EP2417394A2 - Brennkammer mit helmholtzdämpfer - Google Patents

Brennkammer mit helmholtzdämpfer

Info

Publication number
EP2417394A2
EP2417394A2 EP10714236A EP10714236A EP2417394A2 EP 2417394 A2 EP2417394 A2 EP 2417394A2 EP 10714236 A EP10714236 A EP 10714236A EP 10714236 A EP10714236 A EP 10714236A EP 2417394 A2 EP2417394 A2 EP 2417394A2
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
helmholtz damper
burners
chamber according
helmholtz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10714236A
Other languages
English (en)
French (fr)
Other versions
EP2417394B1 (de
Inventor
Martin Andrea Von Planta
Dariusz Nowak
Adrian Schneider
Fulvio Magni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP2417394A2 publication Critical patent/EP2417394A2/de
Application granted granted Critical
Publication of EP2417394B1 publication Critical patent/EP2417394B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the present invention relates to a combustion chamber according to the preamble of claim 1.
  • thermoacoustic oscillations in frequency and amplitude are influenced by a variety of geometric and operating parameters of the combustion chamber, the expected vibrations can be predicted very difficult and incomplete in a new combustion chamber. It may therefore be that the Helmholtz damper used on the combustion chamber are not optimally adapted to the vibrations actually occurring in the combustion chamber, especially if this combustion chamber have to cover wide operating behavior.
  • the publication EP 02 782 607.2 has become known from the prior art, which shows how a Helmholtz damper is installed in a combustion chamber.
  • the final purpose here is to form the Helmholtz damper such that its damping frequency is adjustable, and in particular is designed to be continuously adjustable.
  • the damping can be easily adapted to the thermoacoustic behavior of the combustion chamber and optimized accordingly.
  • An exchange of parts or entire dampers is not required, so that can be dispensed with corresponding large-sized access options.
  • the adjustability of the Helmholtz damper the need for different resonant frequencies differently configured damper or damper parts manufacture and ready.
  • Helmholtz dampers are related to a combustion chamber of a gas turbine, which is operated with Vormischbrennern the newer generation.
  • These Helmholtz damper are provided on the inlet side of the combustion chamber, which is formed for example with two rings of premix burners and arranged therebetween, adjustable Helmholtz damper.
  • the gas turbine itself is enclosed by a gas turbine housing within which is a plenum filled with compressed air.
  • the plenum surrounds the combustion chamber, which is separated from the plenum by a combustion chamber housing.
  • the arrangement of the combustion chamber within the gas turbine is essentially the same as described in the aforementioned document EP-A1 -0 597 138.
  • the combustion chamber is separated on the inlet side by a front cover.
  • the combustion chamber is further ring-shaped and equipped with said Vormischbrennern, as shown for example in the basic protection rights EP-O 321 809 A1 or EP-O 704 657 A1, and in the following developments, all references here an integrating Form part of this application.
  • the premix burners are arranged in corresponding openings in the front cover and open into the combustion chamber.
  • Helmholtz dampers are provided between the burners. These Helmholtz damper each have a damping volume, which is composed of a fixed cylindrical and a variable cylindrical damping volume.
  • the damping volume is connected to the combustion chamber via a comparatively narrow connection channel.
  • the arrangement of connecting channel and damping volume forms a damping resonator whose resonant frequency is determined inter alia by the size of the damping volume.
  • the invention aims to remedy this situation.
  • the invention as characterized in the claims, the object is to design the execution of a Helmholtz damper of the type mentioned so that it can be used without fundamental modifications to the combustion chamber as needed, place and number manifold, and on the respective damping to be achieved provides a simple adjustment.
  • the Helmholtz damper designed according to the invention can be used instead of a remotely located premix burner of the known type.
  • premix burners due to the progress in premix combustion in the annular combustion chamber, premix burners can now be used whose number for the same power is less than the number of premix burners originally provided, so that some burner positions are no longer needed in such repowering of the annular combustion chamber and therefore the vacant position is also available.
  • Another advantage of the invention lies in the fact that the exact arrangement of the Helmholtz damper can be optimized by means of a previously carried out thermoacoustic simulation, bearing in mind that now sufficient Einstellvariationen are available, so that in the installation of such a Helmholtz damper not in any form is limited, neither in terms of the number, nor the position to be assigned within a composite of Vormischbrennern. Accordingly, these Helmholtz damper can be easily installed in the places where they also maximized Give damping effect, because if incorrectly positioning only a single Helmholtz damper, it may easily happen that overall no satisfactory effect is achieved.
  • Another advantage of the invention lies in the fact that the predetermined space conditions can be optimally utilized by a maximum damping volume by proposing the Helmholtz damper according to the invention not to provide the tuning tube upstream, as is usually the case, but to project deep into the damping volume , which has a positive effect on the space available for installation.
  • Another advantage of the invention is the fact that measures against the thermal load acting there is remedied on the exposed positioning of the Helmholtz damper. These measures consist of initially providing efficient impingement cooling, which cools the front surface of the Helmholtz damper.
  • the Helmholtz damper is equipped with a special transition piece with radial air supply holes through which the cooling medium is supplied.
  • Another significant advantage of the invention is the fact that the Helmholtz damper for adjusting the frequency directly from the outside, without removal or removal of any covers, is fully accessible.
  • a further advantage of the invention is that the Helmholtz damper is designed to not only have axial flexibility within the combustion chamber in relation to the other various components, but also to provide lateral compliance, so that there is a space constraint is not given during installation, and otherwise behaves compliant during operation.
  • FIG. 2 shows the installation of a Helmholtz damper according to the invention instead of a premix burner
  • FIG. 3 shows the installation of a Helmholtz damper according to the invention between two premix burners
  • FIG. 5 shows a section through the rear part of an inventive Helmholtz damper.
  • Fig. 1 is in a section in cross section, the inlet side of the combustion chamber of a gas turbine with, as already mentioned above, two rings of double-cone burners and an interposed, adjustable Helmholtz damper according to a belonging to the prior art design.
