EP2382165A1 - Substrat en verre transparent et procede de fabrication d'un tel substrat - Google Patents

Substrat en verre transparent et procede de fabrication d'un tel substrat

Info

Publication number
EP2382165A1
EP2382165A1 EP10707572A EP10707572A EP2382165A1 EP 2382165 A1 EP2382165 A1 EP 2382165A1 EP 10707572 A EP10707572 A EP 10707572A EP 10707572 A EP10707572 A EP 10707572A EP 2382165 A1 EP2382165 A1 EP 2382165A1
Authority
EP
European Patent Office
Prior art keywords
substrate
face
texturing
patterns
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10707572A
Other languages
German (de)
English (en)
Inventor
Michele Schiavoni
Marcus Neander
Pascal Roemgens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP2382165A1 publication Critical patent/EP2382165A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/008Other surface treatment of glass not in the form of fibres or filaments comprising a lixiviation step
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B13/00Rolling molten glass, i.e. where the molten glass is shaped by rolling
    • C03B13/08Rolling patterned sheets, e.g. sheets having a surface pattern
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/52Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/08Glass having a rough surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/2457Parallel ribs and/or grooves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Definitions

  • the present invention relates to a transparent glass substrate comprising at least one face which is provided with a plurality of geometric patterns in relief relative to a general plane of the face.
  • the invention also relates to a module for recovering energy from radiation incident on the module, in particular solar radiation, comprising such a substrate as the front substrate of the module.
  • the invention relates to a method of manufacturing a transparent glass substrate.
  • a radiation energy recovery module may be, in particular, a photovoltaic solar module, capable of converting the energy from solar radiation into electrical energy, or a solar thermal module, capable of converting energy from solar radiation into thermal energy, recovered in a heat transfer fluid.
  • a solar energy recovery module comprises a front substrate, or glass-effect substrate, which provides mechanical protection for the energy conversion elements, namely the photovoltaic cell or cells in the case of solar energy. a photovoltaic module, while allowing a good transmission of solar radiation to these energy conversion elements.
  • the front substrate may in particular be made of a transparent glass, preferably clear or extra-clear, with a very low content of iron oxides, such as the glasses sold in the range "DIAMOND” or "ALBARINO” by Saint-Gobain Glass.
  • a strategy for increasing the energy conversion efficiency of an energy recovery module is to improve the transmission properties of the front substrate, by limiting the reflection of the incident radiation on the module at the interface between the air and the substrate.
  • texture at least the front face of the substrate intended to be disposed on the side of incidence of radiation on the module, by providing a plurality of geometric patterns in relief, concave or convex by relation to a general plan of this face.
  • the general plane of a textured face is the plane containing the points of this face that do not belong to the relief patterns or, in the case of joined patterns, the junction points between the patterns in relief.
  • the substrate is advantageously provided with sloping texturing, in particular texturing which has a high aspect ratio, defined as the ratio of the thickness of the patterns to relief constituting the texturing over the width of these patterns, especially an aspect ratio greater than 0.1.
  • the raised patterns may be pyramids or cones, or patterns having a preferred longitudinal direction, such as grooves or ribs.
  • the yields of modules incorporating such substrates before textures remain limited.
  • the invention more particularly intends to remedy by proposing a transparent glass substrate which, when integrated as a front substrate, into a radiation energy recovery module, in particular of solar radiation, has optimized properties for transmitting radiation incident on the substrate to the energy conversion elements of the module, thus allowing an improvement in the efficiency of this module compared to the modules of the state of the art, while preferably having a simple manufacturing process and likely to be easily industrialized.
  • the subject of the invention is a transparent glass substrate comprising at least one face which is provided with a texturing formed by a plurality of geometric patterns in relief with respect to a general plane of this face, this texturing being adapted to ensure transmission of radiation through the substrate, to an underlying element attached to the substrate, greater than that obtained with an identical substrate differing only in that it is devoid of texturing, characterized in that the aforementioned face the substrate is further provided with an antireflection layer having a refractive index between the refractive index of the air and the refractive index of the glass, the antireflection layer being an excavated surface portion of the glass substrate at the level of of the aforementioned face which comprises a silica-based structure and voids with a characteristic dimension of between 0.5 nanometers and 50 nanometers.
  • a transparent glass substrate is a transparent substrate at least in certain wavelength ranges of the solar spectrum, in particular in the wavelength ranges that are useful for the energy conversion elements of the solar spectrum.
  • module in which the substrate is intended to be integrated the substrate is advantageously transparent in the wavelength range between 400 nm and 1200 nm.
  • the term "layer” designates a surface layer of the substrate, that is to say a hollow or “skeletonized” layer of the substrate which is an integral part of the substrate, and not a layer added on the substrate.
  • the ratio of the thickness to the width of the pattern is greater than or equal to 0.1, preferably greater than or equal to 0.25;
  • the refractive index of the antireflection layer at 600 nm is less than 1.3, preferably of the order of 1, 22-1, 23; the thickness of each relief pattern is greater than 10 micrometers, preferably greater than 100 micrometers;
  • the thickness of the antireflection layer is between 30 nanometers and 1 micrometer, preferably between 80 nanometers and 200 nanometers; the raised patterns are distributed randomly on the face of the substrate;
  • the raised patterns are pyramids or cones of non-zero vertex half-angles; the base of each relief pattern is inscribed in a circle of diameter less than or equal to 5 millimeters;
  • the raised patterns are grooves or ribs
  • any half-angle at the top of the relief patterns is less than 70 °, preferably between about 25 ° and 50 °;
  • the antireflection layer is a superficial part of the glass substrate at the aforementioned side having undergone treatment with a silica supersaturated acid solution; the antireflection layer is a superficial part of the above-mentioned glass surface substrate which has been treated with a solution of silica-containing supersaturated fluosilicic acid in a proportion of between approximately 0 and 3 millimoles per liter beyond the saturation threshold in silica.
  • the invention also relates to a module for energy recovery from incident radiation on the module, in particular solar radiation, comprising a substrate as described above as the front substrate of the module, the face of the substrate which is provided with the relief patterns and the antireflection layer being the front face of the module.
  • the subject of the invention is a method for manufacturing a transparent glass substrate, comprising successive steps in which:
  • At least one face of a transparent glass plate is formed with a texturing comprising a plurality of geometric patterns in relief with respect to a general plane of this face, this texturing being adapted to ensure a transmission of radiation through the plate, towards an underlying element attached to the plate, greater than that obtained with an identical plate differing only in that it is free of texturing;
  • the glass plate is immersed, at least at the level of the face comprising the raised patterns, in an acid solution supersaturated with silica.
  • the relief patterns are formed on the aforementioned face by rolling the glass plate.
  • the solution in which the glass plate is immersed is advantageously a solution of fluosilicic acid supersaturated with silica in a proportion of between approximately 0 and 3 millimoles per liter above the saturation threshold of silica.
  • FIG. 1 is a perspective view of a substrate according to the invention
  • FIG. 2 is a block diagram of a first step of the manufacturing method of the substrate of FIG. 1;
  • FIG. 3 is a block diagram of a second step of the manufacturing method of the substrate of FIG. 1;
  • FIG. 4 is a cross section, partial and schematic, of a photovoltaic module according to the invention comprising the substrate of FIG. 1 as a front substrate;
  • FIG. 5 is a section similar to Figure 4 for a photovoltaic module of the prior art comprising a substrate before texture, of the same thickness and same glass matrix as the substrate of Figure 1, but without an antireflection layer;
  • FIG. 6 is a section analogous to FIG. 4 for a photovoltaic module of the state of the art comprising a front substrate of the same thickness and same glass matrix as the substrate of FIG. 1, but devoid of both texturing. and anti-reflective layer;
  • FIG. 7 is a graph showing the experimental curves of increase, with respect to the efficiency of the photovoltaic module of FIG. 6, of the efficiency of the photovoltaic module of FIG. 4, on the one hand, and the photovoltaic module of FIG. on the other hand, as a function of the angle of incidence of the radiation on the module;
  • FIG. 8 is a graph showing the curves, obtained by optical simulation of the surface structure of the substrates before the modules of FIGS. 4 to 6, of increasing, with respect to the efficiency of the photovoltaic module of FIG. photovoltaic module of Figure 4, on the one hand, and the photovoltaic module of Figure 5, on the other hand, depending on the angle of incidence of the radiation on the module.
  • the substrate 1 according to the invention is a laminated and printed extra-clear transparent glass plate comprising, on one of its faces, a convex texturing formed by an assembly of patterns. pyramidal 5.
  • An example of such a glass is the glass marketed in the "ALBARINO P" range by Saint-Gobain Glass.
  • the texturing of the substrate 1 has a high aspect ratio, defined as the ratio of the thickness e 5 patterns 5 on the width I 5 units 5, so as to impart to the substrate 1 for improved radiation transmission properties compared to a glass plate of the same glass composition as the substrate 1, but not textured.
  • FIG. 1 is a laminated and printed extra-clear transparent glass plate comprising, on one of its faces, a convex texturing formed by an assembly of patterns. pyramidal 5.
  • An example of such a glass is the glass marketed in the "ALBARINO P" range by Saint-Gobain Glass.
  • the texturing of the substrate 1 has a high aspect ratio, defined as the ratio of the thickness e 5 patterns 5 on
  • the face 3 of the substrate 1 comprises a plurality of contiguous pyramidal patterns 5, based on a parallelogram of 2 mm on the side and a half-angle on the 45 ° vertex.
  • the width of each pyramidal pattern 5 is defined as the diameter of the smallest circle in which is inscribed the base of the pattern 5.
  • Each pattern 5 has a thickness e 5 of 1 mm projecting from a general plane ⁇ of the face 3 , so that the total thickness ei of the substrate 1 with its texturing is 4 mm.
  • the aspect ratio of the texturing formed by the patterns is 0.5.
  • the pyramidal patterns 5 of the face 3 are aligned along corrugated L lines.
  • the lines of alignment L of the patterns 5 are the lines formed by the successive identical sides of pyramidal patterns arranged adjacently with respect to each other, in rows.
  • the longitudinal directions of the sides of the successive pyramidal patterns 5 along each alignment line L are modified in steps.
  • a variation of the direction of the sides of the individual pyramidal patterns is superimposed on the general or general direction of the alignment lines L, which produces the undulation of the alignment lines L.
  • such a random distribution of the pyramidal patterns 5 on the face 3 makes it possible to reduce the absolute mean intensity of the reflection on the substrate 1 in each individual angle of reflection and to avoid marked transitions between reflective directions and non-directional directions. reflective. This results in a more uniform appearance of the substrate 1 and minimizes the risk of glare.
  • the texturing of the face 3 is carried out by rolling the flat surface of a glass plate, heated to a temperature at which it is possible to deform its surface, using a solid object such as a metal roller having on its surface the opposite shape of the texturing to be formed.
  • a solid object such as a metal roller having on its surface the opposite shape of the texturing to be formed.
  • the patterns formed by rolling do not necessarily have perfect geometric shapes.
  • the vertex and the edges of each pattern are rounded, as shown schematically in FIG. 4.
  • the texturing of a substrate according to the invention may be formed by an assembly of patterns other than pyramidal patterns.
  • the patterns of a substrate according to the invention may in particular be cones, or elongated patterns of the groove or rib type.
  • these patterns are advantageously polygonal, including triangular, square, rectangular, parallelogram, hexagonal or octagonal.
  • the patterns are joined. Patterns are said joined when they touch in at least part of their surface. Cones can be joined if the circles that make up their base touch. It is preferred that the patterns be joined because the surface of the plate is more textured and the radiation transmission is further improved. Some reasons do not allow a total junction between the reasons. This is particularly the case when the pattern is a cone, since even if the circles of the bases of the cones touch, there remains a certain surface between the circles not belonging to the patterns. Total joining means that the outline of the base of a pattern is also part of the contours of its neighboring patterns. Some patterns may be fully joined, so that the entire surface of the plate is part of at least one pattern.
  • the textured surface 3 of the substrate 1 also comprises an antireflection layer 7, which is a layer of porous silica having a thickness 7 e about 100 nm and a refractive index at 600 nm of less than 1, 3, preferably the order of 1, 22-1, 23.
  • the layer 7 is a surface portion of the substrate 1 at the face 3, which is an integral part of the substrate 1.
  • the layer 7 results from a etching treatment, or skeletonization, of the constituent glass of the substrate 1 using a solution of H 2 SiF 6 fluosilicic acid supersaturated with silica.
  • the antireflection layer 7 is a porous surface portion, hollowed out in the glass structure of the substrate 1 at the face 3, which comprises a silica skeleton and voids, or pores, of average characteristic dimension of the order from 0.5 nm to 50 nm.
  • the preparation of the substrate 1 provided with the layer 7 involves the immersion of a glass plate 2, textured on one of its faces 3 as described above, in the aforementioned acid solution at least at its textured face 3.
  • the etching treatment is carried out by passing the textured glass plate 2 in different successive baths, including a bath of the aforementioned acid solution.
  • a method of manufacturing the substrate 1 according to the invention illustrated in the block diagrams of Figures 2 and 3, comprises steps as described below.
  • the random pyramidal texturing described above is formed on a face 3 of a plate 2 of extra-clear transparent glass.
  • this texturing may in particular be formed by rolling the flat surface of the plate 2, by heating the glass to a temperature at which it is possible to deform its surface and by deforming this surface by means of metal rollers 6 carrying at their periphery a pyramidal texturing complementary to the texturing to be printed on the glass plate 2.
