EP2381206B1 - Method for detecting errors of an unmanned aerial vehicle connected to a carrier plane in flight and unmanned aerial vehicle - Google Patents
Method for detecting errors of an unmanned aerial vehicle connected to a carrier plane in flight and unmanned aerial vehicle Download PDFInfo
- Publication number
- EP2381206B1 EP2381206B1 EP11002913.9A EP11002913A EP2381206B1 EP 2381206 B1 EP2381206 B1 EP 2381206B1 EP 11002913 A EP11002913 A EP 11002913A EP 2381206 B1 EP2381206 B1 EP 2381206B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- missile
- storage device
- error
- carrier aircraft
- stored
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 25
- 238000012360 testing method Methods 0.000 claims description 42
- 238000004146 energy storage Methods 0.000 claims description 13
- 230000001960 triggered effect Effects 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 7
- 230000000712 assembly Effects 0.000 claims description 5
- 238000000429 assembly Methods 0.000 claims description 5
- 238000012217 deletion Methods 0.000 claims description 5
- 230000037430 deletion Effects 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims description 5
- 230000003213 activating effect Effects 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 3
- 238000013500 data storage Methods 0.000 claims 15
- 230000005055 memory storage Effects 0.000 claims 1
- 230000013011 mating Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 230000010006 flight Effects 0.000 description 3
- 241001136792 Alle Species 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 206010000210 abortion Diseases 0.000 description 1
- 231100000176 abortion Toxicity 0.000 description 1
- 235000019577 caloric intake Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011990 functional testing Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G7/00—Direction control systems for self-propelled missiles
- F41G7/007—Preparatory measures taken before the launching of the guided missiles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B15/00—Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
- F42B15/10—Missiles having a trajectory only in the air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B35/00—Testing or checking of ammunition
Definitions
- the present invention relates to a method for error detection during a system test or during the periodic functional check of a flightplane coupled to a carrier aircraft, unmanned missile according to the preamble of claim 1. It further relates to an unmanned missile according to the preamble of claim. 6
- a system test of the components of the missile is carried out, independently initiated or triggered by the carrier aircraft, while it is still coupled to the carrier aircraft. After the fault-free system test, the subsystems and assemblies of the missile are then periodically checked for correct function. A clearance of the missile for firing is granted only after successfully passed system test and error-free operation during subsequent operation.
- the missile is still supplied with electrical energy via the umbilical cable connecting it to the carrier aircraft. If the system test has been successfully completed and no malfunction has subsequently been identified by the cyclic tests, in the case of the firing event the carrier aircraft sends among other things a signal to the missile which activates an autonomous energy source provided in the missile, for example a thermal battery. which then takes over the power supply of the missile, before disconnecting the missile from the carrier aircraft, the power supply is interrupted by the carrier aircraft.
- an autonomous energy source provided in the missile, for example a thermal battery.
- the missile is not disconnected from the carrier aircraft and also the autonomous energy storage of the missile is not put into operation if the mission abort does not occur within the departure sequence (decoupling the missile from the carrier aircraft).
- the power supply from the carrier aircraft to the missile is shut off during the mission abort, so that the missile receives no electrical energy and is thus free from external electrical voltage.
- Object of the present invention is therefore to provide a generic method for error detection, in which even without conversion of the Missile is ensured that after the occurrence of a fatal error that has led to a mission abort, the corresponding error data for a root cause analysis by the ground-waiting service team are available.
- Another object is to provide an unmanned missile which makes it possible to apply a method solving the above problem.
- the idea on which the present invention is based is therefore to use one or more free sectors of the nonvolatile, reprogrammable data memory provided in the onboard computer of the missile for storing the error information.
- the mission abort signal is not transmitted immediately from the onboard computer of the missile to the weapon control computer of the carrier aircraft, but this mission abort signal is transmitted only with such a slight delay to the weapon control computer of the carrier aircraft, the sufficient is to allow during this delay, the transmission of the error data stored in the volatile memory in the nonvolatile data memory.
