EP2382357B1 - Extension de pieux - Google Patents

Extension de pieux Download PDF

Info

Publication number
EP2382357B1
EP2382357B1 EP09795785.6A EP09795785A EP2382357B1 EP 2382357 B1 EP2382357 B1 EP 2382357B1 EP 09795785 A EP09795785 A EP 09795785A EP 2382357 B1 EP2382357 B1 EP 2382357B1
Authority
EP
European Patent Office
Prior art keywords
defining
aperture
pile
coupling
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09795785.6A
Other languages
German (de)
English (en)
Other versions
EP2382357A1 (fr
Inventor
Lars Gøttrup CHRISTENSEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centrum Pæle AS
Original Assignee
Centrum Pæle AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centrum Pæle AS filed Critical Centrum Pæle AS
Priority to EP09795785.6A priority Critical patent/EP2382357B1/fr
Publication of EP2382357A1 publication Critical patent/EP2382357A1/fr
Application granted granted Critical
Publication of EP2382357B1 publication Critical patent/EP2382357B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/52Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments
    • E02D5/523Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments composed of segments

Definitions

  • Concrete piles are typically used for deep piling foundations, which are used when the upper soil layers are not suitable for accommodating a shallow foundation Piles are often preferred over shallow foundations when the bearing capacity of the ground is weak in relation to the construction, which the foundation should support.
  • a piling foundation the load from the construction may be transferred from the weak upper layers of the soil to stronger layers, which are typically found deeper in the ground.
  • the piles are driven into the ground by using a pile driver or hammer or the like.
  • the piles penetrate the soft upper soil layers and embed in the lower, more rigid lower soil layers.
  • the piles are intended for embedment deep into the ground for providing a stable foundation for various structures such as buildings, bridges and similar constructions.
  • the concrete piles are typically reinforced concrete piles, which are cast in standardized lengths For reaching further into the ground than the standardized lengths the piles are fixated together end to end for achieving a total length greater than the standardized lengths.
  • a coupling device is used for fixating the two opposing ends of the concrete piles. The coupling device is typically integrated into the end of the concrete pile when the concrete pile is being cast.
  • Such a pile foundation as described above may e.g. be used in soil layers at or near bodies of water such as near lakes or near the ocean. It is thus contemplated that the piles, which are embedded into the ground, may be subjected to a large amount of water. The water may penetrate the pile, in particular at locations where the piles have been joined. Such water penetrating the joints between the piles may cause rust and may eventually cause the pile to break, which will reduce the stability of the overlying construction. The penetrating water may also freeze at a later time when subjected to lower temperatures and cause damage to the pile. There is consequently a need for technologies for avoiding water penetration into the joints between two opposing piles.
  • the two opposing piles are typically coupled by applying a coupling device having a flat metal plate at the end of the opposing piles.
  • the opposing coupling devices typically comprise reciprocal coupling elements, which may interact to provide a rigid fixation between the two opposing piles.
  • the fixation must be rigid enough for sustaining the very large forces applied to the coupling device during piling, i.e the fixation must endure repeated hammering without breaking.
  • a coupling device may be found in the European patent application EP 1 127 195 , in which a coupling device comprises a pair of loopholes which are fixated to a pair of opposing loopholes of an opposing coupling device by a pin
  • a coupling device having a male coupling element comprising a protruding cylinder snap-fit interlocks with an opposing coupling device having a female coupling element having a receiving cavity
  • the opposing male and female coupling elements are joined and locked in position by a locking pin.
  • EP 1582633 A1 discloses a method according to the preamble of claim 1.
  • the coupling device should comprise coupling elements of substantially only round shape.
  • the concrete piles should be prefabricated concrete piles such as reinforced concrete piles which are provided in lengths between approx. 4 m and approx. 20 m.
  • the piles are driven into the ground by a pile driver comprising a hammer or the like.
  • An example of a suitable pile driver may be found in the European patent applications 0 392 311 and 0 984 105 .
  • the pile driver forces the pile into the ground by the use of a repeated hammering action.
  • a further pile may be positioned on top of the first pile, thereby enabling the total pile length to extend deeper into the ground. Often more than two piles must be joined together for reaching to a suitable depth into the ground.
  • the piles must be driven more than 50 m into the ground, such as 80 m into the ground, and since a single pile typically cannot be longer than about 20 m, several piles must be connected and driven into the ground Piles longer than 20 m would require unsuitably large pile drivers and would additionally cause logistic problems, since they would require special carriers for being transported to the installation site.
  • a coupling device is provided at each end of the opposing pile.
  • the coupling device is cast into the pile already during manufacture of the pile itself.
  • the piles are factory-cast and subsequently delivered to the installation site
  • the coupling device comprises the flat base plate for defining a substantially flat and stable front surface being the contact area between the two opposing piles. In this way the weight resting on the pile will be distributed over the complete surface of the base plate.
  • the reinforcement bar extending from the rear surface of the base plate and the support flange prevent any substantial movement of the base plate, both during and after installation.
  • the periphery of the base plate should be substantially concurrent with the end periphery of the pile for allowing a stable and secure foundation and proper weight distribution.
  • the opposing base plates should be aligned to transfer the weight of the overlying structures downwardly. Any misalignment may increase the risk of installation failure or a later foundation failure, which may in the worst case cause the overlying structure to collapse.
