EP2417681A2 - Alimentation en énergie d'un réseau électrique - Google Patents

Alimentation en énergie d'un réseau électrique

Info

Publication number
EP2417681A2
EP2417681A2 EP10716735A EP10716735A EP2417681A2 EP 2417681 A2 EP2417681 A2 EP 2417681A2 EP 10716735 A EP10716735 A EP 10716735A EP 10716735 A EP10716735 A EP 10716735A EP 2417681 A2 EP2417681 A2 EP 2417681A2
Authority
EP
European Patent Office
Prior art keywords
load
generator
power
voltage
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10716735A
Other languages
German (de)
English (en)
Inventor
Johann Hell
Nebojsa Danilovic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andritz Hydro GmbH Austria
Original Assignee
Andritz Hydro GmbH Austria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andritz Hydro GmbH Austria filed Critical Andritz Hydro GmbH Austria
Publication of EP2417681A2 publication Critical patent/EP2417681A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current

Definitions

  • the subject of this invention is a method for feeding energy into a power grid, in which energy is generated in the form of electric current by at least one generator and supplied to a power grid, the generator either directly or via a transformer with a
  • the subject of this invention is also a device with which the method according to the invention is carried out.
  • the present invention enables generators for electrical
  • the invention describes a simple and robust concept that can be used for one or more power generation units (generators) connected in parallel.
  • the invention is limited to generators for electrical power generation, which are connected either directly or via one or more transformers to the power grid. When a power failure occurs, the generator (s) remain connected to the network.
  • the inventive method is based on the fact that at a voltage drop (voltage dip) in the power grid, a load which is bridged in normal operation by a switch, is interposed by opening the switch, whereby at least a portion of the electrical power, not by the reduced voltage more is delivered to the power grid, is absorbed by the load. Thereby, an acceleration of the rotor can be prevented and the generator remains in a stable operating range.
  • the switch is closed again so that the load is bridged again.
  • the mains voltage is then back to its desired value, the kinetic energy supplied to the generator can thus be returned to the power grid without any problems in the form of electrical energy. An energy absorption by the load is therefore no longer necessary.
  • this invention is suitable for special generators with permanent excitement, as these generators have rotors with a comparatively low moment of inertia and thus are particularly vulnerable to an acceleration of the rotor by a voltage dip. The requirement of a smooth bridging of voltage drops can then be met for these generators.
  • the load is formed by an ohmic resistance.
  • the power that can not be delivered to the power grid in the event of a voltage dip is then simply converted into heat in the resistor.
  • at least part of this power is stored in a corresponding unit.
  • all units that can store electrical energy in the short term come into question. Examples include energy storage with flywheel, superconducting magnets or capacitors.
  • the load in particular a resistor, can be regulated or unregulated.
  • a controllable load has the advantage that it can be adapted to the respective voltage dip.
  • a portion of the electrical power which is no longer delivered to the power supply due to the voltage dip is additionally absorbed by an additional regulated load.
  • This extra load preferably to the above Load is connected in parallel, leading to additional stabilization of the system.
  • phase angle of the generator voltage can be used as a controlled variable for the regulation of the additional regulated load.
  • the invention also provides a corresponding device for feeding energy into a power grid with at least one generator for power generation, which is connected either via a transformer or directly to a grid transfer point, between the at least one generator and the grid transfer point, a load, preferably a resistor provided is, which is bridged by a switch.
  • a load preferably a resistor provided is, which is bridged by a switch.
  • Fig. 2 shows a one-line diagram with the solution according to the invention installed at the voltage level of the generator
  • Fig. 3 shows a one-line diagram with the solution according to the invention installed on the transformer high-voltage side 4 shows a one-line diagram of an alternative solution of the bypass switch with anti-parallel thyristors
  • Fig. 5 shows an example of a possible embodiment of a controlled load.
  • Fig. 6 shows another example of a possible embodiment of a controlled load
  • Fig. 7 is a one-line diagram for the simulation calculations
  • Fig. 1 shows schematically a plant for energy supply in a power grid.
  • the energy flow in normal operation of the system takes place from the generating units, ie from the generators 1, via a switch 2 associated with each unit to a busbar 3.
  • a switch 2 associated with each unit to a busbar 3.
  • several units can be combined to form modules.
  • About a transformer 4 for each module is then usually transformed to medium voltage level or to a medium voltage level 5.
  • the energy is then transmitted from the medium voltage level 5 via a further transformer 6 and a net dome switch 7 in the power grid.
  • the voltage level here is usually over 10OkV.
