • This support rib 110 offers itself here in particular when it comes to dividing the cavity with the simplest means into at least two partial areas 201 and 202 with different metal balls 310 and 302.
  • a third partial region 203 is formed in FIG. 3, but this alone results from the fact that metal balls 302 and 303 with different diameters are already arranged in the cavity so that the partial regions 202 and 203 form.
  • different partial regions with different effects of the cooling air can thus be formed in the turbine blade.
  • the cavity can be divided not only, as shown, into partial regions arranged parallel to the blade longitudinal axis, but also in the direction of the blade longitudinal axis, different partial regions.
  • Subareas can, as in FIG. 2 be indicated by additional walls formed in the interior of the cavity, or even alone by a corresponding filling with balls with different diameters or material properties arise.
  • two- or even three-dimensional cooling air duct structures of different throughput or convection surfaces can be formed in the interior of the turbine blade.
  • the intended spatial effect of the cooling air can thus be influenced solely by the corresponding placement of different metal balls in the cavity.
  • the method according to the invention can be combined with the measures known from the prior art so as to achieve the highest possible overall efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung einer innengekühlten Turbinenschaufel (1) mit einem, durch eine Au-²enwandkontur (10) der Turbinenschaufel (1) ausgebildeten Hohlraum (20), bei dem in einem ersten Schritt der Hohlraum (20) mit Metallkugeln (30) so befüllt wird, dass die Metallkugeln (30) sich gegenseitig berühren und in einem zweiten Schritt die Metallkugeln (30) mittels eines Sinterprozesses an ihren Berührungspunkten (B) unlösbar verbunden werden.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung einer innengekühlten Turbinenschaufel gemäß Anspruch 1, sowie eine entsprechende Gasturbine gemäß Anspruch 4.
  • Innengekühlte Turbinenschaufeln finden unter anderem im Heißgasstrom von Gasturbinen Anwendung. Solche heißgasbeaufschlagte Vorrichtungen müssen zur Erhaltung ihrer Funktionsfähigkeit und zur Erhöhung des Wirkungsgrads der Gasturbine möglichst effektiv gekühlt werden. Daher weist die Turbinenschaufel im Inneren einen Hohlraum auf, in den während des Betriebs der Gasturbine Kühlluft eingeleitet wird. Die Kühlluft strömt dabei an der, den Hohlraum bildenden, Außenwand der Turbinenschaufel entlang. Durch diese Konvektionsströmung entlang der inneren Oberfläche der Außenwand kommt es somit zu einer Oberflächenkühlung dieser Wandung. Zudem sind in der Außenwand eine Vielzahl von Kühllöchern vorgesehen, durch die zudem Kühlluft vom Hohlraum an die äußere Oberfläche der Außenwandung der Turbinenschaufel gelangen kann. Die so durch die Kühllöcher strömende und an der äußeren Oberfläche ausströmende Kühlluft erzeugt eine Filmkühlung zwischen der heißgasumströmten Turbinenschaufel und dem Heißgas selbst. Durch diese Maßnahmen kann so die Werkstofftemperatur der Turbinenschaufel niedriger gehalten werden als die Temperatur im Heißgasstrom, was insgesamt zu einem höheren Wirkungsgrad führt.
  • Aus der EP 1 155 760 A1 ist ein Verfahren zur Herstellung eines thermisch belasteten Gussteils, insbesondere einer Turbinenschaufel, bekannt, bei der ein in der Außenwand der Turbinenschaufel integriertes Kühlsystem vorgesehen ist, das ganz oder teilweise mit einem offenporigen Metallschaum gefüllt ist. Durch diese offenporige Struktur kann nun auch Kühlluft aus dem Hohlraum heraus an die äußere Oberfläche der Wandung der Turbinenschaufel gelangen, um so die Filmkühlung zu verbessern und damit den Wirkungsgrad der Gasturbine zu erhöhen.
  • Aus der EP 1 127 635 A1 ist ein Verfahren zum Gießen eines Werkstücks, insbesondere einer Außenwand einer innengekühlten Turbinenschaufel bekannt, bei dem Gießkerne und Gießmaterial in eine Gussform eingebracht und danach das flüssige Gießmaterial chemisch wieder entfernt wird. So bilden sich nach dem Gießen auch hier in der Außenwand zwischen den Gießkernen geeignete Kanäle aus, durch die Kühlluft vom Hohlraum aus an die äußere Oberfläche der Außenwand strömen kann. Schlecht gekühlte Bereiche mit Filmkühlung an der Oberfläche sollen so vermieden werden.
