EP2418354A1 - Method for producing an internally cooled turbine blade and gas turbine with a turbine blade produced according to the method - Google Patents
Method for producing an internally cooled turbine blade and gas turbine with a turbine blade produced according to the method Download PDFInfo
- Publication number
- EP2418354A1 EP2418354A1 EP10172358A EP10172358A EP2418354A1 EP 2418354 A1 EP2418354 A1 EP 2418354A1 EP 10172358 A EP10172358 A EP 10172358A EP 10172358 A EP10172358 A EP 10172358A EP 2418354 A1 EP2418354 A1 EP 2418354A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine blade
- cavity
- metal balls
- turbine
- wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/04—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/147—Construction, i.e. structural features, e.g. of weight-saving hollow blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/40—Heat treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/202—Heat transfer, e.g. cooling by film cooling
Definitions
- the invention relates to a method for producing an internally cooled turbine blade according to claim 1, and to a corresponding gas turbine according to claim 4.
- turbine blades Internally cooled turbine blades are used, among other things, in the hot gas flow of gas turbines.
- Such H mustgasbeetzte devices must be cooled as effectively as possible to maintain their functionality and to increase the efficiency of the gas turbine. Therefore, the turbine blade has a cavity inside, into which cooling air is introduced during operation of the gas turbine.
- the cooling air flows at the, forming the cavity, the outer wall of the turbine blade along. This convection flow along the inner surface of the outer wall thus leads to a surface cooling of this wall.
- a plurality of cooling holes are provided in the outer wall, can also pass through the cooling air from the cavity to the outer surface of the outer wall of the turbine blade.
- the cooling air thus flowing through the cooling holes and flowing out on the outer surface creates a film cooling between the hot gas flowed turbine blade and the hot gas itself.
- EP 1 155 760 A1 is a method for producing a thermally loaded casting, in particular a turbine blade, known, in which an integrated in the outer wall of the turbine blade cooling system is provided, which is completely or partially filled with an open-pore metal foam. Through this open-pored structure can now also cooling air get out of the cavity to the outer surface of the wall of the turbine blade, so as to improve the film cooling and thus to increase the efficiency of the gas turbine.
- the object of the invention is to provide a method for producing an internally cooled turbine blade, which enables a higher efficiency of a gas turbine.
- the method according to the invention thus leads to an improvement in the efficiency of a gas turbine with a turbine blade arranged in the hot gas stream.
- the distribution of the cooling air in the cavity can be advantageously controlled by the size of the metal balls.
- the cavity can be subdivided into subregions which each have balls with the same or at least substantially identical diameter, but differ from those of other subregions.
- portions of differently filled metal balls and thus different cavities form. This results in different areas, on the one hand with a large cooling air throughput and on the other with larger surfaces.
- the cooling air flow and cooling air flow rate in the cavity can thus be selectively controlled spatially.
- the individual metal balls may consist of different materials, but have an approximately same melting temperature.
- the melting temperature must be above the operating temperature of the gas turbine.
- the gas turbine according to the invention results with a turbine blade arranged in the hot gas flow and produced by the process according to the invention.
- the sintering step according to the invention can be controlled such that it is broken off as soon as the balls merge at their points of contact.
- maximum voids are formed between the metal spheres which are inseparably connected to one another at the points of contact, whereby a maximum cooling effect is achieved is reached.
- the metal balls have a diameter of 1 to 5 mm for a spatially good filling of the entire cavity.
- FIG. 1 A typical gas turbine blade 1 for a gas turbine is shown in perspective.
- the gas turbine blade 1 in this case has along a blade longitudinal axis X a blade root 11 and a wing-shaped in cross-section blade profile with an outer wall 10.
- the turbine blade is hollow in its interior for guiding cooling air.
- the thus formed cavity 20 is determined by the outer wall contour, that is, by the wall shape and wall thickness.
- this surface of the outer wall 10 directed toward the hollow space 20 and thus the entire outer wall 10 are cooled.
- the cavity 20 is filled with metal balls 30.
- the cavity 20 is filled with the metal balls 30 so that the Metal balls 30 touch each other and in a second step, the metal balls 30 are then connected by means of a sintering process at their points of contact B inextricably.
- Cooling air can continue to flow in the direction of the blade longitudinal axis X through the interspaces between the interconnected metal balls 30 and cause convection cooling at the spherical surfaces and the inner surface of the outer wall 10.
- FIG. 2 shows an almost identical structure of a gas turbine blade 1.