  • the grid transfer point 8 is the point at which contractual services are defined between the plant operator and the grid operator. At this point, also voltages, frequencies and their deviations are determined.
  • the network transfer point 8 is also referred to as PCC (Point of Common Coupling).
  • the generator 1 In normal operation of the system, the generator 1 is connected via a transformer 4 or directly to the power grid. The power generated by the turbines is transmitted via the generators 1 (minus losses) to the grid.
  • the invention is based on the fact that now between the generator 1 and the power grid during the time of the voltage dip, a load 10, such as a resistor 10 ', interposed.
  • This resistor 10 ' is bridged in normal operation by a mechanical switch 11 (bypass switch) or by an electronic switch 11A.
  • the opening of the switch 11, 11A is triggered when the mains voltage falls below a certain value, ie if a line fault (voltage dip) is detected at the grid transfer point 8. Then, however, should be opened as soon as possible.
  • the design of the resistor 10 ' takes place according to the amount of energy to be absorbed. A design for continuous operation is not necessary.
  • the generator 1 is now possible to convert a portion of the power generated in heat. This avoids an acceleration of the generator 1 and enables a subsequent downshift to normal operation.
  • an additional regulated load 12 is provided in Fig. 2. It may be a variety of load devices, but where a quick adjustability of the load is necessary. Thus, for example, with a regulation of the voltage angle at the generator 1, a stabilizing effect can be achieved.
  • the solution according to the invention can also be installed on the transformer high voltage side, as shown in Fig. 3.
  • an electronic switch 11A with antiparallel-connected thyristors is shown as an alternative to a mechanical switch 11.
  • the additional regulated load 12 may be self-guided, for example
  • Inverter 12 A executed. It consists of a converter transformer 14 for controlled load, a clocked power converter 15, a
  • this regulated load 12B operates with a load resistor 19 controlled via thyristors 18.
  • the regulated load 12B can be designed for short-time operation, as it only during and shortly after the line fault is active.
  • an energy store can also be provided. Since the generator voltage or the voltage on the high-voltage side of the transformer 4 is higher than the blocking voltage of conventional power electronic components, usually a converter transformer 14 is connected in front of the regulated load 12, 12A, 12B.
  • the phase angle of the generator voltage is the angle measured before the disturbance occurred. If the actual value of the angle deviates from the nominal value, then the power of the additional regulated load 12, 12A, 12B is increased, the machine slows down and can then be switched back to normal operation after the voltage has returned.
  • All resistors and other components of the device according to the invention can be designed for a short-time operation. Thus, a reduction in size can be achieved.
  • the proposed resistors 10 ', switches 11 and regulated loads 12, 12A, 12B may be provided with each generator 1, but several generators 1 may also be combined.
  • the circuit diagram of the selected arrangement is shown in Fig. 7.
  • the entire system consists of 40 generators 1, which are grouped in 5 groups to form eight modules.
  • the five generators 1 of a module feed together to the busbar 3 with a voltage of 3.3kV and a Frequency of 60Hz.
  • Generator power 1 is 2.5MW.
  • the generators 1 are designed as permanent-magnet machines in this example.
  • Each module has its own transformer 4, which transfers the energy to the next higher medium voltage level 5 with 34.5 kV. On this medium voltage level 5 then the eight modules of the system are summarized.
  • Via a further transformer 6 and the associated network dome switch 7, the energy generated by 40 generators 1 is then transferred via the network transfer point (PCC) 8 into the superimposed network with 138 kV.
  • PCC network transfer point
  • the device according to the invention is now connected between the transformer 4 and the busbar 3. It consists of a fixed resistor 10 'and an associated switch 11. In addition, a regulated load 12 is still installed on the busbar 3.
  • FIG. 8 The results of the simulation calculation are shown in FIG. 8 and in FIG. 9. They show u.a. Voltages and currents during and after a voltage dip at the grid transfer point 8.
  • the upper graph in Fig. 8 shows the time course of the voltages (in per unit system, based on a generator) at the grid transfer point 8 and the busbar 3.
  • the voltage breaks for a duration of 625 ms to a value of 15%. Then the voltage goes up to the nominal value after a ramp. This course responds to the specifications of a local network operator.
  • the generator voltage falls to a value of about 50% in the first moment. Only after opening the switch 11 with a delay of 70 ms selected here does the voltage rise again due to the voltage drop across the resistor 10 '. After the end of the power failure (approx. 2.7 sec.), The switch 11 is closed again and the system returns to normal operation.
  • the setpoint of the controlled variable for the regulated load was the phase position of the generator voltage before the grid fault.
  • the short peak power of the controlled load 12 arises because the generator 1 has to be accelerated immediately when the fault occurs and must first be braked again by the load.
  • Uncontrolled generators are generators in which neither the active nor the reactive power is regulated. In regulated generators, the