  • the gas turbine 10 is enclosed by a gas turbine housing 11 within which a filled with compressed air plenum 12 is located.
  • the plenum 12 surrounds the combustion chamber 16, which is separated from the plenum 12 by a combustion chamber housing 13.
  • the arrangement of the combustion chamber 16 within the gas turbine 10 is substantially the same as described in the aforementioned document EP-A1 -0 597 138.
  • the combustion chamber 16 is bounded on the inlet side by a front cover 26.
  • the combustion chamber 16 is annular and is equipped with so-called premix burners 14, 15, which are known by the applicant as EV burners or AEV burners, and are well known in the art, and are arranged in rings around the axis of the gas turbine, such as this is disclosed in EP-A1-0 597 138 or in EP 0 976 982 B1, in particular Fig. 2.
  • the premix burners 14, 15 are arranged in corresponding openings in the front cover 20 and open into the combustion chamber 16.
  • Helmholtz dampers 17 are provided between the rings with the burners 14, 15. These Helmholtz damper 17 have a damping volume that is composed of a fixed cylindrical and a variable cylindrical damping volume.
  • the damping volume is connected to the combustion chamber 16 via a comparatively narrow connection channel 18.
  • the arrangement of connecting channel 18 and damping volume forms a damping resonator whose resonant frequency is determined inter alia by the size of the damping volume, said connecting channel 18 is directly connected to the combustion chamber in communication.
  • the installation of such a Helmholtz damper requires a previous specific installation structure, which leads to a fixed positioning of the Helmholtz damper.
  • FIG. 2 shows an identical output configuration of the combustion chamber 16 as in FIG. 1.
  • the original premix burner 15 from FIG. 1 is replaced by a Helmholtz damper 30 according to the invention.
  • This Helmholtz damper 30 is designed so that it can therefore be replaced with a premix burner.
  • the Helmholtz damper 30 and in the front plate already existing there can be radially guided and axially freely installed, so that such an installation does not require any special mounting structure.
  • this Helmholtz damper 30 is discussed in more detail in the description of FIGS. 4 and 5.
  • the Helmholtz damper 30 thanks to its slender held embodiment, even within the annular combustion chamber between two Vormischbrennern 14, 15 install, so wherever a previously made thermoacoustic simulation provides appropriate information.
  • Such a configuration thus allows maximum flexibility in the positioning of the Helmholtz damper 30 within a composite of premix burners, the same also applies if diffusion burners should be provided instead of premix burners.
  • the insertion of the Helmholtz damper and its frequency setting can then be made readily from the outside, if a corresponding opening is provided in the gas turbine housing 1 1, as indicated in FIG. 3.
  • an individual regulation of the Helmholtz damper 30 can be accomplished from the outside.
  • the anchoring for the Helmholtz damper 30 can be achieved, for example, by utilizing the already existing suspension structure of the premix burner.
  • FIG. 4 shows the front part 30a of the installed Helmholtz damper 30, in which it can be seen that a tuning tube 31 is arranged on the inside.
  • the length of such a tuning tube 31, which is so important for the effect can be designed to be very flexible, since the available space within the tube length 30a is large, so that the tuning tube 31 does not have to be stored as usual, but rather deep inside Damping volume 35 can protrude.
  • the cooling medium 33 itself flows through a transition piece 34 and through radial or quasi-radial openings 33a mounted there into the interior of the damping volume 35.
  • the thermally consumed cooling medium then flows from the front side of the front surface 32, as can be seen from the illustrations in FIGS. 2 and 3.
  • the damping volume 35 is selected so that the damping frequency that can be achieved in the vicinity of the frequency of one of the expected in the combustion chamber thermoacoustic oscillations.
  • a tuning tube 31 The envisaged by the construction described in detail implementation of a tuning tube 31 is achieved that is possible by the design of this tuning tube 31, both in terms of its diameter, its wall thickness, as well as its length, in a newly put into operation gas turbine Helmholtz damper 30th to tune exactly to the occurring vibration frequencies and thus obtain the lowest possible means optimal damping.
  • the optimal installation position can be determined by a previously performed thermoacoustic simulation. However, this option is only possible if the installation specifications regarding a Helmholtz damper 30 according to FIGS. 2 and 3 are also to be fulfilled.
  • thermoacoustic simulation on the one hand, therefore, a finer tuning against thermoacoustic vibrations can be achieved by the proposed construction.
  • These adjustments which can be implemented individually or in combinations with one another, make it possible to cover a wide variety of oscillation frequencies by a single embodiment of a Helmholtz damper 30, thereby avoiding the need to use differently dimensioned Helmholtz dampers for damping different oscillation frequencies.
  • Fig. 5 shows the rear portion 30b of the Helmholtz damper 30, which is therefore pointed to two other advantages of the system.
  • a possible adjustment of the damping volume 35 is additionally provided in this case in that this adjustment is configured in particular so that it can be carried out in the installed state of the Helmholtz damper 30, as shown in FIGS. 2 and 3.
  • the end-side damping volume 35 is provided with a mecanicbüchse 36, which the end-side storage and management of a Piston rod 37 is used.
  • this piston rod 37 is connected to an adjusting piston 38 which detects the clear width of the damping volume 35.
  • the displaceability of the adjusting piston 38 which causes a change in volume of the active damping volume 35, is achieved by the displacement of said piston rod 37 in operative connection with an adjustable compression fitting 39 or by other means.
  • an additional component is provided which on the one hand can be applied to the turbine housing without extensive provisions, and on the other hand allows an immediate fine adjustment of the active damping volume as needed, especially when it comes to the damping behavior in transient load areas of the gas turbine, in which a damping correction against unforeseen thermoacoustic vibrations in the combustion chamber is necessary.
  • the Helmholtz damper 30 has a lateral adjustment, which proves to be extremely advantageous during installation or operation.
  • an apparent in FIGS. 2 and 3 flange 40 is provided, which ensures that a fixed point recording 41 of the Helmholtz damper 30 is given.
  • This intermediate flange 40 is in direct operative connection with an outer shell 42 of the Helmholtz damper 30.
  • the inclusion of lateral strains in operative connection with an approximately placed in the longitudinal center of the Helmholtz damper 30 adjusting piston 43 is ensured.
  • the intermediate flange 40 is arranged in the region of the front part of the combustion chamber housing 13 and anchored there, as apparent from FIGS. 2 and 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