  • Soll der Wirkungsgrad noch weiter erhöht werden, müssen zudem geeignete Maßnahmen zur Vergrößerung der für die Konvektionskühlung im Inneren der Turbinenschaufel notwendigen Oberflächen vorgesehenen werden.
  • Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung einer innengekühlten Turbinenschaufel bereitzustellen, das einen höheren Wirkungsgrad einer Gasturbine ermöglicht.
  • Diese Aufgabe wird mit dem Verfahren mit den Merkmalen des Anspruchs 1, sowie durch die damit hergestellte Gasturbine nach Anspruch 4 gelöst.
  • Dadurch, dass der Hohlraum der Turbinenschaufel mit Metallkugeln gefüllt und diese Metallkugeln an ihren Berührungspunkten mittels eines Sinterverfahrens unlösbar miteinander verbunden werden, ergibt sich für die Konvektionskühlung eine deutlich größere zusammenhängende Oberfläche im Inneren der Turbinenschaufel. Durch diese punktuelle Verbindung an den Stoßpunkten der Kugeln bilden sich je nach Größe der Metallkugeln Zwischenräume, durch die die Kühlluft weiterhin durch den Hohlraum geleitet werden und zudem auch über die Kühllöcher in der Außenwand ausströmen kann. Die hohe Wärmeleitung und Wärmekapazität der miteinander verbundenen Metallkugeln bilden somit, zusammen mit der durch die Kugeloberflächen bewirkten Vergrößerung der gesamten für die Konvektionskühlung im Inneren bereitstehenden Oberfläche, eine effiziente Kühlung der Turbinenschaufel. Dies erlaubt eine Reduzierung des Kühlluftverbrauchs bei gleicher Heißgastemperatur der Gasturbine oder aber eine höhere Heißgastemperatur bei gleicher Kühlleistung. Das erfindungsgemäße Verfahren führt somit insgesamt zu einer Verbesserung des Wirkungsgrads einer Gasturbine mit einer im Heißgastrom angeordneten Turbinenschaufel.
  • Die Verteilung der Kühlluft im Hohlraum kann dabei vorteilhafterweise über die Größe der Metallkugeln gesteuert werden. So kann der Hohlraum in Teilbereiche untergliedert werden, die jeweils Kugeln mit gleichem oder zumindest weitgehend identischem Durchmesser aufweisen, sich aber von denen aus anderen Teilbereichen unterscheiden. Dadurch bilden sich Teilbereiche mit unterschiedlich befüllten Metallkugeln und damit unterschiedlichen Hohlräumen aus. Damit kommt es zu unterschiedlichen Bereichen, zum einen mit großem Kühlluftdurchsatz und zum anderen mit größeren Oberflächen. Der Kühlluftstrom und Kühlluftdurchsatz im Hohlraum lässt sich somit räumlich gezielt steuern.
  • Die einzelnen Metallkugeln können aus verschiedenen Werkstoffen bestehen, die aber eine annähernd gleiche Schmelztemperatur aufweisen. Die Schmelztemperatur muss dabei oberhalb der Betriebstemperatur der Gasturbine liegen. Somit ergibt sich die erfindungsgemäße Gasturbine mit einer im Heißgasstrom angeordneten und nach dem erfindungsgemäßen Verfahren hergestellten Turbinenschaufel. Dadurch dass die Werkstoffe der Kugeln einen annähernd gleichen Schmelzpunkt aufweisen, lässt sich der erfindungsgemäße Sinterschritt so steuern, dass dieser abgebrochen wird sobald die Kugeln an ihren Berührungspunkten verschmelzen. So bilden sich maximale Hohlräume zwischen den miteinander an den Berührungspunkten unlösbar verbundenen Metallkugeln aus, wodurch ein maximaler Kühleffekt erreicht wird. Typischerweise weisen die Metallkugeln für eine räumlich gute Befüllung des gesamten Hohlraums einen Durchmesser von 1 bis 5 mm auf.
  • Die Erfindung soll nun anhand der nachfolgenden Figuren beispielhaft erläutert werden. Es zeigen:
  • FIG 1
    schematisch ein Schnitt durch eine Turbinenschaufel mit einem Hohlraum.
    FIG 2
    schematisch ein Schnitt durch eine Turbinenschaufel mit einem in mehrere Teilbereiche aufgeteilten Hohlraum.