- a support rib 110 is provided, which connects the two walls together.
- This support rib 110 offers itself here in particular when it comes to dividing the cavity with the simplest means into at least two partial areas 201 and 202 with different metal balls 310 and 302.
- a third partial region 203 is formed in FIG. 3, but this alone results from the fact that metal balls 302 and 303 with different diameters are already arranged in the cavity so that the partial regions 202 and 203 form.
- different partial regions with different effects of the cooling air can thus be formed in the turbine blade.
- the cavity can be divided not only, as shown, into partial regions arranged parallel to the blade longitudinal axis, but also in the direction of the blade longitudinal axis, different partial regions.
- Subareas can, as in FIG. 2 be indicated by additional walls formed in the interior of the cavity, or even alone by a corresponding filling with balls with different diameters or material properties arise.
- two- or even three-dimensional cooling air duct structures of different throughput or convection surfaces can be formed in the interior of the turbine blade.
- the intended spatial effect of the cooling air can thus be influenced solely by the corresponding placement of different metal balls in the cavity.
- the method according to the invention can be combined with the measures known from the prior art so as to achieve the highest possible overall efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Architecture (AREA)
- Manufacturing & Machinery (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Herstellung einer innengekühlten Turbinenschaufel gemäß Anspruch 1, sowie eine entsprechende Gasturbine gemäß Anspruch 4.The invention relates to a method for producing an internally cooled turbine blade according to
Innengekühlte Turbinenschaufeln finden unter anderem im Heißgasstrom von Gasturbinen Anwendung. Solche heißgasbeaufschlagte Vorrichtungen müssen zur Erhaltung ihrer Funktionsfähigkeit und zur Erhöhung des Wirkungsgrads der Gasturbine möglichst effektiv gekühlt werden. Daher weist die Turbinenschaufel im Inneren einen Hohlraum auf, in den während des Betriebs der Gasturbine Kühlluft eingeleitet wird. Die Kühlluft strömt dabei an der, den Hohlraum bildenden, Außenwand der Turbinenschaufel entlang. Durch diese Konvektionsströmung entlang der inneren Oberfläche der Außenwand kommt es somit zu einer Oberflächenkühlung dieser Wandung. Zudem sind in der Außenwand eine Vielzahl von Kühllöchern vorgesehen, durch die zudem Kühlluft vom Hohlraum an die äußere Oberfläche der Außenwandung der Turbinenschaufel gelangen kann. Die so durch die Kühllöcher strömende und an der äußeren Oberfläche ausströmende Kühlluft erzeugt eine Filmkühlung zwischen der heißgasumströmten Turbinenschaufel und dem Heißgas selbst. Durch diese Maßnahmen kann so die Werkstofftemperatur der Turbinenschaufel niedriger gehalten werden als die Temperatur im Heißgasstrom, was insgesamt zu einem höheren Wirkungsgrad führt.Internally cooled turbine blades are used, among other things, in the hot gas flow of gas turbines. Such Heißgasbeaufschlagte devices must be cooled as effectively as possible to maintain their functionality and to increase the efficiency of the gas turbine. Therefore, the turbine blade has a cavity inside, into which cooling air is introduced during operation of the gas turbine. The cooling air flows at the, forming the cavity, the outer wall of the turbine blade along. This convection flow along the inner surface of the outer wall thus leads to a surface cooling of this wall. In addition, a plurality of cooling holes are provided in the outer wall, can also pass through the cooling air from the cavity to the outer surface of the outer wall of the turbine blade. The cooling air thus flowing through the cooling holes and flowing out on the outer surface creates a film cooling between the hot gas flowed turbine blade and the hot gas itself. By these measures, the material temperature of the turbine blade can be kept lower than the temperature in the hot gas flow, resulting in an overall higher efficiency ,
Aus der
Aus der
Soll der Wirkungsgrad noch weiter erhöht werden, müssen zudem geeignete Maßnahmen zur Vergrößerung der für die Konvektionskühlung im Inneren der Turbinenschaufel notwendigen Oberflächen vorgesehenen werden.If the efficiency is to be increased even further, appropriate measures must be provided to increase the necessary for the convection cooling inside the turbine blade surfaces.
Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung einer innengekühlten Turbinenschaufel bereitzustellen, das einen höheren Wirkungsgrad einer Gasturbine ermöglicht.The object of the invention is to provide a method for producing an internally cooled turbine blade, which enables a higher efficiency of a gas turbine.
