EP1051588B1 - Method and device for evaporating liquid oxygen - Google Patents

Method and device for evaporating liquid oxygen Download PDF

Info

Publication number
EP1051588B1
EP1051588B1 EP99906129A EP99906129A EP1051588B1 EP 1051588 B1 EP1051588 B1 EP 1051588B1 EP 99906129 A EP99906129 A EP 99906129A EP 99906129 A EP99906129 A EP 99906129A EP 1051588 B1 EP1051588 B1 EP 1051588B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
oxygen
liquid
low
additional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99906129A
Other languages
German (de)
French (fr)
Other versions
EP1051588A1 (en
Inventor
Franz Habicht
Gerhard Pompl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP99906129A priority Critical patent/EP1051588B1/en
Publication of EP1051588A1 publication Critical patent/EP1051588A1/en
Application granted granted Critical
Publication of EP1051588B1 publication Critical patent/EP1051588B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • F25J3/0486Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04824Stopping of the process, e.g. defrosting or deriming; Back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/10Boiler-condenser with superposed stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/905Column

Definitions

  • the invention relates to a method for evaporating liquid oxygen as well its application in a process for the production of oxygen by Cryogenic air separation.
  • oxygen is understood to mean any mixture which has an increased oxygen content compared to air, for example at least 70%, preferably at least 98%.
  • liquid oxygen to be present gasify its use by being in a Main evaporator through indirect heat exchange with a heat transfer medium is evaporated.
  • Such evaporation occurs particularly when gaseous is extracted Oxygen through low temperature rectification, in which the oxygen product is liquid at the bottom of a rectification column, since it is less volatile than nitrogen and Is argon.
  • the liquid oxygen must also be in be evaporated from a main evaporator.
  • This is the most common Classic Linde double column process, in which the main evaporator in the sump a low pressure column is arranged and with condensing nitrogen from the head the pressure column is operated (see Hausen / Linde, low-temperature technology, 2nd edition, section 4.1.2 on page 284).
  • the main evaporator is in this case operated as a condenser-evaporator and often referred to as the main condenser. It is implemented by one or more heat exchanger blocks, which are or falling film evaporators are operated.
  • the invention also relates to other double-column processes in which the Main evaporator is operated with air, for example, and also processes with three or more columns for nitrogen-oxygen separation.
  • the rectification column or columns for nitrogen-oxygen separation can devices for the production of others Air components, in particular of noble gases, for example for argon production.
  • liquid oxygen is completely or essentially completely evaporated, less volatile impurities such as CO 2 or N 2 O can accumulate in the evaporator, even if they contain only very low concentrations in the oxygen to be evaporated (or in the air to be separated) are. (However, the previously feared acetylene is no longer a problem in air separation plants with adsorptive pre-cleaning.)
  • Some of these less volatile substances for example CO 2 and N 2 O, can precipitate out as solids and must be removed from time to time in order to block the heat exchanger passages in the Main evaporator is avoided. The entire system must be switched off to remove these separated solids. In a large air separation plant, this can mean a shutdown of, for example, two to five days.
  • the flush volume is one Air separation plant with adsorptive pre-cleaning usually 0.02 to 0.04% of total amount of liquid oxygen introduced into the evaporator.
  • the invention has for its object to the availability of a main evaporator Increase vaporization of liquid oxygen and in particular To prevent business interruptions as far as possible.
  • the (first) Purge stream which is withdrawn from the main evaporator, passed into an additional evaporator, which is arranged separately from the main evaporator.
  • This additional evaporator is a large part of the first flushing stream evaporates and can thus be used as an oxygen product or intermediate product can be obtained.
  • the additional evaporator is in turn a second Rinsing stream removed and discarded.
  • the removal of the second purge stream can be continuous or discontinuous respectively.
  • a relatively large amount of liquid can flow from the first rinse stream Main evaporator are removed, so that all less volatile components are discharged and their concentration on the main evaporator is kept low. In particular, there are no solids deposits in the main evaporator. This size However, the amount of flushing liquid is not completely lost because part of the first flushing stream evaporated in an additional evaporator and drawn off in gas form. From the additional evaporator subtracted only a usual flushing quantity as a second flushing stream, for example 0.02 to 0.5%, preferably 0.02 to 0.2% of the amount introduced into the main evaporator liquid oxygen. (In the case of discontinuous withdrawal of the second flushing stream the numbers refer to the time average.) The rest of the first Flushing stream is evaporated in the additional evaporator and can be a gaseous oxygen product be used.
  • Solids can only be separated in the additional evaporator, but not in the Main evaporator.
  • the additional evaporator can be much easier as the main evaporator by heating solids. This will normal operation is occasionally interrupted by a heating operation, whereby in Heating operation of the auxiliary evaporator is separated from the main evaporator by no liquid is led from the main evaporator into the additional evaporator.
  • the additional evaporator is brought to a temperature that is clear is higher than its temperature in normal operation, for example by at least 20 K, preferably 20 to 50 K.
  • the amount of the first flushing stream, which is in normal operation from Main evaporator is withdrawn, at least 1%, preferably at least 3% and / or at most 10%, preferably at most 5% of those in the main evaporator amount of liquid oxygen introduced.
  • the invention also relates to the application of the method according to claim 1 or 2 in a process for cryogenic air separation according to Claim 3 and in a corresponding device according to claim 6, in particular air separation processes and plants with air pre-cleaning Adsorption, for example on a molecular sieve.
  • air separation processes and plants with air pre-cleaning Adsorption for example on a molecular sieve.
  • Such procedures and facilities are used for the production of oxygen, nitrogen and / or others in gases contained in atmospheric air.
  • the invention relates to a device for evaporating liquid Oxygen according to claims 4 and 5.
  • Figure 1 shows a section of a double column for low-temperature decomposition of Air, namely the upper part of the pressure column 1 and the lower portion of the Low pressure column 2.
  • a main evaporator 3 is used to evaporate liquid Oxygen coming from the lowest mass transfer section of the low pressure column 2 flows. (The bottom mass transfer section is in the drawing as bottom 4 shown, but it could also be an orderly pack.)
  • About Line 9 is withdrawn gaseous oxygen product from the low pressure column.
  • the main evaporator can - as shown in Figure 1 - inside the double column, be arranged in particular in the sump of the low pressure column. Alternatively, it can be used as separate component realized outside the double column or in another, from the Double column separate component can be integrated, for example in a methane discharge column, as shown in DE 4332870 A1 or DE 2055099 A.
  • about a line 5 arranged in the lower region of the main evaporator 3 becomes a the first rinsing stream is continuously withdrawn and into an additional evaporator 6 initiated. From the lower area of the additional evaporator 6 there is a second flushing stream 7 withdrawn continuously or discontinuously while vaporized oxygen 8 is returned to the low pressure column.
  • the steam 8 into the Oxygen product line 9 are passed from the low pressure column or into one other apparatus, for example in the lower area of a methane discharge column according to DE 4332870 A1 or DE 2055099 A.
  • Nitrogen is used as the heat transfer medium 10 for indirectly heating the main evaporator inserted from the head of the pressure column 1.
  • the condensed in the main evaporator Nitrogen 11 is used as the return in the two columns.
  • the Additional evaporator 6 is either also in normal operation with nitrogen from the Pressure column or heated with air as a heat transfer medium 12.
  • the condensed heat transfer medium is withdrawn via line 13 and into one or more of the rectification columns fed.
  • Switching from normal operation to heating operation takes about six months, by closing the valve 14 in the first flushing line 5. Also the supply of the Heat transfer medium 12 is closed. Instead, about 300 K warm air is over Line 15 led into the liquefaction space of the additional evaporator 6 and over Line 16 removed.
  • a warm-up phase includes switching off, emptying, Warming up, cooling down and commissioning and takes for example 10 to 24 hours, preferably about 20 hours.
  • the embodiment of Figure 2 differs from Figure 1 in that the Main evaporator is formed by a plurality of blocks 3a, 3b.
  • the blocks 3a, 3b are arranged, for example, concentrically around a central tube, which for Feed 10 of gaseous nitrogen from the pressure column 1 is used.
  • a device for removal less volatile components (19 in Figure 1) are equipped.