  • In FIG 1 perspektivisch dargestellt ist eine typische Gasturbinenschaufel 1 für eine Gasturbine. Die Gasturbinenschaufel 1 weist dabei entlang einer Schaufellängsachse X einen Schaufelfuß 11 und ein im Querschnitt tragflügelförmiges Schaufelprofil mit einer Außenwand 10 auf. Die Turbinenschaufel ist dabei in ihrem Inneren zur Führung von Kühlluft hohl ausgebildet. Der so ausgebildete Hohlraum 20 wird dabei durch die Außenwandkontur, das heißt durch die Wandform und Wanddicke, vorgegeben. In den Hohlraum 20 kann über - nicht dargestellte - Zuführungen im Schaufelfuß 11 Kühlluft einströmen und sich entlang der Schaufellängsachse X im Hohlraum 20 ausbreiten. Durch die dadurch erzeugte Konvektionsströmung an der inneren Oberfläche der Außenwand wird diese, zum Hohlraum 20 hin gerichtete Oberfläche der Außenwand 10 und damit die gesamte Außenwand 10 gekühlt. Zusätzliche Kühlöffnungen 40 in der Außenwand 10 bewirken, dass zudem auch Kühlluft aus dem Hohlraum 20 an die äußere Oberfläche der Außenwand 10 strömen kann. Somit wird zusätzlich eine Filmkühlung zwischen dieser äußeren Oberfläche, der Außenwand 10 und der die Turbinenschaufel 1 umgebenden Heißgasströmung erreicht. Erfindungsgemäß ist nun - wie im Schnitt durch das Schaufelprofil schematisch angedeutet - der Hohlraum 20 mit Metallkugeln 30 gefüllt. Dazu ist vorgesehen, dass in einem ersten Schritt der Hohlraum 20 mit den Metallkugeln 30 so befüllt wird, dass die Metallkugeln 30 sich gegenseitig berühren und in einem zweiten Schritt die Metallkugeln 30 dann mittels eines Sinterprozesses an ihren Berührungspunkten B unlösbar verbunden werden. Bei der hier in FIG 1 schematisch dargestellten Ausführungsform ergibt sich somit eine zusammenhängende kugelartige dreidimensionale Oberflächenstruktur, die in Verbindung mit der inneren Oberfläche der Außenwand 10 zu einer erheblichen Vergrößerung der für die Konvektionskühlung zur Verfügung stehenden Oberfläche führt. Kühlluft kann weiterhin in Richtung der Schaufellängsachse X durch die Zwischenräume zwischen den miteinander verbundenen Metallkugeln 30 hindurchströmen und an den Kugeloberflächen und der inneren Oberfläche der Außenwand 10 eine Konvektionskühlung bewirken.
  • FIG 2 zeigt einen fast identischen Aufbau einer Gasturbinenschaufel 1. Aus Festigkeitsgründen ist hier aber zwischen der Druckseitenwand und der Saugseitenwand der Außenwand 100 eine Stützrippe 110 vorgesehen, welche die beiden Wände miteinander verbindet. Diese Stützrippe 110 bietet sich dabei besonders an, wenn es darum geht den Hohlraum mit einfachsten Mitteln in zumindest zwei Teilbereiche 201 und 202 mit unterschiedlichen Metallkugeln 310 und 302 zu unterteilen. Neben dieser Unterteilung ist in FIG 3 ein dritter Teilbereich 203 ausgebildet, der sich aber alleine aus der Tatsache ergibt, dass Metallkugeln 302 und 303 mit unterschiedlichem Durchmesser bereits so im Hohlraum angeordnete werden, dass sich dadurch die Teilbereiche 202 und 203 ausbilden. Insgesamt können so in der Turbinenschaufel unterschiedliche Teilbereiche mit unterschiedlichen Wirkungen der Kühlluft ausgebildet werden. So kann es beispielsweise von Vorteil sein, den Teilbereich 203 mit kleinen Kugeln auszubilden, um hier besonders große Oberflächen und eine weniger starke Kühlluftströmung zu erzeugen, während es im Teilbereich 201 eher auf große Zwischenräume zwischen Metallkugeln mit großem Durchmesser ankommt.
  • Die vorliegende Erfindung ist nicht beschränkt auf die zuvor beschriebenen Ausführungen. Vielmehr sind auch Kombinationen, Abwandlungen bzw. Ergänzungen einzelner Merkmale denkbar, die zu weiteren möglichen Ausführungsformen der erfinderischen Idee führen können. So kann weiterhin der Hohlraum nicht nur, wie dargestellt, in parallel zur Schaufellängsachse angeordnete Teilbereiche, sondern auch in Richtung der Schaufellängsachse unterschiedliche Teilbereiche aufgeteilt werden. Teilbereiche können, wie in FIG 2 angedeutet durch zusätzliche Wandungen im Inneren des Hohlraums ausgebildet werden, oder sich aber auch alleine durch eine entsprechende Befüllung mit Kugeln mit unterschiedlichen Durchmessern oder Materialeigenschaften ergeben. Somit können je nach Kugelgröße und Befüllung zwei- oder auch dreidimensional Kühlluftkanalstrukturen unterschiedlichen Durchsatzes oder Konvektionsoberflächen im Inneren der Turbinenschaufel gebildet werden. Die beabsichtigte räumliche Wirkung der Kühlluft lässt sich so allein anhand der entsprechenden Platzierung unterschiedlicher Metallkugeln im Hohlraum beeinflussen. Vorteilhafterweise lässt sich das erfindungsgemäße Verfahren mit den aus dem Stand der Technik bekannten Maßnahmen kombinieren, um so einen möglichst hohen Gesamtwirkungsgrad zu erzielen.