- the weapon control computer of the carrier aircraft If the mission is then terminated by the weapon control computer of the carrier aircraft after receiving the mission abort signal and the electrical energy supply from the carrier aircraft to the missile is switched off, the error data contained in the volatile main memory of the missile computer is deleted, but not its copy in the non-volatile reprogrammable data memory.
- the service crew on the ground can therefore read the fault data from the non-volatile memory after landing the carrier aircraft and make appropriate service or repair work on the missile.
- a particularly advantageous use of the method according to the invention is carried out in a check flight, wherein the transmission of the Aktivl mecanicssignals for the energy storage of the missile is prevented by the weapon control computer of the carrier aircraft to the missile.
- a special umbilical cable is usually used in which the control signal for the energy storage (for example, the ignition signal 'Release Consent' for a thermal battery) transmitting line is interrupted and in which, for security reasons, that line is interrupted, the transfers the energy for activating the energy storage.
- non-fatal errors preferably from other or all subassemblies of the missile
- nonvolatile data memory it is advantageous if non-fatal errors (preferably from other or all subassemblies of the missile) that occurred before the mission abort are stored in the nonvolatile data memory.
- non-fatal errors preferably from other or all subassemblies of the missile
- the history of the fatal flaw is mapped and thus obtained an even more complete picture of the fault situation of the missile.
- the service personnel on the ground can thus draw conclusions about the overall condition of the missile, which is a prerequisite for the efficient identification of the triggering cause of the mission and its side effects.
- other sources of error can be detected and eliminated, which could otherwise lead to fatal errors and thus to mission cancellation in a later flight.
- the method according to the invention is used for operational exercises or operations, where an operational umbilical cable is used, and if a missile is detected as defective during flight, targeted examination and repair measures can subsequently be initiated on the ground on the basis of the fault pattern read to make the missile ready for use as soon as possible.
- This unmanned missile comprises a central on-board computer on which a stored in a memory control software for the operation of the missile is expired and a volatile memory and a non-volatile, reprogrammable data memory (usually flash memory) has.
- the missile has a first energy supply for electrical energy, which is fed by a carrier aircraft, to which the missile is coupled in TragflugSullivan.
- the missile also has a second energy supply for electrical energy, which is fed by an autonomous energy storage provided in the missile.
- This energy store is designed such that it supplies the missile with electrical energy via the second energy supply when the missile receives a corresponding activation signal from a weapon control computer in the carrier aircraft.
- the running on the onboard computer of the missile control software is designed so that before the uncoupling of the missile from the carrier aircraft, for example, in a triggered or cyclic system check, occurring in the missile technical error data recorded and stored as a fault image in memory and that this stored error image in the event of a mission crash, stored in a free segment of the nonvolatile data memory before the electrical energy conducted by the carrier aircraft over the first power supply to the missile is shut off. This also applies to an erroneous mission termination during the departure sequence.
- the fault storage in the nonvolatile data memory takes place only when the mission abort has been triggered by an internal missile-occurring error.
- control software has sensed the separation of the missile from the carrier aircraft (free-flight phase), advantageously no error image storage takes place in the nonvolatile data memory.
- the cyclic function monitoring of the modules is turned off and thus blocks the possibility of mission abort.
- the control software is also designed so that it stores error images in the non-volatile memory only if it has clearly recognized that it communicates with the carrier aircraft, so not with a test device or a mission plan charger. If a tester interacts with the missile, identifying a fatal flaw in the missile, the associated flaw is transmitted directly to the tester so that caching in the missile is no longer necessary.
- An additional feature of the control software is that several fault images can be stored one behind the other in the non-volatile data memory of the missile, for example as a linked list.
- the reading out of error data from the non-volatile data memory can only be carried out if the missile is in communication connection with a test device.
- the reading of stored in the non-volatile memory data error images therefore allows the control software only if they are with the test device, as for example in the unpublished DE102008054264 is shown communicates, preferably after a fault-free run-up in the mode standby (for missiles with sporadic errors) or in the mission termination mode (for missiles with permanent errors).