Diese Aufgabe wird mit dem Verfahren mit den Merkmalen des Anspruchs 1, sowie durch die damit hergestellte Gasturbine nach Anspruch 4 gelöst.This object is achieved by the method with the features of
Dadurch, dass der Hohlraum der Turbinenschaufel mit Metallkugeln gefüllt und diese Metallkugeln an ihren Berührungspunkten mittels eines Sinterverfahrens unlösbar miteinander verbunden werden, ergibt sich für die Konvektionskühlung eine deutlich größere zusammenhängende Oberfläche im Inneren der Turbinenschaufel. Durch diese punktuelle Verbindung an den Stoßpunkten der Kugeln bilden sich je nach Größe der Metallkugeln Zwischenräume, durch die die Kühlluft weiterhin durch den Hohlraum geleitet werden und zudem auch über die Kühllöcher in der Außenwand ausströmen kann. Die hohe Wärmeleitung und Wärmekapazität der miteinander verbundenen Metallkugeln bilden somit, zusammen mit der durch die Kugeloberflächen bewirkten Vergrößerung der gesamten für die Konvektionskühlung im Inneren bereitstehenden Oberfläche, eine effiziente Kühlung der Turbinenschaufel. Dies erlaubt eine Reduzierung des Kühlluftverbrauchs bei gleicher Heißgastemperatur der Gasturbine oder aber eine höhere Heißgastemperatur bei gleicher Kühlleistung. Das erfindungsgemäße Verfahren führt somit insgesamt zu einer Verbesserung des Wirkungsgrads einer Gasturbine mit einer im Heißgastrom angeordneten Turbinenschaufel.The fact that the cavity of the turbine blade filled with metal balls and these metal balls are inextricably linked together at their points of contact by means of a sintering process, results for the convection cooling a significantly larger continuous surface in the interior of the turbine blade. Depending on the size of the metal balls, these punctiform connections at the contact points of the balls form interspaces through which the cooling air continues to be conducted through the cavity and also via the cooling holes can flow out in the outer wall. The high heat conduction and heat capacity of the interconnected metal balls thus, together with the increase in the total surface area provided for convection cooling by the spherical surfaces, provide efficient cooling of the turbine blade. This allows a reduction of the cooling air consumption at the same hot gas temperature of the gas turbine or a higher hot gas temperature at the same cooling capacity. Overall, the method according to the invention thus leads to an improvement in the efficiency of a gas turbine with a turbine blade arranged in the hot gas stream.
Die Verteilung der Kühlluft im Hohlraum kann dabei vorteilhafterweise über die Größe der Metallkugeln gesteuert werden. So kann der Hohlraum in Teilbereiche untergliedert werden, die jeweils Kugeln mit gleichem oder zumindest weitgehend identischem Durchmesser aufweisen, sich aber von denen aus anderen Teilbereichen unterscheiden. Dadurch bilden sich Teilbereiche mit unterschiedlich befüllten Metallkugeln und damit unterschiedlichen Hohlräumen aus. Damit kommt es zu unterschiedlichen Bereichen, zum einen mit großem Kühlluftdurchsatz und zum anderen mit größeren Oberflächen. Der Kühlluftstrom und Kühlluftdurchsatz im Hohlraum lässt sich somit räumlich gezielt steuern.The distribution of the cooling air in the cavity can be advantageously controlled by the size of the metal balls. Thus, the cavity can be subdivided into subregions which each have balls with the same or at least substantially identical diameter, but differ from those of other subregions. As a result, portions of differently filled metal balls and thus different cavities form. This results in different areas, on the one hand with a large cooling air throughput and on the other with larger surfaces. The cooling air flow and cooling air flow rate in the cavity can thus be selectively controlled spatially.