Bei einer Brennkammer (16) für eine Gasturbine (10) wird mindestens ein Helmholtzdämpfer (30) angeordnet ist. Die Brennkammer besteht aus einer Anzahl Brenner oder diese ist mit einem Verbund von Brennern (14, 15) ausgerüstet. Der Helmholtzdämpfers (30) ist nach einem jeweiligen festgestellten oder vorgängig festgelegten Dämpfungsbedarf gegen die in der Brennkammer auftretenden thermoakustischen Schwingungsfrequenzen ausgelegt und ist innerhalb der disponierten Brenner (14, 15) oder an Stelle eines freien zur Verfügung stehenden Platzes innerhalb des Verbundes von Brennern angeordnet.

Description

Brennkammer mit Helmholtzdämpfer
Technisches Gebiet
Die vorliegende Erfindung betrifft eine Brennkammer gemäss Oberbegriff des Anspruchs 1.
Stand der Technik
Die Lösung des Problems um die thermoakustischen Schwingungen in modernen Low-NOx-Brennkammern von Gasturbinen gewinnt zunehmend an Bedeutung. Es ist deshalb im Stand der Technik verschiedentlich vorgeschlagen worden, an der Brennkammer einer Gasturbine sogenannte Helmholtzdämpfer anzuordnen, die aufgrund ihrer Konfiguration, bei der ein Dämpfungsvolumen über einen dünnen Verbindungskanal mit der Brennkammer in Verbindung steht, in der Lage sind, bestimmte Schwingungsfrequenzen in der Brennkammer effektvoll zu dämpfen.
Da die in einer Brennkammer auftretenden thermoakustischen Schwingungen in Frequenz und Amplitude von den unterschiedlichsten geometrischen und Betriebsparametern der Brennkammer beeinflusst werden, können bei einer neuen Brennkammer die zu erwartenden Schwingungen nur sehr schwierig und unvollständig vorausgesagt werden. Es kann daher sein, dass die an der Brennkammer eingesetzten Helmholtzdämpfer nicht optimal auf die tatsächlich auftretenden Schwingungen in der Brennkammer abgestimmt sind, insbesondere dann, wenn diese Brennkammer breite Betriebsverhalten abzudecken haben.
Es ist daher, beispielweise in EP-A1 -0 597 138, vorgeschlagen worden, die Helmholtzdämpfer ganz oder teilweise austauschbar auszubilden, um nachträgliche Veränderungen im Spektrum der auftretenden Resonanzfrequenzen vornehmen zu können. Hierzu ist im Turbinengehäuse als Massnahme ein sogenanntes Mannloch vorgeschlagen worden, durch welches der Austausch der Helmholtzdämpfer erfolgen kann.
Nachteilig ist hierbei, dass einerseits die Abstimmung auf eine Resonanzfrequenz nur in Stufen erfolgen kann, dass der Austausch von Dämpferteilen oder ganzen Dämpfern sehr aufwendig ist, und dass für den Austausch regelmässig ein erheblicher konstruktiver Aufwand am Turbinengehäuse und an der Brennkammer selbst getrieben werden muss.
Des Weiteren ist aus dem Stand der Technik die Druckschrift EP 02 782 607.2 bekannt geworden, welche zeigt, wie ein Helmholtzdämpfer in eine Brennkammer eingebaut ist. Der finale Zweck besteht hier darin, den Helmholtzdämpfer derart auszubilden, dass seine Dämpfungsfrequenz verstellbar ist, und insbesondere kontinuierlich verstellbar gestaltet ist. Hierdurch kann die Dämpfung auf einfache Weise dem thermoakustischen Verhalten der Brennkammer angepasst und entsprechend optimiert werden. Ein Austausch von Teilen oder von ganzen Dämpfern ist dabei nicht erforderlich, so dass auf entsprechende gross dimensionierte Zugangsmöglichkeiten verzichtet werden kann. Gleichzeitig entfällt durch die Verstellbarkeit der Helmholtzdämpfer die Notwendigkeit, für unterschiedliche Resonanzfrequenzen unterschiedlich konfigurierte Dämpfer oder Dämpferteile herzustellen und bereitzuhalten.
Der Einbau dieser Helmholtzdämpfer steht im Zusammenhang mit einer Brennkammer einer Gasturbine, welche mit Vormischbrennern der neueren Generation betrieben wird. Dabei werden diese Helmholtzdämpfer an der Eintrittsseite der Brennkammer vorgesehen, welche beispielsweise mit zwei Ringen von Vormischbrennern und dazwischen angeordneten, verstellbaren Helmholtzdämpfer ausgebildet ist. Die Gasturbine selbst ist von einem Gasturbinengehäuse umschlossen, innerhalb welchem sich ein mit komprimierter Luft gefülltes Plenum befindet. Das Plenum umgibt die Brennkammer, die von dem Plenum durch ein Brennkammergehäuse getrennt ist. Die Anordnung der Brennkammer innerhalb der Gasturbine ist im wesentlichen dieselbe wie in der eingangs genannten Druckschrift EP-A1 -0 597 138 beschrieben. In- nerhalb des Brennkammergehäuses ist die Brennkammer eintrittsseitig durch eine Frontabdek-
kung begrenzt. Die Brennkammer ist des Weiteren ringförmig ausgebildet und mit den genannten Vormischbrennern bestückt, wie sie beispielsweise in den Basis Schutzrechten EP-O 321 809 A1 oder EP-O 704 657 A1 , und in den folgenden Weiterentwicklungen, dargestellt sind, wobei sämtliche Druckschriften hier einen integrierenden Bestandteil dieser Anmeldung bilden.
Die Vormischbrenner sind in entsprechenden Öffnungen in der Frontabdeckung angeordnet und münden in die Brennkammer. Zur Dämpfung der in der Brennkammer beim Verbrennungsvorgang angeregten thermoakustischen Schwingungen sind zwischen den Brennern Helmholtzdämpfer vorgesehen. Diese Helmholtzdämpfer weisen jeweils ein Dämpfungsvolumen auf, das sich aus einem festen zylindrischen und einem variablen zylindrischen Dämpfungsvolumen zusammensetzt. Das Dämpfungsvolumen ist mit der Brennkammer über einen vergleichsweise engen Verbindungskanal verbunden. Die Anordnung aus Verbindungskanal und Dämpfungsvolumen bildet einen dämpfenden Resonator, dessen Resonanzfrequenz unter anderem von der Grosse des Dämpfungsvolumens bestimmt wird.