- a further feature of the control software is that the deletion of error data in the nonvolatile data memory can only be carried out if the missile is in communication with a test device and has proven to be faultless immediately before it.
- the deletion of the error images in the non-volatile data memory is therefore only possible if the software has clearly recognized that it communicates with the test device.
- the deletion can only at the end of a successfully passed test, for example, a D-level test, as in the unpublished DE102009040303 is described, done.
- control software consists of two independent parts: an operational part and a test part, the operational part being designed to interact with the carrier aircraft and to execute the fault storage in the nonvolatile data memory, and the test part is formed is to interact with a test device and to perform the reading of the error data from the non-volatile memory and the deletion of the non-volatile data memory.
- the operational part that interacts with the carrier aircraft executes the writing of the fault images into the nonvolatile data memory.
- the test part that communicates with the tester is responsible for reading and erasing the error images from the nonvolatile data memory.
- the operational part and the test part of the control software can alternatively be stored in the program memory of the on-board computer.
- the operational part and the test part of the control software can be stored simultaneously in the program memory of the on-board computer and can be called independently of one another.
- the operational part and the test part of the control software can thus alternatively be stored in the on-board computer or independently of one another in the on-board computer and be retrievable.
- the fault storage in the non-volatile data memory only occurs when the mission abort has been triggered by an error occurring inside the missile.
- This variant has the advantage that, for example, in the case of a mission termination triggered manually, for example, by the crew of the carrier aircraft, there is no time delay since the transmission of the data from the volatile main memory into the nonvolatile data memory is not necessary in this case.
- This missile according to the invention is particularly suitable for carrying out the method according to the invention.
- the missile 1 is coupled to a carrier aircraft 2 shown schematically.
- the carrier aircraft 2 has for this purpose on its fuselage underside or on the underside of a wing on a bombing pylon 20 which in FIG. 1 partially shown cut.
- the bomb pylon 20 is partially open on its underside and provided in this area inside the bomb pylon 20 with two releasable holding devices 22, 22 ', which with two corresponding counter holding devices 13, 13', which protrude from an upper support member 11 of the missile 1, engage and fix the missile 1 on the carrier aircraft 2 decoupled.
- an aircraft-side electrical connector 26 is provided, which is mechanically and electrically connected to a mating connector 17 at the top of the missile 1 for the transmission of energy and for data exchange.
- the missile 1 is further provided with an avionics 3, which is also shown only schematically and which is located inside the hull 10.
- the avionics 3 of the missile is provided with an on-board computer 30 which is connected via the mating connector 17 at the top of the missile 1 and the carrier-aircraft-side electrical connector 26 by means of a umbilical cable 27 with an on-board computer 28 of the carrier aircraft 2 for data exchange.
- the on-board computer 28 includes a weapon control computer 29.
- About the umbilical cable 27 of the missile 1 is supplied by the carrier aircraft 2 in the flying flight also with electrical energy.
- the missile 1 has an autonomous electrical power supply, which is formed by an irreversibly activatable battery 5.
- this irreversibly activated battery 5 is a thermal battery, which is activated by an applied by the weapon control computer 29 of the carrier aircraft 2 electrical impulse and then emits a predetermined amount of electrical energy for a predetermined period.
- Fig. 2 is a schematic functional diagram of a coupled to the carrier aircraft 2 missile 1, the avionics 3 has an on-board computer 30 which is connected to the provided at the top of the missile 1 mating connector 17 for the umbilical cable 27.
- the on-board computer 30 has a processor 31, a volatile main memory 32, a nonvolatile, reprogrammable data memory 33 and a program memory 34.
- the computer 30 is connected via a first data line 35 with the mating connector 17 at the top of the missile 1 and thus with the Umbilical cable 27 and via this with the on-board computer 28 of the carrier aircraft 2 in connection to data between the on-board computer 28 of the carrier aircraft 2 and to exchange the on-board computer 30 of the missile 1 can.