  • the texturing may be performed by techniques other than rolling, such as thermoforming or etching .
  • the subsequent etching treatment of the textured plate 2 can be applied indifferently to tempered or untempered glass.
  • a solution of fluosilicic acid H 2 SiF 6 is prepared, supersaturated silica in a proportion ranging from 0 to 3 millimoles per liter above the silica saturation threshold.
  • the glass plate 2 is then immersed, at least at its textured surface 3, in a bath of the previously prepared silica-based supersaturated fluosilicic acid solution.
  • the acidic solution acts on the glass plate 2 so as to produce, at the level of the textured face 3, a hollow or "skeletonized" layer, which is the antireflection layer 7, comprising a silica network and void spaces between the molecules of the network , of characteristic dimension of the order of 0.5 nm to 50 nm.
  • the thickness e 7 of the layer 7 is determined by the immersion time of the glass plate 2 in the silica-supersaturated fluosilicic acid bath.
  • the etching treatment is carried out at a temperature of the fluosilicic acid solution of between approximately 25 ° C. and 80 ° C.
  • the speed of treatment by etching of the glass plate 2 increases with temperature. It is also advantageous to provide a means of stirring the fluosilicic acid solution, so as to obtain an antireflection-shaped hollow layer 7 that is as uniform as possible.
  • the textured glass plate 2 may be cleaned, at least at its textured face 3, in particular by means of a decontamination powder and / or or by immersion in a pre-cleaning bath comprising a material capable of acting as a solvent for the silica, such as a bath of sodium hydroxide or hydrofluoric acid.
  • a pre-cleaning bath comprising a material capable of acting as a solvent for the silica, such as a bath of sodium hydroxide or hydrofluoric acid.
  • This pretreatment makes it possible to remove superficial pollutants that may be present on the textured face 3 due to prolonged exposure of the glass plate 2 to the open air.
  • This pre-cleaning contributes to the formation of a hollow antireflection layer 7 as uniform as possible.
  • the overall process for treating the textured glass plate 2 for the formation of the antireflection layer 7 can involve, after the cleaning of the textured plate 2, in an apparatus of washing 12, the passage of the textured plate 2 in at least six successive baths.
  • these baths comprise a bath B1 of sodium hydroxide or of hydrofluoric acid for the pre-cleaning of the plate 2, at least two baths B2 and B3 of rinsing, a bath B4 of silica-supersaturated fluosilicic acid for the etching treatment of the plate 2, then again at least two baths B5 and B6 of rinsing.
  • the rinsing of the plate before and after the etching treatment can be carried out in demineralized water.
  • the substrate 1 thus obtained is then passed through a drying apparatus 14, visible on the right part of FIG. 3.
  • the method of treating the glass plate 2 for the formation of the antireflection layer 7 is fully automated, as is the prior texturing method of the plate 2.
  • Such automation ensures good quality and good reproducibility surface properties of the face 3 of the substrate 1 according to the invention.
  • the texturing method and the treatment method for the formation of the antireflection layer 7 can be easily integrated at the end of existing glass substrate manufacturing chains, so that the treatment method for the formation of the antireflection layer 7 is performed directly following the texturing process.
  • the silica content in the B4 bath of silica-saturated fluosilicic acid must be controlled and adjusted regularly, in order to guarantee the effective formation of the antireflection-dug layer 7.
  • the formation of the surface layer 7 depends on the amount of silica present in the fluosilicic acid solution above the silica saturation threshold of that solution.
  • the ability of a solution of silica-containing supersaturated fluosilicic acid to "skeletonize" the surface of a specific glass is determined by a so-called "solution potential" factor, related to the amount of excess silica present in the solution.
  • a solution of silica-rich supersaturated fluosilicic acid suitable for the treatment by etching of a glass plate has a silica excess of between approximately 0 and 3 millimoles per liter above the silica saturation threshold, the exact value depending on the composition of the constituent glass of the plate to be treated.
  • the solution potential of a solution of silica-containing supersaturated fluosilicic acid tends to increase with time.
  • FIG. 4 is partially and schematically represented a photovoltaic module 10 according to the invention, comprising the substrate 1 as a front substrate.
  • the face 3 of the substrate 1, which is provided with the texturing 5 and the antireflection layer 7, is directed to the side of incidence of the radiation on the module 10.
  • the face 4 of the substrate 1 opposite to the front face 3 is generally flat, devoid of antireflection layer and arranged facing one or more photovoltaic cells 9.
  • the rear face 4 of the substrate 1 may comprise an antireflection layer etched by etching, the like at the layer 7, the presence of such a layer on the face 4 having no effect on the efficiency of the module 10 insofar as the constituent material of the layer underlying the substrate 1, formed by the front electrode of the or cells 9 or by a possible lamination interlayer, fills the empty spaces of the etched layer.
  • the absorber layer of the or each cell 9, capable of ensuring the conversion of the energy resulting from the radiation incident on the cell into electrical energy, may especially be a thin layer based on silicon, amorphous or microcrystalline, or based on cadmium telluride.
  • the or each thin-film cell 9 comprises a successive stack, starting from the face 4 of the substrate 1:
  • an electrically conductive transparent layer in particular based on transparent conductive oxide (TCO), which forms a front electrode of the cell,
  • TCO transparent conductive oxide
  • the or each cell 9 is immobilized between the front substrate 1 and a rear substrate (not shown) of the module 10.
  • the absorber layer of the or each cell 9 may be a thin layer of chalcopyrite compound comprising copper, indium and selenium, said absorber layer CIS, optionally supplemented with gallium (absorber layer CIGS), aluminum or sulfur.
  • the or each thin-film cell 9 comprises a stack similar to that described above, a not shown polymeric lamination interlayer being furthermore positioned between the front electrode of the cell 9 and the face 4 of the substrate 1 to ensure a good cohesion of the module 10 during its assembly.
  • the lamination interlayer may in particular be made of polyvinyl butyral (PVB) or ethylene vinyl acetate (EVA).
  • the or each cell 9 may be formed from "wafers" or polycrystalline or monocrystalline silicon wafers forming a p / n junction.
  • FIGS. 5 and 6 show respectively a photovoltaic module 110 and a photovoltaic module 210 of the state of the art.
  • Each module 110 or 210 comprises, analogously to the module 10 according to the invention, a front substrate 101 or 201 made of extra-clear glass of the same composition as the constituent glass of the substrate 1 and of the same thickness as the substrate 1, which overcomes one or more photovoltaic cells 109 or 209 similar to the photovoltaic cells 9 of the module 10.
  • the substrate 101 of the module 110 comprises a front face 103 intended to be directed on the side of incidence of the radiation on the module 110, which is provided with a pyramidal texturing 105 similar to that of the substrate 1.
  • the substrate 101 differs from substrate 1 according to the invention in that the front face 103 is devoid of antireflection layer.
  • the substrate 201 of the module 210 is itself a substrate devoid of both texturing and antireflection layer.
  • Figures 7 and 8 illustrate the increase ⁇ io of the output of the module
  • the increase ⁇ no of the efficiency of the module 110 with respect to the efficiency of the module 210 is between 3% for an angle of incidence of 0 ° and 5 °. % for an angle of incidence of 60 °
  • the increase ⁇ io of the efficiency of the module 10 according to the invention with respect to the efficiency of the module 210 is between 5% for an angle of incidence of 0 ° and 8 ° % for an angle of incidence of 60 °.
  • the module 10 which comprises the substrate 1 according to the invention as a front substrate, has an increase in efficiency of at least 2% greater than the increase in efficiency of the module 110 of the state of the art. comprising a substrate 101 before texture but devoid of anti-reflective layer.
  • substrates 1, 101, 201 made of the same glass of composition ALBARINO as marketed by Saint-Gobain Glass and having the same thickness of 4 mm;
  • the results can be transposed to other types of photovoltaic cells, insofar as the improvement of the transmission properties of a substrate associated with the texturing of this substrate and the presence of an antireflection layer on the substrate does not occur. not significantly depend on the wavelength of the incident radiation on the substrate.
  • the curves of FIG. 8 confirm the experimental results of FIG. 7, namely the fact that the increase ⁇ io of the efficiency of the module 10 according to the invention with respect to the efficiency of the module 210 is greater, in a proportion of the order of 2% for an angle of incidence of 0 ° and of the order of 3% for an angle of incidence of 60 °, the increase in efficiency of the module 110 to the textured substrate but devoid of antireflection layer.
  • the first principle underlying the increase in transmission for a textured substrate is the trapping of incident radiation due to multiple reflections on the raised patterns of the substrate.
  • FIG. 4 or 5 on the one hand, and FIG. 6, on the other hand, for incident rays E 1 on the substrate 1, 101 of low angles of incidence, there are multiple reflections on the patterns 5, 105 in relief of the textured face 3, 103, which give the radiation a number of possibilities En, E ⁇ more important to enter the substrate, resulting in a reduction of the reflection on the textured face 3, 103 of the substrate 1, 101 relative to the plane face 203 of the substrate 201.
  • These multiple reflections are all the more important as the patterns 5, 105 are joined and sloping, that is to say that the texturing of the substrate 1, 101 has a high aspect ratio.
  • the second principle underlying the increase of the transmission for a textured substrate is that, for radiation F 1 incident on the substrate with high angles of incidence, close to 90 °, the radiation has angles of lower incidence on the faces of the patterns 5, 105 than on a flat surface.
  • the invention provides a substrate associating on one of its faces, texturing and an antireflection layer formed by a etching treatment.
  • a substrate when integrated in a photovoltaic module as a substrate before, significantly improves the performance of this module compared to modules of the state of the art.
  • the patterns constituting the texturing of a substrate according to the invention have a thickness e 5 , protruding or hollow relative to the general plane ⁇ of the face of the substrate, greater than 10 micrometers, preferably greater than 100 micrometers, still preferably of the order of one millimeter.
  • the antireflection layer 7 of a substrate according to the invention has a thickness e 7 of between 30 nanometers and 1 micrometer, preferably between 80 nanometers and 200 nanometers.
  • the selection of the etching treatment for the formation of the antireflection layer of a substrate according to the invention is particularly advantageous, insofar as the acid etching of the structure of the constituent glass of the substrate, characteristic of the etching treatment, works on a flat glass surface as well as on a textured glass surface, in particular highly textured glass. This results in a simple, reliable and easily automatable manufacturing method of a substrate according to the invention, this method being easily adapted to operate continuously in an industrial setting.
  • the antireflection layer produced by the etching treatment combined with the texturing, gives the substrate according to the invention improved transmission properties of radiation incident on the substrate whatever the orientation of this incident radiation, that is, for a wide range of incidence angles of the incident radiation.
  • the antireflection layer produced by the etching treatment is an integral part of the substrate according to the invention, it can not be removed from the surface of the substrate, unlike other types of antireflection layers known from the state of the art. Therefore, the antireflection layer of a substrate according to the invention has excellent mechanical, thermal and chemical resistance, and in particular, good long-term resistance to external climatic conditions, which is advantageous when the substrate is integrated in a solar energy recovery module.
  • the invention is not limited to the examples described and shown.
  • the texturing of a substrate according to the invention may be formed by an assembly of patterns other than pyramidal patterns, in particular by an assembly of conical patterns, or elongated patterns of the groove or rib type.
  • the texturing of a substrate according to the invention is sufficiently deep and sloping.
  • the half-angle at the apex of each pattern is advantageously less than 70 °, preferably between about 25 ° and 50 °, and the aspect ratio of texturing, i.e., the ratio of the thickness to the width of each pattern, which is advantageously greater than or equal to 0.1.
  • Such sloping texturing is adapted to impart to the substrate improved radiation transmission properties.
  • the width of each pattern is defined as the diameter of the smallest circle in which is inscribed the basis of the pattern.
  • the width of each pattern is defined as the transverse dimension of the pattern, perpendicular to the longitudinal direction of the pattern.
  • the texturing of a substrate according to the invention may also be a concave texturing, instead of a convex texturing, the relief patterns then being hollow relative to the general plane of the textured face of the substrate.
  • the relief patterns of a substrate according to the invention are indifferently joined or non-joined. Random distribution of the patterns on the textured side of the substrate, if advantageous, is also not required.
  • the textured glasses marketed in the "ALBARINO P" and “ALBARINO G” ranges by Saint-Gobain Glass are suitable for the manufacture of a substrate according to the invention by a etching treatment.
  • a substrate according to the invention may be made of an extra-clear transparent glass of composition other than "ALBARINO” glass, for example an extra-clear transparent float glass such as the glass marketed in the "DIAMOND” range.
  • Saint-Gobain Glass By Saint-Gobain Glass.
  • the texturing of a glass substrate according to the invention can be obtained by any appropriate method, for example by rolling, thermoforming or etching.
  • a substrate according to the invention may have a total thickness different from that described above.
  • a substrate according to the invention may also comprise a texturing and / or an etching-type antireflection layer on its two faces, and not only on one of its faces.
  • the anti-reflective etching layer of a substrate according to the invention is formed by immersing a glass plate in a bath, it may be easier to soak the entire plate in the bath, rather only one of its faces, the substrate therefore comprising an antireflection layer etching type on each of its faces, front and rear.
  • the constituent material of the layer underlying the substrate, formed by the front electrode of the cell or cells of the module or by a lamination interlayer fills the empty spaces of the etching type antireflection layer present on the rear face of the substrate, so that the antireflection layer of the rear face does not modify the efficiency of the module.
  • a substrate according to the invention having optimized properties for transmitting incident radiation can be integrated into any type of energy recovery module derived from radiation, solar photovoltaic modules being an example of advantageous application. .

