EP2390604A1 - Procédé et dispositif de séparation d'un mélange de fluide par distillation à basse température, notamment pour la production de crypton pur - Google Patents

Procédé et dispositif de séparation d'un mélange de fluide par distillation à basse température, notamment pour la production de crypton pur Download PDF

Info

Publication number
EP2390604A1
EP2390604A1 EP11003607A EP11003607A EP2390604A1 EP 2390604 A1 EP2390604 A1 EP 2390604A1 EP 11003607 A EP11003607 A EP 11003607A EP 11003607 A EP11003607 A EP 11003607A EP 2390604 A1 EP2390604 A1 EP 2390604A1
Authority
EP
European Patent Office
Prior art keywords
separation column
buffer
container
column
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11003607A
Other languages
German (de)
English (en)
Inventor
Robert Eichelmann
Alexander Dr. Alekseev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201010021797 external-priority patent/DE102010021797A1/de
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP11003607A priority Critical patent/EP2390604A1/fr
Publication of EP2390604A1 publication Critical patent/EP2390604A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04745Krypton and/or Xenon
    • F25J3/04751Producing pure krypton and/or xenon recovered from a crude krypton/xenon mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/34Krypton
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the invention relates to a method according to the preamble of patent claim 1.
  • the process is carried out at low temperature, ie well below ambient temperature, in particular below 200 K, in particular below 150 K. It can for example be used to obtain liquid pure krypton (boiling point 120 K at 1.013 bar) by separating volatile components.
  • the separation column is cooled by a top condenser which simultaneously serves to generate reflux liquid and to liquefy the product.
  • the top condenser is designed as a heat exchanger, which each has a group of passages for the cooling medium and for the condensation of the top gas.
  • the separation column may comprise a bottom evaporator, which is heated, for example, electrically or by indirect heat exchange with a heating medium.
  • FIG. 1 shown schematically.
  • the fluid mixture to be separated is introduced as feed fluid 1 into a separation column 2, in the example in liquid form.
  • the separation column has at least one mass transfer section 3, 4 which contains mass transfer elements which consist of ordered or unordered packing, mass transfer trays or a combination of these types of mass transfer elements.
  • a top condenser 5 is arranged, which is cooled with a cooling medium 6.
  • the top gas of the separation column flowing out of the top of the top mass transfer section 3 is at least partially condensed.
  • the condensate flows back into the column and is fed to a first part as reflux to the upper mass transfer section 3.
  • a second part 8 is collected in a cup 7 and introduced via a pipe and a valve 9 in a buffer tank 10. From the buffer tank is - usually intermittently - Removed a liquid product stream 11.
  • formed gas is returned via a further pipe and a valve 13 as a gaseous reflux 12 in the head of the separation column 2 and the top condenser.
  • the separation column 2 also has a bottom evaporator 14, which is operated here with a heating medium 15, which enters into indirect heat exchange with the bottom liquid of the column. At the bottom, a residual stream 16 is removed liquid, with the unwanted heavier volatile impurities leave the separation column.
  • the liquid stream 8 to the buffer tank is at its boiling point. Even with good insulation heat is introduced into the buffer tank, which has no further source of cold next to the incoming liquid 8. Therefore, the circulation stream from the separation column to the buffer tank (8) and back as a gaseous return flow (12) must be operated at a relatively high throughput in order to compensate for the amount of heat introduced into the buffer tank. Correspondingly smaller is the amount of liquid product stream 11 which can be withdrawn from the buffer container as the final product. In addition, it may be difficult to control the separation column so that set stable liquid levels.
  • the invention has for its object to provide a method of the type mentioned above and a corresponding device that can be operated particularly low and in which in particular the disadvantages described are avoided.
  • the liquid buffer volume of the buffer tank is greater than the mass transfer volume of the separation column.
  • the liquid buffer volume is more than twice, preferably more than eight times, the mass transfer volume.
  • the "liquid buffer volume” of the buffer container is to be understood as meaning the maximum volume that can be filled with liquid during the orderly operation of the method and thus serve to buffer the condensate from the top condenser.
  • the "mass transfer volume" of the separation column encloses all mass transfer elements and the associated distribution elements. For an ordered (structured) packing or disordered (unstructured) pack, this volume ranges from the topmost manifold to the bottom of the bottommost mass transfer layer. In a pure tray column, the mass transfer volume encloses all trays including the space between the trays.
  • the invention results in a particularly easy-to-control process; There are (with closed product line) a steadily increasing liquid level in the buffer tank and a stable liquid level in the bottom of the column.
