EP2406802A1 - Circuit de commande d'un actionneur électromagnétique pour un interrupteur à vide - Google Patents

Circuit de commande d'un actionneur électromagnétique pour un interrupteur à vide

Info

Publication number
EP2406802A1
EP2406802A1 EP10709995A EP10709995A EP2406802A1 EP 2406802 A1 EP2406802 A1 EP 2406802A1 EP 10709995 A EP10709995 A EP 10709995A EP 10709995 A EP10709995 A EP 10709995A EP 2406802 A1 EP2406802 A1 EP 2406802A1
Authority
EP
European Patent Office
Prior art keywords
switch
circuit
electromechanical switch
coil
electromechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10709995A
Other languages
German (de)
English (en)
Other versions
EP2406802B1 (fr
Inventor
Marc Bonjean
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Energy France SAS
Original Assignee
Schneider Electric Energy France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Energy France SAS filed Critical Schneider Electric Energy France SAS
Publication of EP2406802A1 publication Critical patent/EP2406802A1/fr
Application granted granted Critical
Publication of EP2406802B1 publication Critical patent/EP2406802B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/548Electromechanical and static switch connected in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1816Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/38Power arrangements internal to the switch for operating the driving mechanism using electromagnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/547Combinations of mechanical switches and static switches, the latter being controlled by the former