Abstract

Ce substrat (1) en verre transparent comprend au moins une face (3) qui est munie d'une texturation formée par une pluralité de motifs géométriques (5) en relief par rapport à un plan général de cette face (3), cette texturation étant adaptée pour assurer une transmission de rayonnement à travers le substrat supérieure à la transmission de rayonnement à travers un substrat identique mais dépourvu de texturation. La face (3) du substrat est en outre munie d'une couche antireflet (7) d'indice de réfraction compris entre l'indice de réfraction de l'air et l'indice de réfraction du verre. La couche antireflet (7) est une partie superficielle creusée du substrat en verre (1) au niveau de ladite face (3) qui comporte une structure à base de silice et des espaces vides de dimension caractéristique comprise entre 0,5 nanomètres et 50 nanomètres.

Description

SUBSTRAT EN VERRE TRANSPARENT ET PROCEDE DE FABRICATION D'UN TEL SUBSTRAT
La présente invention a trait à un substrat en verre transparent comprenant au moins une face qui est munie d'une pluralité de motifs géométriques en relief par rapport à un plan général de la face. L'invention a également trait à un module de récupération d'énergie issue d'un rayonnement incident sur le module, en particulier du rayonnement solaire, comprenant un tel substrat en tant que substrat avant du module. En outre, l'invention a trait à un procédé de fabrication d'un substrat en verre transparent.
Au sens de l'invention, un module de récupération d'énergie issue d'un rayonnement peut être, notamment, un module solaire photovoltaïque, apte à convertir l'énergie issue du rayonnement solaire en énergie électrique, ou un module solaire thermique, apte à convertir l'énergie issue du rayonnement solaire en énergie thermique, récupérée dans un fluide caloporteur.
De manière classique, un module de récupération d'énergie issue du rayonnement solaire comprend un substrat avant, ou substrat à fonction verrière, qui assure une protection mécanique des éléments de conversion d'énergie, à savoir la ou les cellules photovoltaïques dans le cas d'un module photovoltaïque, tout en permettant une bonne transmission du rayonnement solaire vers ces éléments de conversion d'énergie. Le substrat avant peut notamment être constitué en un verre transparent, de préférence clair ou extra-clair, à très faible teneur en oxydes de fer, tel que les verres commercialisés dans la gamme « DIAMANT » ou « ALBARINO » par Saint- Gobain Glass.
Une stratégie pour augmenter le rendement de conversion énergétique d'un module de récupération d'énergie consiste à améliorer les propriétés de transmission du substrat avant, en limitant la réflexion du rayonnement incident sur le module à l'interface entre l'air et le substrat avant. A cet effet, il est connu de texturer au moins la face avant du substrat, destinée à être disposée du côté d'incidence du rayonnement sur le module, en la munissant d'une pluralité de motifs géométriques en relief, concaves ou convexes par rapport à un plan général de cette face. Au sens de l'invention, le plan général d'une face texturée est le plan contenant les points de cette face qui n'appartiennent pas aux motifs en relief ou, dans le cas de motifs jointifs, les points de jonction entre les motifs en relief. En vue d'obtenir une amélioration effective de ses propriétés de transmission, le substrat est avantageusement muni d'une texturation pentue, en particulier une texturation qui présente un rapport d'aspect élevé, défini comme étant le rapport de l'épaisseur des motifs en relief constituant la texturation sur la largeur de ces motifs, notamment un rapport d'aspect supérieur à 0,1. Les motifs en relief peuvent être des pyramides ou des cônes, ou encore des motifs présentant une direction longitudinale privilégiée, tels que des rainures ou des nervures. Toutefois, les rendements de modules intégrant de tels substrats avant textures restent limités.
C'est à ces inconvénients qu'entend plus particulièrement remédier l'invention en proposant un substrat en verre transparent qui, lorsqu'il est intégré en tant que substrat avant dans un module de récupération d'énergie issue d'un rayonnement, en particulier du rayonnement solaire, présente des propriétés optimisées de transmission du rayonnement incident sur le substrat vers les éléments de conversion d'énergie du module, permettant ainsi une amélioration du rendement de ce module par rapport aux modules de l'état de la technique, tout en ayant de préférence un procédé de fabrication simple et susceptible d'être facilement industrialisé.
A cet effet, l'invention a pour objet un substrat en verre transparent comprenant au moins une face qui est munie d'une texturation formée par une pluralité de motifs géométriques en relief par rapport à un plan général de cette face, cette texturation étant adaptée pour assurer une transmission de rayonnement à travers le substrat, vers un élément sous-jacent accolé au substrat, supérieure à celle obtenue avec un substrat identique ne différant qu'en ce qu'il est dépourvu de texturation, caractérisé en ce que la face précitée du substrat est en outre munie d'une couche antireflet d'indice de réfraction compris entre l'indice de réfraction de l'air et l'indice de réfraction du verre, la couche antireflet étant une partie superficielle creusée du substrat en verre au niveau de la face précitée qui comporte une structure à base de silice et des espaces vides de dimension caractéristique comprise entre 0,5 nanomètres et 50 nanomètres.
Au sens de l'invention, un substrat en verre transparent est un substrat transparent au moins dans certains domaines de longueurs d'onde du spectre solaire, en particulier dans les domaines de longueurs d'onde utiles pour les éléments de conversion d'énergie du module dans lequel le substrat est destiné à être intégré. A titre d'exemple, dans le cas d'un module photovoltaïque comprenant des cellules photovoltaïques à base de silicium polycristallin, le substrat est avantageusement transparent dans le domaine de longueurs d'onde comprises entre 400 nm et 1200 nm. Par ailleurs, au sens de l'invention, le terme « couche » désigne une couche superficielle du substrat, c'est-à-dire une couche creusée ou « squelettisée » du substrat qui fait partie intégrante du substrat, et non une couche rapportée sur le substrat.
Selon d'autres caractéristiques avantageuses d'un substrat selon l'invention :
- pour chaque motif en relief, le rapport de l'épaisseur sur la largeur du motif est supérieur ou égal à 0,1 , de préférence supérieur ou égal à 0,25 ;
- l'indice de réfraction de la couche antireflet à 600 nm est inférieur à 1 ,3, de préférence de l'ordre de 1 ,22-1 ,23 ; - l'épaisseur de chaque motif en relief est supérieure à 10 micromètres, de préférence supérieure à 100 micromètres ;
- l'épaisseur de la couche antireflet est comprise entre 30 nanomètres et 1 micromètre, de préférence comprise entre 80 nanomètres et 200 nanomètres ; - les motifs en relief sont répartis de manière aléatoire sur la face du substrat ;
- les motifs en relief sont jointifs ;
- les motifs en relief sont des pyramides ou des cônes de demi-angles au sommet non nuls ; - la base de chaque motif en relief est inscrite dans un cercle de diamètre inférieur ou égal à 5 millimètres ;
- les motifs en relief sont des rainures ou des nervures ;
- tout demi-angle au sommet des motifs en relief est inférieur à 70°, de préférence compris entre environ 25° et 50° ;
- la couche antireflet est une partie superficielle du substrat en verre au niveau de la face précitée ayant subi un traitement au moyen d'une solution acide sursaturée en silice ; - la couche antireflet est une partie superficielle du substrat en verre au niveau de face précitée ayant subi un traitement au moyen d'une solution d'acide fluosilicique sursaturée en silice dans une proportion comprise entre environ 0 et 3 millimoles par litre au-delà du seuil de saturation en silice.
L'invention a également pour objet un module de récupération d'énergie issue d'un rayonnement incident sur le module, en particulier du rayonnement solaire, comprenant un substrat tel que décrit ci-dessus en tant que substrat avant du module, la face du substrat qui est munie des motifs en relief et de la couche antireflet étant la face avant du module.
Enfin, l'invention a pour objet un procédé de fabrication d'un substrat en verre transparent, comprenant des étapes successives dans lesquelles :
- on forme, sur au moins une face d'une plaque de verre transparent, une texturation comprenant une pluralité de motifs géométriques en relief par rapport à un plan général de cette face, cette texturation étant adaptée pour assurer une transmission de rayonnement à travers la plaque, vers un élément sous-jacent accolé à la plaque, supérieure à celle obtenue avec une plaque identique ne différant qu'en ce qu'elle est dépourvue de texturation ;
- on immerge la plaque de verre, au moins au niveau de la face comportant les motifs en relief, dans une solution acide sursaturée en silice.
De manière avantageuse, on forme les motifs en relief sur la face précitée par laminage de la plaque de verre.
De plus, la solution dans laquelle on immerge la plaque de verre est avantageusement une solution d'acide fluosilicique sursaturée en silice dans une proportion comprise entre environ 0 et 3 millimoles par litre au-delà du seuil de saturation en silice.
Les caractéristiques et avantages de l'invention apparaîtront dans la description qui va suivre d'un mode de réalisation d'un substrat et d'un module selon l'invention, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels :
- la figure 1 est une vue en perspective d'un substrat conforme à l'invention ; - la figure 2 est un schéma de principe d'une première étape du procédé de fabrication du substrat de la figure 1 ;
- la figure 3 est un schéma de principe d'une deuxième étape du procédé de fabrication du substrat de la figure 1 ;
- la figure 4 est une coupe transversale, partielle et schématique, d'un module photovoltaïque conforme à l'invention comprenant le substrat de la figure 1 en tant que substrat avant ;
- la figure 5 est une coupe analogue à la figure 4 pour un module photovoltaïque de l'état de la technique comprenant un substrat avant texture, de même épaisseur et même matrice verrière que le substrat de la figure 1 , mais dépourvu de couche antireflet ;