- the on-board computer 28 of the carrier aircraft 2 is connected via a data line 24 to the connector 26 and thus to the umbilical cable 27.
- the umbilical cable 27 is connected via the connector 26 to a power supply line 25 of the carrier aircraft 2, which is fed by a (not shown) source of electrical energy.
- the electrical energy thus fed into the umbilical cable 27 is delivered in the mating connector 17 of the missile 1 to a supply line 40 of an energy supply structure 4 in the missile.
- a first energy supply 42 is formed for the energy supply structure 4 of the missile 1, which is shown only schematically in the figures.
- the autonomous electrical power supply of the missile 1 by means of the irreversibly activatable battery 5 forms a second, autonomous electrical power supply 44 for the missile 1.
- the battery 5 is also connected via a power supply line 46 to the power supply structure 4 of the missile 1.
- the irreversibly activatable battery 5 is connected via a data transmission line 50 with the mating connector 17 of the missile 1 and thus with the Umbilical cable 27 and the data line 24 provided with the on-board computer 28 of the carrier aircraft 2 weapons control computer
- the weapon control computer 29 may send via this connection one or more activation signals to the irreversibly activatable battery 5 or to the intermediary controller to set them in operation.
- a special Umbilical cable 27 'provided for a system test in a training flight can be provided, in which this connection between the data line 50 and the weapon control computer 29 is interrupted. This ensures that the irreversibly activatable battery 5 can not be accidentally activated during a training or inspection flight. It will be described below how the method according to the invention for error detection is carried out during a system test of the unmanned aerial vehicle 1 which is coupled to the carrier aircraft in the wing flight.
- the flight and thereby carried out review of the individual subsystems of the missile 1 of the missile 1 is powered by the first power supply 42 from the carrier aircraft 2 with energy.
- the system check is performed by a running on the processor 31 of the on-board computer 30 software that interacts with the weapon control computer 29 of the carrier aircraft 2. Occur during the triggered or periodic system check in the missile 1 error, these errors are detected in the on-board computer 30 of the missile 1 and stored first in the main memory 32 together with information about which module of the missile has occurred in the error. Furthermore, operating state data of the missile 1 and its individual components are stored in the main memory.
- the ground personnel After the ground personnel has read out the non-volatile data memory 33 with the aid of the test apparatus, it can selectively delete this memory or at least the area of this data memory 33 in which the error data and the operating state data of the missile 1 have been stored. Appropriately, this is only possible if the missile 1 after repair by a soil test, for example, a so-called D-level test, again proves to be faultless.
- the data read out from the nonvolatile data memory 33 can be compared by the ground personnel, for example, with fault images which are stored in a fault database in order to be able to identify the cause of the fatal fault quickly and accurately.
- the executive control software of the on-board computer 30 may be implemented in a variety of ways, as integrated software or, as exemplified in FIG Fig. 3 shown as consisting of independent parts, namely an operational part and a test part, existing software.
- integrated software software performs the writing, reading and erasing of the nonvolatile, reprogrammable data memory.
- the operational part that interacts with the carrier aircraft executes the writing of the failure images into the nonvolatile data memory.
- the test part that communicates with the tester is responsible for reading and erasing the error images from the nonvolatile data memory.