Description

Die Erfindung betrifft ein Verfahren zum Verdampfen von flüssigem Sauerstoff sowie dessen Anwendung in einem Verfahren zur Gewinnung von Sauerstoff durch Tieftemperaturzerlegung von Luft.The invention relates to a method for evaporating liquid oxygen as well its application in a process for the production of oxygen by Cryogenic air separation.

Unter Sauerstoff wird in der vorliegenden Anmeldung jedes Gemisch verstanden, das einen gegenüber Luft erhöhten Sauerstoffgehalt aufweist, beispielsweise mindestens 70 %, vorzugsweise mindestens 98 %. (In dieser Anmeldung bezeichnen alle Prozentangaben molare Mengen, wenn nicht ausdrücklich etwas anderes angegeben ist.) Darunter fällt insbesondere unreiner Sauerstoff, ebenso wie technisch reiner Sauerstoff und hochreiner Sauerstoff mit einer Reinheit von 99,99 % oder höher. Für eine Fülle von Anwendungen ist es notwendig, flüssig vorliegenden Sauerstoff vor seiner Verwendung in die Gasform zu überführen, indem er in einem Hauptverdampfer durch indirekten Wärmeaustausch mit einem Wärmeträger verdampft wird.In the present application, oxygen is understood to mean any mixture which has an increased oxygen content compared to air, for example at least 70%, preferably at least 98%. (In this application everyone designates Percentages molar amounts, unless expressly stated otherwise ). This includes in particular impure oxygen, as well as technically cleaner Oxygen and high-purity oxygen with a purity of 99.99% or higher. For A plethora of applications require liquid oxygen to be present gasify its use by being in a Main evaporator through indirect heat exchange with a heat transfer medium is evaporated.

Eine solche Verdampfung kommt insbesondere bei der Gewinnung von gasförmigem Sauerstoff durch Tieftemperaturrektifikation vor, bei der das Sauerstoffprodukt flüssig am Sumpf einer Rektifiziersäule anfällt, da es schwererflüchtig als Stickstoff und Argon ist. Um das Produkt in Gasform zu erhalten und um aufsteigenden Dampf für die Rektifiziersäule zu erzeugen, muß der flüssig angefallene Sauerstoff ebenfalls in einem Hauptverdampfer verdampft werden. Am weitesten verbreitet ist dabei das klassische Linde-Doppelsäulenverfahren, bei dem der Hauptverdampfer im Sumpf einer Niederdrucksäule angeordnet ist und mit kondensierendem Stickstoff vom Kopf der Drucksäule betrieben wird (siehe Hausen/Linde, Tieftemperaturtechnik, 2. Auflage, Abschnitt 4.1.2 auf Seite 284). Der Hauptverdampfer wird in diesem Fall als Kondensator-Verdampfer betrieben und häufig als Hauptkondensator bezeichnet. Er wird durch einen oder mehrere Wärmetauscherblöcke realisiert, die als Umlauf- oder Fallfilmverdampfer betrieben werden. Such evaporation occurs particularly when gaseous is extracted Oxygen through low temperature rectification, in which the oxygen product is liquid at the bottom of a rectification column, since it is less volatile than nitrogen and Is argon. To get the product in gaseous form and to get steam rising for to produce the rectification column, the liquid oxygen must also be in be evaporated from a main evaporator. This is the most common Classic Linde double column process, in which the main evaporator in the sump a low pressure column is arranged and with condensing nitrogen from the head the pressure column is operated (see Hausen / Linde, low-temperature technology, 2nd edition, section 4.1.2 on page 284). The main evaporator is in this case operated as a condenser-evaporator and often referred to as the main condenser. It is implemented by one or more heat exchanger blocks, which are or falling film evaporators are operated.