  • the female coupling element comprises a receptor cavity, which is adapted to receive the male coupling element comprising a cylindrical protrusion.
  • the female coupling element should accommodate the male coupling element of the opposing coupling device.
  • the upper pile is positioned on top of the lower pile so that the male coupling element of one of the coupling devices is accommodated inside the cavity of the female coupling element of the other coupling device, or vice versa.
  • the coupling elements constitutes round cylinders, which are simple to manufacture compared to manufacturing square-shaped structures as in the prior art technology described above
  • the female and male coupling elements should be positioned on the flat base plate in a symmetrical pattern for allowing the opposing base plates to be juxtaposed without any overlapping or misalignment.
  • the coupling elements should be placed a certain distance from the periphery of the base plate and should consequently not have any contact with the periphery of the base plate.
  • the support flange extends from the periphery of the base plate rearwards, encapsulating the end part of the pile similar to a sleeve.
  • the female coupling element constitutes a cavity into the front surface of the base plate. The cavity is as well cast into the pile.
  • the cavity constitutes a rounded cylinder having a length approximately corresponding to the extension of the support flange.
  • the aperture in the support flange and the passage defined by the first hole and the second hole of the female coupling element should be centrally located in registration at about half the distance between the rear surface of the base plate and the end of the support flange and preferably perpendicular to the direction of the pile.
  • the male coupling element should have an outer shape fitting into the receptor cavity of the female coupling element. By fitting is meant that substantially no sideward movement should be possible when the female coupling element and the male coupling element are joined and a well-defined position is achieved.
  • the male coupling element comprises a cylindrical duct at a distance from the front surface of the flat base plate corresponding to the distance between the front surface of the flat base plate and the first and second holes of the female coupling element.
  • the coupling devices are juxtaposed and the male coupling element is accommodated inside the receptor cavity of the female coupling element, the duct of the male coupling element is positioned in registration with the aperture and the first and second holes. In this way, the coupling devices are assembled.
  • a tube is attached fluid-tight between the aperture and the first hole and a hollow plug is attached fluid-tight to the second hole, respectively.
  • the tube and a hollow plug should be made of flexible material, providing a smooth and fluid-tight connection between the aperture and the hollow plug. Consequently, water from the outside cannot penetrate the end part of the pile and concrete cannot penetrate the receptor cavity of the female coupling element. Water penetrating the end part of the pile may cause corrosion as well as frost damages if the penetrating water freezes. Concrete entering the receptor cavity will render the coupling element useless, since the female coupling element will not be able to accommodate the male coupling element.
  • the channel resulting from assembling the coupling devices is typically filled with grease such as consistent grease or the like.
  • the grease will simplify the insertion of the locking pin as well as prevent any water from entering the coupling device through the aperture.
  • the locking pin should fit inside the channel for preventing the assembled opposing coupling devices from disassembling.
  • One locking pin should be inserted in each male-female assembled pair of coupling elements. All parts of the coupling device, except the tube and the hollow plug, should be made of rigid material capable of withstanding the forces subjected to the pile from the overlying structures.
  • the locking pin is preferably hammered into the aperture so that it is suitably fixated by the friction inside the channel.
  • the outwardly end of the locking pin preferably forms an even surface with the support flange for avoiding any damage on the contact pin due to friction with the ground when the pile is being driven into the ground.
  • the base plate, reinforcement bar, support flange, female coupling element and male coupling element are made of iron or an iron alloy such as steel.
  • the coupling device except the tubular and hollow bodies is preferably made of iron or an iron alley such as steel due to the great rigidity needed for supporting the foundation.
  • the flexible material of the tube and the hollow plug constitutes a polymeric material such as plastic.
  • the tube and the hollow plug are preferably made of a plastic material, since plastic materials are durable and flexible for allowing a fluid-tight connection.
  • the locking pin and the hollow plug comprise locking elements for snap-fit interlocking with each other.
  • the hollow plug may comprise locking elements so that when the locking pin is inserted in the channel and the tip of the locking pin enters the hollow plug, the hollow plug snaps around the tip for preventing the locking pin from leaving the channel. In this way it may be ensured that the locking pin does not fall out of the channel, e.g during hammering.
  • the tube and the hollow plug extend partially into the receptor cavity for snap-fit interlocking with the duct of the opposing coupling device
  • the tube and the hollow plug may extend partially into the receptor cavity at the first and second hole, respectively, for snap-fitting and locking with the male coupling element of the opposing coupling device.
  • the base plate defines an area of about 30 x 30 cm and the pile has a length of about 4-20 m.
  • the typical size of a coupling device used for construction purposes is about 30 cm x 30 cm, i e a square shape.
  • the typical length of a pile is about 4 to 20 m. Longer piles are not feasible due to limitations in the height of the pile driver and due to logistic limitations.
  • each of the opposing coupling elements comprises the female coupling element, the tube, the hollow plug, the locking pin and the male coupling element.
  • the cylindrical duct of the male coupling device is extending perpendicular to the passage of the female coupling device or, alternatively, the cylindrical duct of the male coupling device is extending in parallel to the passage of the female coupling device.
  • a square coupling device is used having a square base plate. Consequently, the support flange comprises four side surfaces.