Definitions

  • the present invention relates to a high voltage switchgear magnetic actuator circuit which contains at least one permanent magnet and, more particularly, a high voltage device magnetic actuator circuit for a vacuum interrupter.
  • a high voltage device magnetic actuator is used to turn on or turn off a high voltage device.
  • the high voltage apparatus is switched on by closing the actuator and switching off the actuator.
  • a magnetic actuator generally comprises a closure coil used during closure and an opening coil used during opening.
  • the closing and opening coils of the magnetic actuators have a galvanic isolation. Despite this isolation, there persists between these coils, a residual magnetic coupling which makes the presence of a voltage on a coil generates a voltage on the other coil. Thus, when closing a magnetic actuator, the voltage applied to the closing coil of the actuator generates a voltage on the opening coil due to the residual coupling between the coils. In the case where an opening quickly follows the closure (case, by for example, short-circuit closure) the voltage generated on the opening coil is then opposed to the voltage of the closing signal thereby increasing the opening current and / or the opening time.
  • transistor switches For magnetic actuators equipped with electromechanical switches, the switching off time of the switches (duration of current rise in the coil, displacement of the contacts including the duration of the electric arc) becomes excessive. This is the reason why transistor switches have replaced electromechanical switches, the transistor switches being used to interrupt the current very quickly.
  • a major disadvantage of transistor switches lies in the most frequent failure mode of these components, namely their short-circuiting. The short-circuiting of transistor switches can occur in a variety of circumstances, for example:
  • FIG. 1 represents, by way of example, a magnetic actuator circuit for a closed coil transistor vacuum interrupter of the prior art.
  • the actuator circuit comprises a supply circuit A consisting, for example, of a charger 1 and a capacitor 2 connected in parallel with the charger 1, a coil 3, a transistor switch 4, a control circuit 5 of the switch transistor 4 and a permanent magnet (not shown in the figure).
  • the permanent magnet makes it possible to lock the core of the actuator in the position corresponding to the closed state of the vacuum bulbs in the absence of current in the coil or coils of the actuator.
  • the coil 3 and the transistor switch 4 are connected in series and form, between terminals P1 and P2, an assembly connected in parallel with the supply circuit A.
  • the transistor switch 4 is, for example, a transistor which receives on its gate the switching control signal delivered by the circuit 5.
  • the device controlled by the closing actuator circuit is connected between the terminals P1 and P2 (this device is not shown in the figure).
  • the accidental short-circuiting of the transistor causes the passage of a permanent current in the coil 3, which current induces a force of a few hundred to a few thousand Newtons.
  • This force causes a displacement of the contacts of the vacuum bulb of a few millimeters.
  • This displacement even partial in the case where there is no touch contact, is not acceptable.
  • the invention provides means capable of eliminating this disadvantage.
  • the invention relates to a high voltage switchgear magnetic actuator circuit for vacuum interrupter which comprises at least one permanent magnet and at least one coil connected in series with a transistor switch which receives on a terminal for controlling a first control signal which places the transistor switch in an on state or in a blocked state, characterized in that it comprises a first electromechanical switch connected in series with the transistor switch and the coil, the first electromechanical switch.
  • a second control signal which places the first electromechanical switch in an on state or a locked state
  • the first electromechanical switch and the transistor switch being, by default, in a locked state so that the second signal control: a) places the electromechanical switch in a passing state at a time q ui precedes the application of the first control signal which places the transistor switch in an on state, and b) restores the electromechanical switch to a locked state as soon as the transistor switch is restored to the off state.
  • a second electromechanical switch is mechanically connected to the first switch electromechanical so that it is the same command that controls the first electromechanical switch and the second electromechanical switch, the second electromechanical switch having a first terminal connected to a detection voltage and a second terminal connected to a voltage detection circuit.
  • a third electromechanical switch is connected in series between a first output terminal of a switch circuit which delivers the first control signal and the control terminal of the transistor switch, and
  • an electromechanical switch which belongs to an interlocking or tripping circuit which controls the control circuit is mechanically connected to the third electromechanical switch so that the same control signal controls the third electromechanical switch and the electromechanical switch which belongs to the circuit trigger.
  • a signal shaping circuit is placed in series between the third electromechanical switch and the control input of the transistor switch in order to extend the duration of the control signal which is applied. on the control input of the transistor switch.
  • a fourth electromechanical switch is connected in series between a second output terminal of a control circuit which delivers the second control signal and the control terminal of the first electromechanical switch
  • an electromechanical switch which belongs to a tripping circuit which controls the control circuit is mechanically connected to the fourth electromechanical switch so that the same control signal controls the fourth electromechanical switch and the electromechanical switch which belongs to the tripping circuit.
  • a signal shaping circuit is placed in series between the fourth electromechanical switch and the control input of the first electromechanical switch to lengthen the duration of the control signal being applied. on the control input of the first electromechanical switch.
  • a component mounted in parallel with the coil dissipates the energy released during the switching of the magnetic actuator circuit by limiting the overvoltages across the coil.
  • the magnetic actuator circuit comprises two separate coils, of which a first coil is used for a switching on a high voltage device and a second coil is used to switch off the high voltage device.
  • the coil is used for switching on or off a high voltage device.
  • the magnetic actuator circuit of the invention has the advantage of avoiding any accidental operation of the device it controls. Because of the presence of the electromechanical switch in the actuator circuit, the current that is established in the apparatus under the action of the actuator circuit is established a little more slowly than in the prior art. This additional time of the establishment of the current is however not a disadvantage because it remains, in all cases, lower or even much lower, the closing time or opening of the device.
  • FIG. 1 already described, represents a magnetic actuator circuit for a transistor-type vacuum interrupter closing coil of the prior art
  • FIG. 2 represents a magnetic actuator circuit for a closed coil transistor vacuum interrupter of the invention
  • FIG. 3 represents a first improvement of the actuator circuit represented in FIG. 2;
  • FIG. 4 represents a first variant of a second improvement of the actuator circuit represented in FIG. 2;
  • FIG. 5 represents a second variant of the second improvement of the actuator circuit represented in FIG. 2;
  • FIG. 6 represents a third improvement of the transistor actuator circuit shown in FIG. 2;
  • FIGS. 7A-7D show different variants of a transistor actuator circuit of the invention provided with a closing coil and an opening coil;
  • FIGS. 8A-8D show different variants of a transistor actuator circuit of the invention provided with a single coil for closing and opening; In all the figures, the same references designate the same elements.
  • FIG. 2 shows a transistor actuator circuit of the invention provided with a closing coil.
  • the actuator circuit of FIG. the invention comprises an electromechanical switch EM1 in series with the closing coil 3.
  • the elements EM1, 3 and 4 are connected in series between the terminals P1 and P2.
  • a coil b is placed, in a manner known per se, on the control circuit of the electromechanical switch EM1.
  • the control signal of the electromechanical switch EM1 is delivered by the control circuit 5.
  • the control circuit 5 is, for example, a microprocessor. In the idle state, the switches 4 and EM1 are in a blocked state (open circuit).
  • a control signal is applied to the switch EM1 in order to close it (on state).
  • a control signal is applied to the switch EM1 in order to close the latter, the switch EM1 being opened again as soon as the transistor switch 4 is placed again in open circuit.
  • the mesh which gathers the electromechanical switch EM1 is advantageously in open circuit.
  • a failure of the transistor control circuit 4 (shorting of the component) does not lead to any malfunction. No inadvertent operation of the apparatus controlled by the actuator circuit of the invention is then possible.
  • the most common failure mode of an electromechanical switch is a permanent open state of the switch. When a failure of the switch EM1 occurs, any control of the transistor switch 4 can no longer produce any effect and the device that is controlled by the actuator circuit can also no longer be controlled. In this state of failure of the switch EM1, the apparatus which is controlled by the actuator circuit therefore advantageously continues to be protected from any inadvertent operation.
  • the actuator circuit comprises a detection means which makes it possible to detect the state of closed switch (ie of glued relay) and this defect can then advantageously be indicated.
  • the detection means is realized by an electromechanical switch EMd.
  • the switch EMd has a first terminal connected to a detection voltage Vi and a second terminal connected to a control input of the control circuit 5.
  • the switch EMd is mechanically connected to the switch EM1 so that c is the same command that is applied to both switches.
  • the switches EMd and EM1 are closed or opened simultaneously.
  • the switch EM1 when the switch EM1 is in closed mode "glued", the switch EMd is also closed and the voltage Vi is detected by the control circuit. It is possible to improve the operation of the actuator circuit by severing either the control of the transistor switch 4 or the control of the electromechanical switch EM1 as shown, respectively, in FIGS. 4 and 5.
  • the actuator circuit In addition to the supply circuit A, of the coil 3, the electromechanical switch EM1, the coil b, the transistor switch 4 and the control circuit 5, the actuator circuit then comprises an additional electromechanical switch and uses the trigger circuit which controls, in a known manner in itself, the control circuit 5.
  • the tripping circuit comprises a pulse generator 7 and an electromechanical switch EMb which has a first terminal connected to a control input of the control circuit 5 and a second terminal connected to a voltage of Vref control.
  • the pulses delivered by the generator 7 are applied to the control terminal of the switch EMb, thus making it possible to apply the control voltage Vref to the control input of the circuit 5.