- la figure 6 est une coupe analogue à la figure 4 pour un module photovoltaïque de l'état de la technique comprenant un substrat avant, de même épaisseur et même matrice verrière que le substrat de la figure 1 , mais dépourvu à la fois de texturation et de couche antireflet ; - la figure 7 est un graphe montrant les courbes expérimentales d'augmentation, par rapport au rendement du module photovoltaïque de la figure 6, du rendement du module photovoltaïque de la figure 4, d'une part, et du module photovoltaïque de la figure 5, d'autre part, en fonction de l'angle d'incidence du rayonnement sur le module ; - la figure 8 est un graphe montrant les courbes, obtenues par simulation optique de la structure de surface des substrats avant des modules des figures 4 à 6, d'augmentation, par rapport au rendement du module photovoltaïque de la figure 6, du rendement du module photovoltaïque de la figure 4, d'une part, et du module photovoltaïque de la figure 5, d'autre part, en fonction de l'angle d'incidence du rayonnement sur le module.
Le substrat 1 conforme à l'invention, représenté sur la figure 1 , est une plaque de verre transparent extra-clair laminé et imprimé, comprenant sur une de ses faces 3 une texturation convexe formée par un assemblage de motifs pyramidaux 5. Un exemple d'un tel verre est le verre commercialisé dans la gamme « ALBARINO P » par Saint-Gobain Glass. La texturation du substrat 1 présente un rapport d'aspect élevé, défini comme étant le rapport de l'épaisseur e5 des motifs 5 sur la largeur I5 des motifs 5, de manière à conférer au substrat 1 des propriétés de transmission de rayonnement améliorées par rapport à une plaque en verre de même composition verrière que le substrat 1 , mais non texturée. Dans l'exemple représenté sur la figure 1 , la face 3 du substrat 1 comprend une pluralité de motifs pyramidaux 5 jointifs, à base parallélogramme de 2 mm de côté et de demi-angle au sommet de 45°. La largeur de chaque motif pyramidal 5 est définie comme le diamètre du plus petit cercle dans lequel est inscrite la base du motif 5. Chaque motif 5 a une épaisseur e5 de 1 mm en saillie par rapport à un plan général π de la face 3, de telle sorte que l'épaisseur totale ei du substrat 1 avec sa texturation est de 4 mm. Le rapport d'aspect de la texturation formée par les motifs 5 a une valeur de 0,5.
Comme bien visible sur la figure 1 , les motifs pyramidaux 5 de la face 3 sont alignés selon des lignes L ondulées. Au sens de l'invention, les lignes d'alignement L des motifs 5 sont les lignes formées par les côtés identiques successifs de motifs pyramidaux disposés de manière adjacente les uns par rapport aux autres, en rangées. Dans le mode de réalisation représenté sur la figure 1 , les directions longitudinales des côtés des motifs pyramidaux 5 successifs le long de chaque ligne d'alignement L sont modifiées par pas. Ainsi, on superpose à la direction générale ou globale des lignes d'alignement L une variation de la direction des côtés des motifs pyramidaux individuels, ce qui produit l'ondulation des lignes d'alignement L. Comme explicité dans la demande WO-A-2006134301, une telle répartition aléatoire des motifs pyramidaux 5 sur la face 3 permet de diminuer l'intensité moyenne absolue de la réflexion sur le substrat 1 dans chaque angle de réflexion individuel et d'éviter des transitions marquées entre des directions réfléchissantes et des directions non réfléchissantes. Il en résulte un aspect plus uniforme du substrat 1 et une minimisation des risques d'éblouissement.
De manière avantageuse, la texturation de la face 3 est réalisée par laminage de la surface plane d'une plaque de verre, chauffé à une température à laquelle il est possible de déformer sa surface, à l'aide d'un objet solide comme un rouleau métallique ayant à sa surface la forme inverse de la texturation à former. En fonction de la forme de la texturation visée, les motifs formés par laminage ne présentent pas forcément des formes géométriques parfaites. Notamment, dans le cas des motifs pyramidaux 5, le sommet et les arêtes de chaque motif sont arrondis, comme montré de manière schématique sur la figure 4.
Selon une variante non représentée, la texturation d'un substrat conforme à l'invention peut être formée par un assemblage de motifs autres que des motifs pyramidaux. Les motifs d'un substrat selon l'invention peuvent notamment être des cônes, ou des motifs allongés de type rainures ou nervures. Lorsque la texturation du substrat est formée par des motifs pyramidaux ou coniques, ces motifs sont avantageusement à base polygonale, notamment triangulaire, carrée, rectangulaire, parallélogramme, hexagonale ou octogonale.
De manière préférée, les motifs sont jointifs. Des motifs sont dit jointifs lorsqu'ils se touchent en au moins une partie de leur surface. Des cônes peuvent être jointifs si les cercles qui constituent leur base se touchent. On préfère que les motifs soient jointifs car ainsi la surface de la plaque est plus texturée et la transmission de rayonnement est encore améliorée. Certains motifs ne permettent pas une jonction totale entre les motifs. C'est notamment le cas lorsque le motif est un cône, puisque même si les cercles des bases des cônes se touchent, il reste une certaine surface entre les cercles n'appartenant pas aux motifs. Par jonction totale, on entend le fait que le contour de la base d'un motif fait également entièrement partie des contours de ses motifs voisins. Certains motifs peuvent être totalement jointifs, de sorte que l'intégralité de la surface de la plaque fasse partie d'au moins un motif. En particulier, des pyramides à base quadrilatère ou hexagonale peuvent être totalement jointives si elles sont identiques. La face 3 texturée du substrat 1 comprend également une couche antireflet 7, qui est une couche de silice poreuse ayant une épaisseur e7 d'environ 100 nm et un indice de réfraction, à 600 nm, inférieur à 1 ,3, de préférence de l'ordre de 1 ,22-1 ,23. Comme montré schématiquement sur la figure 4, la couche 7 est une partie superficielle du substrat 1 au niveau de la face 3, qui fait partie intégrante du substrat 1. La couche 7 résulte d'un traitement d'etching, ou de squelettisation, du verre constitutif du substrat 1 au moyen d'une solution d'acide fluosilicique H2SiF6 sursaturée en silice. Ainsi, la couche antireflet 7 est une partie superficielle poreuse, creusée dans la structure de verre du substrat 1 au niveau de la face 3, qui comporte un squelette de silice et des espaces vides, ou pores, de dimension caractéristique moyenne de l'ordre de 0,5 nm à 50 nm.
La préparation du substrat 1 muni de la couche 7 met en jeu l'immersion d'une plaque de verre 2, texturée sur une de ses faces 3 comme décrit précédemment, dans la solution acide précitée au moins au niveau de sa face 3 texturée. En pratique, le traitement d'etching est réalisé par passage de la plaque de verre 2 texturée dans différents bains successifs, dont un bain de la solution acide précitée. Plus précisément, un procédé de fabrication du substrat 1 conforme à l'invention, illustré sur les schémas de principe des figures 2 et 3, comprend des étapes telles que décrites ci-dessous.
Tout d'abord, on forme la texturation pyramidale aléatoire décrite précédemment sur une face 3 d'une plaque 2 de verre transparent extra-clair. A titre d'exemple et comme montré sur la figure 2, cette texturation peut notamment être formée par laminage de la surface plane de la plaque 2, en chauffant le verre à une température à laquelle il est possible de déformer sa surface et en déformant cette surface au moyen de rouleaux métalliques 6 portant à leur périphérie une texturation pyramidale complémentaire de la texturation à imprimer sur la plaque de verre 2. En variante, la texturation peut être réalisée par des techniques autres que le laminage, telles que le thermoformage ou la gravure.
De manière optionnelle, on peut réaliser une trempe chimique ou thermique de la plaque de verre 2 suite à la réalisation de la texturation. En particulier, le traitement ultérieur d'etching de la plaque 2 texturée peut être appliqué indifféremment sur du verre trempé ou non trempé.
Simultanément, préalablement ou postérieurement à la texturation de la plaque de verre 2, on prépare une solution d'acide fluosilicique H2SiF6, sursaturée en silice dans une proportion allant de 0 à 3 millimoles par litre au- delà du seuil de saturation en silice.
On immerge alors la plaque de verre 2, au moins au niveau de sa face 3 texturée, dans un bain de la solution d'acide fluosilicique sursaturée en silice préalablement préparée. La solution acide agit sur la plaque de verre 2 de manière à produire au niveau de la face 3 texturée une couche creusée ou « squelettisée », qui est la couche antireflet 7, comprenant un réseau de silice et des espaces vides entre les molécules du réseau, de dimension caractéristique de l'ordre de 0,5 nm à 50 nm. L'épaisseur e7 de la couche 7 est déterminée par la durée d'immersion de la plaque de verre 2 dans le bain d'acide fluosilicique sursaturé en silice.
De préférence, le traitement d'etching est réalisé à une température de la solution d'acide fluosilicique comprise entre environ 25°C et 800C. La vitesse du traitement par etching de la plaque de verre 2 augmente avec la température. Il est également avantageux de prévoir un moyen d'agitation de la solution d'acide fluosilicique, de manière à obtenir une couche creusée antireflet 7 la plus uniforme possible.
De manière optionnelle, préalablement à son immersion dans le bain d'acide fluosilicique sursaturé en silice, la plaque de verre 2 texturée peut être nettoyée, au moins au niveau de sa face 3 texturée, notamment au moyen d'une poudre de décontamination et/ou par immersion dans un bain de prénettoyage comprenant un matériau propre à agir comme solvant pour la silice, tel qu'un bain d'hydroxyde de sodium ou d'acide fluorhydrique. Ce prétraitement permet de retirer des éléments polluants superficiels, susceptibles d'être présents sur la face 3 texturée du fait d'une exposition prolongée de la plaque de verre 2 à l'air libre. Ce pré-nettoyage contribue à la formation d'une couche creusée antireflet 7 la plus uniforme possible.
A titre d'exemple et comme montré sur la figure 3, le procédé global de traitement de la plaque de verre 2 texturée pour la formation de la couche antireflet 7 peut mettre en jeu, après le nettoyage de la plaque 2 texturée dans un appareil de lavage 12, le passage de la plaque 2 texturée dans au moins six bains successifs. Tels que représentés sur la figure 3, ces bains comprennent un bain B1 d'hydroxyde de sodium ou d'acide fluorhydrique pour le pré-nettoyage de la plaque 2, au moins deux bains B2 et B3 de rinçage, un bain B4 d'acide fluosilicique sursaturé en silice pour le traitement par etching de la plaque 2, puis à nouveau au moins deux bains B5 et B6 de rinçage. A titre d'exemple, le rinçage de la plaque avant et après le traitement d'etching peut être réalisé dans de l'eau déminéralisée. Le substrat 1 ainsi obtenu est ensuite passé dans un appareil de séchage 14, visible sur la partie droite de la figure 3.