  • the duct of the male coupling element is perpendicular to the channel of the female coupling element of the same coupling device so that the opposing coupling device should be turned 90 degrees for being juxtaposed the first coupling device.
  • the locking pins of the opposing coupling device are perpendicular to the locking pins of the first coupling device.
  • the coupling devices are arranged so that all contact pins have the same orientation. In this way, only one orientation is possible.
  • each of the coupling devices comprises a plurality of female coupling elements and a plurality of male coupling elements, such as two female coupling elements and two male coupling elements for each coupling device.
  • the coupling device comprises two coupling elements of the first type and two corresponding coupling elements of the second type.
  • the first and male coupling elements should be distributed on the base plate in a symmetrical pattern, e g have the same distance from the central point of the coupling device to the respective peripheries of the base plates
  • the two respective male and female coupling elements are located in a crossover pattern, i e. in opposite corners of the base plate in relation to each other.
  • the male coupling element constitutes a removable part, which may be inserted into the reception cavity of the female coupling device
  • the coupling device may be manufactured with only female coupling elements, and some, i.e. half, of the female coupling elements may be transformed to male coupling elements by using a removable male coupling device part
  • Fig 1A shows a pile system 10 comprising a pair of opposing upper and lower piles 12, 12', each having a respective upper and lower coupling device 14, 14'.
  • the coupling devices 14, 14' are of a first type configuration
  • the upper coupling device 14 is accommodated on an upper pile 12 and the lower coupling device 14' is accommodated on a lower pile 12'-
  • the piles constitute reinforced concrete piles of a length of about 10 m and a cross-section area of about 30 x 30 cm.
  • the lower pile 12' has been driven into the ground by means of a hydraulic hammer
  • the upper and lower coupling devices 14, 14' are firmly fixated to their respective piles 12, 14 and assume opposing flat front surfaces 16, 16'
  • the coupling devices 14, 14' each comprises a substantially flat base plate 20 and a support flange 22 extending inwardly and constituting a sleeve covering the end part of the pile 12, 12'.
  • the coupling devices 14, 14' further comprise a pair of female coupling elements 24 located in a crossover configuration at opposite corners on the plate 20 as well as corresponding male coupling elements 26 located at the other opposite corners on the plate 20.
  • the female coupling elements constitute tube-shaped receptor cavities 18 In the front surface 16.
  • the male coupling elements constitute tubular protrusions in the front surface 16, which in shape and length fit inside the receptor cavities 18 of the female coupling element 24.
  • the male and female coupling elements 24, 26 are positioned symmetrically on the base plate 20 having equal distance from each of the coupling elements 24, 26 to the centre of the front surface 16.
  • the upper coupling device 14 is positioned opposite the lower coupling device 14' so that the female coupling elements 24 of the upper coupling device 14 are positioned opposite the male coupling elements of the lower coupling device 14'. Consequently, the male coupling elements of the upper coupling device 14 should be positioned opposite the female coupling elements 26 of the lower coupling device 14', and vice versa.
  • the coupling devices 24, 26 should be positioned on the front surface 16 so that the front surfaces and the periphery of the front surfaces 16 may concur when the coupling devices 14, 14' are juxtaposed.
  • the above-mentioned position may be referred to as the pre-assembly position of the piling system 10. It should be noted that in the present type configuration a further pre-assembly position is achieved by rotating the upper pile 12 around its axis by 180 degrees. When any of the pre-assembly positions have been achieved, the coupling devices 14, 14' may be juxtaposed.
  • the female and male coupling elements 24, 26 should have a tubular shape.
  • the female and male coupling elements 24, 26 may therefore be manufactured by using standard machinery such as a lathe and a drill. The coupling elements may subsequently be welded to the coupling device.
  • Fig 1B shows a pile system 10' similar to the pile system 10 of Fig. 1A , however, having a different type configuration.
  • the coupling device 14" of the present embodiment has the male coupling elements 26 at the two respective corners which define the same side of the base plate 20, and the two female coupling elements 24 at the corners defining the opposite side of the base plate 20.
  • the opposite lower coupling device 14"' has corresponding female and male coupling elements 24, 26
  • the present type configuration enables one pre-assembly position.
  • Fig. 1C shows a pile system 10" being similar to the pile system 10 of Fig. 1A , however, having a third type configuration.
  • the upper coupling device 14 IV comprises four male coupling elements 26, which are located at each of the corners of the base plate 20.
  • the lower coupling device 14 V has corresponding female coupling elements 24 for accommodating the male coupling elements 26 of the upper coupling device 14 IV
  • the present type configuration has the drawback of needing two fundamentally different coupling devices 14 IV , 14 V , one having only female coupling elements 24 and one having only male coupling elements 26. Thereby the risk of an accidental incorrect pre-assembly position increases, e.g. the risk of occasionally having two opposite coupling devices of the same kind.
  • Fig. 1D shows a pile system 10"' being similar to the pile system 10" of Fig. 1C , however, having a fourth type configuration.
  • both the upper coupling device 14 VI and the lower coupling device 14 VII comprise only female coupling elements 24.
  • the male coupling elements 26' comprise loose male coupling element parts, which may be inserted into the female coupling elements 26 of one of the coupling devices, thereby transforming the female coupling elements into male coupling elements. The risk of an incorrect pre-assembly position as discussed above in relation to Fig. 1C is thus decreased.
  • Fig. 2A shows an upper coupling device 14 and lower coupling device 14' before being joined together.
  • the lower coupling device 14' has two male coupling elements 26 located at opposing corners on the base plate 20 and protruding outwardly. At the other opposing corners of the base plate 20 two female coupling elements are located.