  • FIG. 4 represents an actuator circuit of the invention in which it is the control of the transistor switch that is cut off.
  • a third electromechanical switch EMa is placed in series between the switching circuit 5 and the control terminal of the transistor switch.
  • the electromechanical switches EMa and EMb are mechanically connected so that it is the same control signal applied to them.
  • a control pulse from the pulse generator 7 Control-t ⁇ it simultaneously EMa and EMb switches.
  • the switch EMa is in open circuit and, advantageously, no control is applied to the transistor switch 4.
  • the EMa switch closes and a control signal is applied to the transistor switch 4.
  • the pulses delivered by the pulse generator have a duration generally shorter than the duration of the pulse to be applied on the coil of the actuator.
  • a signal shaping circuit 6 is then placed in series between the control terminal of the transistor switch 4 and the switch EMa in order to extend the duration of the pulse which is applied to the transistor switch. For a pulse received with a duration substantially equal to 10 ms, the signal shaping circuit 6 then delivers, for example, a pulse of duration substantially equal to 100 ms which is a duration compatible with the duration of the pulses to be applied on the coil. of the actuator.
  • Such a circuit advantageously avoids the circulation of an undesired current in the actuator coil.
  • An electromechanical switch EMc is here placed in series between the control circuit 5 and the control terminal of the electromechanical switch EM1. As has been described above with reference to FIG. 4, elements EMc, EMb, 6 and 7 are used to prevent the flow of unwanted current in the actuator coil.
  • FIG. 6 represents a third improvement of the transistor actuator circuit shown in FIG. 2.
  • a component 8 placed in parallel with the coil 3, for example a varistor, in which the energy released during the commutations of the actuator circuit. Overvoltages across the coil are limited to an acceptable value and the current flow time is not significantly changed.
  • Figures 2-6 correspond to an embodiment of the invention in which the actuator circuit comprises a single coil which is used exclusively as a closing coil.
  • the invention also relates to other embodiments, namely:
  • the actuator circuit comprises two coils, one used for closing and the other for opening, and
  • FIG. 7A shows a first variant of a transistor actuator circuit of the invention provided with a closing coil and an opening coil.
  • the circuit comprises a supply circuit A constituted, for example, by a charger 1 and a capacitor 2, a closing coil 9 series with an electromechanical switch EM2 and with a transistor switch 11, an opening coil 10 in series with an electromechanical switch EM3 and with a transistor switch 12, a control circuit 5 which delivers the control signals to the different switches and relay coils b.
  • the series elements EM2, 9 and 11 constitute an assembly mounted between the terminals P1 and P2 in parallel with the assembly formed by the series elements EM3, 10 and 12.
  • the switches EM2 and 11 control the opening of the device which is connected between the terminals P1 and P2 (not shown in the figure) and the switches EM1 and 12 controls the closure of this same device.
  • FIG. 7B shows a second variant of a transistor actuator circuit of the invention provided with a closing coil and an opening coil.
  • the closing coil 9 is connected in series between two electromechanical switches EM4 and EM5 and the opening coil 10 is connected in series between two electromechanical switches EM6 and EM7.
  • the set of elements EM4, 9 and EM5 is connected in parallel with the set of elements EM6, 10 and EM7.
  • the electromechanical switches EM4 and EM6 have a common terminal which is the terminal Pl and the electromechanical switches EM5 and EM7 have a common terminal which is a first terminal of a transistor switch 13 whose second terminal is the terminal P2.
  • coils b are mounted on the control circuits of the various electromechanical switches. In the idle state, all switches (EM4, EM5, EM6, EM7, 13) are open (locked state).
  • the electromechanical switches EM4 and EM5 are simultaneously closed (turned on) under the action of the controls applied to them shortly before the transistor switch 13 is turned off (turned on) and simultaneously opened (turned off) as soon as the transistor switch 13 is again placed in an open circuit .
  • the electromechanical switches EM6 and EM7 are simultaneously closed (turned on) under the action of commands that are applied to them shortly before being closed (setting to the state) transistor switch 13 and simultaneously open (turned off) as soon as the transistor switch 13 is again placed in open circuit.
  • FIG. 7C shows a third variant of a transistor actuator circuit of the invention provided with a closing coil and an opening coil.
  • the closing coil 9 is connected in series between two transistor switches 14 and 15 and the opening coil 10 is connected in series between two transistor switches 16 and 17.
  • the set of elements 14, 9 and 15 is connected in parallel with all of the elements 16, 10 and 17.
  • the transistor switches 15 and 17 have a common terminal which is the terminal P2 and the transistor switches 14 and 16 have a common terminal which is a first terminal of an electromechanical switch EM8 whose second terminal is the terminal Pl.
  • coils b are mounted on the control circuits of the various electromechanical switches. In the idle state, all switches (14, 15, 16, 17, EM8) are open (off state).
  • the electromechanical switch EM8 is closed (turned on) under the action of a command which is applied to it shortly before the transistor switches 14 and 15 are turned off simultaneously (turned on) and then turned on (turned off) when the transistor switches 14 and 15 are again simultaneously switched on. placed in open circuit.
  • the electromechanical switch EM8 is closed (turned on) under the action of a command that is applied to it shortly before being closed. simultaneously (turning on) the transistor switches 16 and 17, and then open (turned off) as soon as the transistor switches 14 and 15 are again simultaneously placed in open circuit.
  • FIG. 7D shows a fourth variant of a transistor actuator circuit of the invention provided with an opening coil and a closing coil.
  • the opening coil 10 is connected in series between two electromechanical switches EM9 and EM10 and the closing coil 9 is connected in series between two transistor switches 18 and 19.
  • a first terminal of the coil 9 is electrically connected to a first terminal of the coil 10, which first terminals are electrically connected to a first terminal of the electromechanical switch EM9 and to a first terminal of the transistor switch 18, the second terminals of the electromechanical switch EM9 and the transistor switch 18 being electrically connected to the terminal Pl
  • the second terminal of the coil 10 is electrically connected to a first terminal of the electromechanical switch EM10 whose second terminal is electrically connected to the terminal P2 and the second terminal of the coil 9 is electrically connected to a first terminal of the transistor switch 19 whose second terminal is also connected to the terminal P2.
  • all switches EM9, EM10, 18, 19
  • the electromechanical switch EM10 is closed shortly before the transistor switch 18 is closed and then again opened as soon as the transistor switch 18 is placed in the open state. During this operation, switches EM9 and 19 remain in the open state. A stream II traverses the mesh formed by the elements 18, 10 and EM10 (see figure).
  • the electromechanical switch EM9 is closed shortly before the transistor switch 19 is closed and then again opened as soon as the transistor switch 19 is placed in the open state. During this operation, the switches EM10 and 18 remain in the open state.
  • a stream 12 traverses the mesh formed by the elements EM9, 9, 19. All the improvements described with reference to FIGS.
  • FIGS. 8A-8D show a first variant of a transistor actuator circuit of the invention provided with a single coil for opening and closing. This circuit corresponds to the circuit of FIG. 7A, which means that the switches EM2, EM3, 11 and 12 are connected to the terminals P1 and P2 as in the circuit of FIG. 7A.
  • the switches EM2 and 11 are connected in series as well as the switches EM3 and 12.
  • a first terminal of the single coil 20 is electrically connected to a common terminal which connects the switches EM2 and 11 and the second terminal of the single coil 20 is electrically connected to a common terminal which connects the switches EM3 and 12.
  • the closing circuit then consists of the elements EM3, 20 and 11 and the opening circuit of the elements EM2, 20 and 12.
  • c is the EM3 switch whose closing time frames the closing of the switch 11, the EM2 and 12 switches remaining open and, for the opening operation, it is the switch EM2 whose closure time frames that of the switch 12, the switches EM3 and 11 remaining open.
  • FIG. 8B shows a second variant of a transistor actuator circuit of the invention provided with a single coil for opening and closing.
  • the circuit of Figure 8B corresponds to that of Figure 7B. It comprises the electromechanical switches EM4, EM5, EM6 and EM7 and the transistor switch 13, which switches are connected to the respective terminals P1 and P2 in the same manner as in the circuit shown in FIG. 7B.
  • the single coil 20 has a first terminal connected to a common terminal of the EM4 and EM5 switches and a second terminal connected to a common terminal of the EM6 and EM7 switches.
  • the closing circuit comprises the switch EM4, the coil 20, the switch EM7 and the switch 13 and the opening circuit comprises the switch EM6, the coil 20, the switch EM5 and the switch 13.
  • FIG. 8C shows a third variant of a transistor actuator circuit of the invention provided with a single coil for opening and closing.
  • the circuit of Figure 8B corresponds to that of Figure 7B. It comprises four transistor switches 14, 15, 16, 17 and an electromechanical switch EM8.
  • the switches EM8, 14 and 16 are connected to the terminal P1 in the same manner as in the circuit shown in FIG. 7C.
  • the switches 15 and 17 are connected to the terminal P2 in the same manner as in the circuit shown in FIG. 7C.
  • the single coil 20 has a first terminal connected to a common terminal of the switches 14 and 15 and a second terminal connected to a common terminal of the switches 16 and 17.
  • the closing circuit comprises the switch EM8, the switch 14, the coil 20 and the switch 17 and the opening circuit comprises the switch EM8, the switch 16, the coil 20 and the switch 15. It is the same electromechanical switch EM8 which closes for the closing operation and for the operation of opening.
  • FIG. 8D shows a fourth variant of a transistor actuator circuit of the invention provided with a single coil for opening and closing.
  • the circuit of Figure 8D corresponds to that of Figure 7D. It comprises two electromechanical switches EM9, EM10 and two transistor switches 18 and 19.
  • the switches EM9 and 18 are connected to the terminal P1 in the same manner as in the circuit shown in FIG. 7D.
  • the switches EM10 and 19 are connected to the terminal P2 in the same manner as in the circuit represented in FIG. 7D.
  • the closing circuit comprises the switch 18, the coil 20 and the switch EM10 and the opening circuit comprises the switch EM9, the coil 20 and the switch 19.
  • the switch EM10 which is closes, the EM9 switch remaining open
  • the switch EM9 which closes, the switch EMlO remaining open.