Die Erfindung betrifft auch andere Doppelsäulenprozesse, bei denen der Hauptverdampfer beispielsweise mit Luft betrieben wird, und auch Verfahren mit drei oder mehr Säulen zur Stickstoff-Sauerstoff-Trennung. Der oder den Rektifiziersäulen zur Stickstoff-Sauerstoff-Trennung können Vorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen nachgeschaltet sein, beispielsweise zur Argongewinnung.The invention also relates to other double-column processes in which the Main evaporator is operated with air, for example, and also processes with three or more columns for nitrogen-oxygen separation. The rectification column or columns for nitrogen-oxygen separation can devices for the production of others Air components, in particular of noble gases, for example for argon production.

Wenn flüssiger Sauerstoff vollständig oder im wesentlichen vollständig verdampft wird, können sich in dem Verdampfer schwererflüchtige Verunreinigungen wie beispielsweise CO2 oder N2O anreichern, auch wenn diese in dem zu verdampfenden Sauerstoff (beziehungsweise in der zu zerlegenden Luft) nur in sehr geringen Konzentrationen enthalten sind. (Das früher gefürchtete Acetylen ist jedoch bei Luftzerlegungsanlagen mit adsorptiver Vorreinigung nicht mehr problematisch.) Manche dieser schwererflüchtigen Stoffe, zum Beispiel CO2 und N2O, können als Feststoffe ausfallen und müssen von Zeit zu Zeit entfernt werden, damit eine Verstopfung von Wärmetauscherpassagen im Hauptverdampfer vermieden wird. Um diese ausgeschiedenen Feststoffe zu beseitigen, muß die gesamte Anlage abgeschaltet werden. Dies kann bei einer großen Luftzerlegungsanlage einen Betriebsstillstand von beispielsweise zwei bis fünf Tagen bedeuten.If liquid oxygen is completely or essentially completely evaporated, less volatile impurities such as CO 2 or N 2 O can accumulate in the evaporator, even if they contain only very low concentrations in the oxygen to be evaporated (or in the air to be separated) are. (However, the previously feared acetylene is no longer a problem in air separation plants with adsorptive pre-cleaning.) Some of these less volatile substances, for example CO 2 and N 2 O, can precipitate out as solids and must be removed from time to time in order to block the heat exchanger passages in the Main evaporator is avoided. The entire system must be switched off to remove these separated solids. In a large air separation plant, this can mean a shutdown of, for example, two to five days.

Um die Anreicherung schwererflüchtiger Komponenten zu verringern, ist es üblich, aus dem Hauptverdampfer kontinuierlich oder von Zeit zu Zeit etwas Flüssigkeit in Form eines Spülstroms zu entnehmen und zu verwerfen. Mit dieser Spülmenge werden auch die in dem flüssig verbliebenen Sauerstoff angereicherten schwererflüchtigen Verunreinigungen entfernt, so daß deren Konzentration im Hauptverdampfer begrenzt werden kann. Die Spülmenge beträgt bei einer Luftzerlegungsanlage mit adsorptiver Vorreinigung üblicherweise 0,02 bis 0,04 % der gesamten in den Verdampfer eingeleiteten Menge an flüssigem Sauerstoff. Seitdem zur Luftreinigung stromaufwärts der Rektifikation Molekularsiebadsorber anstelle der früher verwendeten umschaltbaren Wärmetauscher (Revex) oder Regeneratoren eingesetzt werden, haben sich die Probleme durch die Ansammlung von brennbaren schwererflüchtigen Komponenten in einem derartigen Sauerstoffverdampfer (Hauptverderdampfer) soweit verringert, daß ein derartiger Spülstrom ausreicht, um bedenkliche Konzentrationen von Kohlenwasserstoffen zu verhindern, ohne daß zusätzliche Maßnahmen notwendig wären (siehe Hausen/Linde, Tieftemperaturtechnik, 2. Auflage, Abschnitt 4.5.1.5 auf den Seiten 312 und 313).In order to reduce the accumulation of less volatile components, it is common to some liquid from the main evaporator continuously or from time to time Take the form of a flushing stream and discard. With this flush amount the oxygen remaining in the liquid is also enriched less volatile impurities removed, so that their concentration in Main evaporator can be limited. The flush volume is one Air separation plant with adsorptive pre-cleaning usually 0.02 to 0.04% of total amount of liquid oxygen introduced into the evaporator. Since for air purification upstream of the rectification molecular sieve adsorber instead of the previously used switchable heat exchangers (Revex) or regenerators used, the problems have arisen due to the accumulation of flammable less volatile components in such an oxygen evaporator (Main evaporator) reduced so far that such a purge flow is sufficient to prevent dangerous concentrations of hydrocarbons without additional measures would be necessary (see Hausen / Linde, low-temperature technology, 2. Edition, section 4.5.1.5 on pages 312 and 313).