Die einzelnen Metallkugeln können aus verschiedenen Werkstoffen bestehen, die aber eine annähernd gleiche Schmelztemperatur aufweisen. Die Schmelztemperatur muss dabei oberhalb der Betriebstemperatur der Gasturbine liegen. Somit ergibt sich die erfindungsgemäße Gasturbine mit einer im Heißgasstrom angeordneten und nach dem erfindungsgemäßen Verfahren hergestellten Turbinenschaufel. Dadurch dass die Werkstoffe der Kugeln einen annähernd gleichen Schmelzpunkt aufweisen, lässt sich der erfindungsgemäße Sinterschritt so steuern, dass dieser abgebrochen wird sobald die Kugeln an ihren Berührungspunkten verschmelzen. So bilden sich maximale Hohlräume zwischen den miteinander an den Berührungspunkten unlösbar verbundenen Metallkugeln aus, wodurch ein maximaler Kühleffekt erreicht wird. Typischerweise weisen die Metallkugeln für eine räumlich gute Befüllung des gesamten Hohlraums einen Durchmesser von 1 bis 5 mm auf.The individual metal balls may consist of different materials, but have an approximately same melting temperature. The melting temperature must be above the operating temperature of the gas turbine. Thus, the gas turbine according to the invention results with a turbine blade arranged in the hot gas flow and produced by the process according to the invention. Because the materials of the balls have an approximately identical melting point, the sintering step according to the invention can be controlled such that it is broken off as soon as the balls merge at their points of contact. Thus, maximum voids are formed between the metal spheres which are inseparably connected to one another at the points of contact, whereby a maximum cooling effect is achieved is reached. Typically, the metal balls have a diameter of 1 to 5 mm for a spatially good filling of the entire cavity.
Die Erfindung soll nun anhand der nachfolgenden Figuren beispielhaft erläutert werden. Es zeigen:
- FIG 1
- schematisch ein Schnitt durch eine Turbinenschaufel mit einem Hohlraum.
- FIG 2
- schematisch ein Schnitt durch eine Turbinenschaufel mit einem in mehrere Teilbereiche aufgeteilten Hohlraum.
- FIG. 1
- schematically a section through a turbine blade with a cavity.
- FIG. 2
- schematically a section through a turbine blade with a divided into several sections cavity.
In
Die vorliegende Erfindung ist nicht beschränkt auf die zuvor beschriebenen Ausführungen. Vielmehr sind auch Kombinationen, Abwandlungen bzw. Ergänzungen einzelner Merkmale denkbar, die zu weiteren möglichen Ausführungsformen der erfinderischen Idee führen können. So kann weiterhin der Hohlraum nicht nur, wie dargestellt, in parallel zur Schaufellängsachse angeordnete Teilbereiche, sondern auch in Richtung der Schaufellängsachse unterschiedliche Teilbereiche aufgeteilt werden. Teilbereiche können, wie in
Claims (4)
dadurch gekennzeichnet, dass der Hohlraum in mehrere Teilbereiche (201,202,203) unterteilt ist, und diese Teilbereiche (201,202,203) mit Metallkugeln (301,302,303) mit unterschiedlichem Durchmesser befüllt werden.Method according to claim 1,
characterized in that the cavity is subdivided into a plurality of partial regions (201, 202, 203), and these partial regions (201, 202, 203) are filled with metal balls (301, 302, 303) with different diameters.
dadurch gekennzeichnet, dass der im zweiten Schritt durchgeführte Sinterprozess abgebrochen wird, sobald die Metallkugeln an ihren Berührungspunkten verschmelzen.Method according to one of the preceding claims,
characterized in that the sintering process carried out in the second step is stopped as soon as the metal balls merge at their points of contact.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10172358A EP2418354A1 (en) | 2010-08-10 | 2010-08-10 | Method for producing an internally cooled turbine blade and gas turbine with a turbine blade produced according to the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10172358A EP2418354A1 (en) | 2010-08-10 | 2010-08-10 | Method for producing an internally cooled turbine blade and gas turbine with a turbine blade produced according to the method |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2418354A1 true EP2418354A1 (en) | 2012-02-15 |
Family
ID=43480655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10172358A Withdrawn EP2418354A1 (en) | 2010-08-10 | 2010-08-10 | Method for producing an internally cooled turbine blade and gas turbine with a turbine blade produced according to the method |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2418354A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018107433A1 (en) | 2018-03-28 | 2019-10-02 | Rolls-Royce Deutschland Ltd & Co Kg | Inlet lining structure made of a metallic material, method for producing an inlet lining structure and component with an inlet lining structure |