Landscapes

  • Keying Circuit Devices (AREA)
  • Electronic Switches (AREA)

Abstract

L'invention concerne un circuit actionneur magnétique d'appareillage HT pour ampoule à vide qui comprend au moins un aimant permanent et au moins une bobine (3) montée en série avec un commutateur à transistor (4), dans lequel un commutateur électromécanique (EM1) est monté en série avec le commutateur à transistor (4) et la bobine (3), le premier commutateur électromécanique (EM1) et le commutateur à transistor (4) étant, par défaut, dans un état ouvert de sorte que le commutateur électromécanique se ferme à un instant qui précède l'instant de fermeture du commutateur à transistor et qu'il est rétabli dans un état ouvert dès lors que le commutateur à transistor est rétabli dans l'état ouvert. Application à la mise en circuit et la mise hors circuit des appareils moyenne et/ou haute tension.

Description

CIRCUIT DE COMMANDE D ' UN ACTIONNEUR ELECTROMAGNETIQUE POURUN INTERRUPTEURAVIDE
Domaine technique et art antérieur
La présente invention concerne un circuit actionneur magnétique d'appareillage haute tension qui contient au moins un aimant permanent et, plus particulièrement, un circuit actionneur magnétique d'appareil haute tension pour ampoule à vide.
Un actionneur magnétique d'appareil haute tension est utilisé pour la mise en circuit ou la mise hors circuit d'un appareil haute tension. La mise en circuit de l'appareil haute tension est réalisée par fermeture de l' actionneur et la mise hors circuit par ouverture de 1 ' actionneur .
Un actionneur magnétique comprend généralement une bobine de fermeture utilisée lors de la fermeture et une bobine d'ouverture utilisée lors de l'ouverture.
Les bobines de fermeture et d' ouverture des actionneurs magnétiques présentent une isolation galvanique. Malgré cette isolation, il persiste, entre ces bobines, un couplage magnétique résiduel qui fait que la présence d'une tension sur une bobine génère une tension sur l'autre bobine. Ainsi, lors de la fermeture d'un actionneur magnétique, la tension appliquée sur la bobine de fermeture de l' actionneur génère-t-elle une tension sur la bobine d'ouverture du fait du couplage résiduel entre les bobines. Dans le cas où une ouverture succède rapidement à la fermeture (cas, par exemple, de la fermeture sur court-circuit) la tension générée sur la bobine d'ouverture s'oppose alors à la tension du signal de fermeture accroissant ainsi le courant d'ouverture et/ou le délai d'ouverture. Pour les actionneurs magnétiques munis de commutateurs électromécaniques, la durée de coupure des commutateurs (durée de montée du courant dans la bobine, de déplacement des contacts y compris la durée de l'arc électrique) devient alors excessive. C'est la raison pour laquelle des commutateurs à transistor ont remplacé les commutateurs électromécaniques, les commutateurs à transistor permettant d' interrompre très rapidement le courant. Un inconvénient majeur des commutateurs à transistor réside toutefois dans le mode de défaillance le plus fréquent de ces composants, à savoir leur mise en court-circuit. La mise en court- circuit des commutateurs à transistor peut se produire en de multipples circonstances, à savoir, par exemple :
- un emballement thermique d'une partie du circuit de commande,
- une surtension d'origine interne, par exemple lors de la manœuvre de l'appareil, ou d'origine externe, par exemple dans le cas de la foudre, - un vieillissment précoce, un niveau de perturbations électromagnétiques au-delà de valeurs spécifiées,
- un mauvais câblage du contrôle commande. La figure 1 représente, à titre d'exemple, un circuit actionneur magnétique pour ampoule à vide à transistor à bobine de fermeture de l'art antérieur.
Le circuit actionneur comprend un circuit d'alimentation A constitué, par exemple, d'un chargeur 1 et d'un condensateur 2 monté en parallèle du chargeur 1, une bobine 3, un commutateur à transistor 4, un circuit de commande 5 du commutateur à transistor 4 et un aimant permanent (non représenté sur la figure) . L'aimant permanent permet de verrouiller le noyau de 1' actionneur dans la position qui correspond à l'état fermé des ampoules à vide en l'abscence de courant dans la ou les bobines de l' actionneur . La bobine 3 et le commutateur à transistor 4 sont montés en série et forment, entre des bornes Pl et P2, un ensemble monté en parallèle avec le circuit d'alimentation A. Le commutateur à transistor 4 est, par exemple, un transistor qui reçoit sur sa grille le signal de commande de commutation délivré par le circuit 5. L'appareil commandé en fermeture par le circuit actionneur est branché entre les bornes Pl et P2 (ce dispositif n'est pas représenté sur la figure) . Pour un tel circuit actionneur, quel que soit le signal de commande appliqué sur la grille du transistor, la mise en court-circuit accidentelle du transistor provoque le passage d'un courant permanent dans la bobine 3, lequel courant induit une force de quelques centaines à quelques milliers de Newtons. Cette force provoque un déplacement des contacts de l'ampoule à vide de quelques millimètres. Ce déplacement, même partiel dans le cas où il n'y a pas de toucher de contact, n'est pas acceptable. L'invention prévoit des moyens aptes à supprimer cet inconvénient.
Exposé de l'invention En effet, l'invention concerne un circuit actionneur magnétique d'appareillage haute tension pour ampoule à vide qui comprend au moins un aimant permanent et au moins une bobine montée en série avec un commutateur à transistor qui reçoit sur une borne de commande un premier signal de commande qui place le commutateur à transistor dans un état passant ou dans un état bloqué, caractérisé en ce qu'il comprend un premier commutateur électromécanique monté en série avec le commutateur à transistor et la bobine, le premier commutateur électromécanique recevant sur une borne de commande un deuxième signal de commande qui place le premier commutateur électromécanique dans un état passant ou un état bloqué, le premier commutateur électromécanique et le commutateur à transistor étant, par défaut, dans un état bloqué de sorte que le deuxième signal de commande : a) place le commutateur électromécanique dans un état passant à un instant qui précède l'application du premier signal de commande qui place le commutateur à transistor dans un état passant, et b) rétablit le commutateur électromécanique dans un état bloqué dès lors que le commutateur à transistor est rétabli dans l'état bloqué.
Selon une caractéristique supplémentaire de l'invention, un deuxième commutateur électromécanique est mécaniquement relié au premier commutateur électromécanique de sorte que c'est la même commande qui commande le premier commutateur électromécanique et le deuxième commutateur électromécanique, le deuxième commutateur électromécanique ayant une première borne reliée à une tension de détection et une deuxième borne reliée à un circuit de détection de tension.
Selon encore une autre caractéristique supplémentaire de l'invention :
- un troisième commutateur électromécanique est monté en série entre une première borne de sortie d'un circuit commutateur qui délivre le premier signal de commande et la borne de commande du commutateur à transistor, et
- un commutateur électromécanique qui appartient à un circuit d'enclenchement ou de déclenchement qui contrôle le circuit de commande est mécaniquement relié au troisième commutateur électromécanique de telle sorte que le même signal de commande commande le troisième commutateur électromécanique et le commutateur électromécanique qui appartient au circuit de déclenchement.
Selon encore une autre caractéristique supplémentaire de l'invention, un circuit de mise en forme de signal est placé en série entre le troisième commutateur électromécanique et l'entrée de commande du commutateur à transistor afin de rallonger la durée du signal de commande qui est appliqué sur l'entrée de commande du commutateur à transistor.
Selon encore une autre caractéristique supplémentaire de l'invention : - un quatrième commutateur électromécanique est monté en série entre une deuxième borne de sortie d'un circuit de commande qui délivre le deuxième signal de commande et la borne de commande du premier commutateur électromécanique, et
- un commutateur électromécanique qui appartient à un circuit de déclenchement qui contrôle le circuit de commande est mécaniquement relié au quatrième commutateur électromécanique de telle sorte que le même signal de commande commande le quatrième commutateur électromécanique et le commutateur électromécanique qui appartient au circuit de déclenchement .
Selon encore une autre caractéristique supplémentaire de l'invention, un circuit de mise en forme de signal est placé en série entre le quatrième commutateur électromécanique et l'entrée de commande du premier commutateur électromécanique afin de rallonger la durée du signal de commande qui est appliqué sur l'entrée de commande du premier commutateur électromécanique .
Selon encore une autre caractéristique supplémentaire de l'invention, un composant monté en parallèle de la bobine dissipe l'énergie libérée pendant les commutations du circuit actionneur magnétique en limitant les surtensions aux bornes de la bobine .
Selon encore une autre caractéristique supplémentaire de l'invention, le circuit actionneur magnétique comprend deux bobines distinctes parmi lesquelles une première bobine est utilisée pour une mise en circuit d'un appareil haute tension et une deuxième bobine est utilisée pour une mise hors circuit de l'appareil haute tension.
Selon encore une autre caractéristique supplémentaire de l'invention, la bobine est utilisée pour une mise en circuit ou pour une mise hors circuit d'un appareil haute tension.
Le circuit actionneur magnétique de l'invention présente l'avantage d'éviter toute manœuvre accidentelle de l'appareil qu'il commande. Du fait de la présence du commutateur électromécanique dans le circuit actionneur, le courant qui s'établit dans l'appareil sous l'action du circuit actionneur s'y établit un peu plus lentement que dans l'art antérieur. Ce délai supplémentaire de l'établissement du courant n'est toutefois pas un inconvénient car il demeure, dans tous les cas, inférieur, voire très inférieur, au délai de fermeture ou d'ouverture de l'appareil.
Brève description des figures
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture d'un mode de réalisation préférentiel fait en référence aux figures jointes parmi lesquelles : - La figure 1, déjà décrite, représente un circuit actionneur magnétique pour ampoule à vide à transistor à bobine de fermeture de l'art antérieur ; - La figure 2 représente un circuit actionneur magnétique pour ampoule à vide à transistor à bobine de fermeture de l'invention; - La figure 3 représente un premier perfectionnement du circuit actionneur représenté en figure 2 ;