- the operational part and the test part can alternatively be stored in the program memory 34 of the on-board computer 30 or independently of each other in the program memory 34 of the on-board computer and be retrievable.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Fehlererfassung bei einem Systemtest oder während der periodischen Funktionsüberprüfung eines im Tragflug an einem Trägerflugzeug angekoppelten, unbemannten Flugkörpers gemäß dem Oberbegriff des Patentanspruchs 1. Sie betrifft weiterhin einen unbemannten Flugkörper gemäß dem Oberbegriff des Patentanspruchs 6.The present invention relates to a method for error detection during a system test or during the periodic functional check of a flightplane coupled to a carrier aircraft, unmanned missile according to the preamble of
Bevor ein unbemannter Flugkörper von einem Trägerflugzeug abgekoppelt und verschossen wird, wird, selbstständig initiiert oder ausgelöst vom Trägerflugzeug, ein Systemtest der Komponenten des Flugkörpers durchgeführt, während dieser noch am Trägerflugzeug angekoppelt ist. Nach dem fehlerfreiem Systemtest werden anschließend periodisch die Subsysteme und Baugruppen des Flugkörpers auf korrekte Funktion geprüft. Eine Freigabe des Flugkörpers zum Verschuss wird erst nach erfolgreich bestandenem Systemtest sowie fehlerfreier Funktion während des nachfolgenden Betriebes erteilt.Before an unmanned missile is decoupled from a carrier aircraft and fired, a system test of the components of the missile is carried out, independently initiated or triggered by the carrier aircraft, while it is still coupled to the carrier aircraft. After the fault-free system test, the subsystems and assemblies of the missile are then periodically checked for correct function. A clearance of the missile for firing is granted only after successfully passed system test and error-free operation during subsequent operation.
Während des Systemtests und auch nach dem Systemtest wird der Flugkörper noch über das ihn mit dem Trägerflugzeug verbindende Umbilical-Kabel mit elektrischer Energie versorgt. Wenn der Systemtest erfolgreich absolviert worden ist und anschließend keine Fehlfunktion durch die zyklischen Prüfungen identifiziert wurde, wird vom Trägerflugzeug im Falle des Verschussereignisses unter anderem ein Signal an den Flugkörper gesandt, mit welchem eine im Flugkörper vorgesehene autonome Energiequelle, beispielsweise eine Thermalbatterie, aktiviert wird, die dann die Stromversorgung des Flugkörpers übernimmt, bevor durch Abkoppeln des Flugkörpers vom Trägerflugzeug die Energiezufuhr vom Trägerflugzeug unterbrochen wird.During the system test and also after the system test, the missile is still supplied with electrical energy via the umbilical cable connecting it to the carrier aircraft. If the system test has been successfully completed and no malfunction has subsequently been identified by the cyclic tests, in the case of the firing event the carrier aircraft sends among other things a signal to the missile which activates an autonomous energy source provided in the missile, for example a thermal battery. which then takes over the power supply of the missile, before disconnecting the missile from the carrier aircraft, the power supply is interrupted by the carrier aircraft.
Tritt nun während des Systemtests oder während der periodischen Funktionsprüfungen ein fataler Fehler auf, das heißt, ein Fehler der den Abbruch der Mission zwangsläufig zur Folge hat, so wird der Flugkörper nicht vom Trägerflugzeug abgekoppelt und auch der autonome Energiespeicher des Flugkörpers wird nicht in Betrieb gesetzt, falls der Missionsabbruch nicht innerhalb der Abgangssequenz (Abkoppeln des Flugkörpers vom Trägerflugzeug) erfolgt. Es wird beim Missionsabbruch darüber hinaus die Energiezufuhr vom Trägerflugzeug zum Flugkörper abgeschaltet, sodass der Flugkörper keine elektrische Energie zugeführt bekommt und somit frei von externer elektrischer Spannung ist.If a fatal error occurs during the system test or during the periodic functional tests, that is to say an error which inevitably leads to the termination of the mission, the missile is not disconnected from the carrier aircraft and also the autonomous energy storage of the missile is not put into operation if the mission abort does not occur within the departure sequence (decoupling the missile from the carrier aircraft). In addition, the power supply from the carrier aircraft to the missile is shut off during the mission abort, so that the missile receives no electrical energy and is thus free from external electrical voltage.
Diese Energieabschaltung des Flugkörpers führt dazu, dass auch der flüchtige Arbeitsspeicher nicht mit Energie versorgt wird und folglich der Speicherinhalt im flüchtigen Arbeitsspeicher des zentralen Bordcomputers des Flugkörpers einschließlich aller dort gespeicherter Fehlerinformationen verloren geht. Das wiederum bedeutet, dass nach der Landung des Trägerflugzeugs keine detailliertes Bild der Fehlersituation (Fehlerbüd) vorliegt und somit auch keine Rückschlüsse auf den Grund des Missionsabbruchs getroffen werden können.This energy shutdown of the missile causes the volatile memory is not supplied with energy and thus the memory contents in the volatile memory of the central onboard computer of the missile including all stored there error information is lost. This in turn means that after the landing of the carrier aircraft no detailed picture of the error situation (Fehlerbüd) is present and thus no conclusions can be drawn on the reason of the mission cancellation.