Eine solche Konfiguration zeigt deutlich auf, dass ein solcher Einbau der Helmholtzdämpfer zwischen den Vormischbrennern relativ viel Platz innerhalb der ringförmigen Brennkammer beansprucht, was zwangsläufig eine gewisse Einengung in der Auslegung und Anordnung der Vormischbrenner nach sich ziehen kann. Auch darf nicht verkannt werden, dass sowohl Einbau als auch Ausbau solcher Helmholtzdämpfer interdependent zu denjenigen der Vormischbrenner steht, womit die ursprünglich vorgesehene Anordnung zwischen Vormischbrennern und Helmholtzdämpfern später nicht mehr ohne weiteres verändert werden kann. Daraus ergeben sich Einschränkungen, welche individuell auf die jeweiligen Bedürfnisse beim Betrieb der Brennkammer hinsichtlich der schnellen und zielgerichteten Ergreifung von Massnahmen gegen das Aufkommen von thermoakustischen Schwingungen entgegen stehen oder diesen nicht in genügendem Masse gerecht werden. Darstellung der Erfindung
Hier will die Erfindung Abhilfe schaffen. Der Erfindung wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, die Ausführung eines Helmholtzdämpfers der eingangs genannten Art so zu gestalten, dass er ohne grundsätzliche Umbauten an der Brennkammer nach Bedarf, Ort und Anzahl mannigfach zum Einsatz gelangen kann, und auf die jeweiligen zu erzielenden Dämpfungen eine einfache Verstellmöglichkeit zur Verfügung stellt.
Die wesentlichen Vorteile der Erfindung sind darin zu sehen, dass der erfindungsgemäss ausgelegte Helmholtzdämpfer anstelle eines wegentfernten Vormischbrenners der bekannten Art eingesetzt werden kann. Insbesondere ist darauf hinzuweisen, dass durch den Fortschritt in der Vormischverbrennung bei Ringbrennkammer neuerdings Vormischbrenner zum Einsatz gelangen können, deren Anzahl für die gleiche Leistung kleiner als die Anzahl der ursprünglich vorgesehenen Vormischbrenner, so dass bei einem solchem Repowering der Ringbrennkammer einige Brennerpositionen nicht mehr benötigt werden und deshalb die frei gewordene Position auch zur Verfügung steht.
Somit ergibt sich hier eine unvorhergesehene Möglichkeit, dass für den Einbau der erfindungsgemässen Helmholtzdämpfer die freien resp. freigewordenen Brennerpositionen genutzt werden können, ohne Einhandlung von Nachteilen hinsichtlich des Brennkammerbetriebskonzeptes.
Ein weiterer Vorteil der Erfindung ist darin zu sehen, dass die genaue Anordnung des Helmholtzdämpfers mittels einer vorweg durchgeführten thermoakustischen Simulation optimiert werden kann, eingedenk der Tatsache, dass nunmehr genügende Einstellungsvariationen zur Verfügung stehen, so dass man beim Einbau eines solchen Helmholtzdämpfers nicht in irgendeiner Form eingeschränkt ist, weder von der Anzahl her, noch von der zuzuweisenden Position innerhalb eines Verbundes von Vormischbrennern. Demnach können diese Helmholtzdämpfer problemlos an den Stellen eingebaut werden, wo sie auch eine maximierte Dämpfungswirkung hergeben, denn bei falscher Positionierung nur eines einzelnen Helmholtzdämpfers kann es ohne weiteres vorkommen, dass gesamthaft gar keine zufriedenstellende Wirkung erzielt wird.
Ein weiterer Vorteil der Erfindung ist darin zu sehen, dass die vorgegebenen Platzverhältnisse durch ein maximales Dämpfungsvolumen optimal ausgenutzt werden können, indem der erfindungsgemässe Helmholtzdämpfer vorschlägt, das Abstimmungsrohr nicht vorgelagert vorzusehen, wie dies üblicherweise der Fall ist, sondern tief in das Dämpfungsvolumen hineinragen zu lassen, womit sich das positiv auf die Platzverhältnisse für den Einbau auswirkt.
Ein weiterer Vorteil der Erfindung ist darin zu sehen, dass auf die exponierte Positionierung des Helmholtzdämpfers Massnahmen gegen die dort wirkenden thermischen Belastung Abhilfe geschaffen wird. Diese Massnahmen bestehen darin, dass zunächst eine effiziente Prallkühlung vorgesehen wird, welche die Frontfläche des Helmholtzdämpfers kühlt. Zu diesem Zweck wird der Helmholtzdämpfer mit einem speziellen Übergangsstück mit radialen Luftzufuhrbohrungen ausgestattet, durch welche das Kühlmedium zugeführt wird.
Ein weiterer wesentlicher Vorteil der Erfindung ist darin zu sehen, dass der Helmholtzdämpfer zur Verstellung der Frequenz direkt von der Aussenseite her, ohne Ausbau oder Entfernen irgendwelcher Abdeckungen, vollumfänglich zugänglich ist.
Ein weiterer Vorteil der Erfindung ist darin zu sehen, dass der Helmholtzdämpfer so gestaltet ist, dass er innerhalb der Brennkammer in Relation zu den anderen verschiedenen Komponenten nicht nur eine axiale Flexibilität aufweist, sondern auch mit einer seitlichen Nachgiebigkeit versehen ist, so dass eine platzbezogene Einschränkung beim Einbau nicht gegeben ist, und sich auch sonst im Betrieb nachgiebig verhält.
Weitere Vorteile der Erfindung ergeben sich aufgabengemäss aus den abhängigen Ansprüchen. Kurze Erläuterung der Figuren
Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels im Zusammenhang mit der Zeichnung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind weggelassen worden. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Es zeigen:
Fig. 1 eine Konfiguration von Vormischbrenner mit dem Einbau eines HeIm- holtzdämpfer nach dem Stand der Technik;