  • the male coupling elements 26 constitute circular cylindrical protrusions protruding outwardly in relation to the front surface of the base plate 20.
  • the male coupling element 26 has a circular duct 28 penetrating the cylindrical surface of the male coupling element 26 at a centralized location and a certain distance of about 1 cm above the front surface.
  • the female coupling element 24 defines a receptor cavity in the front surface, having an inner shape for fitting a male coupling element 26.
  • the female coupling element 24 protrudes at the rear surface of the base plate 20 and defines a first and a second hole (not shown), which defines a channel intersecting the receptor cavity of the female coupling element 24 at a centralized location and about 1/2 cm from the rear surface.
  • the female coupling element extends from the rear surface about 2 cm, which is equal to the distance, in which the support flange 22 extends.
  • the support flange 22 has an aperture 30, which is in registration with the first and second hole (not shown) of the female coupling element 24.
  • the diameter of the first hole, second hole and aperture is equal to the diameter of the duct 28
  • a locking pin 32 is provided for each female coupling element 24
  • the female coupling element has a diameter matching the inside of the duct 28, and a matching length corresponding to the distance between the aperture 30 and at least through the second hole (not shown).
  • Each of the male and female coupling elements 24, 26 has a reinforcement bar 34, extending inwardly into the pile (not shown). The reinforcement bar 34 is cast into the pile for fixating the coupling device to the pile (not shown)
  • the support flange 22, which is filled with concrete, provides additional stability to the coupling device 14.
  • Fig. 2B shows the two opposing upper and lower coupling devices 14, 14', when they are assembled
  • the coupling devices 14, 14' When the coupling devices 14, 14' are assembled, the front surfaces 16 of the respective coupling devices are juxtaposed so that their respective peripheries concur and their respective male coupling elements 26 are accommodated in the receiving receptor cavities of the corresponding female coupling elements 24 of the opposite coupling device.
  • the aperture 30, the first and second holes (not shown) and the duct (not shown) are put in registration so that the locking pin 32 may be inserted in each of the apertures 30
  • a hammer may be used for assuring that the locking pin 32 reaches its locked position when the end of the locking pin 32 forms an even surface in relation to the support flange 22.
  • the coupling devices 14, 14' and their respective piles 12, 12' are joined together and fixated. Any movement of the piles 12, 12' and coupling devices 14, 14' in any direction is thereby prevented.
  • Fig. 3A shows a cut-out view of the coupling devices of Fig. 2A .
  • a tube 36 is provided between the aperture 30 and the first hole 38.
  • the tube 36 is made of plastic material and provides a fluid-tight connection between the aperture 30 and the receptor cavity 18 defined by the female coupling element 24.
  • the tube has an interior passage having a dimension corresponding to the previously mentioned cylindrical duct of the male coupling element 26.
  • the space defined inside the base plate 20 and the support flange 22 will be filled with concrete and constitute the end part of the pile
  • the tube 36 prevents any concrete from entering the receptor cavity 18 via the first hole 38 during casting.
  • the tube 36 further prevents concrete from escaping through the aperture 30.
  • the tube 36 will as well prevent water from the outside penetrating the end part of the pile.
  • the oppositely located second hole 40 is connected to a hollow plug 42 made of plastic material and extending outwardly in relation to the female coupling element 24.
  • the hollow plug 42 has an inner groove corresponding to the tube 36, however, is sealed at its far end for preventing any concrete from entering the second hole 40.
  • the groove of the hollow plug 42 has a diameter corresponding to the cylindrical duct 28 of the male coupling element and a length suitable for receiving the front end part of the locking pin (not shown).
  • Fig. 3B shows a cut-out view of the two opposing upper and lower coupling devices 14, 14' when they are assembled as shown in Fig. 2B
  • the male coupling elements 26 are received within the receptor cavity 18 of the female coupling elements 24, and a channel is defined from the aperture 30 via the tube 26, the first hole 38, the duct 28, the second hole 40 to the hollow plug 42
  • the locking pin 32 is inserted into the channel for fixating the male and female coupling elements 24, 26 in relation to each other, thereby fixating the upper and lower coupling devices 14, 14'.
  • the channel is typically filled with grease such as consistence grease for preventing any water from entering the channel when the pile is embedded in the ground
  • Fig 3C shows a close-up view of the tube 46.
  • the tube is sealed fluid-tight at the aperture 30 of the support flange 22 and at the first hole 38 of the female coupling element 24.
  • the tube 46 comprises a locking flange 44 extending through the first hole into the receptor cavity of the female coupling element 24 for providing a sealed and smooth transition between the first hole 38 of the female coupling element 24 and the duct 28 of the male coupling element 26, when the coupling devices have been juxtaposed.
  • the hollow plug (not shown here) is fitted with similar locking flanges 44 for providing a sealed and smooth connection between the second hole and the hollow plug.
  • the tube 36 and the hollow plug 42 may constitute effectively equivalent components, namely a pipe being open towards the receptor cavity 18 and closed off by a pierceable cap in the opposite direction
  • the dashed line in the figure represents a pierceable membrane, which is a part of the pierceable cap.
  • the pierceable membrane prevents concrete from entering the channel.
  • the pierceable membrane of the tube 36 is ruptured by driving the locking pin 32 through the aperture 30.
  • the pierceable membrane constitutes a plastic membrane having slits, which are closed while the concrete pile 12 is cast to the coupling device 14, and the slits are separated when the locking pin is driven through the aperture 30.
  • the pierceable cap may be omitted and the pipe being a part of the hollow plug 42 may be provided with a non-pierceable cap, whereas the pipe being a part of the tube 36 may be left open towards the aperture 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Claims (13)

