EP2390604A1 - Method and device for separating a fluid mixture using deep temperature distillation, in particular for acquiring pure krypton - Google Patents

Method and device for separating a fluid mixture using deep temperature distillation, in particular for acquiring pure krypton Download PDF

Info

Publication number
EP2390604A1
EP2390604A1 EP11003607A EP11003607A EP2390604A1 EP 2390604 A1 EP2390604 A1 EP 2390604A1 EP 11003607 A EP11003607 A EP 11003607A EP 11003607 A EP11003607 A EP 11003607A EP 2390604 A1 EP2390604 A1 EP 2390604A1
Authority
EP
European Patent Office
Prior art keywords
separation column
buffer
container
column
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11003607A
Other languages
German (de)
French (fr)
Inventor
Robert Eichelmann
Alexander Dr. Alekseev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201010021797 external-priority patent/DE102010021797A1/en
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP11003607A priority Critical patent/EP2390604A1/en
Publication of EP2390604A1 publication Critical patent/EP2390604A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04745Krypton and/or Xenon
    • F25J3/04751Producing pure krypton and/or xenon recovered from a crude krypton/xenon mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/34Krypton
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the invention relates to a method according to the preamble of patent claim 1.
  • the process is carried out at low temperature, ie well below ambient temperature, in particular below 200 K, in particular below 150 K. It can for example be used to obtain liquid pure krypton (boiling point 120 K at 1.013 bar) by separating volatile components.
  • the separation column is cooled by a top condenser which simultaneously serves to generate reflux liquid and to liquefy the product.
  • the top condenser is designed as a heat exchanger, which each has a group of passages for the cooling medium and for the condensation of the top gas.
  • the separation column may comprise a bottom evaporator, which is heated, for example, electrically or by indirect heat exchange with a heating medium.
  • FIG. 1 shown schematically.
  • the fluid mixture to be separated is introduced as feed fluid 1 into a separation column 2, in the example in liquid form.
  • the separation column has at least one mass transfer section 3, 4 which contains mass transfer elements which consist of ordered or unordered packing, mass transfer trays or a combination of these types of mass transfer elements.
  • a top condenser 5 is arranged, which is cooled with a cooling medium 6.
  • the top gas of the separation column flowing out of the top of the top mass transfer section 3 is at least partially condensed.
  • the condensate flows back into the column and is fed to a first part as reflux to the upper mass transfer section 3.
  • a second part 8 is collected in a cup 7 and introduced via a pipe and a valve 9 in a buffer tank 10. From the buffer tank is - usually intermittently - Removed a liquid product stream 11.
  • formed gas is returned via a further pipe and a valve 13 as a gaseous reflux 12 in the head of the separation column 2 and the top condenser.
  • the separation column 2 also has a bottom evaporator 14, which is operated here with a heating medium 15, which enters into indirect heat exchange with the bottom liquid of the column. At the bottom, a residual stream 16 is removed liquid, with the unwanted heavier volatile impurities leave the separation column.
  • the liquid stream 8 to the buffer tank is at its boiling point. Even with good insulation heat is introduced into the buffer tank, which has no further source of cold next to the incoming liquid 8. Therefore, the circulation stream from the separation column to the buffer tank (8) and back as a gaseous return flow (12) must be operated at a relatively high throughput in order to compensate for the amount of heat introduced into the buffer tank. Correspondingly smaller is the amount of liquid product stream 11 which can be withdrawn from the buffer container as the final product. In addition, it may be difficult to control the separation column so that set stable liquid levels.
  • the invention has for its object to provide a method of the type mentioned above and a corresponding device that can be operated particularly low and in which in particular the disadvantages described are avoided.
  • the liquid buffer volume of the buffer tank is greater than the mass transfer volume of the separation column.
  • the liquid buffer volume is more than twice, preferably more than eight times, the mass transfer volume.
  • the "liquid buffer volume” of the buffer container is to be understood as meaning the maximum volume that can be filled with liquid during the orderly operation of the method and thus serve to buffer the condensate from the top condenser.
  • the "mass transfer volume" of the separation column encloses all mass transfer elements and the associated distribution elements. For an ordered (structured) packing or disordered (unstructured) pack, this volume ranges from the topmost manifold to the bottom of the bottommost mass transfer layer. In a pure tray column, the mass transfer volume encloses all trays including the space between the trays.
  • the invention results in a particularly easy-to-control process; There are (with closed product line) a steadily increasing liquid level in the buffer tank and a stable liquid level in the bottom of the column.
  • the heat input into the buffer container has no direct influence on the product yield in the method according to the invention.
  • the buffer tank can be completely emptied without affecting the operation of the separation column.
  • the system is easier by eliminating a return line from the buffer tank to the top condenser. This requires an unusual compared to the separation column and the top condenser large buffer tank, especially in comparison to a conventional condenser tank whose size is adapted to the volume of the top condenser and / or to the diameter of the separation column.
  • the separation column and the buffer tank are designed as communicating vessels.
  • the top gas of the separation column flows directly into the gas space of the buffer container and the top condenser arranged there, without the need for a pipeline.
  • the buffer tank and the top condenser only a single container sealed to the outside is required.
  • the separation column may be arranged in a separate container from the buffer container, wherein the head gas is introduced via a head gas line into the top condenser.
  • the head gas is introduced via a head gas line into the top condenser.
  • the invention also relates to a device for separating a fluid mixture by cryogenic distillation according to the claims 4 to 7, as well as an application of the method or the device for pure Krypton beltung by separation of less volatile impurities according to claim 8.
  • the fluid mixture to be separated is introduced as feed fluid 1 into a separation column 2, in the example in liquid form.
  • the separation column has at least one mass transfer section 3, 4 containing mass transfer elements, each consisting of ordered or unordered packing, mass transfer trays or a combination of these types of mass transfer elements. In the example, only ordered packing elements are used as mass transfer elements in the separation column 2.
  • a sump evaporator 14 is arranged, which is operated here with a heating medium 15, which occurs in indirect heat exchange with the bottom liquid of the column; In principle, electrical heating of the sump is also possible in the method according to the invention.
  • the feed fluid can also be introduced as a two-phase mixture or completely in gaseous form.
  • the sump heater 14 and the mass transfer elements 4 can be omitted below the feed.
  • a residual stream 16 is removed liquid, with the unwanted heavier volatile impurities leave the separation column.
  • the top gas of the separation column flowing out of the top of the top mass transfer section 3 is at least partially condensed.
  • the top condenser 5 is arranged inside a buffer container 10.
  • the head condenser is in the example designed as a tube condenser with a plurality of vertical tubes, which are open at the top and bottom and communicate with the head region of the separation column 2. It is designed so that the gas chambers above and below the condenser communicate exclusively through the tubes.
  • the top condenser may also be formed as a helically wound heat exchanger in whose tubes the cooling medium flows, or as a plate heat exchanger block with downwardly open condensation passages.
  • the buffer tank 10 also has at its upper end a gas outlet (not shown in the drawings), via which continuously or from time to time non-condensable inert gas can be discharged.
  • a first part of the condensate formed in the top condenser 5 and stored in the buffer tank 10 is fed to the separation column 2 via a return line and a return valve 21 as reflux liquid (20).
  • a second part is removed via a product valve 17 as a liquid product stream 11 (pure product).
  • the pure product is either led directly to a consumer or bottled.
  • Product removal is generally intermittent. If desired, a portion of the overhead gas can also be withdrawn directly as gaseous top product (not shown).
  • FIG. 3 is different from the one of FIG. 2 merely in that the separation column 2 is arranged in a container separate from the buffer container 10. Therefore, the head gas does not flow directly, but via a head gas line 22 from the head of the separation column into the buffer tank 10 and to the top condenser 5.
  • the two embodiments are particularly suitable for pure KryptonGewinnung.
  • liquid, almost pure krypton is introduced as the feed fluid into the separation column 2, which is operated as a pure krypton column.
  • the feed fluid originates from a krypton-xenon column to separate krypton and xenon (or from a crypt column to remove more volatile components). It still contains small amounts of less volatile impurities, especially in the form of halogenated hydrocarbons or carbons such as CF 4 .
  • the pure krypton column can be connected directly to the upstream krypton-xenon or krypton column. Alternatively, the almost pure krypton is collected from one or more upstream units and further processed from time to time in the pure krypton column.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