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Eletrric Generators (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

La présente invention concerne un dispositif et un procédé qui permette de maintenir les générateurs (1) de production d'énergie électrique stables vis-à-vis du réseau pendant et après une défaillance du réseau, par exemple une chute de tension. Cette exigence est définie dans les conditions de raccordement au réseau de nombreux exploitants du réseau et doit être respectée pour les installation à partir d'une certaine puissance. Selon l'invention, en cas de défaillance du réseau, une charge (10, 10') est intercalée, et ainsi l'énergie qui ne plus être cédée au réseau électrique par la chute de tension, est absorbée par la charge (10,10').
EP10716735A 2009-04-10 2010-03-12 Alimentation en énergie d'un réseau électrique Withdrawn EP2417681A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA570/2009A AT508242B1 (de) 2009-04-10 2009-04-10 Energieeinspeisung in ein stromnetz
PCT/AT2010/000077 WO2010115224A2 (fr) 2009-04-10 2010-03-12 Alimentation en énergie d'un réseau électrique

Publications (1)

Publication Number Publication Date
EP2417681A2 true EP2417681A2 (fr) 2012-02-15

Family

ID=42735353

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10716735A Withdrawn EP2417681A2 (fr) 2009-04-10 2010-03-12 Alimentation en énergie d'un réseau électrique

Country Status (5)

Country Link
US (1) US20120098335A1 (fr)
EP (1) EP2417681A2 (fr)
AT (1) AT508242B1 (fr)
CA (1) CA2757353A1 (fr)
WO (1) WO2010115224A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102542082B (zh) * 2010-12-22 2016-06-01 五冶集团上海有限公司 空间钢结构施工图深化设计简化方法
DE102012101928B4 (de) 2011-03-07 2024-02-01 Sma Solar Technology Ag Leistungsmanagement zur dezentralen Stabilisierung eines Stromnetzes
US9971371B2 (en) * 2015-03-17 2018-05-15 Mitsubishi Electric Research Laboratories, Inc. Method for predicting a voltage collapse in a micro-grid connected to a power distribution network
WO2019051240A1 (fr) 2017-09-07 2019-03-14 Ossur Iceland Ehf Fixation d'orthèse thoraco-lombo-sacrée