- La figure 4 représente une première variante d'un deuxième perfectionnement du circuit actionneur représenté en figure 2 ;
- La figure 5 représente une deuxième variante du deuxième perfectionnement du circuit actionneur représenté en figure 2 ;
- La figure 6 représente un troisième perfectionnement du circuit actionneur à transistor représenté en figure 2 ;
- Les figures 7A-7D représentent différentes variantes d'un circuit actionneur à transistor de l'invention muni d'une bobine de fermeture et d'une bobine d'ouverture;
- Les figures 8A-8D représentent différentes variantes d'un circuit actionneur à transistor de l'invention muni d'une bobine unique pour la fermeture et l'ouverture ; Sur toutes les figures, les mêmes références désignent les mêmes éléments.
Exposé détaillé de modes de réalisation particuliers de
1' invention La figure 2 représente un circuit actionneur à transistor de l'invention muni d'une bobine de fermeture.
Outre le circuit d'alimentation A, l'aimant permanent (non représenté sur la figure) , la bobine de fermeture 3, le commutateur à transistor 4 et le circuit de commande 5, le circuit actionneur de l'invention comprend un commutateur électromécanique EMl en série avec la bobine de fermeture 3. Les éléments EMl, 3 et 4 sont montés en série entre les bornes Pl et P2. Une bobine b est placée, de façon connue en soi, sur le circuit de commande du commutateur électromécanique EMl .. Le signal de commande du commutateur électromécanique EMl est délivré par le circuit de commande 5. Le circuit de commande 5 est, par exemple, un microprocesseur. A l'état de repos, les commutateurs 4 et EMl sont dans un état bloqué (circuit ouvert) . Dès lors qu'il est envisagé de rendre passant le commutateur à transistor 4 (commutateur à transistor 4 fermé) , un signal de commande est appliqué au commutateur EMl afin de fermer celui-ci (état passant) . Ainsi, par exemple, 5ms avant de fermer le commutateur à transistor 4, un signal de commande est-il appliqué au commutateur EMl afin de fermer ce dernier, le commutateur EMl étant à nouveau ouvert dès que le commutateur à transistor 4 est placé à nouveau en circuit ouvert.
Ainsi, hormis pendant une durée sensiblement identique à celle du fonctionnement du commutateur à transistor 4, la maille qui rassemble le commutateur électromécanique EMl, la bobine 3 et le commutateur à transistor 4 est-elle avantageusement en circuit ouvert. Une défaillance du circuit de commande à transistor 4 (mise en court-circuit du composant) ne conduit à aucun dysfonctionnement. Aucune manœuvre intempestive de l'appareil commandé par le circuit actionneur de l'invention n'est alors possible. Le mode de défaillance le plus fréquent d'un commutateur électromécanique est une mise à l'état ouvert permanent du commutateur. Dès lors que se produit une défaillance du commutateur EMl, toute commande du commutateur à transistor 4 ne peut plus produire aucun effet et l'appareil qui est commandé par le circuit actionneur ne peut également plus être commandé. Dans cet état de défaillance du commutateur EMl, l'appareil qui est commandé par le circuit actionneur continue donc avantageusement d'être protégé de toute manœuvre intempestive.
L'autre mode de défaillance du commutateur EMl est le mode fermé « collé ». Selon un premier perfectionnement de l'invention représenté en figure 3, le circuit actionneur comprend un moyen de détection qui permet de détecter l'état de commutateur fermé (i.e. de relais collé) et ce défaut peut alors avantageusement être signalé. Le moyen de détection est réalisé par un commutateur électromécanique EMd. Le commutateur EMd a une première borne reliée à une tension de détection Vi et une deuxième borne reliée à une entrée de commande du circuit de commande 5. De façon connue en soi, le commutateur EMd est mécaniquement relié au commutateur EMl de telle sorte que c'est la même commande qui est appliquée aux deux commutateurs. Ainsi, les commutateurs EMd et EMl sont- ils fermés ou ouverts simultanément. Il s'en suit que, lorsque le commutateur EMl est en mode fermé « collé », le commutateur EMd est également fermé et la tension Vi est détectée par le circuit de commande. II est possible d'améliorer le fonctionnement du circuit actionneur en sectionnant soit la commande du commutateur à transistor 4, soit la commande du commutateur électromécanique EMl comme cela est représenté, respectivement, sur les figures 4 et 5. En plus du circuit d'alimentation A, de la bobine 3, du commutateur électromécanique EMl, de la bobine b, du commutateur à transistor 4 et du circuit de commande 5, le circuit actionneur comprend alors un commutateur électromécanique supplémentaire et utilise le circuit de déclenchement qui contrôle, de façon connue en soi, le circuit de commande 5. Le circuit de déclenchement comprend un générateur d' impulsions 7 et un commutateur électromécanique EMb qui a une première borne reliée à une entrée de contrôle du circuit de commande 5 et une deuxième borne reliée à une tension de contrôle Vref. Les impulsions délivrées par le générateur 7 sont appliquées sur la borne de commande du commutateur EMb, permettant ainsi d'appliquer la tension de contrôle Vref sur l'entrée de contrôle du circuit 5.
La figure 4 représente un circuit actionneur de l'invention dans lequel c'est la commande du commutateur à transistor qui est sectionnée. Un troisième commutateur électromécanique EMa est placé en série entre le circuit de commutation 5 et la borne de commande du commutateur à transistor. Les commutateurs électromécaniques EMa et EMb sont reliés mécaniquement de telle sorte que c'est le même signal de commande qui leur est appliqué. Ainsi, une impulsion de commande délivrée par le générateur d'impulsions 7 commande-t¬ elle simultanément les commutateurs EMa et EMb. En l'absence d'impulsions délivrées par le générateur 7, le commutateur EMa est en circuit ouvert et, avantageusement, aucune commande n'est appliquée sur le commutateur à transistor 4. Dès lors qu'une impulsion est délivrée par le générateur 7, le commutateur EMa se ferme et un signal de commande est appliqué sur le commutateur à transistor 4. Les impulsions délivrées par le générateur d' impulsions ont une durée généralement plus courte que la durée de l'impulsion qui doit être appliquée sur la bobine de l' actionneur . Un circuit de mise en forme de signal 6 est alors placé en série entre la borne de commande du commutateur à transistor 4 et le commutateur EMa afin de rallonger la durée de l'impulsion qui est appliquée au commutateur à transistor. Pour une impulsion reçue de durée sensiblement égale à 10ms, le circuit de mise en forme de signal 6 délivre alors, par exemple, une impulsion de durée sensiblement égale à 100ms qui est une durée compatible avec la durée des impulsions devant être appliquées sur la bobine de l' actionneur .
Un tel circuit permet avantageusement d'éviter la circulation d'un courant non désiré dans la bobine de l' actionneur .
En référence à la figure 5, c'est la commande du commutateur électromécanique EMl qui est sectionnée. Un commutateur électromécanique EMc est ici placé en série entre le circuit de commande 5 et la borne de commande du commutateur électromécanique EMl . De même que cela a été décrit ci-dessus en référence à la figure 4, les éléments EMc, EMb, 6 et 7 sont utilisés pour éviter la circulation d'un courant non désiré dans la bobine de l' actionneur .
La figure 6 représente un troisième perfectionnement du circuit actionneur à transistor représenté en figure 2. Selon ce troisième perfectionnement, il est prévu un composant 8 placé en parallèle de la bobine 3, par exemple une varistance, dans lequel est dissipée l'énergie libérée pendant les commutations du circuit actionneur. Les surtensions aux bornes de la bobine sont limitées à une valeur acceptable et la durée de circulation du courant n'est pas modifiée de manière notable.
Les figures 2-6 correspondent à un mode de réalisation de l'invention dans lequel le circuit actionneur comprend une seule bobine qui est utilisée exclusivement comme bobine de fermeture. L'invention concerne également d'autres modes de réalisation, à savoir :
- un mode de réalisation dans lequel le circuit actionneur comprend deux bobines, l'une utilisée pour la fermeture et l'autre pour l'ouverture, et
- un mode de réalisation dans lequel le circuit actionneur comprend une seule bobine utilisée soit pour la fermeture, soit pour l'ouverture. La figure 7A représente une première variante d'un circuit actionneur à transistor de l'invention muni d'une bobine de fermeture et d'une bobine d'ouverture.
Le circuit comprend un circuit d'alimentation A constitué, par exemple, d'un chargeur 1 et d'un condensateur 2, une bobine de fermeture 9 en série avec un commutateur électromécanique EM2 et avec un commutateur à transistor 11, une bobine d'ouverture 10 en série avec un commutateur électromécanique EM3 et avec un commutateur à transistor 12, un circuit de commande 5 qui délivre les signaux de commande aux différents commutateurs et des bobines de relais b. Les éléments en série EM2, 9 et 11 constituent un ensemble monté, entre les bornes Pl et P2, en parallèle de l'ensemble formé par les éléments en série EM3, 10 et 12. Les commutateurs EM2 et 11 contrôlent l'ouverture de l'appareil qui est branché entre les bornes Pl et P2 (non représenté sur la figure) et les commutateurs EMl et 12 contrôle la fermeture de ce même dispositif.
Tous les perfectionnements décrits en référence aux figures 3 à 6 pour le mode de réalisation de l'invention représenté en figure 2 s'appliquent, mutatis mutandis, au mode de réalisation représenté en figure 7A.
La figure 7B représente une deuxième variante d'un circuit actionneur à transistor de l'invention muni d'une bobine de fermeture et d'une bobine d'ouverture.
Selon cette deuxième variante, la bobine de fermeture 9 est montée en série entre deux commutateurs électromécaniques EM4 et EM5 et la bobine d'ouverture 10 est montée en série entre deux commutateurs électromécaniques EM6 et EM7. L'ensemble des éléments EM4, 9 et EM5 est monté en parallèle de l'ensemble des éléments EM6, 10 et EM7. Les commutateurs électromécaniques EM4 et EM6 ont une borne commune qui est la borne Pl et les commutateurs électromécaniques EM5 et EM7 ont une borne commune qui est une première borne d'un commutateur à transistor 13 dont la deuxième borne est la borne P2. De façon connue en soi, des bobines b sont montées sur les circuits de commande des différents commutateurs électromécaniques. A l'état de repos, tous les commutateurs (EM4, EM5 , EM6, EM7, 13) sont ouverts (état bloqué) .