Aus US 2664719 ist ein Verfahren der eingangs genannten Art bekannt, das die Merkmale des Oberbegriffs des Anspruchs 1 aufweist. Flüssiger Sauerstoff aus einem Hauptverdampfer wird in einen Zusatzverdampfer eingeleitet, der eine Spülleitung aufweist.From US 2664719 a method of the type mentioned is known, which has the features of the preamble of claim 1. liquid Oxygen from a main evaporator is introduced into an additional evaporator that has a purge line.

Der Erfindung liegt die Aufgabe zugrunde, die Verfügbarkeit eines Hauptverdampfers zur Verdampfung von flüssigem Sauerstoff zu erhöhen und insbesondere Betriebsunterbrechungen soweit wie möglich zu verhindern.The invention has for its object to the availability of a main evaporator Increase vaporization of liquid oxygen and in particular To prevent business interruptions as far as possible.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Dabei wird der (erste) Spülstrom, der aus dem Hauptverdampfer abgezogen wird, in einen Zusatzverdampfer geleitet, der getrennt vom Hauptverdampfer angeordnet ist. In diesem Zusatzverdampfer wird ein großer Teil des ersten Spülstroms verdampft und kann damit als Sauerstoffprodukt oder - zwischenprodukt gewonnen werden. Dem Zusatzverdampfer wird wiederum ein zweiter Spülstrom entnommen und verworfen. (In dem Spezialfall, daß aus dem flüssigen Sauerstoff Krypton und/oder Xenon gewonnen werden sollen, ist auch eine weitere Aufarbeitung möglich.) Während der erste Spülstrom kontinuierlich vom Hauptverdampfer zum Zusatzverdampfer geleitet wird, kann die Entnahme des zweiten Spülstroms kontinuierlich oder diskontinuierlich erfolgen.This object is achieved by the features of patent claim 1. The (first) Purge stream, which is withdrawn from the main evaporator, passed into an additional evaporator, which is arranged separately from the main evaporator. In this additional evaporator is a large part of the first flushing stream evaporates and can thus be used as an oxygen product or intermediate product can be obtained. The additional evaporator is in turn a second Rinsing stream removed and discarded. (In the special case that from the liquid oxygen Further processing is also possible if krypton and / or xenon are to be obtained.) During the first flushing flow continuously from the main evaporator to the additional evaporator is conducted, the removal of the second purge stream can be continuous or discontinuous respectively.

Bei der Erfindung kann eine relativ große Flüssigkeitsmenge als erster Spülstrom vom Hauptverdampfer abgezogen werden, so daß sämtliche schwererflüchtigen Komponenten ausgeschleust werden und ihre Konzentration am Hauptverdampfer gering gehalten wird. Insbesondere treten auch keine Feststoffabscheidungen im Hauptverdampfer auf. Diese große Spülflüssigkeitsmenge geht jedoch nicht vollständig verloren, da ein Teil des ersten Spülstroms im Zusatzverdampfer verdampft und in Gasform abgezogen wird. Vom Zusatzverdampfer wird lediglich eine übliche Spülmenge als zweiter Spülstrom abgezogen, beispielsweise 0,02 bis 0,5 %, vorzugsweise 0,02 bis 0,2 % der in den Hauptverdampfer eingeleiteten Menge an flüssigem Sauerstoff. (Im Falle der diskontinuierlichen Entnahme des zweiten Spülstroms beziehen sich die Zahlenangaben auf den zeitlichen Mittelwert.) Der Rest des ersten Spülstroms wird im Zusatzverdampfer verdampft und kann als gasförmiges Sauerstoffprodukt verwertet werden.In the invention, a relatively large amount of liquid can flow from the first rinse stream Main evaporator are removed, so that all less volatile components are discharged and their concentration on the main evaporator is kept low. In particular, there are no solids deposits in the main evaporator. This size However, the amount of flushing liquid is not completely lost because part of the first flushing stream evaporated in an additional evaporator and drawn off in gas form. From the additional evaporator subtracted only a usual flushing quantity as a second flushing stream, for example 0.02 to 0.5%, preferably 0.02 to 0.2% of the amount introduced into the main evaporator liquid oxygen. (In the case of discontinuous withdrawal of the second flushing stream the numbers refer to the time average.) The rest of the first Flushing stream is evaporated in the additional evaporator and can be a gaseous oxygen product be used.

Mit Hilfe der Erfindung ist es möglich, den Hauptverdampfer so stark zu spülen, daß der Gehalt an schwererflüchtigen Komponenten, die zu Feststoffabscheidungen führen könnten, extrem gering gehalten wird. Die schwererflüchtigen Komponenten werden vollständig zum Zusatzverdampfer geleitet und dort über den zweiten Spülstrom und durch den von Zeit zu Zeit vorgenommenen Anwärmbetrieb entfernt.With the help of the invention it is possible to rinse the main evaporator so strongly that the content of less volatile components that lead to solid deposits could lead to being kept extremely low. The less volatile components are completely directed to the additional evaporator and there via the second Flushing current and removed by the heating operation carried out from time to time.