The method involves guiding utilization fluid (1) into a separating column (2), and condensing main gas of the column in a main condenser (5). A part of the condensate is provided as reflow fluid (20), and another part of the condensate is guided into a buffer container (10), where the container is arranged above material exchanging elements (3, 4) of the column. The parts of the condensate are commonly guided into the container, and the reflow fluid is removed from the container, where fluid buffer volume of the container is larger than material exchanging volume of the column. An independent claim is also included for a device for separating heavy contaminations in fluid mixture comprising a buffer container.

Description

Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method according to the preamble of patent claim 1.

Das Verfahren wird bei Tieftemperatur durchgeführt, also deutlich unter Umgebungstemperatur, insbesondere unterhalb von 200 K, insbesondere unterhalb von 150 K. Es kann beispielsweise zur Gewinnung von flüssigem Rein-Krypton (Siedepunkt 120 K bei 1,013 bar) durch Abtrennung schwererflüchtiger Komponenten eingesetzt werden.The process is carried out at low temperature, ie well below ambient temperature, in particular below 200 K, in particular below 150 K. It can for example be used to obtain liquid pure krypton (boiling point 120 K at 1.013 bar) by separating volatile components.

Die Trennsäule wird durch einen Kopfkondensator gekühlt, der gleichzeitig zur Erzeugung von Rücklaufflüssigkeit und zur Produktverflüssigung dient. Der Kopfkondensator ist als Wärmetauscher ausgebildet, der je eine Gruppe von Passagen für das Kühlmedium und für die Kondensation des Kopfgases aufweist. Außerdem kann die Trennsäule einen Sumpfverdampfer aufweisen, der beispielsweise elektrisch oder durch indirekten Wärmeaustausch mit einem Heizmedium beheizt wird.The separation column is cooled by a top condenser which simultaneously serves to generate reflux liquid and to liquefy the product. The top condenser is designed as a heat exchanger, which each has a group of passages for the cooling medium and for the condensation of the top gas. In addition, the separation column may comprise a bottom evaporator, which is heated, for example, electrically or by indirect heat exchange with a heating medium.