CN112032109A (en) * | 2020-09-15 | 2020-12-04 | 中国航发沈阳发动机研究所 | Blade |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3026227A1 (en) * | 1979-07-12 | 1981-01-15 | Rolls Royce | COOLED SHEATH RING FOR GAS TURBINE ENGINES |
DE3902032A1 (en) * | 1989-01-25 | 1990-07-26 | Mtu Muenchen Gmbh | SINED LIGHTWEIGHT MATERIAL WITH MANUFACTURING PROCESS |
DE4338457A1 (en) * | 1993-11-11 | 1995-05-18 | Mtu Muenchen Gmbh | Component made of metal or ceramic with a dense outer shell and porous core and manufacturing process |
EP1127635A1 (en) | 2000-02-25 | 2001-08-29 | Siemens Aktiengesellschaft | Apparatus and method for casting a workpiece and workpiece |
EP1155760A1 (en) | 2000-05-17 | 2001-11-21 | ALSTOM Power N.V. | Method for producing a casting of high thermal load |
US20070243069A1 (en) * | 2004-09-22 | 2007-10-18 | Rolls-Royce Plc | Aerofoil and a method of manufacturing an aerofoil |
-
2010
- 2010-08-10 EP EP10172358A patent/EP2418354A1/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3026227A1 (en) * | 1979-07-12 | 1981-01-15 | Rolls Royce | COOLED SHEATH RING FOR GAS TURBINE ENGINES |
DE3902032A1 (en) * | 1989-01-25 | 1990-07-26 | Mtu Muenchen Gmbh | SINED LIGHTWEIGHT MATERIAL WITH MANUFACTURING PROCESS |
DE4338457A1 (en) * | 1993-11-11 | 1995-05-18 | Mtu Muenchen Gmbh | Component made of metal or ceramic with a dense outer shell and porous core and manufacturing process |
EP1127635A1 (en) | 2000-02-25 | 2001-08-29 | Siemens Aktiengesellschaft | Apparatus and method for casting a workpiece and workpiece |
EP1155760A1 (en) | 2000-05-17 | 2001-11-21 | ALSTOM Power N.V. | Method for producing a casting of high thermal load |
US20070243069A1 (en) * | 2004-09-22 | 2007-10-18 | Rolls-Royce Plc | Aerofoil and a method of manufacturing an aerofoil |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018107433A1 (en) | 2018-03-28 | 2019-10-02 | Rolls-Royce Deutschland Ltd & Co Kg | Inlet lining structure made of a metallic material, method for producing an inlet lining structure and component with an inlet lining structure |
CN112032109A (en) * | 2020-09-15 | 2020-12-04 | 中国航发沈阳发动机研究所 | Blade |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2304185B1 (en) | Turbine vane for a gas turbine and casting core for the production of such | |
DE102005050118B4 (en) | Arrangement for tempering a metallic body and use thereof | |
EP2611990B1 (en) | Turbine blade for a gas turbine | |
DE102015219530A1 (en) | Blade for a turbomachine, turbofan engine and a method for producing a blade | |
EP3456923B1 (en) | Blade of a turbomachine having cooling passage and displacement body arranged therein and method for producing the same | |
WO2018114099A1 (en) | Cooling jacket housing, in particular for an electric machine | |
DE102009001953B4 (en) | Device for influencing a supersonic flow around | |
EP1979151A2 (en) | Improved neck block cooling | |
EP1857244B1 (en) | Cooled mold insert for injection moulds | |
EP2418354A1 (en) | Method for producing an internally cooled turbine blade and gas turbine with a turbine blade produced according to the method | |
DE102009039255A1 (en) | Production of a casting core for manufacturing a turbine blade comprises placing prefabricated connecting braces into the core mold before introducing the core material and embedding their free ends into the core material | |
DE102018119730A1 (en) | Improved fluid lines | |
DE102014213624A1 (en) | METHOD FOR PRODUCING A FLOW CHANNEL | |
EP4168225A1 (en) | Method for producing a component having a cooling channel system | |
DE102013002097B4 (en) | Method for producing a coolable tool part for a molding tool for hot forming and / or press hardening, and a molding tool produced therewith | |
WO2011117343A1 (en) | Process and apparatus for casting a piston for an internal combustion engine | |
EP1257373A1 (en) | Device and method for casting a workpiece and workpiece | |
DE202008015124U1 (en) | Cooled shape pencil | |
DE102018220552B4 (en) | Method for producing a brake caliper with an integrated flow-optimized cooling channel | |
EP3538315B1 (en) | Method of producing a cavity in a blade platform ; corresponding blade | |
EP2123375A1 (en) | Hollow connecting rod | |
CH700320A1 (en) | Method for producing a component of a gas turbine. | |
EP2349608A1 (en) | Method for producing a blade by casting technology and blade for a gas turbine | |
DE102015226653A1 (en) | Turbine blade for a thermal turbomachine | |
EP1749597A1 (en) | Casting apparatus and method for the production of castings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME RS |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120817 |