Feststoffausscheidungen können also nur im Zusatzverdampfer, nicht aber im Hauptverdampfer anfallen. Der Zusatzverdampfer kann jedoch wesentlich einfacher als der Hauptverdampfer durch Anwärmung von Feststoffen befreit werden. Dazu wird der Normalbetrieb gelegentlich durch einen Anwärmbetrieb unterbrochen, wobei im Anwärmbetrieb der Zusatzverdampfer vom Hauptverdampfer getrennt wird, indem keine Flüssigkeit aus dem Hauptverdampfer in den Zusatzverdampfer geleitet wird. Gleichzeitig wird der Zusatzverdampfer auf eine Temperatur gebracht, die deutlich höher als seine Temperatur im Normalbetrieb ist, beispielsweise um mindestens 20 K, vorzugsweise 20 bis 50 K. Der Betrieb des Hauptverdampfers und der Anlage, in die er eingebaut ist, braucht dabei nicht unterbrochen zu werden. Durch die verstärkte Spülung des Hauptverdampfers braucht dieser nicht mehr zur Entfernung von Feststoffen angewärmt zu werden.Solids can only be separated in the additional evaporator, but not in the Main evaporator. The additional evaporator can be much easier as the main evaporator by heating solids. This will normal operation is occasionally interrupted by a heating operation, whereby in Heating operation of the auxiliary evaporator is separated from the main evaporator by no liquid is led from the main evaporator into the additional evaporator. At the same time, the additional evaporator is brought to a temperature that is clear is higher than its temperature in normal operation, for example by at least 20 K, preferably 20 to 50 K. The operation of the main evaporator and the plant in which it does not need to be interrupted. Through the reinforced The main evaporator no longer needs to be flushed to remove Solids to be warmed.

Es ist günstig, wenn die Menge des ersten Spülstroms, die im Normalbetrieb vom Hauptverdampfer abgezogen wird, mindestens 1 %, vorzugsweise mindestens 3 % und/oder höchstens 10 %, vorzugsweise höchstens 5 % der in den Hauptverdampfer eingeleiteten Menge an flüssigem Sauerstoff beträgt.It is advantageous if the amount of the first flushing stream, which is in normal operation from Main evaporator is withdrawn, at least 1%, preferably at least 3% and / or at most 10%, preferably at most 5% of those in the main evaporator amount of liquid oxygen introduced.

Die Erfindung betrifft außerdem die Anwendung des Verfahrens nach Anspruch 1 oder 2 in einem Verfahren zur Tieftemperaturzerlegung von Luft gemäß Patentanspruch 3 und in einer entsprechenden Vorrichtung gemäß Patentanspruch 6, insbesondere Luftzeriegungsverfahren und -anlagen mit Luftvorreinigung durch Adsorption, beispielsweise an einem Molekularsieb. Solche Verfahren und Anlagen dienen zur Gewinnung von Sauerstoff, Stickstoff und/oder anderen in atmosphärischer Luft enthaltenen Gasen.The invention also relates to the application of the method according to claim 1 or 2 in a process for cryogenic air separation according to Claim 3 and in a corresponding device according to claim 6, in particular air separation processes and plants with air pre-cleaning Adsorption, for example on a molecular sieve. Such procedures and facilities are used for the production of oxygen, nitrogen and / or others in gases contained in atmospheric air.

Weiterhin betrifft die Erfindung eine Vorrichtung zum Verdampfen von flüssigem Sauerstoff gemäß den Patentansprüchen 4 und 5. Furthermore, the invention relates to a device for evaporating liquid Oxygen according to claims 4 and 5.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:

Figur 1
ein erstes Ausführungsbeispiel mit einem aus einem Block bestehenden Hauptverdampfer und
Figur 2
ein zweites Ausführungsbeispiel mit einem aus mehreren Blöcken bestehenden Hauptverdampfer.
The invention and further details of the invention are explained in more detail below with reference to exemplary embodiments shown in the drawings. Here show:
Figure 1
a first embodiment with a main evaporator consisting of a block and
Figure 2
a second embodiment with a main evaporator consisting of several blocks.

Figur 1 zeigt einen Ausschnitt einer Doppelsäule zur Tieftemperaturzerlegung von Luft, nämlich den oberen Teil der Drucksäule 1 und den unteren Abschnitt der Niederdrucksäule 2. Ein Hauptverdampfer 3 dient zur Verdampfung von flüssigem Sauerstoff, der vom untersten Stoffaustauschabschnitt der Niederdrucksäule 2 abfließt. (Der unterste Stoffaustauschabschnitt ist in der Zeichnung als Boden 4 dargestellt, es könnte sich jedoch auch um eine geordnete Packung handeln.) Über Leitung 9 wird gasförmiges Sauerstoffprodukt aus der Niederdrucksäule abgezogen.Figure 1 shows a section of a double column for low-temperature decomposition of Air, namely the upper part of the pressure column 1 and the lower portion of the Low pressure column 2. A main evaporator 3 is used to evaporate liquid Oxygen coming from the lowest mass transfer section of the low pressure column 2 flows. (The bottom mass transfer section is in the drawing as bottom 4 shown, but it could also be an orderly pack.) About Line 9 is withdrawn gaseous oxygen product from the low pressure column.

Der Hauptverdampfer kann - wie in Figur 1 gezeigt - innerhalb der Doppelsäule, insbesondere im Sumpf der Niederdrucksäule angeordnet sein. Alternativ kann er als separates Bauteil außerhalb der Doppelsäule realisiert oder in ein anderes, von der Doppelsäule getrenntes Bauteil integriert sein, beispielsweise in eine Methan-Ausschleussäule, wie sie in DE 4332870 A1 oder DE 2055099 A gezeigt ist. Über eine im unteren Bereich des Hauptverdampfers 3 angeordnete Leitung 5 wird ein erster Spülstrom kontinuierlich entnommen und in einen Zusatzverdampfer 6 eingeleitet. Vom unteren Bereich des Zusatzverdampfers 6 wird ein zweiter Spülstrom 7 kontinuierlich oder diskontinuierlich abgezogen, während verdampfter Sauerstoff 8 in die Niederdrucksäule zurückgeleitet wird. Alternativ dazu kann der Dampf 8 in die Sauerstoffproduktleitung 9 von der Niederdrucksäule geleitet werden oder in einen anderen Apparat, beispeilsweise in den unteren Bereich einer Methan-Ausschleussäule gemäß DE 4332870 A1 oder DE 2055099 A.The main evaporator can - as shown in Figure 1 - inside the double column, be arranged in particular in the sump of the low pressure column. Alternatively, it can be used as separate component realized outside the double column or in another, from the Double column separate component can be integrated, for example in a methane discharge column, as shown in DE 4332870 A1 or DE 2055099 A. about a line 5 arranged in the lower region of the main evaporator 3 becomes a the first rinsing stream is continuously withdrawn and into an additional evaporator 6 initiated. From the lower area of the additional evaporator 6 there is a second flushing stream 7 withdrawn continuously or discontinuously while vaporized oxygen 8 is returned to the low pressure column. Alternatively, the steam 8 into the Oxygen product line 9 are passed from the low pressure column or into one other apparatus, for example in the lower area of a methane discharge column according to DE 4332870 A1 or DE 2055099 A.