Bisher ist es üblich, den Kopfkondensator in den Kopf der Kolonne einzubauen. Diese Verfahrensweise und die entsprechende Vorrichtung sind in Figur 1 schematisch dargestellt. Das zu trennende Fluidgemisch wird als Einsatzfluid 1 in eine Trennsäule 2 eingeleitet, in dem Beispiel in flüssiger Form. Die Trennsäule weist oberhalb und unterhalb der Zuspeisung des Einsatzfluids mindestens je einen Stoffaustauschabschnitt 3, 4 auf, der Stoffaustauschelemente enthält, die aus geordneter oder ungeordneter Packung, aus Stoffaustauschböden oder aus einer Kombination dieser Typen von Stoffaustauschelementen bestehen. Im Kopf der Trennsäule 2 ist ein Kopfkondensator 5 angeordnet, der mit einem Kühlmedium 6 gekühlt wird. In dem Kopfkondensator wird das Kopfgas der Trennsäule, das aus der Oberseite des oberen Stoffaustauschabschnitts 3 ausströmt, mindestens teilweise kondensiert. Das Kondensat strömt in die Säule zurück und wird zu einem ersten Teil als Rücklauf auf den oberen Stoffaustauschabschnitt 3 aufgegeben. Ein zweiter Teil 8 wird ein einer Tasse 7 aufgefangen und über eine Rohrleitung und ein Ventil 9 in einen Pufferbehälter 10 eingeführt. Aus dem Pufferbehälter wird - in der Regel intermittierend - ein flüssiger Produktstrom 11 entnommen. Im Pufferbehälter 10 gebildetes Gas wird über eine weitere Rohrleitung und ein Ventil 13 als gasförmiger Rückstrom 12 in den Kopf der Trennsäule 2 beziehungsweise zum Kopfkondensator zurückgeleitet. Die Trennsäule 2 weist außerdem einen Sumpfverdampfer 14 auf, der hier mit einem Heizmedium 15 betrieben wird, das in indirekten Wärmeaustausch mit der Sumpfflüssigkeit der Säule tritt. Am Sumpf wird ein Reststrom 16 flüssig entnommen, mit dem die unerwünschten schwererflüchtigen Verunreinigungen die Trennsäule verlassen.So far, it is customary to install the top condenser in the head of the column. This procedure and the corresponding device are in FIG. 1 shown schematically. The fluid mixture to be separated is introduced as feed fluid 1 into a separation column 2, in the example in liquid form. Above and below the feed of the feed fluid, the separation column has at least one mass transfer section 3, 4 which contains mass transfer elements which consist of ordered or unordered packing, mass transfer trays or a combination of these types of mass transfer elements. In the head of the separation column 2, a top condenser 5 is arranged, which is cooled with a cooling medium 6. In the top condenser, the top gas of the separation column flowing out of the top of the top mass transfer section 3 is at least partially condensed. The condensate flows back into the column and is fed to a first part as reflux to the upper mass transfer section 3. A second part 8 is collected in a cup 7 and introduced via a pipe and a valve 9 in a buffer tank 10. From the buffer tank is - usually intermittently - Removed a liquid product stream 11. In the buffer tank 10 formed gas is returned via a further pipe and a valve 13 as a gaseous reflux 12 in the head of the separation column 2 and the top condenser. The separation column 2 also has a bottom evaporator 14, which is operated here with a heating medium 15, which enters into indirect heat exchange with the bottom liquid of the column. At the bottom, a residual stream 16 is removed liquid, with the unwanted heavier volatile impurities leave the separation column.

Diese Verfahrensführung kann zu Nachteilen führen.This procedure can lead to disadvantages.

Der flüssige Strom 8 zum Pufferbehälter befindet sich an seinem Siedepunkt. Auch bei guter Isolierung wird in den Pufferbehälter Wärme eingetragen, der neben der einströmenden Flüssigkeit 8 keine weitere Kältequelle besitzt. Daher muss der Kreislaufstrom von der Trennsäule zum Pufferbehälter (8) und zurück als gasförmiger Rückstrom (12) mit relativ hohem Durchsatz betrieben werden, um die in den Pufferbehälter eingetragene Wärmemenge auszugleichen. Entsprechend geringer ist die Menge an flüssigem Produktstrom 11, die aus dem Pufferbehälter als Endprodukt abgezogen werden kann. Außerdem kann es schwierig werden, die Trennsäule so zu regeln, dass sich stabile Flüssigkeitsstände einstellen.The liquid stream 8 to the buffer tank is at its boiling point. Even with good insulation heat is introduced into the buffer tank, which has no further source of cold next to the incoming liquid 8. Therefore, the circulation stream from the separation column to the buffer tank (8) and back as a gaseous return flow (12) must be operated at a relatively high throughput in order to compensate for the amount of heat introduced into the buffer tank. Correspondingly smaller is the amount of liquid product stream 11 which can be withdrawn from the buffer container as the final product. In addition, it may be difficult to control the separation column so that set stable liquid levels.

Bei Reinheitsschwankungen am Kopf der Trennsäule können Verunreinigungen mit der Flüssigkeit 8 in den Pufferbehälter 10 gelangen und damit den gesamten dort gespeicherten Produktvorrat unbrauchbar machen. Bei dem Verfahren der Figur 1 besteht keine Möglichkeit, die Flüssigkeit aus dem Pufferbehälter zurück in die Trennsäule zu bringen und die Verunreinigungen zu entfernen. Der gesamte Produktvorrat muss in diesem Fall verworfen werden.When purity fluctuations at the top of the separation column impurities can get into the buffer tank 10 with the liquid 8 and thus make the entire product stock stored there unusable. In the process of FIG. 1 There is no way to bring the liquid from the buffer tank back into the separation column and remove the impurities. The entire product stock must be discarded in this case.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art und eine entsprechende Vorrichtung anzugeben, die besonders günstig betrieben werden können und bei denen insbesondere die beschriebenen Nachteile vermieden werden.The invention has for its object to provide a method of the type mentioned above and a corresponding device that can be operated particularly low and in which in particular the disadvantages described are avoided.

Diese Aufgabe wird dadurch gelöst, dass Kopfkondensator und Pufferbehälter gemäß dem kennzeichnenden Teil des Patentanspruchs 1 integriert werden. Der Pufferbehälter bildet damit gleichzeitig den Behälter des Kopfkondensators und wird somit ebenfalls durch das Kühlmittel und nicht durch Verdampfung wertvollen Produkts gekühlt. Im Falle der Verunreinigung der im Pufferbehälter gespeicherten Flüssigkeit kann diese über die normale Rücklaufleitung in die Trennsäule zurückgeführt, so dass die Verunreinigungen im Normalbetrieb wieder entfernt werden können, entweder durch Verdünnung über einen begrenzten Zeitraum oder durch Ablassen der kompletten im Pufferbehälter gespeicherten Flüssigkeit in die Trennsäule. Im Gegensatz zu bekannten kleineren Puffereinrichtungen an Kopfkondensatoren, die regelmäßig anderen Zwecken dienen, ist bei der Erfindung das Flüssigkeitspuffervolumen des Pufferbehälters größer als das Stoffaustauschvolumen der Trennsäule. Beispielsweise ist das Flüssigkeitspuffervolumen mehr als zweimal, vorzugsweise mehr als achtmal so groß wie das Stoffaustauschvolumen.This object is achieved in that head capacitor and buffer container are integrated according to the characterizing part of patent claim 1. Of the Buffer tank thus simultaneously forms the container of the top condenser and is therefore also cooled by the coolant and not by evaporation of valuable product. In the case of contamination of the liquid stored in the buffer container, this can be returned via the normal return line in the separation column, so that the impurities can be removed again in normal operation, either by dilution for a limited period of time or by draining the entire liquid stored in the buffer tank in the separation column , In contrast to known smaller buffer devices on top condensers, which regularly serve other purposes, in the invention, the liquid buffer volume of the buffer tank is greater than the mass transfer volume of the separation column. For example, the liquid buffer volume is more than twice, preferably more than eight times, the mass transfer volume.