Claims (4)

  1. Verfahren zur Herstellung einer innengekühlten Turbinenschaufel (1) mit einem, durch eine Außenwandkontur (10, 101,102,103) der Turbinenschaufel (1) ausgebildeten Hohlraum (20, 201,202,203), bei dem in einem ersten Schritt der Hohlraum (20,201,202,203) mit Metallkugeln (30,301,302,303) so befüllt wird, dass die Metallkugeln (30,301,302,303) sich gegenseitig berühren und in einem zweiten Schritt die Metallkugeln (30,301,302,303) mittels eines Sinterprozesses an ihren Berührungspunkten (B) unlösbar verbunden werden.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass der Hohlraum in mehrere Teilbereiche (201,202,203) unterteilt ist, und diese Teilbereiche (201,202,203) mit Metallkugeln (301,302,303) mit unterschiedlichem Durchmesser befüllt werden.
  3. Verfahren nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet, dass der im zweiten Schritt durchgeführte Sinterprozess abgebrochen wird, sobald die Metallkugeln an ihren Berührungspunkten verschmelzen.
  4. Gasturbine mit einer im Heißgastrom angeordneten und nach einem der Verfahren nach Anspruch 1 bis 3 hergestellten Turbinenschaufel.
EP10172358A 2010-08-10 2010-08-10 Verfahren zur Herstellung einer innengekühlten Turbinenschaufel und Gasturbine mit einer so hergestellten Turbinenschaufel Withdrawn EP2418354A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10172358A EP2418354A1 (de) 2010-08-10 2010-08-10 Verfahren zur Herstellung einer innengekühlten Turbinenschaufel und Gasturbine mit einer so hergestellten Turbinenschaufel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10172358A EP2418354A1 (de) 2010-08-10 2010-08-10 Verfahren zur Herstellung einer innengekühlten Turbinenschaufel und Gasturbine mit einer so hergestellten Turbinenschaufel