Als Wärmeträger 10 zur indirekten Beheizung des Hauptverdampfers wird Stickstoff vom Kopf der Drucksäule 1 eingesetzt. Der im Hauptverdampfer kondensierte Stickstoff 11 wird als Rücklauf in den beiden Säulen eingesetzt. Der Zusatzverdampfer 6 wird im Normalbetrieb entweder ebenfalls mit Stickstoff aus der Drucksäule oder mit Luft als Wärmeträger 12 beheizt. Der kondensierte Wärmeträger wird über Leitung 13 abgezogen und in eine oder mehrere der Rektifiziersäulen eingespeist.Nitrogen is used as the heat transfer medium 10 for indirectly heating the main evaporator inserted from the head of the pressure column 1. The condensed in the main evaporator Nitrogen 11 is used as the return in the two columns. The Additional evaporator 6 is either also in normal operation with nitrogen from the Pressure column or heated with air as a heat transfer medium 12. The condensed heat transfer medium is withdrawn via line 13 and into one or more of the rectification columns fed.

In gewissen Zeitabständen von beispielsweise drei bis zwölf Monaten, vorzugsweise etwa sechs Monaten wird vom Normalbetrieb auf den Anwärmbetrieb umgeschaltet, indem das Ventil 14 in der ersten Spülleitung 5 geschlossen wird. Auch die Zufuhr des Wärmeträger 12 wird geschlossen. Stattdessen wird etwa 300 K warme Luft über Leitung 15 in den Verflüssigungsraum des Zusatzverdampfers 6 geführt und über Leitung 16 wieder entfernt. Eine Anwärmphase umfaßt Abstellen, Entleeren, Anwärmen, Wiederabkühlen und Inbetriebnahme und dauert beispielsweise 10 bis 24 Stunden, vorzugsweise etwa 20 Stunden.At certain intervals of, for example, three to twelve months, preferably Switching from normal operation to heating operation takes about six months, by closing the valve 14 in the first flushing line 5. Also the supply of the Heat transfer medium 12 is closed. Instead, about 300 K warm air is over Line 15 led into the liquefaction space of the additional evaporator 6 and over Line 16 removed. A warm-up phase includes switching off, emptying, Warming up, cooling down and commissioning and takes for example 10 to 24 hours, preferably about 20 hours.

Es ist vorteilhaft, aber im Rahmen der Erfindung nicht unbedingt notwendig, wenn der erste Spülstrom 5 vor seiner Einleitung in den Zusatzverdampfer 6 durch eine Einrichtung 19 zur Entfernung schwererflüchtiger Komponenten, beispielsweise durch Adsorption, geleitet wird.It is advantageous, but not absolutely necessary within the scope of the invention, if the first flushing stream 5 before its introduction into the additional evaporator 6 by a Device 19 for the removal of less volatile components, for example by Adsorption.

Das Ausführungsbeispiel von Figur 2 unterscheidet sich dadurch von Figur 1, daß der Hauptverdampfer durch eine Mehrzahl von Blöcken 3a, 3b gebildet wird. Die Blöcke 3a, 3b sind beispielsweise konzentrisch um ein Zentralrohr angeordnet, das zur Zufuhr 10 von gasförmigem Stickstoff aus der Drucksäule 1 dient. Selbstverständlich kann auch dieses Ausführungsbeispiel mit einer Einrichtung zur Entfernung schwererflüchtiger Komponenten (19 in Figur 1) ausgerüstet werden.The embodiment of Figure 2 differs from Figure 1 in that the Main evaporator is formed by a plurality of blocks 3a, 3b. The blocks 3a, 3b are arranged, for example, concentrically around a central tube, which for Feed 10 of gaseous nitrogen from the pressure column 1 is used. Of course can also this embodiment with a device for removal less volatile components (19 in Figure 1) are equipped.

Claims (7)