Unter dem "Flüssigkeitspuffervolumen" des Pufferbehälters ist der maximale Rauminhalt zu verstehen, der bei geordnetem Betrieb des Verfahrens mit Flüssigkeit gefüllt werden und damit zur Pufferung des Kondensats aus dem Kopfkondensator dienen kann.The "liquid buffer volume" of the buffer container is to be understood as meaning the maximum volume that can be filled with liquid during the orderly operation of the method and thus serve to buffer the condensate from the top condenser.

Das "Stoffaustauschvolumen" der Trennsäule umschließt sämtliche Stoffaustauschelemente und die dazugehörigen Verteilelemente. Bei einer mit geordneter (strukturierter) Packung oder ungeordneter (unstrukturierter) Packung ausgestatteten Kolonne reicht dieses Volumen vom obersten Verteiler bis zum unteren Ende der untersten Stoffaustauschschicht. In einer reinen Bodenkolonne umschließt das Stoffaustauschvolumen alle Böden einschließlich des Zwischenraums zwischen den Böden.The "mass transfer volume" of the separation column encloses all mass transfer elements and the associated distribution elements. For an ordered (structured) packing or disordered (unstructured) pack, this volume ranges from the topmost manifold to the bottom of the bottommost mass transfer layer. In a pure tray column, the mass transfer volume encloses all trays including the space between the trays.

Durch die Erfindung ergibt sich ein besonders einfach zu regelnder Prozess; es stellen sich (bei geschlossener Produktleitung) ein stetig steigender Flüssigkeitsspiegel im Pufferbehälter und ein stabiler Flüssigkeitsstand im Sumpf der Säule ein.The invention results in a particularly easy-to-control process; There are (with closed product line) a steadily increasing liquid level in the buffer tank and a stable liquid level in the bottom of the column.

Der Wärmeeintrag in den Pufferbehälter hat bei dem erfindungsgemäßen Verfahren keinen unmittelbaren Einfluss auf die Produktausbeute. Der Pufferbehälter kann vollständig geleert werden, ohne dass der Betrieb der Trennsäule beeinflusst wird.The heat input into the buffer container has no direct influence on the product yield in the method according to the invention. The buffer tank can be completely emptied without affecting the operation of the separation column.

Auch apparativ und regelungstechnisch wird die Anlage einfacher, indem eine Rückleitung von dem Pufferbehälter zum Kopfkondensator entfällt. Dafür benötigt man einen im Vergleich zur Trennsäule und zum Kopfkondensator ungewöhnlichen großen Pufferbehälter, insbesondere im Vergleich zu einem üblichen Kondensatorbehälter, dessen Größe an das Volumen des Kopfkondensators und/oder an den Durchmesser der Trennsäule angepasst ist.Also apparatus and control technology, the system is easier by eliminating a return line from the buffer tank to the top condenser. This requires an unusual compared to the separation column and the top condenser large buffer tank, especially in comparison to a conventional condenser tank whose size is adapted to the volume of the top condenser and / or to the diameter of the separation column.

In einer ersten Variante der Erfindung sind die Trennsäule und der Pufferbehälter als miteinander kommunizierende Gefäße ausgebildet. Das Kopfgas der Trennsäule strömt dabei unmittelbar in den Gasraum des Pufferbehalters und den dort angeordneten Kopfkondensator ein, ohne dass es einer Rohrleitung bedürfte. Für die Trennsäule, den Pufferbehälter und den Kopfkondensator ist nur ein einziger nach außen abgeschlossener Behälter erforderlich.In a first variant of the invention, the separation column and the buffer tank are designed as communicating vessels. The top gas of the separation column flows directly into the gas space of the buffer container and the top condenser arranged there, without the need for a pipeline. For the separation column, the buffer tank and the top condenser only a single container sealed to the outside is required.

Alternativ dazu kann in einer zweiten Variante der Erfindung die Trennsäule in einem von dem Pufferbehälter getrennten Behälter angeordnet sein, wobei das Kopfgas über eine Kopfgasleitung in den Kopfkondensator eingeleitet wird. Hierbei ist man besonders flexibel bei der Anordnung der beiden Apparateteile innerhalb der isolierenden Hülle (Coldbox), die bei Tieftemperaturanlagen regelmäßig die kalten Bauteile umgibt.Alternatively, in a second variant of the invention, the separation column may be arranged in a separate container from the buffer container, wherein the head gas is introduced via a head gas line into the top condenser. Here, one is particularly flexible in the arrangement of the two parts of the apparatus within the insulating sheath (cold box), which surrounds the cold components regularly at low temperature systems.