Fig. 2 der Einbau eines erfindungsgemässen Helmholtzdämpfers an Stelle eines Vormischbrenners;
Fig. 3 der Einbau eines erfindungsgemässen Helmholtzdämpfers zwischen zwei Vormischbrennern;
Fig. 4 der vordere Teil des Helmholtzdämpfers mit gekühlter Frontfläche und
Abstimmrohr und
Fig. 5 einen Schnitt durch den hinteren Teil eines erfindungsgemässen Helmholtzdämpfers.
Wege zur Ausführung der Erfindung
In Fig. 1 ist in einem Ausschnitt im Querschnitt die Eintrittsseite der Brennkammer einer Gasturbine mit, wie bereits oben erwähnt, zwei Ringen von Doppelkegelbrennern und einem dazwischen angeordneten, verstellbaren Helmholtzdämpfer gemäss einer zum Stand der Technik gehörenden Ausführung. Die Gasturbine 10 ist von einem Gasturbinengehäuse 11 umschlossen, innerhalb dessen sich ein mit komprimierter Luft gefülltes Plenum 12 befindet. Das Plenum 12 umgibt die Brennkammer 16, die von dem Plenum 12 durch ein Brennkammergehäuse 13 getrennt ist. Die Anordnung der Brennkammer 16 innerhalb der Gasturbine 10 ist im wesentlichen dieselbe wie in der eingangs genannten Druckschrift EP-A1 -0 597 138 beschrieben. Innerhalb des Brennkammergehäuses 13 ist die Brennkammer 16 eintrittsseitig durch eine Frontabdeckung 26 begrenzt. Die Brennkammer 16 ist ringförmig ausgebildet und ist mit sogenannten Vormischbrennern 14, 15 bestückt, die von der Anmelderin als EV-Brenner oder AEV-Brenner genannt werden, und in Fachkreisen bestens bekannt sind, und in Ringen um die Achse der Gasturbine angeordnet sind, wie dies in der EP-A1 -0 597 138 oder in EP 0 976 982 B1 , insbesondere Fig. 2, offenbart ist.
Die Vormischbrenner 14, 15 sind in entsprechenden Öffnungen in der Frontabdeckung 20 angeordnet und münden in die Brennkammer 16. Zur Dämpfung der in der Brennkammer 16 beim Verbrennungsvorgang angeregten thermoakustischen Schwingungen sind zwischen den Ringen mit den Brennern 14, 15 Helmholtzdämp- fer 17 vorgesehen. Diese Helmholtzdämpfer 17 weisen ein Dämpfungsvolumen auf, dass sich aus einem festen zylindrischen und einem variablen zylindrischen Dämpfungsvolumen zusammensetzt. Das Dämpfungsvolumen ist mit der Brennkammer 16 über einen vergleichsweise engen Verbindungskanal 18 verbunden. Die Anordnung aus Verbindungskanal 18 und Dämpfungsvolumen bildet einen dämpfenden Resonator, dessen Resonanzfrequenz unter anderem von der Grosse des Dämpfungsvolumens bestimmt wird, wobei dieser Verbindungskanal 18 direkt mit der Brennkammer in Verbindung steht. Der Einbau eines solchen Helmholtzdämpfers bedingt einer vorhergehenden bestimmten Einbaustruktur, welche zu einer festen Positionierung der Helmholtzdämpfers führt.
Fig. 2 zeigt eine gleiche Ausgangkonfiguration der Brennkammer 16 wie in Fig. 1. Der ursprüngliche Vormischbrenner 15 aus Fig. 1 wird durch einen erfindungsge- mässen Helmholtzdämpfer 30 ersetzt. Dabei ist dieser Helmholtzdämpfer 30 so ausgelegt, dass er demnach mit einem Vormischbrenner ausgetauscht werden kann. Was diese Implementierung betrifft, kann der Helmholtzdämpfer 30 und in der dort bereits vorhandenen Frontplatte radial geführt und axial frei eingebaut werden, womit ein solcher Einbau keine spezielle Einbaustruktur mehr nötig macht. Auf die spezielle Ausführung dieses Helmholtzdämpfers 30 wird in der Beschreibung der Fig. 4 und 5 näher eingegangen.
Eine weitere Möglichkeit des Einbaues eines solchen Helmholtzdämpfers 30 wird unter Fig. 3 näher erläutert. Hier lässt sich der Helmholtzdämpfer 30, dank seiner schlank gehaltenen Ausführungsform, innerhalb der Ringbrennkammer sogar zwischen zwei Vormischbrennern 14, 15 einbauen, also immer dort, wo eine vorgängig vorgenommene thermoakustische Simulation entsprechende Informationen liefert. Eine solche Konfiguration lässt demnach höchste Flexibilität bei der Positionierung des Helmholtzdämpfers 30 innerhalb eines Verbundes von Vormischbrennern zu, wobei das Gleiche auch dann gilt, wenn statt Vormischbrenner Diffusionsbrenner vorgesehen werden sollten.
Die Einschiebung des Helmholtzdämpfers sowie dessen Frequenzeinstellung kann dann ohne weiteres von aussen vorgenommen werden, wenn im Gasturbinengehäuse 1 1 eine entsprechende Öffnung vorgesehen wird, wie dies in der Fig. 3 angedeutet ist. Damit lässt sich überdies eine individuelle Regulierung des Helmholtzdämpfers 30 von aussen bewerkstelligen. Innerhalb des Brennkammergehäuses 13 lässt sich die Verankerung für den Helmholtzdämpfer 30 beispielsweise unter Inanspruchnahme der bereits vorhandenen Aufhängestruktur der Vormischbrenner erreichen.