  1. Process for vaporizing liquid oxygen in which, in standard operation,
    liquid oxygen is introduced into a main evaporator (3) and is there partially vaporized,
    a first bleed stream (5) is removed in the liquid state from the main evaporator (3),
    the first bleed stream (5) is partially vaporized in an additional evaporator (6) and
    a second bleed stream (7) is withdrawn in the liquid state from the additional evaporator (6),
    characterized in that, in the process, the standard operation is interrupted by a heating operation and in the heating operation
    no liquid (5) is passed from the main evaporator (3) into the additional evaporator (6) and
    the additional evaporator (6) is brought to a temperature which is markedly higher than its temperature in the standard operation.
  2. Process according to Claim 1, in which in the standard operation the volume of the first bleed stream (5) which is taken off from the main evaporator (3) is at least 1%, preferably at least 3% and/or at most 10%, preferably at most 5%, of the volume of liquid oxygen introduced into the main evaporator (3).
  3. Use of the process according to Claim 1 or 2 in a process for producing oxygen by low-temperature fractionation of air in a rectification system which has a pressure column (1) and a low-pressure column (2) for vaporizing liquid oxygen from the low-pressure column (2), in which at least a part of the vapour (8) produced in the main evaporator (3) and in the additional evaporator (6) is introduced into the low-pressure column (2) and/or is taken off as gaseous oxygen product (9).
  4. Apparatus for vaporizing liquid oxygen having
    a main evaporator (3),
    an additional evaporator (6),
    means for introducing liquid oxygen into the main evaporator,
    a first bleed line (5) for withdrawing a first liquid bleed stream from the main evaporator (3) and for introducing the first liquid bleed stream into the additional evaporator (6),
    a second bleed line (7) for withdrawing a second liquid bleed stream from the additional evaporator (6) and
    a gas product line (8) for withdrawing vapour from the additional evaporator, characterized by
    a heating apparatus (15, 16) for heating the additional evaporator (6) to a temperature which is markedly higher than its temperature in the standard operation, and
    means (14) for interrupting the introduction of the first liquid bleed stream into the additional evaporator (6).
  5. Apparatus according to Claim 4 having a control device for setting the volume of the first bleed stream (5) in the standard operation to at least 1%, preferably at least 3% and/or at most 10%, preferably at most 5%, of the volume of liquid oxygen introduced into the main evaporator (3).
  6. Use of the apparatus according to Claim 4 or 5 in an apparatus for producing oxygen by low-temperature fractionation of air having a rectification system which has a pressure column (1) and a low-pressure column (2), in which the means for introducing liquid oxygen into the main evaporator (3) are connected to the low-pressure column (2) and the apparatus has an oxygen product line (9, 8) for withdrawing gaseous oxygen product from the main evaporator (3) and/or from the additional evaporator (6).
  7. Use according to Claim 6 in which the apparatus for producing oxygen by low-temperature fractionation of air has a gas product line (8) for withdrawing vapour from the additional evaporator (6), which gas product line is connected to the low-pressure column (2) or to a product line (9) which is connected to the low-pressure column.
EP99906129A 1998-01-30 1999-01-15 Method and device for evaporating liquid oxygen Expired - Lifetime EP1051588B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99906129A EP1051588B1 (en) 1998-01-30 1999-01-15 Method and device for evaporating liquid oxygen

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE19803583 1998-01-30
DE19803583 1998-01-30
EP98107128 1998-04-20
EP98107128 1998-04-20
EP99906129A EP1051588B1 (en) 1998-01-30 1999-01-15 Method and device for evaporating liquid oxygen
PCT/EP1999/000203 WO1999039143A1 (en) 1998-01-30 1999-01-15 Method and device for evaporating liquid oxygen

Publications (2)

Publication Number Publication Date
EP1051588A1 EP1051588A1 (en) 2000-11-15
EP1051588B1 true EP1051588B1 (en) 2002-04-03

Family

ID=26043462

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99906129A Expired - Lifetime EP1051588B1 (en) 1998-01-30 1999-01-15 Method and device for evaporating liquid oxygen

Country Status (11)

Country Link
US (1) US6351968B1 (en)
EP (1) EP1051588B1 (en)
JP (1) JP2002502017A (en)
KR (1) KR100528570B1 (en)
CN (1) CN1154831C (en)
AU (1) AU2617499A (en)
BR (1) BR9908350A (en)
DE (1) DE59901114D1 (en)
DK (1) DK1051588T3 (en)
ES (1) ES2175944T3 (en)
WO (1) WO1999039143A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2802825B1 (en) * 1999-12-23 2002-05-03 Air Liquide DISTILLATION SEPARATION APPARATUS AND METHOD FOR CLEANING A CONDENSER VAPORIZER OF THE APPARATUS
DE10205878A1 (en) * 2002-02-13 2003-08-21 Linde Ag Cryogenic air separation process
FR2853723B1 (en) * 2003-04-10 2007-03-30 Air Liquide PROCESS AND PLANT FOR TREATING AN OXYGEN-RICH LIQUID BATH COLLECTED ON THE FOOT OF A CRYOGENIC DISTILLATION COLUMN
FR2910604B1 (en) 2006-12-22 2012-10-26 Air Liquide METHOD AND APPARATUS FOR SEPARATING A GAS MIXTURE BY CRYOGENIC DISTILLATION
FR2916523B1 (en) * 2007-05-21 2014-12-12 Air Liquide STORAGE CAPABILITY, APPARATUS AND PROCESS FOR PRODUCING CARBON MONOXIDE AND / OR HYDROGEN BY CRYOGENIC SEPARATION INTEGRATING SUCH CAPABILITY.
CN102812317B (en) * 2009-09-28 2015-07-22 皇家飞利浦电子股份有限公司 System And Method For Liquefying And Storing A Fluid
US20130098106A1 (en) * 2010-07-05 2013-04-25 Benoit Davidian Apparatus and process for separating air by cryogenic distillation
DE102011111630A1 (en) * 2011-08-25 2013-02-28 Linde Aktiengesellschaft Method and apparatus for the cryogenic separation of a fluid mixture
US9453674B2 (en) * 2013-12-16 2016-09-27 Praxair Technology, Inc. Main heat exchange system and method for reboiling
US9488408B2 (en) * 2014-01-29 2016-11-08 Praxair Technology, Inc. Condenser-reboiler system and method
US9366476B2 (en) 2014-01-29 2016-06-14 Praxair Technology, Inc. Condenser-reboiler system and method with perforated vent tubes
JP6871962B2 (en) * 2019-03-28 2021-05-19 大陽日酸株式会社 Vertical stack type condensing evaporator and air separation device
US20230074304A1 (en) * 2021-09-07 2023-03-09 Uop Llc Vapor distribution system in a concentric reboiler