Die Erfindung betrifft außerdem eine Vorrichtung zur Trennung eines Fluidgemischs durch Tieftemperatur-Destillation gemäß den Patentansprüchen 4 bis 7, sowie eine Anwendung des erfindungsgemäßen Verfahrens beziehungsweise der Vorrichtung zur Rein-Kryptongewinnung durch Abtrennung von schwererflüchtigen Verunreinigungen gemäß dem Patentanspruch 8.The invention also relates to a device for separating a fluid mixture by cryogenic distillation according to the claims 4 to 7, as well as an application of the method or the device for pure Kryptongewinnung by separation of less volatile impurities according to claim 8.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand zweier in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:

Figur 2
ein erstes Ausführungsbeispiel der Erfindung mit Integration von Trennsäule und Pufferbehälter und
Figur 3
ein zweites Ausführungsbeispiel, bei dem die Trennsäule in einem von dem Pufferbehälter getrennten Behälter angeordnet ist.
The invention and further details of the invention are explained in more detail below with reference to two exemplary embodiments illustrated in the drawings. Hereby show:
FIG. 2
a first embodiment of the invention with integration of separation column and buffer tank and
FIG. 3
A second embodiment, wherein the separation column is arranged in a separate container from the buffer tank.

In Figur 2 wird das zu trennende Fluidgemisch als Einsatzfluid 1 in eine Trennsäule 2 eingeleitet, in dem Beispiel in flüssiger Form. Oberhalb und unterhalb der Zuspeisung des Einsatzfluids weist die Trennsäule mindestens je einen Stoffaustauschabschnitt 3, 4 auf, der Stoffaustauschelemente enthält, die jeweils aus geordneter oder ungeordneter Packung, aus Stoffaustauschböden oder aus einer Kombination dieser Typen von Stoffaustauschelementen bestehen. In dem Beispiel werden in der Trennsäule 2 ausschließlich geordnete Packungselemente als Stoffaustauschelemente verwendet. Im Sumpf der Trennsäule 2 ist einen Sumpfverdampfer 14 angeordnet, der hier mit einem Heizmedium 15 betrieben wird, das in indirekten Wärmeaustausch mit der Sumpfflüssigkeit der Säule tritt; grundsätzlich ist bei dem erfindungsgemäßen Verfahren auch eine elektrische Beheizung des Sumpfs möglich. Alternativ zur Flüssigzuspeisung kann das Einsatzfluid auch als Zweiphasengemisch oder vollständig gasförmig eingeleitet werden. Insbesondere im letzteren Fall können die Sumpfheizung 14 und die Stoffaustauschelemente 4 unterhalb der Zuspeisung entfallen. Am Sumpf wird ein Reststrom 16 flüssig entnommen, mit dem die unerwünschten schwererflüchtigen Verunreinigungen die Trennsäule verlassen.In FIG. 2 the fluid mixture to be separated is introduced as feed fluid 1 into a separation column 2, in the example in liquid form. Above and below the feed of the feed fluid, the separation column has at least one mass transfer section 3, 4 containing mass transfer elements, each consisting of ordered or unordered packing, mass transfer trays or a combination of these types of mass transfer elements. In the example, only ordered packing elements are used as mass transfer elements in the separation column 2. In the bottom of the separation column 2, a sump evaporator 14 is arranged, which is operated here with a heating medium 15, which occurs in indirect heat exchange with the bottom liquid of the column; In principle, electrical heating of the sump is also possible in the method according to the invention. Alternatively to the liquid feed, the feed fluid can also be introduced as a two-phase mixture or completely in gaseous form. In particular, in the latter case, the sump heater 14 and the mass transfer elements 4 can be omitted below the feed. At the bottom, a residual stream 16 is removed liquid, with the unwanted heavier volatile impurities leave the separation column.

In dem Kopfkondensator wird das Kopfgas der Trennsäule, das aus der Oberseite des oberen Stoffaustauschabschnitts 3 ausströmt, mindestens teilweise kondensiert. Erfindungsgemäß ist der Kopfkondensator 5 im Inneren eines Pufferbehälters 10 angeordnet. Der Kopfkondensator ist in dem Beispiel als Röhrenkondensator mit einer Vielzahl vertikaler Röhren ausgeführt, die oben und unten offen sind und mit dem Kopfbereich der Trennsäule 2 kommunizieren. Er ist so konstruiert, dass die Gasräume oberhalb und unterhalb des Kondensators ausschließlich über die Röhren kommunizieren. (Alternativ kann der Kopfkondensator auch als schraubenförmig gewickelter Wärmetauscher, in dessen Rohren das Kühlmedium strömt, oder als Plattenwärmetauscherblock mit unten offenen Kondensationspassagen ausgebildet sein.) In der in Figur 2 dargestellten Ausführungsform strömt Kopfgas aus dem oberen Bereich der Trennsäule 2 unter einem Dach 18 seitlich in den Gasraum des Pufferbehälters 10 ein und von dort weiter ins Innere der Röhren des Kopfkondensator. Dort gebildetes Kondensat fließt auf der Innenwand der Röhren nach unten, tropft zurück in den Pufferbehälter 10 und bildet dort einen ringförmigen Flüssigkeitsstand 19 aus. Die Flüssigkeit wird von der Außenwand des Pufferbehälters 10 und der in den Pufferbehälter hineingezogenen Kolonnenwand der Trennsäule 2 gehalten. Das Dach 18 verhindert das unkontrollierte Einfließen von Kondensat in die Trennsäule 2. Das "Flüssigkeitspuffervolumen" wird hier dadurch begrenzt, dass die gepufferte Flüssigkeit nicht über die in den Pufferbehälter hineingezogene Kolonnenwand in die Trennsäule überlaufen darf. Es beträgt in dem Beispiel das 9,5-Fache des "Stoffaustauschvolumens" der Trennsäule 2.In the top condenser, the top gas of the separation column flowing out of the top of the top mass transfer section 3 is at least partially condensed. According to the invention, the top condenser 5 is arranged inside a buffer container 10. The head condenser is in the example designed as a tube condenser with a plurality of vertical tubes, which are open at the top and bottom and communicate with the head region of the separation column 2. It is designed so that the gas chambers above and below the condenser communicate exclusively through the tubes. (Alternatively, the top condenser may also be formed as a helically wound heat exchanger in whose tubes the cooling medium flows, or as a plate heat exchanger block with downwardly open condensation passages.) In the in FIG. 2 illustrated embodiment flows head gas from the upper region of the separation column 2 under a roof 18 laterally into the gas space of the buffer tank 10 and from there into the interior of the tubes of the top condenser. There formed condensate flows on the inner wall of the tubes down, dripping back into the buffer tank 10 and forms there an annular fluid level 19 from. The liquid is held by the outer wall of the buffer tank 10 and the column wall of the separation column 2 drawn into the buffer tank. The roof 18 prevents the uncontrolled inflow of condensate into the separation column 2. Das "Liquid buffer volume" is limited here by the fact that the buffered liquid must not overflow into the separation column via the column wall drawn into the buffer container. In the example, it is 9.5 times the "mass transfer volume" of the separation column 2.