De manière avantageuse, le procédé de traitement de la plaque de verre 2 pour la formation de la couche antireflet 7 est entièrement automatisé, de même que le procédé de texturation préalable de la plaque 2. Une telle automatisation garantit une bonne qualité et une bonne reproductibilité des propriétés de surface de la face 3 du substrat 1 conforme à l'invention. En outre, grâce à cette automatisation, il est possible de mettre en place un procédé de fabrication en continu de substrats 1 selon l'invention. En particulier, le procédé de texturation et le procédé de traitement pour la formation de la couche antireflet 7 peuvent être facilement intégrés en bout de chaînes existantes de fabrication de substrat verriers, de sorte que le procédé de traitement pour la formation de la couche antireflet 7 est réalisé directement à la suite du procédé de texturation. Dans le cadre d'un procédé de fabrication en continu, le taux de silice dans le bain B4 d'acide fluosilicique sursaturé en silice doit être contrôlé et ajusté régulièrement, afin de garantir la formation effective de la couche creusée antireflet 7. En effet, comme exposé dans le brevet américain 2 490 662, la formation de la couche superficielle 7 dépend de la quantité de silice présente dans la solution d'acide fluosilicique au-delà du seuil de saturation en silice de cette solution. En particulier, la capacité d'une solution d'acide fluosilicique sursaturée en silice à « squelettiser » la surface d'un verre spécifique est déterminée par un facteur dit « potentiel de solution », lié à la quantité de silice en excès présente dans la solution. Ainsi, une solution ayant un potentiel de solution trop élevé tend à dissoudre de manière uniforme une couche du verre constitutif de la plaque de verre, alors qu'une solution ayant un potentiel de solution trop faible tend à déposer un film de silice sur la plaque de verre sans attaquer sa surface. Une solution d'acide fluosilicique sursaturée en silice de potentiel approprié pour le traitement par etching d'une plaque de verre a un excès en silice compris entre environ 0 et 3 millimoles par litre au-delà du seuil de saturation en silice, la valeur exacte dépendant de la composition du verre constitutif de la plaque à traiter. Or, le potentiel de solution d'une solution d'acide fluosilicique sursaturée en silice tend à augmenter avec le temps. De manière avantageuse, il est possible de diminuer le potentiel de solution par l'ajout d'acide borique H3BO3 dans la solution d'acide fluosilicique. Dès lors, il est aisé, par exemple dans le cadre d'un procédé de fabrication en continu du substrat 1 selon l'invention, de mettre en place un contrôle régulier de la valeur du potentiel de solution du bain B4 d'acide fluosilicique sursaturé en silice destiné au traitement par etching, et d'ajuster cette valeur par l'ajout d'acide borique dans le bain B4 chaque fois que la valeur du potentiel de solution dévie par rapport à sa valeur appropriée. Sur la figure 4 est représenté partiellement et schématiquement un module photovoltaïque 10 conforme à l'invention, comprenant le substrat 1 en tant que substrat avant. Comme montré sur cette figure, la face 3 du substrat 1 , qui est munie de la texturation 5 et de la couche antireflet 7, est dirigée du côté d'incidence du rayonnement sur le module 10. Dans ce mode de réalisation, la face 4 du substrat 1 opposée à la face avant 3 est globalement plane, dépourvue de couche antireflet et disposée en regard d'une ou plusieurs cellules photovoltaïques 9. En variante, la face arrière 4 du substrat 1 peut comprendre une couche antireflet creusée par etching, analogue à la couche 7, la présence d'une telle couche sur la face 4 étant sans incidence sur le rendement du module 10 dans la mesure où le matériau constitutif de la couche sous-jacente au substrat 1 , formée par l'électrode avant de la ou des cellules 9 ou par un éventuel intercalaire de feuilletage, remplit les espaces vides de la couche creusée par etching.
La couche d'absorbeur de la ou chaque cellule 9, propre à assurer la conversion de l'énergie issue du rayonnement incident sur la cellule en énergie électrique, peut notamment être une couche mince à base de silicium, amorphe ou microcristallin, ou à base de tellurure de cadmium. Dans ce cas, de manière connue, la ou chaque cellule 9 à couches minces comprend un empilement successif, à partir de la face 4 du substrat 1 :
- d'une couche transparente électriquement conductrice, notamment à base d'oxyde conducteur transparent (Transparent Conductive Oxide ou TCO), qui forme une électrode avant de la cellule,
- de la couche d'absorbeur,
- d'une couche électriquement conductrice qui forme une électrode arrière de la cellule.
En pratique, la ou chaque cellule 9 est immobilisée entre le substrat avant 1 et un substrat arrière non représenté du module 10.
En variante, la couche d'absorbeur de la ou chaque cellule 9 peut être une couche mince de composé chalcopyrite comportant du cuivre, de l'indium et du sélénium, dite couche d'absorbeur CIS, éventuellement additionnée de gallium (couche d'absorbeur CIGS), d'aluminium ou de soufre. Dans ce cas, la ou chaque cellule 9 à couches minces comprend un empilement analogue à celui décrit ci-dessus, un intercalaire de feuilletage polymère non représenté étant en outre positionné entre l'électrode avant de la cellule 9 et la face 4 du substrat 1 , afin de garantir une bonne cohésion du module 10 lors de son assemblage. L'intercalaire de feuilletage peut notamment être constitué en polybutyral de vinyle (PVB) ou en éthylène vinylacétate (EVA).
Selon encore une autre variante, la ou chaque cellule 9 peut être constituée à partir de « wafers » ou galettes de silicium polycristallin ou monocristallin formant une jonction p/n.
Sur les figures 5 et 6 sont représentés respectivement un module photovoltaïque 110 et un module photovoltaïque 210 de l'état de la technique. Chaque module 110 ou 210 comprend, de manière analogue au module 10 conforme à l'invention, un substrat avant 101 ou 201 , en verre extra-clair de même composition que le verre constitutif du substrat 1 et de même épaisseur que le substrat 1 , qui surmonte une ou plusieurs cellules photovoltaïques 109 ou 209 analogues aux cellules photovoltaïques 9 du module 10. Le substrat 101 du module 110 comprend une face avant 103, destinée à être dirigée du côté d'incidence du rayonnement sur le module 110, qui est munie d'une texturation pyramidale 105 analogue à celle du substrat 1. Toutefois, le substrat 101 diffère du substrat 1 conforme à l'invention en ce que la face avant 103 est dépourvue de couche antireflet. Le substrat 201 du module 210 est quant à lui un substrat dépourvu à la fois de texturation et de couche antireflet. Les figures 7 et 8 illustrent l'augmentation εio du rendement du module
10 et l'augmentation εno du rendement du module 110 par rapport au rendement du module 210, en fonction de l'angle d'incidence du rayonnement sur le module, exprimées en densité de courant intégrée et déterminées de manière expérimentale pour la figure 7 et par simulation pour la figure 8. Comme il ressort des données expérimentales de la figure 7, l'augmentation εno du rendement du module 110 par rapport au rendement du module 210 est comprise entre 3% pour un angle d'incidence de 0° et 5% pour un angle d'incidence de 60°, alors que l'augmentation εio du rendement du module 10 conforme à l'invention par rapport au rendement du module 210 est comprise entre 5% pour un angle d'incidence de 0° et 8% pour un angle d'incidence de 60°. Ainsi, le module 10, qui comprend le substrat 1 conforme à l'invention en tant que substrat avant, présente une augmentation de rendement supérieure d'au moins 2% à l'augmentation de rendement du module 110 de l'état de la technique comprenant un substrat 101 avant texture mais dépourvu de couche antireflet.
Ces données expérimentales sont en accord avec les résultats, montrés sur la figure 8, obtenus par simulation optique des structures de surface des substrats 1 , 101 et 201.
Les hypothèses pour la mise en place de cette simulation sont les suivantes :
- substrats 1 , 101 , 201 constitués en un même verre de composition ALBARINO tel que commercialisé par Saint-Gobain Glass et présentant une même épaisseur de 4 mm ;
- distribution énergétique du rayonnement incident sur le module 10, 110, 210 correspondant à un spectre solaire standard ;
- évaluation de l'efficacité des cellules photovoltaïques 9, 109, 209 en fonction de la longueur d'onde du rayonnement incident, qui correspond au rapport du nombre d'électrons collectés sur le nombre de photons qui atteint la cellule, en prenant comme référence une cellule photovoltaïque à base de silicium polycristallin ; toutefois, les résultats sont transposables à d'autres types de cellules photovoltaïques, dans la mesure où l'amélioration des propriétés de transmission d'un substrat associée à la texturation de ce substrat et à la présence d'une couche antireflet sur le substrat ne dépendent pas de manière significative de la longueur d'onde du rayonnement incident sur le substrat.
Les courbes de la figure 8 confirment les résultats expérimentaux de la figure 7, à savoir le fait que l'augmentation εio du rendement du module 10 conforme à l'invention par rapport au rendement du module 210 est supérieure, dans une proportion de l'ordre de 2% pour un angle d'incidence de 0° et de l'ordre de 3% pour un angle d'incidence de 60°, à l'augmentation εno du rendement du module 110 à substrat texture mais dépourvu de couche antireflet.
Une analyse des principes à la base de l'augmentation de la transmission de rayonnement à travers un substrat texture, par rapport à un substrat non texture, vers un élément sous-jacent accolé au substrat tel qu'une cellule photovoltaïque 9 ou un intercalaire de feuilletage, permet d'expliquer théoriquement pourquoi il est possible de cumuler les effets de la texturation de la face avant du substrat, d'une part, et de la couche antireflet présente sur la face avant du substrat, d'autre part, pour améliorer les propriétés de transmission de ce substrat.
Le premier principe à la base de l'augmentation de la transmission pour un substrat texture est le piégeage du rayonnement incident du fait de réflexions multiples sur les motifs en relief du substrat. Comme il ressort d'une comparaison de la figure 4 ou 5, d'une part, et de la figure 6, d'autre part, pour des rayons incidents E1 sur le substrat 1 , 101 d'angles d'incidence faibles, il se produit des réflexions multiples sur les motifs 5, 105 en relief de la face texturée 3, 103, qui offrent au rayonnement un nombre de possibilités En, E^ plus important de rentrer dans le substrat, d'où une réduction de la réflexion sur la face texturée 3, 103 du substrat 1 , 101 par rapport à la face plane 203 du substrat 201. Ces réflexions multiples sont d'autant plus importantes que les motifs 5, 105 sont jointifs et pentus, c'est-à-dire que la texturation du substrat 1 , 101 présente un rapport d'aspect élevé.