  1. Procédé pour joindre deux pieux en béton à leurs extrémités opposées respectives en fournissant deux dispositifs d'attelage opposants auxdites extrémités opposées, chacun desdits dispositifs d'attelage comprenant:
    une plaque de base plate définissant une surface arrière juxtaposée ledit pieu, une surface avant opposée et une périphérie essentiellement concordante avec la périphérie d'extrémité dudit pieu,
    au moins une barre de renforcement portant en saillie dans ledit pieu à partir de ladite surface arrière et étant coulée dans ledit pieu, et
    un collier de support s'étendant de ladite périphérie de ladite plaque de base, perpendiculaire à ladite surface arrière et allant vers ledit pieu, ledit collier de support définissant une ouverture à une distance spécifique de ladite surface avant, ladite ouverture ayant un diamètre spécifique,
    au moins un parmi lesdits deux dispositifs d'attelage comprenant:
    un élément d'attelage femelle définissant une cavité réceptrice dans ladite surface avant et une protrusion à partir de ladite surface arrière adjacente à ladite ouverture, ladite cavité réceptrice définissant un cylindre tubulaire définissant un premier trou à l'opposé de ladite ouverture et un deuxième trou à l'opposé dudit premier trou, lesdits deux trous ayant ledit diamètre spécifique et définissant un passage à travers ladite cavité réceptrice, ledit passage étant localisé en enregistrement avec ladite ouverture,
    un tube de matière souple définissant un diamètre intérieur correspondant audit diamètre spécifique et qui est lié de manière étanche aux liquides entre ledit premier trou et ladite ouverture,
    un bouchon creux de matière souple définissant une extrémité ouverte et une extrémité fermée opposée, ladite extrémité ouverte étant liée de manière étanche aux liquides audit deuxième trou, et au moins l'un parmi lesdits deux dispositifs d'attelage comprenant:
    un élément d'attelage male portant en saillie vers l'extérieur de ladite surface avant et définissant une forme extérieure adaptée pour entrer dans ledit cylindre tubulaire de ladite cavité réceptrice dudit dispositif d'attelage opposé, ladite forme extérieure définissant un conduit cylindrique dudit diamètre spécifique localisé à ladite distance spécifique de ladite surface avant et s'étendant à travers ledit élément d'attelage male pour permettre audit conduit d'être positionné en enregistrement avec l'ouverture du dispositif d'attelage, concordante avec ledit passage, et
    lesdits deux dispositifs d'attelage comprenant:
    un pion de verrouillage définissant une dimension radiale dudit diamètre spécifique et une dimension axiale qui correspond à la distance entre ladite ouverture et ladite extrémité fermée dudit bouchon creux,
    ledit procédé comprenant en outre la performance des étapes suivantes:
    juxtaposer lesdites surfaces avant desdits deux dispositifs d'attelage de manière à ce que lesdites périphéries sont concordantes et que ledit élément d'attelage male est reçu à l'intérieur de ladite cavité réceptrice, formant ainsi un canal défini par ladite ouverture, ledit premier trou, ledit conduit cylindrique, ledit deuxième trou et ledit bouchon creux, et insérant ledit pion de verrouillage dans ledit canal.
  2. Procédé selon la revendication 1, dans lequel ladite plaque de base, ladite barre de renforcement, ledit collier de support, ledit élément d'attelage femelle et ledit élément d'attelage male sont faits de fer ou d'un alliage de fer tel que l'acier.
  3. Procédé selon l'une quelconque des revendications précédentes, dans lequel ladite matière souple dudit tube et ledit bouchon creux constituent un matériau polymère tel que du plastique.
  4. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit pion de verrouillage et ledit bouchon creux comprennent des éléments de verrouillage pour l'enclenchement à pression l'un avec l'autre.
  5. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit tube et ledit bouchon creux s'étendent partiellement à l'intérieur de ladite cavité réceptrice pour l'enclenchement à pression avec ledit conduit dudit dispositif d'attelage opposé.
  6. Procédé selon l'une quelconque des revendications précédentes, dans lequel ladite plaque de base définit une zone d'environ 30 x 30 cm et où ledit pieu a une longueur d'environ 4 à 20 m.
  7. Procédé selon l'une quelconque des revendications précédentes, dans lequel lesdits dispositifs d'attelage comprennent ledit élément d'attelage femelle, ledit tube, ledit bouchon creux, ledit pion de verrouillage et ledit élément d'attelage male.