Fig. 4 zeigt der vordere Teil 30a des eingebauten Helmholtzdämpfers 30, bei welchem ersichtlich ist, dass ein Abstimmrohr 31 innenliegend angeordnet ist. Damit lässt sich die für die Wirkung so wichtige Länge eines solchen Abstimmrohres 31 sehr flexibel gestalten, denn der zur Verfügung stehende Platz innerhalb der Rohrlänge 30a ist an sich gross, so dass das Abstimmrohr 31 nicht wie üblicherweise vorgelagert werden muss, sondern inwendig tief in das Dämpfungsvolumen 35 hineinragen kann. Bei einer solchen Ausgestaltung lässt sich auch mit einer Frontfläche 32 operieren, die durch eine Kühlung betrieben wird, so dass das anschliessende Abstimmrohr 31 sowie das umliegende Dämpfungsvolumen 35 gegen die thermischen Belastungen aus dem Brennkammerraum optimal geschützt sind. Das Kühlmedium 33 selbst strömt über ein Übergangsstück 34 und durch dort angebrachte radiale oder quasi-radiale Öffnungen 33a in das Innere des Dämpfungsvolumens 35 Rieh- tung Frontfläche 32 des Helmholtzdämpfers 30, wobei die Frontfläche 32 vorzugsweise durch eine effiziente Prallkühlung gekühlt wird. Das thermisch verbrauchte Kühlmedium strömt dann frontseitig der Frontfläche 32 ab, wie dies aus den Darstellungen in den Fig. 2 und 3 ersichtlich ist. Grundsätzlich wird das Dämpfungsvolumen 35 so gewählt, dass die damit erzielbare Dämpfungsfrequenz in der Nähe der Frequenz einer der in der Brennkammer zu erwartenden thermoakustischen Schwingungen liegt. Die durch die hier näher beschriebene Konstruktion vorgesehene Implementierung eines Abstimmrohres 31 wird erreicht, dass durch die Ausgestaltung dieses Abstimmrohres 31 , sowohl hinsichtlich seines Durchmessers, dessen Wanddicke, als auch seiner Länge, möglich wird, bei einer neu in Betrieb zu nehmenden Gasturbine die Helmholtzdämpfer 30 genau auf die auftretenden Schwingungsfrequenzen abzustimmen und so mit geringsten Mitteln eine optimale Dämpfung zu erhalten. Hier kommt noch hinzu, dass durch eine vorgängig durchgeführte thermo- akustische Simulation die optimale Einbauposition eruiert werden kann. Diese Option ist aber nur möglich, wenn die Einbau-Vorgaben betreffend einen Helmholtzdämpfer 30 gemäss Fig. 2 und 3 auch zu erfüllen sind.
Einerseits wird also durch die thermoakustische Simulation die optimale Einbauposition eruiert, andererseits lässt sich eine feinere Abstimmung gegen thermoakustische Schwingungen durch die vorgeschlagene Konstruktion erzielen. Durch diese Abstimmungen, die einzeln oder in Kombinationen zueinander implementiert werden können, lassen sich die unterschiedlichsten Schwingungsfrequenzen durch eine einzelne Ausführung eines Helmholtzdämpfers 30 abdecken, womit vermieden wird, dass zur Dämpfung unterschiedlicher Schwingungsfrequenzen auch unterschiedlich dimensionierte Helmholtzdämpfer in Kombination eingesetzt werden müssen.
Fig. 5 zeigt den hinteren Teilabschnitt 30b des Helmholtzdämpfers 30, wobei mithin auf zwei weitere Vorzüge des Systems hingewiesen wird. Zum einen wird hier noch zusätzlich eine mögliche Verstellung des Dämpfungsvolumens 35 vorgesehen, indem diese Verstellung insbesondere so ausgestaltet ist, dass sie im eingebauten Zustand des Helmholtzdämpfers 30 durchführbar ist, wie dies in den Fig. 2 und 3 dargestellt ist. Zu diesem Zweck wird das endseitige Dämpfungsvolumen 35 mit einer Abschlussbüchse 36 versehen, welche der endseitigen Lagerung und Führung einer Kolbenstange 37 dient. Im Dämpfungsvolumen 35 ist diese Kolbenstange 37 mit einem Verstellkolben 38 verbunden, der die lichte Weite des Dämpfungsvolumens 35 erfasst. Die Verschiebbarkeit des Verstellkolbens 38, der eine Volumenveränderung des aktiven Dämpfungsvolumens 35 hervorruft, wird durch die Verschiebung der genannten Kolbenstange 37 in Wirkverbindung mit einer einstellbaren Klemmver- schraubung 39 oder mit anderen Mitteln erreicht. Damit wird eine zusätzliche Komponente zur Verfügung gestellt, welche einerseits ohne umfangreiche Vorkehrungen am Turbinengehäuse zur Anwendung gelangen kann, und andererseits nach Bedarf eine unmittelbare feine Einstellung des aktiven Dämpfungsvolumens ermöglicht, insbesondere wenn es sich um das Dämpfungsverhalten bei transienten Lastbereichen der Gasturbine handelt, bei welchen eine Dämpfungskorrektur gegen unvorhergesehene thermoakustische Schwingungen in der Brennkammer notwendig wird.
Zum anderen weist der Helmholtzdämpfer 30 eine seitliche Verstellmöglichkeit auf, welche sich beim Einbau oder im Betrieb als äusserst vorteilhaft erweist. Zu diesem Zweck wird ein in den Fig. 2 und 3 ersichtlicher Flansch 40 vorgesehen, der dafür sorgt, dass eine Fixpunktaufnahme 41 des Helmholtzdämpfers 30 gegeben ist. Dieser Zwischenflansch 40 steht in unmittelbarer Wirkverbindung mit einer Aussenscha- Ie 42 des Helmholtzdämpfers 30. Über diese Aussenschale 42 ist die Aufnahme seitlicher Dehnungen im Wirkverbindung mit einem etwa in der Längsmitte des Helmholtzdämpfers 30 platzierten Verstellkolben 43 gewährleistet. Vorzugsweise wird der Zwischenflansch 40 im Bereich der Frontpartie des Brennkammergehäuses 13 angeordnet und dort verankert, was aus den Fig. 2 und 3 sinngemäss hervorgeht.
Nach alldem, ist auf diese Weise möglich, mit minimierten Aufwendungen das Dämpfungsverhalten der eingesetzten Helmholtzdämpfer 17 an die tatsächlich während des Betriebes in der Brennkammer 16 auftretenden thermoakustischen Schwingungen optimal anzupassen, falls sich eine zusätzliche Notwendigkeit ergeben sollte, und dies ohne auf eine Abdeckung des Gasturbinengehäuses 1 1 zurückgreifen zu müssen. Bezugszeichenliste
Gasturbine Turbinengehäuse Plenum Brennkammergehäuse Brenner, Vormischbrenner Brenner, Vormischbrenner Brennkammer Helmholtzdämpfer nach Stand der Technik Verbindungskanal Zugangsöffnung Frontabdeckung Helmholtzdämpfer a Vorderer Teil des Helmholtzdämpfers b Hinterer Teil des Helmholtzdämpfers Abstimmrohr Frontfläche, gekühlt Kühlmedium a Öffnungen für die Einströmung des Kühlmediums Übergangsstück Dämpfungsvolumen Abschlussbüchse Kolbenstange Verstellkolben Klemmverschraubung Flansch Fixpunktaufnahme Aussenschale Verstellkolben