Toutefois, dans la mesure où les motifs 5, 105 de la face texturée 3, 103 ne sont pas de forme parfaitement pyramidale, mais au contraire arrondis, ce phénomène de réflexion multiple n'intervient pas dans toutes les régions de la face 3, 103. En particulier, dans les régions extrêmes correspondant aux sommets 51 , 151 et aux creux 52, 152 de la texture 5, 105, le phénomène précité de piégeage du rayonnement incident ne peut pas avoir lieu, comme illustré par les flèches EM et EM' situées sur la gauche des figures 4 et 5. Dès lors, dans ces régions extrêmes 51 , 151 et 52, 152, la présence d'une couche antireflet telle que la couche 7 augmente la transmission du rayonnement incident à l'interface air/verre. L'effet de la couche antireflet est toutefois moindre pour un substrat texture, par rapport à un substrat plan, car dans les régions où se produit le piégeage du rayonnement incident, l'effet de la couche antireflet est négligeable.
Une évaluation de la surface des régions dans lesquelles la couche antireflet 7 a un effet pour augmenter la transmission des rayons incidents d'angles d'incidence faibles est de l'ordre des deux tiers de la surface totale du substrat 1 , ce qui correspond au résultat, à la fois expérimental et modélisé, selon lequel la différence (2%) entre l'augmentation εio du rendement du module 10 pour un angle d'incidence de 0° (5%) et l'augmentation εno du rendement du module 110 pour un angle d'incidence de 0° (3%) vaut environ les deux tiers de l'augmentation εno du rendement du module 110 pour un angle d'incidence de 0° (3%). Par ailleurs, le rayonnement réfléchi après son entrée dans le substrat
1 , 101 , à l'interface entre le substrat et la couche sous-jacente formée par l'électrode avant des cellules 9, 109 ou un éventuel intercalaire de feuilletage, est piégé par réflexion sur les faces des motifs 5, 105, de sorte qu'une plus grande partie du rayonnement est transmise à travers le substrat. Les pertes en réflexion sont ainsi encore réduites grâce à ce second piégeage du rayonnement. Dans la mesure où ce second piégeage est basé sur un phénomène de réflexion interne totale, l'augmentation de transmission correspondante n'est toutefois pas influencée par la présence ou non d'une couche antireflet au niveau de la face avant 3, 103 du substrat.
Le deuxième principe à la base de l'augmentation de la transmission pour un substrat texture est le fait que, pour des rayons F1 incidents sur le substrat d'angles d'incidence élevés, proches de 90°, le rayonnement a des angles d'incidence plus faibles sur les faces des motifs 5, 105 que sur une surface plane. Par exemple, avec les motifs pyramidaux 5, 105 de demi- angles au sommet de 45°, même arrondis, les rayons incidents F1 d'angle d'incidence variant entre 0 et 90° sur une surface plane rencontrent la surface de la texture 5, 105 avec un angle d'incidence compris entre -45° et +45°. Comme le domaine des angles d'incidence élevés, proches de 90°, favorise la réflexion à l'interface air/verre, le remplacement du domaine d'angles d'incidence 0 à 90° par le domaine -45 à +45° s'accompagne d'une diminution sensible de la réflexion. Cet effet de diminution de la réflexion pour les angles d'incidence élevés est d'autant plus prononcé que les motifs 5, 105 sont pentus, c'est-à-dire que la texturation du substrat 1 , 101 présente un rapport d'aspect élevé. La présence de la couche antireflet 7 joue également un rôle pour l'amélioration de la transmission de ces rayons d'angles d'incidence élevés, dans la mesure où le phénomène de piégeage du rayonnement n'intervient pas pour ces rayons. En effet, comme montré par les flèches FM et FM' situées sur la droite des figures 4 et 5, un rayon d'angle d'incidence élevé, une fois réfléchi, est définitivement perdu.
A partir de ce constat théorique selon lequel il est possible de cumuler les effets d'une texturation et d'une couche antireflet présentes sur la face avant d'un substrat pour optimiser les propriétés de transmission de ce substrat, alors même que ces effets peuvent de prime abord paraître antagonistes ou du moins non conciliables, notamment pour des angles d'incidence faibles si l'on ne considère pas la forme arrondie des motifs constitutifs de la texturation, l'invention fournit un substrat associant, sur une de ses faces, une texturation et une couche antireflet formée par un traitement d'etching. Comme il ressort des exemples précédents, un tel substrat, lorsqu'il est intégré dans un module photovoltaïque en tant que substrat avant, améliore sensiblement le rendement de ce module par rapport aux modules de l'état de la technique.
Les motifs 5 constitutifs de la texturation d'un substrat selon l'invention présentent une épaisseur e5, en saillie ou en creux par rapport au plan général π de la face du substrat, supérieure à 10 micromètres, de préférence supérieure à 100 micromètres, encore de préférence de l'ordre du millimètre. La couche antireflet 7 d'un substrat selon l'invention présente quant à elle une épaisseur e7 comprise entre 30 nanomètres et 1 micromètre, de préférence comprise entre 80 nanomètres et 200 nanomètres. La sélection du traitement d'etching pour la formation de la couche antireflet d'un substrat selon l'invention est particulièrement avantageuse, dans la mesure où l'attaque acide de la structure du verre constitutif du substrat, caractéristique du traitement d'etching, s'opère aussi bien sur une surface de verre plane que sur une surface de verre texturée, en particulier fortement texturée. Il en résulte un procédé de fabrication simple, fiable et facilement automatisable d'un substrat conforme à l'invention, ce procédé pouvant être facilement adapté pour fonctionner en continu dans un cadre industriel.
De plus, la couche antireflet produite par le traitement d'etching, combinée à la texturation, confère au substrat selon l'invention des propriétés de transmission améliorées d'un rayonnement incident sur le substrat quelle que soit l'orientation de ce rayonnement incident, c'est-à-dire pour une large gamme d'angles d'incidence du rayonnement incident.
En outre, comme la couche antireflet produite par le traitement d'etching fait partie intégrante du substrat selon l'invention, elle ne peut pas être retirée de la surface du substrat, à la différence d'autres types de couches antireflet connues de l'état de la technique. Dès lors, la couche antireflet d'un substrat conforme à l'invention présente une excellente résistance mécanique, thermique et chimique, et en particulier, une bonne résistance à long terme aux conditions climatiques extérieures, ce qui est avantageux lorsque le substrat est intégré dans un module de récupération d'énergie solaire. L'invention n'est pas limitée aux exemples décrits et représentés. En particulier, comme mentionné précédemment, la texturation d'un substrat conforme à l'invention peut être formée par un assemblage de motifs autres que des motifs pyramidaux, notamment par un assemblage de motifs coniques, ou de motifs allongés de type rainures ou nervures. Dans tous les cas, la texturation d'un substrat conforme à l'invention est suffisamment profonde et pentue. En particulier, quel que soit le profil des motifs en relief de la texturation, le demi-angle au sommet de chaque motif est avantageusement inférieur à 70°, de préférence compris entre environ 25° et 50°, et le rapport d'aspect de la texturation, c'est-à-dire le rapport de l'épaisseur sur la largeur de chaque motif, qui est avantageusement supérieur ou égal à 0,1. Une telle texturation pentue est adaptée pour conférer au substrat des propriétés améliorées de transmission de rayonnement. Lorsque les motifs sont pyramidaux ou coniques, la largeur de chaque motif est définie comme le diamètre du plus petit cercle dans lequel est inscrite la base du motif. Lorsque les motifs sont des motifs allongés de type rainures ou nervures, la largeur de chaque motif est définie comme la dimension transversale du motif, perpendiculairement à la direction longitudinale du motif. La texturation d'un substrat selon l'invention peut également être une texturation concave, au lieu d'une texturation convexe, les motifs en relief étant alors en creux par rapport au plan général de la face texturée du substrat. De plus, les motifs en relief d'un substrat selon l'invention sont indifféremment jointifs ou non jointifs. Une distribution aléatoire des motifs sur la face texturée du substrat, si elle est avantageuse, n'est également pas obligatoire. En particulier, les verres textures commercialisés dans les gammes « ALBARINO P » et « ALBARINO G » par Saint-Gobain Glass sont appropriés pour la fabrication d'un substrat selon l'invention par un traitement d'etching. Par ailleurs, un substrat conforme à l'invention peut être constitué en un verre transparent extra-clair de composition autre que le verre « ALBARINO », par exemple en un verre float transparent extra-clair tel que le verre commercialisé dans la gamme « DIAMANT » par Saint-Gobain Glass. De plus, comme évoqué précédemment, la texturation d'un substrat en verre selon l'invention peut être obtenue par tout procédé approprié, par exemple par laminage, thermoformage ou gravure.
Un substrat conforme à l'invention peut présenter une épaisseur globale différente de celle décrite précédemment. Selon une variante non représentée de l'invention, un substrat conforme à l'invention peut également comporter une texturation et/ou une couche antireflet de type etching sur ses deux faces, et pas seulement sur une de ses faces. En pratique, dans la mesure où la couche antireflet de type etching d'un substrat selon l'invention est formée par immersion d'une plaque de verre dans un bain, il peut être plus aisé de tremper toute la plaque dans le bain, plutôt qu'uniquement une de ses faces, le substrat comportant dès lors une couche antireflet de type etching sur chacune de ses faces, avant et arrière. Dans ce cas, lorsque le substrat est intégré en tant que substrat avant dans un module photovoltaïque, le matériau constitutif de la couche sous-jacente au substrat, formée par l'électrode avant de la ou des cellules du module ou par un intercalaire de feuilletage, remplit les espaces vides de la couche antireflet de type etching présente sur la face arrière du substrat, de sorte que la couche antireflet de la face arrière ne modifie pas le rendement du module. Enfin, un substrat conforme à l'invention présentant des propriétés optimisées de transmission d'un rayonnement incident peut être intégré dans tout type de module de récupération d'énergie issue d'un rayonnement, les modules solaires photovoltaïques étant un exemple d'application avantageux.