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650482A (en) 1948-04-29 1953-09-01 Kellogg M W Co Method of separating gas mixtures
US2688238A (en) 1949-05-26 1954-09-07 Air Prod Inc Gas separation
US2664719A (en) 1950-07-05 1954-01-05 Union Carbide & Carbon Corp Process and apparatus for separating gas mixtures
DE1501760A1 (en) 1966-12-27 1969-11-27 Rudisleben Chemieanlagenbau Process for air separation
JPS60253782A (en) * 1984-05-30 1985-12-14 日本酸素株式会社 Condenser for large-sized air separator
US4871382A (en) 1987-12-14 1989-10-03 Air Products And Chemicals, Inc. Air separation process using packed columns for oxygen and argon recovery
FR2650379B1 (en) * 1989-07-28 1991-10-18 Air Liquide VAPORIZATION-CONDENSATION APPARATUS FOR DOUBLE AIR DISTILLATION COLUMN, AND AIR DISTILLATION INSTALLATION COMPRISING SUCH AN APPARATUS
FR2674947B1 (en) * 1991-04-03 1998-06-05 Air Liquide PROCESS FOR VAPORIZATION OF A LIQUID, HEAT EXCHANGER FOR ITS IMPLEMENTATION, AND APPLICATION TO A DOUBLE COLUMN AIR DISTILLATION SYSTEM.
DE4300131C2 (en) * 1993-01-06 1999-08-05 Hoechst Ag Column with integrated heat exchanger

Also Published As

Publication number Publication date
CN1154831C (en) 2004-06-23
BR9908350A (en) 2000-12-05
ES2175944T3 (en) 2002-11-16
KR100528570B1 (en) 2005-11-15
WO1999039143A1 (en) 1999-08-05
DE59901114D1 (en) 2002-05-08
US6351968B1 (en) 2002-03-05
EP1051588A1 (en) 2000-11-15
AU2617499A (en) 1999-08-16
CN1289404A (en) 2001-03-28
DK1051588T3 (en) 2002-07-01
JP2002502017A (en) 2002-01-22
KR20010034421A (en) 2001-04-25

Similar Documents

Publication Publication Date Title
EP1308680B1 (en) Process and system for production of krypton and/or xenon by cryogenic air separation
EP0299364B1 (en) Process and apparatus for air separation by rectification
EP0716280B1 (en) Method and apparatus for the low temperature air separation
EP1482266B1 (en) Process and device for the recovery of Krypton and/or Xenon by cryogenic separation of air
EP1376037B1 (en) Air separation process and apparatus with a mixing column and krypton and xenon recovery
EP1051588B1 (en) Method and device for evaporating liquid oxygen
DE10113790A1 (en) Three-column system for low-temperature air separation
DE10332863A1 (en) Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream
WO2020169257A1 (en) Method and system for low-temperature air separation
EP1102954B1 (en) Method and device for cryogenic air separation
EP1757884A2 (en) Process for the recovery of Krypton and/or Xenon by cryogenic separation of air
DE10232430A1 (en) Process for recovering krypton and/or xenon comprises feeding a liquid from the lower region of a krypton-xenon enriching column to a condenser-vaporizer, and contacting an argon-enriched vapor with the liquid from the enriching column
EP1231440B1 (en) Process and apparatus for air separation by cryogenic distillation
DE19855485A1 (en) Extraction of krypton or xenon-enriched mixture
WO2014067662A2 (en) Process for the low-temperature separation of air in an air separation plant and air separation plant
DE19933558A1 (en) Process to extract nitrogen and oxygen from air by fractionated cryogenic distillation enhances the overall operating efficiency of the process
DE20319823U1 (en) Device for extracting krypton and / or xenon by cryogenic decomposition
DE10205096A1 (en) Process for recovering highly pure oxygen from less pure oxygen in a distillation system comprises feeding the less pure oxygen into high pressure column, feeding fraction into a low pressure column and withdrawing highly pure oxygen
DE10000017A1 (en) Process for recovery of krypton and/or xenon comprises removing oxygen-enriched fraction from the pressure column at an intermediate point
DE10152356A1 (en) Recovering argon in a low temperature decomposition comprises removing an oxygen fraction deficient in volatile components from an intermediate point of a rectification section and fed to a pure oxygen column
DE19950570A1 (en) Low temperature decomposition of air comprises using rectification system consisting of condenser-vaporizer system, pressure column and low pressure column
DE10248656A1 (en) Krypton and/or xenon recovery by low temperature air decomposition is improved by passing the product-containing fraction to a separation column and drawing-off an enriched mixture from a lower section of this column
DE10251485A1 (en) Process for recovering argon by the low temperature decomposition of air comprises feeding gaseous cooling fluid formed in a vaporization chamber of a condenser-vaporizer into an additional column
EP3910274A1 (en) Method for the low-temperature decomposition of air and air separation plant
EP4189311A1 (en) Method and plant for conducting an industrial process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000811

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FI FR GB IT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010418

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FI FR GB IT SE

REF Corresponds to:

Ref document number: 59901114

Country of ref document: DE

Date of ref document: 20020508

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020701

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2175944

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050211

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20060112

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20060118

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070115

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080104

Year of fee payment: 10

Ref country code: IT

Payment date: 20080129

Year of fee payment: 10

Ref country code: GB

Payment date: 20080109

Year of fee payment: 10

Ref country code: DE

Payment date: 20080110

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080108

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090116