Conformément à l'invention, lors de l'opération de fermeture de l'appareil qui est placé entre les bornes Pl et P2, les commutateurs électromécaniques EM4 et EM5 sont simultanément fermés (mise à l'état passant) sous l'action des commandes qui leur sont appliquées peu avant que ne soit fermé (mise à l'état passant) le commutateur à transistor 13, et simultanément ouverts (mise à l'état bloqué) dès lors que le commutateur à transistor 13 est à nouveau placé en circuit ouvert.
De même, lors de l'opération d'ouverture, les commutateurs électromécaniques EM6 et EM7 sont simultanément fermés (mise à l'état passant) sous l'action de commandes qui leur sont appliquées peu avant que ne soit fermé (mise à l'état passant) le commutateur à transistor 13 et simultanément ouverts (mise à l'état bloqué) dès lors que le commutateur à transistor 13 est à nouveau placé en circuit ouvert.
Tous les perfectionnements décrits en référence aux figures 3 à 6 pour le mode de réalisation de l'invention représenté en figure 2 s'appliquent, mutatis mutandis, à la variante représentée en figure 7B. La figure 7C représente une troisième variante d'un circuit actionneur à transistor de l'invention muni d'une bobine de fermeture et d'une bobine d'ouverture. Selon cette troisième variante, la bobine de fermeture 9 est montée en série entre deux commutateurs à transistor 14 et 15 et la bobine d'ouverture 10 est montée en série entre deux commutateurs à transistor 16 et 17. L'ensemble des éléments 14, 9 et 15 est monté en parallèle de l'ensemble des éléments 16, 10 et 17. Les commutateurs à transistor 15 et 17 ont une borne commune qui est la borne P2 et les commutateurs à transistor 14 et 16 ont une borne commune qui est une première borne d'un commutateur électromécanique EM8 dont la deuxième borne est la borne Pl. De façon connue en soi, des bobines b sont montées sur les circuits de commande des différents commutateurs électromécaniques. A l'état de repos, tous les commutateurs (14, 15, 16, 17, EM8) sont ouverts (état bloqué) .
Conformément à l'invention, lors de l'opération de fermeture de l'appareil qui est placé entre les bornes Pl et P2, le commutateur électromécanique EM8 est fermé (mise à l'état passant) sous l'action d'une commande qui lui est appliquée peu avant que ne soient fermés simultanément (mise à l'état passant) les commutateurs à transistor 14 et 15, puis ouvert (mise à l'état bloqué) dès lors que les commutateurs à transistor 14 et 15 sont à nouveau simultanément placés en circuit ouvert. De même, conformément à l'invention, lors de l'opération d'ouverture, le commutateur électromécanique EM8 est fermé (mise à l'état passant) sous l'action d'une commande qui lui est appliquée peu avant que ne soient fermés simultanément (mise à l'état passant) les commutateurs à transistor 16 et 17, puis ouvert (mise à l'état bloqué) dès lors que les commutateurs à transistor 14 et 15 sont à nouveau simultanément placés en circuit ouvert. Tous les perfectionnements décrits en référence aux figures 3 à 6 pour le mode de réalisation de l'invention représenté en figure 2 s'appliquent, mutatis mutandis, à la variante représentée en figure 7C. La figure 7D représente une quatrième variante d'un circuit actionneur à transistor de l'invention muni d'une bobine d'ouverture et d'une bobine de fermeture.
La bobine d'ouverture 10 est montée en série entre deux commutateurs électromécaniques EM9 et EMlO et la bobine de fermeture 9 est montée en série entre deux commutateurs à transistor 18 et 19. Une première borne de la bobine 9 est électriquement reliée à une première borne de la bobine 10, lesquelles premières bornes sont électriquement reliées à une première borne du commutateur électromécanique EM9 et à une première borne du commutateur à transistor 18, les deuxièmes bornes du commutateur électromécanique EM9 et du commutateur à transistor 18 étant électriquement reliées à la borne Pl. La deuxième borne de la bobine 10 est électriquement reliée à une première borne du commutateur électromécanique EMlO dont la deuxième borne est électriquement reliée à la borne P2 et la deuxième borne de la bobine 9 est électriquement reliée à une première borne du commutateur à transistor 19 dont la deuxième borne est également reliée à la borne P2. A l'état de repos, tous les commutateurs (EM9, EMlO , 18, 19) sont ouverts (état bloqué) .
Lors de l'opération d'ouverture de l'appareil qui est branché entre les bornes Pl et P2, le commutateur électromécanique EMlO est fermé peu avant que ne se ferme le commutateur à transistor 18 puis à nouveau ouvert dès lors que le commutateur à transistor 18 est placé à l'état ouvert. Durant cette opération, les commutateurs EM9 et 19 restent à l'état ouvert. Un courant II parcourt la maille formée par les éléments 18, 10 et EMlO (voir figure) . Lors de l'opération de fermeture, le commutateur électromécanique EM9 est fermé peu avant que ne se ferme le commutateur à transistor 19 puis à nouveau ouvert dès lors que le commutateur à transistor 19 est placé à l'état ouvert. Durant cette opération, les commutateurs EMlO et 18 restent à l'état ouvert. Un courant 12 parcourt la maille formée par les éléments EM9, 9, 19. Tous les perfectionnements décrits en référence aux figures 3 à 6 pour le mode de réalisation de l'invention représenté en figure 2 s'appliquent, mutatis mutandis, à la variante représentée en figure 7D. Les figures 8A-8D vont maintenant être décrites qui concernent les différentes variantes d'actionneur de l'invention dans lesquelles une bobine unique est utilisée, soit pour la fermeture, soit pour l'ouverture. Les circuits représentés sur les figures 8A-8D correspondent, respectivement, aux circuits représentés sur les figures 7A-7D. Par circuits qui se « correspondent », il faut entendre que, pour les circuits concernés, les commutateurs électromécaniques et à transistor sont identiques et sont connectés de la même manière aux bornes respectives Pl et P2. La figure 8A représente une première variante d'un circuit actionneur à transistor de l'invention muni d'une bobine unique pour l'ouverture et la fermeture. Ce circuit correspond au circuit de la figure 7A, ce qui signifie que les commutateurs EM2, EM3, 11 et 12 sont connectés aux bornes Pl et P2 comme dans le circuit de la figure 7A.
Les commutateurs EM2 et 11 sont montés en série de même que les commutateurs EM3 et 12. Une première borne de la bobine unique 20 est électriquement reliée à une borne commune qui relie les commutateurs EM2 et 11 et la deuxième borne de la bobine unique 20 est électriquement reliée à une borne commune qui relie les commutateurs EM3 et 12. Le circuit de fermeture est alors constitué des éléments EM3, 20 et 11 et le circuit d'ouverture des éléments EM2, 20 et 12. Pour l'opération de fermeture, c'est le commutateur EM3 dont la durée de fermeture encadre la fermeture du commutateur 11, les commutateurs EM2 et 12 restant ouverts et, pour l'opération d'ouverture, c'est le commutateur EM2 dont la durée de fermeture encadre celle du commutateur 12, les commutateurs EM3 et 11 restant ouverts.
Tous les perfectionnements décrits en référence aux figures 3 à 6 pour le mode de réalisation de l'invention représenté en figure 2 s'appliquent, mutatis mutandis, au mode de réalisation représenté en figure 8A.
La figure 8B représente une deuxième variante d'un circuit actionneur à transistor de l'invention muni d'une bobine unique pour l'ouverture et la fermeture. Le circuit de la figure 8B correspond à celui de la figure 7B. Il comprend les commutateurs électromécaniques EM4, EM5, EM6 et EM7 et le commutateur à transistor 13, lesquels commutateurs sont reliés aux bornes respectives Pl et P2 de la même manière que dans le circuit représenté en figure 7B. La bobine unique 20 a une première borne reliée à une borne commune des commutateurs EM4 et EM5 et une deuxième borne reliée à une borne commune des commutateurs EM6 et EM7. Le circuit de fermeture comprend le commutateur EM4, la bobine 20, le commutateur EM7 et le commutateur 13 et le circuit d'ouverture comprend le commutateur EM6, la bobine 20, le commutateur EM5 et le commutateur 13. Pour l'opération de fermeture, ce sont les commutateurs EM4 et EM7 qui sont fermés alors que les commutateurs EM5 et EM6 restent ouverts et, pour l'opération d'ouverture, ce sont les commutateurs EM5 et EM6 qui sont fermés alors que les commutateurs EM4 et EM7 restent ouverts. Tous les perfectionnements décrits en référence aux figures 3 à 6 pour le mode de réalisation de l'invention représenté en figure 2 s'appliquent, mutatis mutandis, au mode de réalisation représenté en figure 8B.
La figure 8C représente une troisième variante d'un circuit actionneur à transistor de l'invention muni d'une bobine unique pour l'ouverture et la fermeture. Le circuit de la figure 8B correspond à celui de la figure 7B. Il comprend quatre commutateurs à transistor 14, 15, 16, 17 et un commutateur électromécanique EM8. Les commutateurs EM8, 14 et 16 sont reliés à la borne Pl de la même manière que dans le circuit représenté en figure 7C. De même, les commutateurs 15 et 17 sont reliés à la borne P2 de la même manière que dans le circuit représenté en figure 7C. La bobine unique 20 a une première borne reliée à une borne commune des commutateurs 14 et 15 et une deuxième borne reliée à une borne commune des commutateurs 16 et 17. Le circuit de fermeture comprend le commutateur EM8, le commutateur 14, la bobine 20 et le commutateur 17 et le circuit d'ouverture comprend le commutateur EM8, le commutateur 16, la bobine 20 et le commutateur 15. C'est le même commutateur électromécanique EM8 qui se ferme pour l'opération de fermeture et pour l'opération d'ouverture.
Tous les perfectionnements décrits en référence aux figures 3 à 6 pour le mode de réalisation de l'invention représenté en figure 2 s'appliquent, mutatis mutandis, au mode de réalisation représenté en figure 8C. La figure 8D représente une quatrième variante d'un circuit actionneur à transistor de l'invention muni d'une bobine unique pour l'ouverture et la fermeture. Le circuit de la figure 8D correspond à celui de la figure 7D. Il comprend deux commutateurs électromécaniques EM9, EMlO et deux commutateurs à transistor 18 et 19. Les commutateurs EM9 et 18 sont reliés à la borne Pl de la même manière que dans le circuit représenté en figure 7D. De même, les commutateurs EMlO et 19 sont reliés à la borne P2 de la même manière que dans le circuit représenté en figure 7D. Le circuit de fermeture comprend le commutateur 18, la bobine 20 et le commutateur EMlO et le circuit d'ouverture comprend le commutateur EM9, la bobine 20 et le commutateur 19. Pour l'opération de fermeture, c'est le commutateur EMlO qui se ferme, le commutateur EM9 restant ouvert et, pour l'opération d'ouverture, à l'inverse, c'est le commutateur EM9 qui se ferme, le commutateur EMlO restant ouvert. Tous les perfectionnements décrits en référence aux figures 3 à 6 pour le mode de réalisation de l'invention représenté en figure 2 s'appliquent, mutatis mutandis, au mode de réalisation représenté en figure 8D.