Claims

REVENDICATIONS
1. Substrat (1 ) en verre transparent comprenant au moins une face (3) qui est munie d'une texturation formée par une pluralité de motifs géométriques (5) en relief par rapport à un plan général (π) de ladite face (3), cette texturation étant adaptée pour assurer une transmission de rayonnement à travers le substrat supérieure à la transmission de rayonnement à travers un substrat identique mais dépourvu de texturation, caractérisé en ce que ladite face (3) est en outre munie d'une couche antireflet (7) d'indice de réfraction compris entre l'indice de réfraction de l'air et l'indice de réfraction du verre, la couche antireflet (7) étant une partie superficielle creusée du substrat en verre (1 ) au niveau de ladite face (3), qui comporte une structure à base de silice et des espaces vides de dimension caractéristique comprise entre 0,5 nanomètres et 50 nanomètres.
2. Substrat selon la revendication 1 , caractérisé en ce que, pour chaque motif en relief (5), le rapport de l'épaisseur (e5) sur la largeur (I5) du motif (5) est supérieur ou égal à 0,1 , de préférence supérieur ou égal à 0,25.
3. Substrat selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que l'indice de réfraction de la couche antireflet (7) à 600 nm est inférieur à 1 ,3, de préférence de l'ordre de 1 ,22-1 ,23.
4. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que l'épaisseur (e5) de chaque motif en relief (5) est supérieure à 10 micromètres, de préférence supérieure à 100 micromètres.
5. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que l'épaisseur (e7) de la couche antireflet (7) est comprise entre 30 nanomètres et 1 micromètre, de préférence comprise entre 80 nanomètres et 200 nanomètres.
6. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que les motifs en relief (5) sont jointifs.
7. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que les motifs en relief (5) sont des pyramides ou des cônes de demi-angles au sommet non nuls.
8. Substrat selon la revendication 7, caractérisé en ce que la base de chaque motif en relief (5) est inscrite dans un cercle de diamètre inférieur ou égal à 5 millimètres.
9. Substrat selon l'une quelconque des revendications 1 à 6, caractérisé en ce que les motifs en relief sont des rainures ou des nervures.
10. Substrat selon l'une quelconque des revendications 7 à 9, caractérisé en ce que tout demi-angle au sommet des motifs en relief (5) est inférieur à 70°, de préférence compris entre environ 25° et 50°.
11. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche antireflet (7) est une partie superficielle du substrat en verre (1 ) au niveau de ladite face (3) ayant subi un traitement au moyen d'une solution acide sursaturée en silice.
12. Module (10) de récupération d'énergie issue d'un rayonnement incident sur le module, en particulier du rayonnement solaire, caractérisé en ce qu'il comprend un substrat (1 ) selon l'une quelconque des revendications précédentes en tant que substrat avant du module (10), ladite face (3) du substrat (1 ) qui est munie des motifs en relief (5) et de la couche antireflet (7) étant la face avant du module.
13. Procédé de fabrication d'un substrat (1 ) en verre transparent, comprenant des étapes successives dans lesquelles : - on forme, sur au moins une face (3) d'une plaque (2) de verre transparent, une texturation comprenant une pluralité de motifs géométriques (5) en relief par rapport à un plan général (π) de ladite face (3), cette texturation étant adaptée pour assurer une transmission de rayonnement à travers la plaque supérieure à la transmission de rayonnement à travers une plaque identique mais dépourvue de texturation ;
- on immerge la plaque de verre (2), au moins au niveau de ladite face (3) comportant les motifs en relief (5), dans une solution acide sursaturée en silice.
14. Procédé selon la revendication 13, caractérisé en ce qu'on forme les motifs en relief (5) sur ladite face (3) par laminage de la plaque de verre (2).
15. Procédé selon l'une quelconque des revendications 13 ou 14, caractérisé en ce que la solution dans laquelle on immerge la plaque de verre
(2) est une solution d'acide fluosilicique sursaturée en silice dans une proportion comprise entre environ 0 et 3 millimoles par litre au-delà du seuil de saturation en silice.
EP10707572A 2009-01-23 2010-01-22 Substrat en verre transparent et procede de fabrication d'un tel substrat Withdrawn EP2382165A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0950422A FR2941447B1 (fr) 2009-01-23 2009-01-23 Substrat en verre transparent et procede de fabrication d'un tel substrat.
PCT/FR2010/050097 WO2010084290A1 (fr) 2009-01-23 2010-01-22 Substrat en verre transparent et procede de fabrication d'un tel substrat