Publications (1)

Publication Number Publication Date
EP2418354A1 true EP2418354A1 (de) 2012-02-15

Family

ID=43480655

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10172358A Withdrawn EP2418354A1 (de) 2010-08-10 2010-08-10 Verfahren zur Herstellung einer innengekühlten Turbinenschaufel und Gasturbine mit einer so hergestellten Turbinenschaufel

Country Status (1)

Country Link
EP (1) EP2418354A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018107433A1 (de) 2018-03-28 2019-10-02 Rolls-Royce Deutschland Ltd & Co Kg Einlaufbelagstruktur aus einem metallischen Werkstoff, Verfahren zur Herstellung einer Einlaufbelagstruktur und Bauteil mit einer Einlaufbelagstruktur
CN112032109A (zh) * 2020-09-15 2020-12-04 中国航发沈阳发动机研究所 一种叶片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3026227A1 (de) * 1979-07-12 1981-01-15 Rolls Royce Gekuehlter mantelring fuer gasturbinentriebwerke
DE3902032A1 (de) * 1989-01-25 1990-07-26 Mtu Muenchen Gmbh Gesintertes leichtbaumaterial mit herstellungsverfahren
DE4338457A1 (de) * 1993-11-11 1995-05-18 Mtu Muenchen Gmbh Bauteil aus Metall oder Keramik mit dichter Außenschale und porösem Kern und Herstellungsverfahren
EP1127635A1 (de) 2000-02-25 2001-08-29 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Giessen eines Werkstücks und Werkstück
EP1155760A1 (de) 2000-05-17 2001-11-21 ALSTOM Power N.V. Verfahren zur Herstellung eines thermisch belasteten Gussteils
US20070243069A1 (en) * 2004-09-22 2007-10-18 Rolls-Royce Plc Aerofoil and a method of manufacturing an aerofoil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3026227A1 (de) * 1979-07-12 1981-01-15 Rolls Royce Gekuehlter mantelring fuer gasturbinentriebwerke
DE3902032A1 (de) * 1989-01-25 1990-07-26 Mtu Muenchen Gmbh Gesintertes leichtbaumaterial mit herstellungsverfahren
DE4338457A1 (de) * 1993-11-11 1995-05-18 Mtu Muenchen Gmbh Bauteil aus Metall oder Keramik mit dichter Außenschale und porösem Kern und Herstellungsverfahren
EP1127635A1 (de) 2000-02-25 2001-08-29 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Giessen eines Werkstücks und Werkstück
EP1155760A1 (de) 2000-05-17 2001-11-21 ALSTOM Power N.V. Verfahren zur Herstellung eines thermisch belasteten Gussteils
US20070243069A1 (en) * 2004-09-22 2007-10-18 Rolls-Royce Plc Aerofoil and a method of manufacturing an aerofoil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018107433A1 (de) 2018-03-28 2019-10-02 Rolls-Royce Deutschland Ltd & Co Kg Einlaufbelagstruktur aus einem metallischen Werkstoff, Verfahren zur Herstellung einer Einlaufbelagstruktur und Bauteil mit einer Einlaufbelagstruktur
CN112032109A (zh) * 2020-09-15 2020-12-04 中国航发沈阳发动机研究所 一种叶片

Similar Documents

Publication Publication Date Title
EP2304185B1 (de) Turbinenschaufel für eine gasturbine und gusskern zum herstellen in einer solchen
DE102005050118B4 (de) Anordnung zur Temperierung eines metallischen Körpers sowie Verwendung derselben
EP2611990B1 (de) Turbinenschaufel für eine gasturbine
DE102015219530A1 (de) Schaufel für eine Strömungsmaschine, Turbofantriebwerk und ein Verfahren zur Herstellung einer Schaufel
EP3456923B1 (de) Schaufel einer strömungsmaschine mit kühlkanal und darin angeordnetem verdrängungskörper sowie verfahren zur herstellung
WO2018114099A1 (de) Kühlmantel-gehäuse, insbesondere für eine elektrische maschine
DE102009001953B4 (de) Vorrichtung zur Beeinflussung einer Überschall-Umströmung
EP1979151A2 (de) Verbesserte halsbackenkühlung
EP1857244B1 (de) Gekühlter Formeinsatz für Spritzwerkzeuge
EP2418354A1 (de) Verfahren zur Herstellung einer innengekühlten Turbinenschaufel und Gasturbine mit einer so hergestellten Turbinenschaufel
DE102009039255A1 (de) Verfahren zur Gießkern-Herstellung einer Gasturbinenschaufel
DE102018119730A1 (de) Verbesserte Fluidleitungen
DE102014213624A1 (de) Verfahren zur herstellung eines strömungskanals
EP4168225A1 (de) Herstellungsverfahren eines bauteils mit kühlkanalsystem
DE102013002097B4 (de) Verfahren zum Herstellen eines kühlbaren Werkzeugteils für ein Formwerkzeug zum Warmumformen und/oder Presshärten, sowie hiermit hergestelltes Formwerkzeug
WO2011117343A1 (de) VERFAHREN UND VORRICHTUNG ZUM GIEßEN EINES KOLBENS FÜR EINEN VERBRENNUNGSMOTOR
EP1257373A1 (de) Vorrichtung und verfahren zum giessen eines werkstücks und werkstück
DE202008015124U1 (de) Gekühlter Formstift
DE102018220552B4 (de) Verfahren zur Herstellung eines Bremssattels mit einem integrierten strömungsoptimierten Kühlkanal
EP3538315B1 (de) Verfahren zur herstellung eines hohlraums in einer schaufelplattform ; entsprechender schaufel
EP2123375A1 (de) Hohler Pleuel
CH700320A1 (de) Verfahren zum herstellen eines bauteils einer gasturbine.
EP2349608A1 (de) Verfahren zum giesstechnischen herstellen einer schaufel sowie schaufel für eine gasturbine
DE102015226653A1 (de) Turbinenschaufel für eine thermische Strömungsmaschine
EP1749597A1 (de) Gießvorrichtung und -verfahren zur Herstellung von Gusskörpern

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120817