Claims

Patentansprüche
1. Brennkammer (16) für eine Gasturbine (10), an welcher Brennkammer (16) mindestens ein Helmholtzdämpfer (30) angeordnet ist, wobei die Brennkammer mit einer Anzahl Brenner oder mit einem Verbund von Brennern (14, 15) ausgerüstet ist, und wobei der Helmholtzdämpfers (30) nach einem jeweiligen festgestellten oder festgelegten Dämpfungsbedarf gegen die in der Brennkammer auftretenden thermoakustischen Schwingungsfrequenzen innerhalb der disponierten Brenner (14, 15) oder an Stelle eines freien zur Verfügung stehenden Platzes innerhalb des Verbundes von Brennern angeordnet ist.
2. Brennkammer nach Anspruch 1 , dadurch gekennzeichnet, dass der Helmholtzdämpfer (30) ein Dämpfungsvolumen (35) aufweist, dass in einem vorderen Teil (30a) des Dämpfungsvolumens (35) ein innenliegendes Abstimmrohr (31 ) angeordnet ist.
3. Brennkammer nach Anspruch 1 , dadurch gekennzeichnet, dass der Helmholtzdämpfer (30) ein Dämpfungsvolumen (35) aufweist, dass in einem hinteren Teil (30b) des Dämpfungsvolumens (35) eine auf die Grosse des Dämpfungsvolumens (35) wirkende Verstellvorrichtung (36, 37, 38, 39) angeordnet ist.
4. Brennkammer nach Anspruch 1 , dadurch gekennzeichnet, dass die Brenner Vormischbrenner sind.
5. Brennkammer nach Anspruch 1 , dadurch gekennzeichnet, dass der Helmholtzdämpfer (30) Mittel (41 , 42, 43) aufweist, welche eine seitliche Verstellung und/oder Dehnung gegenüber der ursprünglichen Längsachse zulassen.
6. Brennkammer nach Anspruch 1 , dadurch gekennzeichnet, dass die Brennkammer eine Ringbrennkammer ist, und dass die Brenner über eine oder mehrere Reihen auf der Frontabdeckung (20) angeordnet sind.
7. Brennkammer nach den Ansprüchen 1 und/oder 6, dadurch gekennzeichnet, dass der Helmholtzdämpfer (30) an Stelle eines Brenners (14, 15) eingesetzt ist.
8. Brennkammer nach den Ansprüchen 1 und/oder 6, dadurch gekennzeichnet, dass der Helmholtzdämpfer (30) zwischen zwei bestehenden Brennern (14, 14) eingesetzt ist.
9. Brennkammer nach einem der Ansprüche 1 -8, dadurch gekennzeichnet, dass das Dämpfungsvolumen (35) des Helmholtzdämpfers (30) kontinuierlich von aussen verstellbar ist.
10. Brennkammer nach einem der Ansprüche 1 -9, dadurch gekennzeichnet, dass eine zum Helmholtzdämpfer (30) gehörende Frontfläche (32) zur Brennkammer (16) gekühlt wird.
1 1. Brennkammer nach Anspruch 10, dadurch gekennzeichnet, dass die Kühlung über eine Prallkühlung bewerkstelligt wird.
12. Brennkammer nach einem der Ansprüche 1 -1 1 , dadurch gekennzeichnet, dass der Ort des Einbaues des Helmholtzdämpfers (30) und/oder der Bestimmung des vorzusehenden Dämpfungsvolumens (35) und/oder der geometrischen Gestaltung des Abstimmrohres (31 ) über eine vorgängig vorgenommene thermoakustische Simulation bestimmt werden.
EP10714236.6A 2009-04-11 2010-04-09 Brennkammer mit helmholtzdämpfer Active EP2417394B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00596/09A CH700799A1 (de) 2009-04-11 2009-04-11 Brennkammer mit Helmholtzdämpfer für eine Gasturbine.
PCT/EP2010/054701 WO2010115980A2 (de) 2009-04-11 2010-04-09 Brennkammer mit helmholtzdämpfer

Publications (2)

Publication Number Publication Date
EP2417394A2 true EP2417394A2 (de) 2012-02-15
EP2417394B1 EP2417394B1 (de) 2017-12-20