  8. Procédé selon la revendication 7, dans lequel, pour chacun desdits dispositifs d'attelage, ledit conduit cylindrique dudit dispositif d'attelage male s'étend perpendiculairement audit passage dudit dispositif d'attelage femelle ou, alternativement, ledit conduit cylindrique dudit dispositif d'attelage male s'étend parallèlement audit passage dudit dispositif d'attelage femelle.
  9. Procédé selon l'une quelconque des revendications précédentes, dans lequel chacun desdits dispositifs d'attelage comprend une pluralité d'éléments d'attelage femelles et une pluralité d'éléments d'attelage males et deux d'éléments d'attelage males pour chaque dispositif d'attelage.
  10. Procédé selon la revendication 8, dans lequel lesdits deux éléments d'attelage femelles respectifs sont localisés dans un motif de traversée, c'est-à-dire dans des coins opposés de ladite plaque de base l'un par rapport à l'autre.
  11. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit élément d'attelage male constitue une partie amovible qui peut être insérée dans ladite cavité réceptrice dudit dispositif d'attelage femelle.
  12. Système comprenant deux pieux en béton joints à leurs extrémités opposantes respectives en fournissant deux dispositifs d'attelage opposés auxdites extrémités opposées, chacun desdits dispositifs d'attelage comprenant:
    une plaque de base plate définissant une surface arrière juxtaposée ledit pieu, une surface avant opposée et une périphérie concordante avec la périphérie d'extrémité dudit pieu pour juxtaposer lesdites surfaces avant desdits deux dispositifs d'attelage de manière à ce que lesdites périphéries sont concordantes,
    au moins une barre de renforcement portant en saillie au dedans ledit pieu à partir de ladite surface arrière et étant coulée dans ledit pieu, et
    un collier de support s'étendant de ladite périphérie de ladite plaque de base, perpendiculaire à ladite surface arrière et allant vers ledit pieu, ledit collier de support définissant une ouverture à une distance spécifique de ladite surface avant, ladite ouverture ayant un diamètre spécifique,
    au moins un parmi lesdits deux dispositifs d'attelage comprenant:
    un élément d'attelage femelle définissant une cavité réceptrice dans ladite surface avant et une protrusion à partir de ladite surface arrière adjacente à ladite ouverture, ladite cavité réceptrice définissant un cylindre tubulaire définissant un premier trou à l'opposé de ladite ouverture et un deuxième trou à l'opposé dudit premier trou, lesdits deux trous ayant ledit diamètre spécifique et définissant un passage à travers ladite cavité réceptrice, ledit passage étant localisé en enregistrement avec ladite ouverture,
    un tube de matière souple définissant un diamètre intérieur correspondant audit diamètre spécifique et qui est lié de manière étanche aux liquides entre ledit premier trou et ladite ouverture,
    un bouchon creux de matière souple définissant une extrémité ouverte et une extrémité fermée opposée, ladite extrémité ouverte étant liée de manière étanche aux liquides audit deuxième trou,
    au moins l'un parmi lesdits deux dispositifs d'attelage comprenant:
    un élément d'attelage male portant en saillie vers l'extérieur à partir de ladite surface avant et définissant une forme extérieure adaptée pour entrer dans ledit cylindre tubulaire de ladite cavité réceptrice dudit dispositif d'attelage opposé, ladite forme extérieure définissant un conduit cylindrique dudit diamètre spécifique localisé à ladite distance spécifique de ladite surface avant et s'étendant à travers ledit élément d'attelage male pour permettre audit conduit d'être positionné en enregistrement avec l'ouverture du dispositif d'attelage, concordante avec ledit passage, ledit élément d'attelage étant reçu à l'intérieur de ladite cavité réceptrice, formant ainsi un canal définit par ladite ouverture, ledit premier trou, ledit conduit cylindrique, ledit deuxième trou et ledit bouchon creux, et
    lesdits deux dispositifs d'attelage comprenant:
    un pion de verrouillage à être inséré dans ledit canal, ledit pion de verrouillage définissant une dimension radiale dudit diamètre spécifique et une dimension axiale qui correspond à la distance entre ladite ouverture et ladite extrémité fermée dudit bouchon creux.
  13. Système selon la revendication 12, comprenant en outre l'une quelconque des caractéristiques des revendications 1 à 11.
EP09795785.6A 2008-12-23 2009-12-22 Extension de pieux Active EP2382357B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09795785.6A EP2382357B1 (fr) 2008-12-23 2009-12-22 Extension de pieux