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3309331B2 (ja) * 1994-04-14 2002-07-29 ローム株式会社 電源供給回路及びそれを用いた機器
JP2001333537A (ja) * 2000-05-23 2001-11-30 Meidensha Corp 電源設備
GB0526133D0 (en) * 2005-12-22 2006-02-01 Univ Newcastle Dynamic braking of electric generators for fault ride-through control
US20080112807A1 (en) * 2006-10-23 2008-05-15 Ulrich Uphues Methods and apparatus for operating a wind turbine
US8030791B2 (en) * 2008-07-31 2011-10-04 Rockwell Automation Technologies, Inc. Current source converter-based wind energy system
US8063515B2 (en) * 2008-10-10 2011-11-22 General Electric Company Compensation system for power transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010115224A2 *

Also Published As

Publication number Publication date
AT508242B1 (de) 2015-05-15
WO2010115224A3 (fr) 2010-12-02
US20120098335A1 (en) 2012-04-26
WO2010115224A2 (fr) 2010-10-14
AT508242A1 (de) 2010-11-15
CA2757353A1 (fr) 2010-10-14

Similar Documents

Publication Publication Date Title
EP2872777B1 (fr) Procédé pour commander un générateur électrique
DE102007017870B4 (de) Verfahren zum Betreiben einer Windenergieanlage bei Überspannungen im Netz
EP1557925B1 (fr) Convertisseur de puissance pour des générateurs avec puissance variable dynamiquement
DE60317183T2 (de) Steuer- und Schutzgerät für ein doppelgespeistes Induktionsgeneratorsystem
EP1805887B1 (fr) Systeme d'excitation statique pour une generatrice et procede de fonctionnement d'un systeme d'excitation de ce type
DE102008062356B4 (de) Verfahren und Stromerzeugungsanlage zum Stabilisieren eines Stromverteilungsnetzes nach der Klärung eines Netzfehlers
WO2018228901A1 (fr) Éolienne ou parc éolien servant à injecter une puissance électrique
EP3039764B1 (fr) Installation permettant le transfert d'une puissance électrique
DE102018105483A1 (de) Verfahren zum Betrieb einer Energieerzeugungsanlage und Wechselrichter für eine Energieerzeugungsanlage
DE102008034531A1 (de) Windenergieanlage mit doppelt gespeistem Asynchrongenerator und Umrichterregelung
AT508182B1 (de) Verfahren zum betreiben einer energiegewinnungsanlage, insbesondere windkraftanlage
AT508242B1 (de) Energieeinspeisung in ein stromnetz
DE102011000459B4 (de) Verfahren zur Lieferung von Blindstrom mit einem Umrichter sowie Umrichteranordnung und Energieversorgungsanlage
DE102013104916A1 (de) System und Verfahren zum Überspannungsschutz
DE102012101928A1 (de) Leistungsmanagement zur dezentralen Stabilisierung eines Stromnetzes
EP3815211A1 (fr) Onduleur comprenant une source de tension continue et une unité de commande
EP3046204B1 (fr) Éolienne
EP3297115A1 (fr) Système comprenant un dispositif d'accumulation d'énergie et un convertisseur d'énergie destiné à recevoir de l'énergie électrique provenant d'un réseau électrique et fournir l'énergie électrique au réseau électrique
EP4022733A1 (fr) Installation et procédé pour stabiliser un réseau électrique
EP2521240A2 (fr) Commutation électrique pour un parc éolien
DE102019208509A1 (de) Verfahren zur Fehlerbehandlung eines Fehlers in einer Gleichspannungsleitung sowie eine Stromrichteranordnung zum Durchführen des Verfahrens
EP3682522A1 (fr) Procédé pour faire fonctionner un accumulateur d'énergie
AT524421B1 (de) Verfahren zur zeitstaffelungsschutzkompatiblen selektiven netzkurzschlusserkennenden Überwachung des Betriebes eines elektrischen Energienetzes
EP3125401A1 (fr) Éolienne comprenant une alimentation d'autoconsommation a tension regulee
DE102013217963A1 (de) Multi-Generator-System

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110928

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120428