Family

ID=40578473

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10714236.6A Active EP2417394B1 (de) 2009-04-11 2010-04-09 Brennkammer mit helmholtzdämpfer

Country Status (5)

Country Link
EP (1) EP2417394B1 (de)
AU (1) AU2010233724B2 (de)
CH (1) CH700799A1 (de)
MY (1) MY160094A (de)
WO (1) WO2010115980A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197275B2 (en) 2016-05-03 2019-02-05 General Electric Company High frequency acoustic damper for combustor liners
US10513984B2 (en) 2015-08-25 2019-12-24 General Electric Company System for suppressing acoustic noise within a gas turbine combustor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH702594A1 (de) * 2010-01-28 2011-07-29 Alstom Technology Ltd Helmholtzdämpfer für den Einbau in die Brennkammer einer Gasturbine sowie Verfahren zum Einbau eines solchen Helmholtzdämpfers.
WO2015022222A1 (de) * 2013-08-15 2015-02-19 Siemens Aktiengesellschaft Hitzeschild mit mindestens einem helmholtzresonator
EP2848865A1 (de) 2013-09-12 2015-03-18 Alstom Technology Ltd Thermoakustisches Stabilisierungsverfahren
US10221769B2 (en) * 2016-12-02 2019-03-05 General Electric Company System and apparatus for gas turbine combustor inner cap and extended resonating tubes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674561A5 (de) 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
DE59208715D1 (de) * 1992-11-09 1997-08-21 Asea Brown Boveri Gasturbinen-Brennkammer
DE4435266A1 (de) 1994-10-01 1996-04-04 Abb Management Ag Brenner
DE59810344D1 (de) 1998-07-27 2004-01-15 Alstom Switzerland Ltd Verfahren zum Betrieb einer Gasturbinenbrennkammer mit gasförmigem Brennstoff
DE10058688B4 (de) * 2000-11-25 2011-08-11 Alstom Technology Ltd. Dämpferanordnung zur Reduktion von Brennkammerpulsationen
EP1476699B1 (de) * 2002-01-16 2013-11-13 Alstom Technology Ltd Brennkammer und dämpferanordnung zur reduzierung von brennkammerpulsationen in einer gasturbinenanlage
DE502004011481D1 (de) * 2004-06-07 2010-09-16 Siemens Ag Brennkammer mit einer Dämpfungseinrichtung zur Dämpfung von thermoakustischen Schwingungen
DE102005062284B4 (de) * 2005-12-24 2019-02-28 Ansaldo Energia Ip Uk Limited Brennkammer für eine Gasturbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010115980A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513984B2 (en) 2015-08-25 2019-12-24 General Electric Company System for suppressing acoustic noise within a gas turbine combustor
US10197275B2 (en) 2016-05-03 2019-02-05 General Electric Company High frequency acoustic damper for combustor liners

Also Published As

Publication number Publication date
MY160094A (en) 2017-02-28
WO2010115980A2 (de) 2010-10-14
AU2010233724B2 (en) 2015-06-18
WO2010115980A3 (de) 2011-10-20
EP2417394B1 (de) 2017-12-20
AU2010233724A1 (en) 2011-11-03
CH700799A1 (de) 2010-10-15

Similar Documents

Publication Publication Date Title
EP1476699B1 (de) Brennkammer und dämpferanordnung zur reduzierung von brennkammerpulsationen in einer gasturbinenanlage
EP2417394B1 (de) Brennkammer mit helmholtzdämpfer
DE10058688B4 (de) Dämpferanordnung zur Reduktion von Brennkammerpulsationen
EP2354659A1 (de) Helmholtzdämpfer für den Einbau in die Brennkammer einer Gasturbine sowie Verfahren zum Einbau eines solchen Helmholtzdämpfers
EP1483536B1 (de) Gasturbine
DE102005062284B4 (de) Brennkammer für eine Gasturbine
DE69305772T2 (de) Montage einer Kappe für eine Brennkammer mit mehreren Düsen
EP1738112B1 (de) Raketentriebwerk mit dämpfung von schwingungen der brennkammer durch resonatoren
DE102010016547B4 (de) Injektor mit integriertem Resonator
DE19640980B4 (de) Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer
EP1781988B1 (de) Hybridbrennerlanze
EP2182285A1 (de) Brennereinsatz für eine Gasturbinenbrennkammer und Gasturbine
EP1605209B1 (de) Brennkammer mit einer Dämpfungseinrichtung zur Dämpfung von thermoakustischen Schwingungen
DE102008016931A1 (de) System zur Reduktion der Brennkammerdynamik
DE112019004946B4 (de) Brennerkomponente, Brenner, Gasturbine und Herstellungsverfahren für Brennerkomponente
WO2005108869A1 (de) Brennkammer für gasturbine
EP3117148B1 (de) Brenneranordnung mit resonator
EP0990851B1 (de) Brennkammer für eine Gasturbine
EP2282120A1 (de) Brennkammeranordnung zur Dämpfung von thermoakustischen Schwingungen, Gasturbine und Verfahren zum Betrieb einer solchen Gasturbine
EP1596130B1 (de) Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in Brennkammern mit einstellbarer Resonatorfrequenz
WO2017097606A1 (de) Brennkammer mit resonatoren
EP2270397A1 (de) Gasturbinenbrennkammer und Gasturbine
DE10340825A1 (de) Gasturbine mit Laufspaltkontrolle
DE102015226079A1 (de) Brennkammervorrichtung und Gasturbinenvorrichtung
WO2012156186A1 (de) Brennkammerseitig verschraubte brennereinsatzplatte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111007

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VON PLANTA, MARTIN, ANDREA

Inventor name: SCHNEIDER, ADRIAN

Inventor name: MAGNI, FULVIO

Inventor name: NOWAK, DARIUSZ

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160122

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010014487

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F23M0099000000

Ipc: F23R0003000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/00 20060101AFI20170623BHEP

INTG Intention to grant announced

Effective date: 20170721

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 956721

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010014487

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180320

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010014487

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180409

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180409

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180409

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 956721

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100409

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240320

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 15