Claims

REVENDICATIONS
1. Circuit actionneur magnétique d'appareillage haute tension pour ampoule à vide qui comprend au moins un aimant permanent et au moins une bobine (3) montée en série avec un commutateur à transistor (4) qui reçoit sur une borne de commande un premier signal de commande qui place le commutateur à transistor dans un état passant ou dans un état bloqué, caractérisé en ce qu'il comprend un premier commutateur électromécanique (EMl) monté en série avec le commutateur à transistor (4) et la bobine (3), le premier commutateur électromécanique recevant sur une borne de commande un deuxième signal de commande qui place le premier commutateur électromécanique (EMl) dans un état passant ou un état bloqué, le premier commutateur électromécanique et le commutateur à transistor étant, par défaut, dans un état bloqué de sorte que le deuxième signal de commande : a) place le commutateur électromécanique dans un état passant à un instant qui précède l'application du premier signal de commande qui place le commutateur à transistor dans un état passant, et b) rétablit le commutateur électromécanique dans un état bloqué dès lors que le commutateur à transistor est rétabli dans l'état bloqué.
2. Circuit actionneur selon la revendication 1, dans lequel un deuxième commutateur électromécanique (EMd) est mécaniquement relié au premier commutateur électromécanique (EMl) de sorte que c'est la même commande qui commande le premier commutateur électromécanique (EMl) et le deuxième commutateur électromécanique (EMd) , le deuxième commutateur électromécanique ayant une première borne reliée à une tension de détection (Vi) et une deuxième borne reliée à un circuit de détection de tension.
3. Circuit actionneur selon l'une quelconque des revendications 1 ou 2, dans lequel : - un troisième commutateur électromécanique (EMa) est monté en série entre une première borne de sortie d'un circuit commutateur (5) qui délivre le premier signal de commande et la borne de commande du commutateur à transistor (4), et - un commutateur électromécanique (EMb) qui appartient à un circuit de déclenchement (EMb, 7, Vref) qui contrôle le circuit de commande (5) est mécaniquement relié au troisième commutateur électromécanique (EMa) de telle sorte que le même signal de commande commande le troisième commutateur électromécanique et le commutateur électromécanique (EMb) qui appartient au circuit de déclenchement.
4. Circuit actionneur selon la revendication 3, dans lequel un circuit de mise en forme de signal (6) est placé en série entre le troisième commutateur électromécanique et l'entrée de commande du commutateur à transistor afin de rallonger la durée du signal de commande qui est appliqué sur l'entrée de commande du commutateur à transistor.
5. Circuit actionneur selon l'une quelconque des revendications 1 ou 2, dans lequel :
- un quatrième commutateur électromécanique (EMc) est monté en série entre une deuxième borne de sortie d'un circuit de commande (5) qui délivre le deuxième signal de commande et la borne de commande du premier commutateur électromécanique (EMl), et
- un commutateur électromécanique (EMb) qui appartient à un circuit de déclenchement (EMb, 7, Vref) qui contrôle le circuit de commande (5) est mécaniquement relié au quatrième commutateur électromécanique (EMc) de telle sorte que le même signal de commande commande le quatrième commutateur électromécanique (EMc) et le commutateur électromécanique (EMb) qui appartient au circuit de déclenchement.
6. Circuit actionneur selon la revendication 5, dans lequel un circuit de mise en forme de signal (6) est placé en série entre le quatrième commutateur électromécanique et l'entrée de commande du premier commutateur électromécanique afin de rallonger la durée du signal de commande qui est appliqué sur l'entrée de commande du premier commutateur électromécanique.
7. Circuit actionneur selon l'une quelconque des revendications précédentes dans lequel un composant (8) monté en parallèle de la bobine (3) dissipe l'énergie libérée pendant les commutations du circuit actionneur magnétique en limitant les surtensions aux bornes de la bobine.
8. Circuit actionneur selon l'une quelconque des revendications précédentes, caractérisé en ce qu' il comprend deux bobines distinctes parmi lesquelles une première bobine (9) est utilisée pour une mise en circuit d'un appareil haute tension et une deuxième bobine (10) est utilisée pour une mise hors circuit de l'appareil haute tension.
9. Circuit actionneur selon l'une quelconque des revendications 1 à 7, dans lequel la bobine (20) est utilisée pour une mise en circuit ou pour une mise hors circuit d'un appareil moyenne et/ou haute tension.
EP10709995.4A 2009-03-10 2010-03-09 Circuit de commande d'un actionneur electromagnetique pour un interrupteur a vide Not-in-force EP2406802B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0951492A FR2943170B1 (fr) 2009-03-10 2009-03-10 Circuit actionneur magnetique
PCT/EP2010/052949 WO2010102989A1 (fr) 2009-03-10 2010-03-09 Circuit de commande d'un actionneur électromagnétique pour un interrupteur à vide