Der Pufferbehälter 10 weist an seinem oberen Ende außerdem einen Gasablass auf (in den Zeichnungen nicht dargestellt), über den kontinuierlich oder von Zeit zu Zeit nicht kondensierbares Inertgas abgelassen werden kann.The buffer tank 10 also has at its upper end a gas outlet (not shown in the drawings), via which continuously or from time to time non-condensable inert gas can be discharged.

Ein erster Teil des in dem Kopfkondensator 5 gebildeten und im Pufferbehälter 10 gespeicherten Kondensats wird über eine Rücklaufleitung und ein Rücklaufventil 21 als Rücklaufflüssigkeit (20) auf die Trennsäule 2 aufgegeben. Ein zweiter Teil wird über ein Produktventil 17 als flüssiger Produktstrom 11 (Reinprodukt) entnommen. Das Reinprodukt wird entweder direkt zu einem Verbraucher geführt oder in Flaschen abgefüllt. Die Produktentnahme geschieht im Allgemeinen intermittierend. Falls gewünscht, kann ein Teil des Kopfgases auch direkt als gasförmiges Kopfprodukt abgezogen werden (nicht dargestellt).A first part of the condensate formed in the top condenser 5 and stored in the buffer tank 10 is fed to the separation column 2 via a return line and a return valve 21 as reflux liquid (20). A second part is removed via a product valve 17 as a liquid product stream 11 (pure product). The pure product is either led directly to a consumer or bottled. Product removal is generally intermittent. If desired, a portion of the overhead gas can also be withdrawn directly as gaseous top product (not shown).

Das Ausführungsbeispiel der Figur 3 unterscheidet sich von demjenigen der Figur 2 lediglich dadurch, dass die Trennsäule 2 in einem von dem Pufferbehälter 10 getrennten Behälter angeordnet ist. Das Kopfgas strömt daher nicht direkt, sondern über eine Kopfgasleitung 22 vom Kopf der Trennsäule in den Pufferbehälter 10 beziehungsweise zum Kopfkondensator 5.The embodiment of FIG. 3 is different from the one of FIG. 2 merely in that the separation column 2 is arranged in a container separate from the buffer container 10. Therefore, the head gas does not flow directly, but via a head gas line 22 from the head of the separation column into the buffer tank 10 and to the top condenser 5.

Die beiden Ausführungsbeispiele eignen sich insbesondere für die Rein-KryptonGewinnung. In diesem Fall wird als Einsatzfluid flüssiges, fast reines Krypton in die Trennsäule 2 eingeleitet, die als Rein-Krypton-Säule betrieben wird. Das Einsatzfluid stammt aus einer Krypton-Xenon-Säule zur Auftrennung von Krypton und Xenon (oder aus einer Kryptonsäule zur Abtrennung leichterflüchtiger Komponenten). Es enthält noch geringe Mengen schwererflüchtigen Verunreinigungen, insbesondere in Form von halogenierten Kohlenwasserstoffen oder Kohlenstoffen wie CF4. Die Rein-Krypton-Säule kann unmittelbar an die vorgeschaltete Krypton-Xenon- oder Krypton-Säule angeschlossen werden. Alternativ wird das fast reine Krypton aus einer oder mehreren vorgeschalteten Anlagen gesammelt und von Zeit zu Zeit in der Rein-Krypton-Säule weiterverarbeitet.The two embodiments are particularly suitable for pure KryptonGewinnung. In this case, liquid, almost pure krypton is introduced as the feed fluid into the separation column 2, which is operated as a pure krypton column. The feed fluid originates from a krypton-xenon column to separate krypton and xenon (or from a crypt column to remove more volatile components). It still contains small amounts of less volatile impurities, especially in the form of halogenated hydrocarbons or carbons such as CF 4 . The pure krypton column can be connected directly to the upstream krypton-xenon or krypton column. Alternatively, the almost pure krypton is collected from one or more upstream units and further processed from time to time in the pure krypton column.

Claims (8)