  • the heat input into the buffer container has no direct influence on the product yield in the method according to the invention.
  • the buffer tank can be completely emptied without affecting the operation of the separation column.
  • the system is easier by eliminating a return line from the buffer tank to the top condenser. This requires an unusual compared to the separation column and the top condenser large buffer tank, especially in comparison to a conventional condenser tank whose size is adapted to the volume of the top condenser and / or to the diameter of the separation column.
  • the separation column and the buffer tank are designed as communicating vessels.
  • the top gas of the separation column flows directly into the gas space of the buffer container and the top condenser arranged there, without the need for a pipeline.
  • the buffer tank and the top condenser only a single container sealed to the outside is required.
  • the separation column may be arranged in a separate container from the buffer container, wherein the head gas is introduced via a head gas line into the top condenser.
  • the head gas is introduced via a head gas line into the top condenser.
  • the invention also relates to a device for separating a fluid mixture by cryogenic distillation according to the claims 4 to 7, as well as an application of the method or the device for pure Krypton beltung by separation of less volatile impurities according to claim 8.
  • the fluid mixture to be separated is introduced as feed fluid 1 into a separation column 2, in the example in liquid form.
  • the separation column has at least one mass transfer section 3, 4 containing mass transfer elements, each consisting of ordered or unordered packing, mass transfer trays or a combination of these types of mass transfer elements. In the example, only ordered packing elements are used as mass transfer elements in the separation column 2.
  • a sump evaporator 14 is arranged, which is operated here with a heating medium 15, which occurs in indirect heat exchange with the bottom liquid of the column; In principle, electrical heating of the sump is also possible in the method according to the invention.
  • the feed fluid can also be introduced as a two-phase mixture or completely in gaseous form.
  • the sump heater 14 and the mass transfer elements 4 can be omitted below the feed.
  • a residual stream 16 is removed liquid, with the unwanted heavier volatile impurities leave the separation column.
  • the top gas of the separation column flowing out of the top of the top mass transfer section 3 is at least partially condensed.
  • the top condenser 5 is arranged inside a buffer container 10.
  • the head condenser is in the example designed as a tube condenser with a plurality of vertical tubes, which are open at the top and bottom and communicate with the head region of the separation column 2. It is designed so that the gas chambers above and below the condenser communicate exclusively through the tubes.
  • the top condenser may also be formed as a helically wound heat exchanger in whose tubes the cooling medium flows, or as a plate heat exchanger block with downwardly open condensation passages.
  • the buffer tank 10 also has at its upper end a gas outlet (not shown in the drawings), via which continuously or from time to time non-condensable inert gas can be discharged.
  • a first part of the condensate formed in the top condenser 5 and stored in the buffer tank 10 is fed to the separation column 2 via a return line and a return valve 21 as reflux liquid (20).
  • a second part is removed via a product valve 17 as a liquid product stream 11 (pure product).
  • the pure product is either led directly to a consumer or bottled.
  • Product removal is generally intermittent. If desired, a portion of the overhead gas can also be withdrawn directly as gaseous top product (not shown).
  • FIG. 3 is different from the one of FIG. 2 merely in that the separation column 2 is arranged in a container separate from the buffer container 10. Therefore, the head gas does not flow directly, but via a head gas line 22 from the head of the separation column into the buffer tank 10 and to the top condenser 5.
  • the two embodiments are particularly suitable for pure KryptonGewinnung.
  • liquid, almost pure krypton is introduced as the feed fluid into the separation column 2, which is operated as a pure krypton column.
  • the feed fluid originates from a krypton-xenon column to separate krypton and xenon (or from a crypt column to remove more volatile components). It still contains small amounts of less volatile impurities, especially in the form of halogenated hydrocarbons or carbons such as CF 4 .
  • the pure krypton column can be connected directly to the upstream krypton-xenon or krypton column. Alternatively, the almost pure krypton is collected from one or more upstream units and further processed from time to time in the pure krypton column.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
EP11003607A 2010-05-27 2011-05-03 Procédé et dispositif de séparation d'un mélange de fluide par distillation à basse température, notamment pour la production de crypton pur Withdrawn EP2390604A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11003607A EP2390604A1 (fr) 2010-05-27 2011-05-03 Procédé et dispositif de séparation d'un mélange de fluide par distillation à basse température, notamment pour la production de crypton pur