Publications (2)

Publication Number Publication Date
EP2406802A1 true EP2406802A1 (fr) 2012-01-18
EP2406802B1 EP2406802B1 (fr) 2014-11-12

Family

ID=41061269

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10709995.4A Not-in-force EP2406802B1 (fr) 2009-03-10 2010-03-09 Circuit de commande d'un actionneur electromagnetique pour un interrupteur a vide

Country Status (7)

Country Link
US (1) US8569645B2 (fr)
EP (1) EP2406802B1 (fr)
CN (1) CN102414766B (fr)
AU (1) AU2010223361B2 (fr)
ES (1) ES2526250T3 (fr)
FR (1) FR2943170B1 (fr)
WO (1) WO2010102989A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130182479A1 (en) * 2012-01-17 2013-07-18 Hamilton Sundstrand Corporation Variable voltage reference in power rectification
US9343216B2 (en) * 2013-09-02 2016-05-17 Glen A. Robertson Energy efficient bi-stable permanent magnet actuation system
CN103916080B (zh) * 2014-04-17 2017-01-25 西北工业大学 小面积高线性度成形电路
US20150332883A1 (en) * 2014-05-14 2015-11-19 Eaton Corporation Electrical switching apparatus and linear actuator assembly therefor
FR3023648B1 (fr) * 2014-07-09 2016-07-01 Schneider Electric Ind Sas Dispositif d'arret d'urgence
EP3051568B1 (fr) * 2015-01-30 2019-03-13 General Electric Technology GmbH Mécanisme de déclenchement d'un disjoncteur de haute tension
CN105470041A (zh) * 2015-12-16 2016-04-06 国网浙江省电力公司电力科学研究院 快速高压开关
CN109690718B (zh) * 2016-08-26 2020-04-24 三菱电机株式会社 电磁操作机构的驱动电路
EP3532333B1 (fr) 2016-10-25 2022-12-21 CPS Technology Holdings LLC Systèmes et procédés de dispositifs de commutation en parallèle de modules de batteries
CN106409607B (zh) * 2016-11-30 2018-09-25 滁州学院 继电器简单快速切换型的永磁断路器分合闸智能控制模块
JP2021082752A (ja) * 2019-11-21 2021-05-27 豊興工業株式会社 ソレノイド駆動回路
EP4360114A1 (fr) * 2021-07-08 2024-05-01 Astronics Advanced Electronic Systems Corp. Procédé et appareil pour gérer un rebondissement de contact de contacteur/relais dans des conditions transitoires

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790862A (en) * 1972-12-21 1974-02-05 Square D Co Excitation control circuit for electromagnet coil
US4860157A (en) * 1988-04-25 1989-08-22 General Electric Company Molded case circuit breaker actuator-accessory module
DE4034485A1 (de) * 1990-10-30 1992-05-07 Ernst H Grundmann Niederspannungsschaltgeraet
US5375027A (en) * 1992-09-29 1994-12-20 General Dynamics Corporation Fail safe cartridge fire unit
DE29614718U1 (de) * 1996-08-13 1996-10-17 Siemens AG, 80333 München Auslöser
DE19734589B4 (de) * 1997-04-13 2005-12-08 Elan Schaltelemente Gmbh & Co. Kg Elektronischer Sicherheitsbaustein
US6013889A (en) * 1997-06-02 2000-01-11 Allen-Bradley Company, Llc Method for retaining a movable contact in a circuit interrupter
DE19731269B4 (de) * 1997-07-22 2006-02-23 Hager Electro Gmbh Vorrichtung zum Schalten von elektrischen Kontakten
DE19929572A1 (de) * 1999-06-22 2001-01-04 Siemens Ag Magnetischer Linearantrieb
JP4284876B2 (ja) * 2001-03-13 2009-06-24 パナソニック株式会社 電気床暖房装置
US7715168B2 (en) * 2006-05-08 2010-05-11 Asco Power Technologies Lp Controlled solenoid drive circuit
US7804038B2 (en) * 2007-09-28 2010-09-28 Rockwell Automation Technologies, Inc. Multi-vacuum contactor control system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010102989A1 *

Also Published As

Publication number Publication date
FR2943170B1 (fr) 2013-03-22
CN102414766A (zh) 2012-04-11
ES2526250T3 (es) 2015-01-08
AU2010223361B2 (en) 2014-09-04
WO2010102989A1 (fr) 2010-09-16
CN102414766B (zh) 2014-10-22
US8569645B2 (en) 2013-10-29
US20110315663A1 (en) 2011-12-29
EP2406802B1 (fr) 2014-11-12
FR2943170A1 (fr) 2010-09-17
AU2010223361A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
EP2406802B1 (fr) Circuit de commande d'un actionneur electromagnetique pour un interrupteur a vide
FR2584858A1 (fr) Interrupteur de circuit sans formation d'arc
FR2738664A1 (fr) Dispositif hybride utilisant l'effet miller pour la protection des contacts electriques contre la formation d'arcs
CA2252622A1 (fr) Dispositif de commande d'une charge inductive
EP2899343B1 (fr) Dispositif anti-rémanence pour serrure électromagnétique
EP0204624B1 (fr) Dispositif de surveillance d'état d'un commutateur électrique et relais électrique comportant application
EP1042773B1 (fr) Relais hybride de puissance
FR2960265A1 (fr) Dispositif de demarrage de moteur thermique
EP2842151B1 (fr) Circuit actionneur de commande de disjoncteur
EP1058785B1 (fr) Dispositif pour la commande d'un demarreur de vehicule automobile
EP3291271B1 (fr) Procédé de commande d'un dispositif d'actionnement, dispositif d'actionnement et appareil de commutation associés
FR2997196A1 (fr) Circuit de test de disjoncteur haute tension a courant continu
FR3036222A1 (fr) Procede de commande d'un changement d'etat de fonctionnement d'un organe electromecanique, par exemple un relais, et dispositif correspondant
EP2555216B1 (fr) Appareil électrique comportant deux bornes de commande pour mettre un organe mobile sélectivement en position de repos et en position de travail
EP3699942B1 (fr) Système d'actionnement pour une ampoule à vide
EP0864744B1 (fr) Perfectionnement aux dispositif pour la commande d'un contacteur de démarreur de véhicule automobile
EP4139946B1 (fr) Disjoncteur a commande de declenchement electronique
EP0834975A1 (fr) Dispositif de distribution électrique terminale à bloc limiteur hybride
EP4167261A1 (fr) Dispositif de commutation électrique, système de commutation et procédé associés
EP1473749B1 (fr) Dispositif de commande à hystérésis
WO2005001868A1 (fr) Appareil electrique interrupteur a plusieurs actionneurs.
FR2896346A1 (fr) Ensemble comprenant un coupe-circuit d'une batterie d'alimentation qui comporte un circuit electronique adapte a etre isole de la batterie d'alimentation
FR2459542A1 (fr) Dispositif de commutation de circuits a courant continu permettant notamment de supprimer la formation d'arcs et de reduire les ecarts de tension dus aux commutations
FR2860338A1 (fr) Relais pour appareil electrique en courant continu
FR3089916A1 (fr) Dispositif de pré-charge d’un réseau électrique de puissance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140604

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 696191

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010020119

Country of ref document: DE

Effective date: 20141224

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2526250

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150108

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141112

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 696191

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150312

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150312

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150213

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010020119

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed

Effective date: 20150813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150309

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160310

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160308

Year of fee payment: 7

Ref country code: GB

Payment date: 20160309

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160324

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100309

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170214

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010020119

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170309

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170309

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180310

PLAA Information modified related to event that no opposition was filed

Free format text: ORIGINAL CODE: 0009299DELT

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

R26N No opposition filed (corrected)

Effective date: 20150813

RIN2 Information on inventor provided after grant (corrected)

Inventor name: BONJEAN, ELOISE

26N No opposition filed

Effective date: 20150813