Verfahren zur Trennung eines Fluidgemischs durch Tieftemperatur-Destillation, bei dem ein Einsatzfluid (1) in eine Trennsäule (2) eingeleitet wird, die mit Stoffaustauschelementen (3, 4) ausgestattet ist, ein Kopfgas aus der Trennsäule (2) in einem Kopfkondensator (5) durch indirekten Wärmeaustausch mit einem Kühlmedium (6) mindestens teilweise kondensiert wird, wobei ein erster Teil (20) des in dem Kopfkondensator (5) gebildeten Kondensats als Rücklaufflüssigkeit auf die Trennsäule (2) aufgegeben wird und ein zweiter Teil des in dem Kopfkondensator (5) gebildeten Kondensats in einen Pufferbehälter (10) eingeleitet wird, aus dem mindestens zeitweise ein flüssiger Produktstrom (11) entnommen wird, dadurch gekennzeichnet, dass der Pufferbehälter (10) oberhalb der Stoffaustauschelemente (3, 4) der Trennsäule (2) angeordnet ist, der Kopfkondensator (5) im Inneren des Pufferbehälters (10) angeordnet ist, der erste und der zweite Teil des Kondensats gemeinsam in den Pufferbehälter (10) eingeleitet werden, die Rücklaufflüssigkeit (20) aus dem Pufferbehälter (10) entnommen wird und dass das Flüssigkeitspuffervolumen des Pufferbehälters (10) größer als das Stoffaustauschvolumen der Trennsäule (2) ist.Method for separating a fluid mixture by cryogenic distillation, in which an input fluid (1) is introduced into a separation column (2) equipped with mass transfer elements (3, 4), a top gas from the separation column (2) in a top condenser (5 ) is at least partially condensed by indirect heat exchange with a cooling medium (6), wherein a first part (20) of the condensate formed in the top condenser (5) is applied as reflux liquid to the separation column (2) and a second part of the in the top condenser ( 5) is introduced into a buffer container (10) from which at least temporarily a liquid product stream (11) is removed, characterized in that the buffer container (10) above the mass transfer elements (3, 4) of the separation column (2) is arranged wherein the head condenser (5) is disposed inside the buffer tank (10), the first and second parts of the condensate collectively in the buffer tank he (10) are introduced, the return liquid (20) is removed from the buffer tank (10) and that the liquid buffer volume of the buffer tank (10) is greater than the mass transfer volume of the separation column (2). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Trennsäule (2) und der Pufferbehälter (10) als miteinander kommunizierende Gefäße ausgebildet sind.A method according to claim 1, characterized in that the separation column (2) and the buffer container (10) are designed as vessels communicating with each other. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Trennsäule (2) in einem von dem Pufferbehälter (10) getrennten Behälter angeordnet ist und das Kopfgas über eine Kopfgasleitung (22) in den Kopfkondensator (5) eingeleitet wird.A method according to claim 1, characterized in that the separation column (2) is arranged in a separate container from the buffer tank (10) and the head gas is introduced via a head gas line (22) in the top condenser (5). Vorrichtung zur Trennung eines Fluidgemischs durch Tieftemperatur-Destillation mit einer Trennsäule (2) und einem Pufferbehälter (10), mit einer Einsatzleitung zum Einleiten eines Einsatzfluids (1) in die Trennsäule (2), die mit Stoffaustauschelementen (3, 4) ausgestattet ist, mit einem Kopfkondensator (5) zum Kondensieren eines Kopfgases der Trennsäule (2) in indirektem Wärmeaustausch mit einem Kühlmedium (6), mit Mitteln zum Aufgeben eines ersten Teils (20) des in dem Kopfkondensator (5) gebildeten Kondensats als Rücklaufflüssigkeit auf die Trennsäule (2), mit Mitteln zum Einleiten eines zweiten Teils des in dem Kopfkondensator (5) gebildeten Kondensats in den Pufferbehälter (10), und mit Mitteln zum Entnehmen eines flüssigen Produktstroms (11) aus dem Pufferbehälter (10), dadurch gekennzeichnet, dass der Pufferbehalter (10) oberhalb der Stoffaustauschelemente (3, 4) der Trennsäule (2) angeordnet ist, der Kopfkondensator (5) im Inneren des Pufferbehälters (10) angeordnet ist, die Vorrichtung Mittel zum Entnehmen der Rücklaufflüssigkeit (20) aus dem Pufferbehälter (10) aufweist und dass das Flüssigkeitspuffervolumen des Pufferbehälters (10) größer als das Stoffaustauschvolumen der Trennsäule (2) ist.Device for separating a fluid mixture by cryogenic distillation with a separation column (2) and a buffer vessel (10), with an introduction line for introducing an input fluid (1) into the separation column (2) equipped with mass transfer elements (3, 4), with a head condenser (5) for condensing a head gas of the separation column (2) in indirect heat exchange with a cooling medium (6), with means for applying a first part (20) of the condensate formed in the top condenser (5) as reflux liquid to the separation column ( 2), with means for introducing a second part of the condensate formed in the top condenser (5) in the buffer tank (10), and with means for removing a liquid product stream (11) from the buffer container (10), characterized in that the buffer container (10) is arranged above the mass transfer elements (3, 4) of the separation column (2), the top condenser (10). 5) is arranged inside the buffer container (10), the device has means for removing the return liquid (20) from the buffer container (10) and that the liquid buffer volume of the buffer container (10) is greater than the mass transfer volume of the separation column (2). Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Trennsäule (2) und der Pufferbehälter (10) als miteinander kommunizierende Gefäße ausgebildet sind.Apparatus according to claim 4, characterized in that the separation column (2) and the buffer container (10) are designed as vessels communicating with each other. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Trennsäule (2) in einem von dem Pufferbehälter (10) getrennten Behälter angeordnet ist und dass die Vorrichtung eine Kopfgasleitung (22) zum Einleiten von Kopfgas der Trennsäule (2) in den Kopfkondensator (5) aufweist.Device according to Claim 4, characterized in that the separation column (2) is arranged in a container separate from the buffer container (10), and in that the device has a top gas line (22) for introducing top gas of the separation column (2) into the top condenser (5). having. Vorrichtung zur Rein-Kryptongewinnung, die gemäß einem der Ansprüche 4 bis 6 aufgebaut ist, wobei die Trennsäule (2) als Rein-Krypton-Säule und die Einsatzleitung zum Einleiten von Roh-Krypton ausgebildet ist.An apparatus for pure krypton recovery constructed according to any one of claims 4 to 6, wherein the separation column (2) is formed as a pure krypton column and the feed line for introducing raw krypton. Anwendung des Verfahrens nach einem der Ansprüche 1 bis 3 beziehungsweise der Vorrichtung gemäß einem der Ansprüche 4 bis 6, zur Rein-Kryptongewinnung durch Abtrennung von schwererflüchtigen Verunreinigungen, wobei die Trennsäule als Rein-Krypton-Säule ausgebildet ist und ein Rein-Krypton-Produkt als Produktstrom aus dem Pufferbehälter entnommen wird.Application of the method according to one of claims 1 to 3 or the device according to one of claims 4 to 6, for pure krypton recovery by separation of less volatile impurities, wherein the separation column is formed as a pure krypton column and a pure krypton product as Product flow is removed from the buffer tank.
EP11003607A 2010-05-27 2011-05-03 Method and device for separating a fluid mixture using deep temperature distillation, in particular for acquiring pure krypton Withdrawn EP2390604A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11003607A EP2390604A1 (en) 2010-05-27 2011-05-03 Method and device for separating a fluid mixture using deep temperature distillation, in particular for acquiring pure krypton