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201010021797 DE102010021797A1 (de) 2010-05-27 2010-05-27 Verfahren und Vorrichtung zur Trennung eines Fluidgemischs durch Tieftemperatur-Destillation, insbesondere zur Rein-Krypton-Gewinnung
EP10007531 2010-07-20
EP11003607A EP2390604A1 (fr) 2010-05-27 2011-05-03 Procédé et dispositif de séparation d'un mélange de fluide par distillation à basse température, notamment pour la production de crypton pur

Publications (1)

Publication Number Publication Date
EP2390604A1 true EP2390604A1 (fr) 2011-11-30

Family

ID=44117104

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11003607A Withdrawn EP2390604A1 (fr) 2010-05-27 2011-05-03 Procédé et dispositif de séparation d'un mélange de fluide par distillation à basse température, notamment pour la production de crypton pur

Country Status (1)

Country Link
EP (1) EP2390604A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999748A (zh) * 2019-04-25 2019-07-12 中冶焦耐(大连)工程技术有限公司 一种高效连洗分离塔及酚钠溶液与脱酚馏分分离方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2133465A1 (de) * 1971-07-06 1973-01-25 Linde Ag Verfahren zur gewinnung von fluessigem stickstoff
JPS5342758B1 (fr) * 1966-09-19 1978-11-14
DE2814464A1 (de) * 1978-04-04 1979-10-18 Linde Ag Verfahren zur abtrennung gasfoermiger komponenten aus einem traegergas mittels tieftemperaturrektifikation
DE3732363A1 (de) * 1987-09-25 1989-04-06 Linde Ag Verfahren und vorrichtung zum wiederanfahren einer gaszerlegungsanlage
JPH0268475A (ja) * 1988-08-31 1990-03-07 Nippon Sanso Kk 凝縮蒸発器及びその運転方法
JPH03186182A (ja) * 1989-12-13 1991-08-14 Nippon Sanso Kk 空気液化分離装置及びその液化ガス注入方法
US5437160A (en) * 1993-04-29 1995-08-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the separation of air

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342758B1 (fr) * 1966-09-19 1978-11-14
DE2133465A1 (de) * 1971-07-06 1973-01-25 Linde Ag Verfahren zur gewinnung von fluessigem stickstoff
DE2814464A1 (de) * 1978-04-04 1979-10-18 Linde Ag Verfahren zur abtrennung gasfoermiger komponenten aus einem traegergas mittels tieftemperaturrektifikation
DE3732363A1 (de) * 1987-09-25 1989-04-06 Linde Ag Verfahren und vorrichtung zum wiederanfahren einer gaszerlegungsanlage
JPH0268475A (ja) * 1988-08-31 1990-03-07 Nippon Sanso Kk 凝縮蒸発器及びその運転方法
JPH03186182A (ja) * 1989-12-13 1991-08-14 Nippon Sanso Kk 空気液化分離装置及びその液化ガス注入方法
US5437160A (en) * 1993-04-29 1995-08-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the separation of air

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999748A (zh) * 2019-04-25 2019-07-12 中冶焦耐(大连)工程技术有限公司 一种高效连洗分离塔及酚钠溶液与脱酚馏分分离方法
CN109999748B (zh) * 2019-04-25 2023-09-15 中冶焦耐(大连)工程技术有限公司 一种高效连洗分离塔及酚钠溶液与脱酚馏分分离方法

Similar Documents

Publication Publication Date Title
DE60314954T2 (de) Verfahren und Vorrichtung zur Aufbereitung und Erzeugung von CO2 unter hohem Druck
EP0092770B1 (fr) Procédé d'obtention d'oxyde de carbone
DE3739070A1 (de) Heliumkuehlgeraet
EP0669509A1 (fr) Procédé et appareil permettant d'obtenir d l'argon pur
EP0795349A1 (fr) Dispositif et procédé pour l'évaporation d'un liquide
EP0066790B1 (fr) Procédé et dispositif pour la distillation à trajet court
DE102007054772B4 (de) Vorrichtung zum Kühlen von Stoffströmen
DE19637313C5 (de) Vorrichtung zum Aufheizen von Teilen
DE60307713T2 (de) Verfahren und kryogene Flüssigkeiten Probenahmeeinrichtung, sowie Luftzerlegungsanlage mit solcher Einrichtung
EP1051588B1 (fr) Procede et dispositif pour vaporiser de l'oxygene liquide
EP2390604A1 (fr) Procédé et dispositif de séparation d'un mélange de fluide par distillation à basse température, notamment pour la production de crypton pur
DE19905060A1 (de) Kondensator mit gelöteten Platten und dessen Anwendung bei Luftdestillationsdoppelsäulen
EP0019905B1 (fr) Dispositif pour la séparation d'un mélange de gaz par rectification
DE102010021797A1 (de) Verfahren und Vorrichtung zur Trennung eines Fluidgemischs durch Tieftemperatur-Destillation, insbesondere zur Rein-Krypton-Gewinnung
EP3026381A1 (fr) Procede et dispositif d'evacuation de composants volatiles plus lourds que l'oxygene provenant d'une installation de decomposition de l'air
EP1231440B1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
DE69723906T2 (de) Lufttrennung
DE102011111630A1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Zerlegung eines Fluidgemischs
DE102008012598B4 (de) Kondensat-Rückführeinrichtung für eine Adsorptionskälteanlage
DE1030373B (de) Verfahren und Vorrichtung zur Zerlegung von Gasgemischen bei niedriger Temperatur
DE19806324C1 (de) Verfahren und Anlage zur Fraktionierung von Gaskondensaten oder leichtem Rohöl
DE3338488A1 (de) Verfahren zur gewinnung von temperaturempfindlichen produkten durch thermisch schonende destillation mittels eines mit einer destillationskolonne verbundenen duennschichtverdampfers und eine anordnung zur durchfuehrung des verfahrens
EP0568864A1 (fr) Colonne de distillation à soutirage latéral de vapeur
EP1037004A1 (fr) Appareil et procédé pour séparer un mélange de gaz à basse température
DE102013017590A1 (de) Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120516

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20130402