Publications (1)

Publication Number Publication Date
EP2382165A1 true EP2382165A1 (fr) 2011-11-02

Family

ID=41057551

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10707572A Withdrawn EP2382165A1 (fr) 2009-01-23 2010-01-22 Substrat en verre transparent et procede de fabrication d'un tel substrat

Country Status (8)

Country Link
US (1) US9340453B2 (fr)
EP (1) EP2382165A1 (fr)
JP (1) JP5926054B2 (fr)
KR (1) KR101455448B1 (fr)
CN (1) CN102361833B (fr)
EA (1) EA027284B1 (fr)
FR (1) FR2941447B1 (fr)
WO (1) WO2010084290A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2948230B1 (fr) 2009-07-16 2011-10-21 Saint Gobain Plaque transparente texturee et procede de fabrication d'une telle plaque
KR20110048406A (ko) * 2009-11-02 2011-05-11 엘지이노텍 주식회사 태양전지 및 이의 제조방법
WO2012024676A2 (fr) 2010-08-20 2012-02-23 First Solar, Inc. Module photovoltaïque anti-réfléchissant
EP2625313B1 (fr) * 2010-10-06 2020-12-09 3M Innovative Properties Company Articles antireflet présentant des revêtements à base de nanosilice
US9285584B2 (en) 2010-10-06 2016-03-15 3M Innovative Properties Company Anti-reflective articles with nanosilica-based coatings and barrier layer
CN102487095B (zh) * 2010-12-02 2014-07-16 沙嫣 新型非晶硅薄膜电池组件及其制造方法
CN102674697B (zh) * 2011-03-18 2014-04-02 北京市太阳能研究所有限公司 一种通过浸蚀制备减反射增透玻璃的方法
FR2978772B1 (fr) 2011-08-01 2013-08-02 Saint Gobain Photobioreacteur muni d'un empilement de couches minces selectif.
KR101325012B1 (ko) * 2012-03-21 2013-11-04 삼성코닝정밀소재 주식회사 광전지 모듈용 커버기판 및 이를 구비한 광전지 모듈
US8921841B2 (en) * 2012-05-09 2014-12-30 Samsung Corning Precision Materials Co., Ltd. Porous glass substrate for displays and method of manufacturing the same
FR2995245B1 (fr) * 2012-09-10 2015-05-15 Saint Gobain Vitrage decoratif a couche reflechissante deposee sur un substrat texture
KR101947187B1 (ko) * 2012-12-28 2019-02-12 주식회사 케이씨씨 고 투과율 무늬유리
US9556055B2 (en) * 2013-04-30 2017-01-31 Corning Incorporated Method for reducing glass-ceramic surface adhesion, and pre-form for the same
FR3035397A1 (fr) * 2015-04-23 2016-10-28 Saint Gobain Verre texture pour serre
FR3040536A1 (fr) * 2015-08-24 2017-03-03 St Microelectronics Sa Capteur d'image a diaphotie spectrale et optique reduite
CN206022388U (zh) * 2016-07-29 2017-03-15 上海比亚迪有限公司 一种太阳能电池组件
FR3068690B1 (fr) * 2017-07-07 2019-08-02 Saint-Gobain Glass France Procede d'obtention d'un substrat de verre texture revetu d'un revetement de type sol-gel antireflet.
FR3074117B1 (fr) * 2017-11-30 2020-12-04 Saint Gobain Vitrage de vehicule a signalisation lumineuse externe, vehicule l'incorporant et fabrication.
JP2021012976A (ja) * 2019-07-08 2021-02-04 株式会社リコー 光電変換モジュール
CN112897888A (zh) * 2019-12-04 2021-06-04 康宁股份有限公司 具有纹理化表面的玻璃基材的制造方法
CN112108493B (zh) * 2020-09-07 2023-12-05 青海黄河上游水电开发有限责任公司光伏产业技术分公司 一种光伏组件玻璃去除设备及去除方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326720A (en) 1990-10-25 1994-07-05 Nippon Sheet Glass Co., Ltd. Method for producing silicon dioxide film which prevents escape of Si component to the environment
US20010051259A1 (en) 2000-03-07 2001-12-13 Ponjee Arnoldus Wilhelmus Substrate provided with an anti-reflective coating, and method of providing an anti-reflective coating
US7368655B2 (en) * 2001-11-28 2008-05-06 Saint-Gobain Glass France Textured transparent plate with high light transmission

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USB490662I5 (fr) * 1946-09-21
US5120605A (en) * 1988-09-23 1992-06-09 Zuel Company, Inc. Anti-reflective glass surface
JP3567483B2 (ja) * 1994-05-09 2004-09-22 日本板硝子株式会社 防汚性低反射率ガラスの製造方法
DE50101048D1 (de) * 2001-02-15 2004-01-08 Interfloat Corp Glasscheibe
DE10123985A1 (de) * 2001-05-17 2002-11-21 Tesa Ag Selbstklebende Schutzfolie für Glasoberflächen mit poröser SiO-2-Antireflex-Schicht sowie die Verwendung dieser
US6929861B2 (en) * 2002-03-05 2005-08-16 Zuel Company, Inc. Anti-reflective glass surface with improved cleanability
JP2004335563A (ja) * 2003-05-01 2004-11-25 Sekisui Jushi Co Ltd 太陽電池モジュール
FR2870007B1 (fr) * 2004-05-10 2006-07-14 Saint Gobain Feuille transparente texturee a motifs pyramidaux inclines
DE102005027799B4 (de) * 2005-06-16 2007-09-27 Saint-Gobain Glass Deutschland Gmbh Verfahren zum Herstellen einer transparenten Scheibe mit einer Oberflächenstruktur und Vorrichtung zum Durchführen des Verfahrens
FR2908406B1 (fr) * 2006-11-14 2012-08-24 Saint Gobain Couche poreuse, son procede de fabrication et ses applications.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326720A (en) 1990-10-25 1994-07-05 Nippon Sheet Glass Co., Ltd. Method for producing silicon dioxide film which prevents escape of Si component to the environment
US20010051259A1 (en) 2000-03-07 2001-12-13 Ponjee Arnoldus Wilhelmus Substrate provided with an anti-reflective coating, and method of providing an anti-reflective coating
US7368655B2 (en) * 2001-11-28 2008-05-06 Saint-Gobain Glass France Textured transparent plate with high light transmission

Also Published As

Publication number Publication date
CN102361833A (zh) 2012-02-22
FR2941447A1 (fr) 2010-07-30
KR20110113189A (ko) 2011-10-14
WO2010084290A1 (fr) 2010-07-29
FR2941447B1 (fr) 2012-04-06
EA027284B1 (ru) 2017-07-31
EA201170956A1 (ru) 2012-03-30
US20110281078A1 (en) 2011-11-17
US9340453B2 (en) 2016-05-17
JP5926054B2 (ja) 2016-05-25
CN102361833B (zh) 2016-05-04
JP2012515702A (ja) 2012-07-12
KR101455448B1 (ko) 2014-10-27

Similar Documents

Publication Publication Date Title
EP2382165A1 (fr) Substrat en verre transparent et procede de fabrication d'un tel substrat
WO2008148978A2 (fr) Substrat transparent muni d'une couche electrode perfectionnee
BE1001108A4 (fr) Verre mate, procede de fabrication de verre mate, cellule photovoltaique comprenant un tel verre et procede de fabrication d'une telle cellule.
KR101618895B1 (ko) 박막 광전 변환 장치용 기판과 그것을 포함하는 박막 광전 변환 장치, 그리고 박막 광전 변환 장치용 기판의 제조 방법
WO2010039341A2 (fr) Electrode avant possédant une surface gravée destinée à être utilisée dans un dispositif photovoltaïque et procédé de fabrication associé
WO2003064344A1 (fr) Substrat transparent muni d'une electrode
EP2454757A2 (fr) Plaque transparente texturee et procede de fabrication d'une telle plaque
EP2353190A2 (fr) Vitrage a zones concentrant la lumiere par echange ionique
US20120192933A1 (en) Light-trapping layer for thin-film silicon solar cells
JP5409490B2 (ja) 光起電力装置およびその製造方法
FR2939788A1 (fr) Substrat a fonction verriere pour module photovoltaique
EP4128365B1 (fr) Bipv integrant un element transparent ou translucide a reflexion diffuse
EP2842170A1 (fr) Procédé de réalisation d'un réflecteur texturé pour une cellule photovoltaïque en couches minces et réflecteur texturé ainsi obtenu
WO2022074346A1 (fr) Verre texture pour installation photovoltaique
FR2947954A1 (fr) Cellule texturee a rendement de conversion eleve comportant une zone texturee recouverte par une bi-couche antireflet
KR101372461B1 (ko) 반사방지막, 이의 제조 방법 및 이를 이용한 태양전지
FR3026230A1 (fr) Dispositif photovoltaique semi-transparent avec trou traversant
FR3089683A1 (fr) dispositif optronique
WO2020043973A1 (fr) Vitrage texture et isolant pour serre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17Q First examination report despatched

Effective date: 20130724

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180605