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08022355A EP2204498A1 (fr) 2008-12-23 2008-12-23 Extension des pieux
PCT/EP2009/067763 WO2010072772A1 (fr) 2008-12-23 2009-12-22 Extension de pilots
EP09795785.6A EP2382357B1 (fr) 2008-12-23 2009-12-22 Extension de pieux

Publications (2)

Publication Number Publication Date
EP2382357A1 EP2382357A1 (fr) 2011-11-02
EP2382357B1 true EP2382357B1 (fr) 2014-05-28

Family

ID=40456425

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08022355A Withdrawn EP2204498A1 (fr) 2008-12-23 2008-12-23 Extension des pieux
EP09795785.6A Active EP2382357B1 (fr) 2008-12-23 2009-12-22 Extension de pieux

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08022355A Withdrawn EP2204498A1 (fr) 2008-12-23 2008-12-23 Extension des pieux

Country Status (3)

Country Link
EP (2) EP2204498A1 (fr)
DK (1) DK2382357T5 (fr)
WO (1) WO2010072772A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022139571A1 (fr) * 2020-12-22 2022-06-30 Tan Kenny Tze Ken Joint mécanique de pieu doté d'une ou plusieurs saillies de verrouillage rainurées pour une installation facile d'une ou plusieurs broches de verrouillage
EP4187018A1 (fr) 2021-11-30 2023-05-31 Centrum Pæle A/S Fondation sur pieux et procédé d'installation d'une fondation sur pieux

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871211B (zh) * 2010-07-13 2011-09-21 中国一冶集团有限公司 一种钻孔灌注桩的湿法接桩方法
FI128431B (fi) * 2018-11-07 2020-05-15 Leimet Oy Paaluliitos
CN110629751B (zh) * 2019-10-08 2021-02-23 中北大学 一种地基水泥桩快速连接结构及方法
RU200419U1 (ru) * 2020-06-19 2020-10-23 Сергей Александрович Суворов Замковое свайное соединение
GB2596850B (en) * 2020-07-10 2023-11-29 Wrr Pedley & Co Ltd A joint
CN115450378A (zh) * 2022-04-30 2022-12-09 张轶鹏 装配剪力墙pc构件连接钢筋定位、对位、注浆自锁连接