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201010021797 DE102010021797A1 (en) 2010-05-27 2010-05-27 Process and apparatus for separating a fluid mixture by cryogenic distillation, in particular for pure krypton recovery
EP10007531 2010-07-20
EP11003607A EP2390604A1 (en) 2010-05-27 2011-05-03 Method and device for separating a fluid mixture using deep temperature distillation, in particular for acquiring pure krypton

Publications (1)

Publication Number Publication Date
EP2390604A1 true EP2390604A1 (en) 2011-11-30

Family

ID=44117104

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11003607A Withdrawn EP2390604A1 (en) 2010-05-27 2011-05-03 Method and device for separating a fluid mixture using deep temperature distillation, in particular for acquiring pure krypton

Country Status (1)

Country Link
EP (1) EP2390604A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999748A (en) * 2019-04-25 2019-07-12 中冶焦耐(大连)工程技术有限公司 One kind, which efficiently connects, washes knockout tower and sodium phenolate solution and dephenolize fraction seperation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2133465A1 (en) * 1971-07-06 1973-01-25 Linde Ag Liquid nitrogen prodn - by single-column fractional distillation of air at 6 to 9 bar pressure
JPS5342758B1 (en) * 1966-09-19 1978-11-14
DE2814464A1 (en) * 1978-04-04 1979-10-18 Linde Ag Separator for gaseous components from carrier gas - utilises compression and removes contaminants before entering low temp. rectification zone
DE3732363A1 (en) * 1987-09-25 1989-04-06 Linde Ag Method and device for restarting a gas fractionation plant
JPH0268475A (en) * 1988-08-31 1990-03-07 Nippon Sanso Kk Condensation vaporizer and operation thereof
JPH03186182A (en) * 1989-12-13 1991-08-14 Nippon Sanso Kk Air liquefying separator and pouring method for liquefied gas
US5437160A (en) * 1993-04-29 1995-08-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the separation of air

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342758B1 (en) * 1966-09-19 1978-11-14
DE2133465A1 (en) * 1971-07-06 1973-01-25 Linde Ag Liquid nitrogen prodn - by single-column fractional distillation of air at 6 to 9 bar pressure
DE2814464A1 (en) * 1978-04-04 1979-10-18 Linde Ag Separator for gaseous components from carrier gas - utilises compression and removes contaminants before entering low temp. rectification zone
DE3732363A1 (en) * 1987-09-25 1989-04-06 Linde Ag Method and device for restarting a gas fractionation plant
JPH0268475A (en) * 1988-08-31 1990-03-07 Nippon Sanso Kk Condensation vaporizer and operation thereof
JPH03186182A (en) * 1989-12-13 1991-08-14 Nippon Sanso Kk Air liquefying separator and pouring method for liquefied gas
US5437160A (en) * 1993-04-29 1995-08-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the separation of air

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999748A (en) * 2019-04-25 2019-07-12 中冶焦耐(大连)工程技术有限公司 One kind, which efficiently connects, washes knockout tower and sodium phenolate solution and dephenolize fraction seperation method
CN109999748B (en) * 2019-04-25 2023-09-15 中冶焦耐(大连)工程技术有限公司 High-efficiency continuous washing separation tower and sodium phenolate solution and dephenolized fraction separation method

Similar Documents

Publication Publication Date Title
DE60314954T2 (en) Process and device for the treatment and production of CO2 under high pressure
EP0092770B1 (en) Process for obtaining carbon monoxide
DE3739070A1 (en) HELIUM COOLER
EP0669509A1 (en) Process and apparatus for obtaining pure argon
EP0795349A1 (en) Device and process for evaporating a liquid
EP0066790B1 (en) Method and apparatus for a short-path distillation
DE102007054772B4 (en) Device for cooling material flows
DE19637313C5 (en) Device for heating parts
DE60307713T2 (en) Process and cryogenic liquids Sampling device, as well as air separation plant with such device
EP1051588B1 (en) Method and device for evaporating liquid oxygen
EP2390604A1 (en) Method and device for separating a fluid mixture using deep temperature distillation, in particular for acquiring pure krypton
DE19905060A1 (en) Brazed plates cryogenic condenser for use in an air distillation process
EP0019905B1 (en) Apparatus for the separation of a gas mixture by rectification
DE102010021797A1 (en) Process and apparatus for separating a fluid mixture by cryogenic distillation, in particular for pure krypton recovery
EP3026381A1 (en) Method and device for discharging heavier than air volatile components from an air separation facility
EP1231440B1 (en) Process and apparatus for air separation by cryogenic distillation
DE69723906T2 (en) air separation
DE102011111630A1 (en) Method and apparatus for the cryogenic separation of a fluid mixture
DE102008012598B4 (en) Condensate recirculation device for an adsorption refrigeration system
DE1030373B (en) Method and device for the separation of gas mixtures at low temperature
DE19806324C1 (en) Fractionation of refinery feedstock comprising gas condensates and light crude
DE3338488A1 (en) Process for recovering temperature-sensitive products by thermally mild distillation using a thin layer evaporator connected to a distillation column and an arrangement for carrying out the process
EP0568864A1 (en) Distillation column with side stream vapour bleeding
EP1037004A1 (en) Apparatus and process for gas mixture separation at low temperature
DE102013017590A1 (en) Method for recovering methane-poor fluids in liquid air separation system to manufacture air product, involves vaporizing oxygen, krypton and xenon containing sump liquid in low pressure column by using multi-storey bath vaporizer

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120516

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20130402