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3505479A1 (de) * 1985-02-16 1986-08-28 Joachim 2100 Hamburg Otto Verriegelungsvorrichtung
DE8504456U1 (de) * 1985-02-16 1985-06-13 Otto, Joachim, 2100 Hamburg Verriegelungsvorrichtung
FI76169C (fi) * 1986-10-27 1988-09-09 Lohja Ab Oy Anordning foer sammanfogning av byggnadselement.
DK165797C (da) 1989-04-11 1993-06-21 Aarsleff As Fremgangsmaade til nedramning af pael og rammehoved til fiksering af hammermekanisme i forhold til en pael
FI961552A0 (fi) 1996-04-09 1996-04-09 Leimet Oy Laosfog foer betongpaolar
EP0984105B1 (fr) 1998-08-31 2003-04-23 Per Aarsleff A/S Ensemble de positionnement d'une tête de battage
FI112816B (fi) 1998-10-29 2004-01-15 Leimet Oy Jäykkä jatkoliitos teräsbetonisten lyöntipaalujen liittämiseksi toisiinsa
ES1057314Y (es) * 2004-03-31 2004-11-01 Terratest Tecn Especiales S A Cabezal de empalme para pilotes prefabricados pretensados.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022139571A1 (fr) * 2020-12-22 2022-06-30 Tan Kenny Tze Ken Joint mécanique de pieu doté d'une ou plusieurs saillies de verrouillage rainurées pour une installation facile d'une ou plusieurs broches de verrouillage
EP4187018A1 (fr) 2021-11-30 2023-05-31 Centrum Pæle A/S Fondation sur pieux et procédé d'installation d'une fondation sur pieux

Also Published As

Publication number Publication date
WO2010072772A1 (fr) 2010-07-01
EP2382357A1 (fr) 2011-11-02
DK2382357T5 (da) 2014-09-15
EP2204498A1 (fr) 2010-07-07
DK2382357T3 (da) 2014-08-18

Similar Documents

Publication Publication Date Title
EP2382357B1 (fr) Extension de pieux
US7775746B2 (en) PHC pile used in permanent retaining wall structure and connection method of PHC pile
US7416367B2 (en) Lateral force resistance device
US9366237B2 (en) Segmented jacket construction, in particular for a foundation for a wind turbine installation
WO2018102432A1 (fr) Supports pour pieux hélicoïdaux et ancrages
US20210254298A1 (en) Modular helical pier foundation support systems, assemblies and methods with snap-lock couplings
KR100457406B1 (ko) 그라운드 앵커
EP3751094B1 (fr) Raccords pour des segments de construction pré-moulés et segments de construction pré-moulés dotés de tels raccords
JP4771244B2 (ja) 鋼管杭とコンクリート杭との連結継手、鋼管杭とコンクリート杭との連結杭構造、鋼管杭とコンクリート杭との連結杭の施工方法
KR101565154B1 (ko) 지주용 스크류 파일
KR200480999Y1 (ko) 강관 파일의 회전 관입 및 인발용 커플러
JP2007077639A (ja) 既製杭及び基礎杭構造
CN112281816A (zh) 一种多节拼接管桩及其埋设方法
CN112227365A (zh) 一种预制管桩的埋设方法
CN212452613U (zh) 一种桩体护角套及预制建筑结构
KR101474906B1 (ko) 고강도 대구경 phc 파일과 철골기둥의 친환경 결합부재
KR101007028B1 (ko) 조립식파일 및 그 시공방법
KR100382053B1 (ko) 마이크로파일을 이용한 직접기초옹벽의 시공방법
KR200481009Y1 (ko) 강관 파일의 회전 관입 및 인발용 커플러
KR200337847Y1 (ko) 강관파일의 두부보강용 속채움방식 결합구
KR0119385Y1 (ko) 중공 콘크리트말뚝의 연결구조
EP4092197A1 (fr) Pieu en béton armé
EP3358086B1 (fr) Tête de pieu et procédé de fabrication d'un point de pieu
KR102534220B1 (ko) 다방향 거동이 가능한 푸팅과 말뚝의 접합부 및 복합 기초 시스템
JP4105566B2 (ja) 基礎−柱接合構造及びその施工方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 670334

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009024371

Country of ref document: DE

Effective date: 20140710

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140814

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T5

Effective date: 20140911

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 670334

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140528

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140528

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140928

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140829

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009024371

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

26N No opposition filed

Effective date: 20150303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009024371

Country of ref document: DE

Effective date: 20150303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141222

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141222

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091222

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231215

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231218

Year of fee payment: 15

Ref country code: DK

Payment date: 20231219

Year of fee payment: 15

Ref country code: DE

Payment date: 20231218

Year of fee payment: 15