Bisher wurde in einem solchen Fall anstelle des im Flugkörper vorgesehenen Gefechtskopfes ein Banddatenrecorder eingebaut, sodass dann nach einem oder mehreren weiteren Testflügen, bei denen der Fehler möglicherweise noch einmal auftrat, entsprechende Fehlerdaten auf dem Datenrecorder gespeichert waren. Diese Vorgehensweise ist äußerst umständlich, da der Flugkörper jedes Mal umgerüstet werden muss und der zur Umrüstung erforderliche Ausbau eines Teils der Waffe, nämlich des Gefechtskopfes, unter hohen Sicherheitsauflagen erfolgen muss.So far, a tape data recorder has been installed in such a case instead of the warhead provided in the missile, so that then after one or more further test flights, in which the error possibly occurred again, corresponding error data were stored on the data recorder. This procedure is extremely cumbersome because the missile must be retrofitted each time and the necessary to retrofit expansion of a part of the weapon, namely the warhead, must be made under high safety conditions.
Aus der
Aus der
Aufgabe der vorliegenden Erfindung ist es daher, ein gattungsgemäßes Verfahren zur Fehlererfassung anzugeben, bei welchem auch ohne Umrüstung des Flugkörpers dafür gesorgt ist, dass nach dem Auftreten eines fatalen Fehlers, der zu einem Missionsabbruch geführt hat, die entsprechenden Fehlerdaten für eine Ursachenanalyse durch die am Boden wartende Servicemannschaft zur Verfügung stehen.Object of the present invention is therefore to provide a generic method for error detection, in which even without conversion of the Missile is ensured that after the occurrence of a fatal error that has led to a mission abort, the corresponding error data for a root cause analysis by the ground-waiting service team are available.
Eine weitere Aufgabe ist es, einen unbemannten Flugkörper anzugeben, der es ermöglicht, ein die vorstehende Aufgabe lösendes Verfahren anzuwenden.Another object is to provide an unmanned missile which makes it possible to apply a method solving the above problem.
Die auf das Verfahren gerichtete Aufgabe wird durch die im Patentanspruch 1 angegebenen Merkmale gelöst.The object directed to the method is achieved by the features specified in
Bei diesem erfindungsgemäßen Verfahren zur Fehlererfassung eines im Tragflug an einem Trägerflugzeug angekoppelten, unbemannten Flugkörpers,
- wobei der Flugkörper einen zentralen Bordcomputer, auf dem eine in einem Speicher gespeicherte Steuerungssoftware für den Betrieb des Flugkörpers ablaufbar ist, und einen flüchtigen Arbeitsspeicher und einen nichtflüchtigen, reprogrammierbaren Datenspeicher aufweist,
- wobei der Flugkörper eine erste Energiezufuhr für elektrische Energie aufweist, die vom Trägerflugzeug gespeist wird;
- wobei der Flugkörper eine zweite, autonome Energiezufuhr für elektrische Energie aufweist, die von einem im Flugkörper vorgesehenen Energiespeicher mit elektrischer Energie beaufschlagbar ist, und
- wobei der Energiespeicher im Flugkörper den Flugkörper über die zweite Energiezufuhr mit elektrischer Energie versorgt, wenn der Flugkörper von einem Waffensteuerungscomputer im Trägerflugzeug ein entsprechendes Aktivierungssignal erhält;
- Durchführen einer ausgelösten und periodischen Systemüberprüfung des Flugkörpers im Tragflug während der Flugkörper über die erste Energiezufuhr vom Trägerflugzeug mit Energie versorgt wird;
- Erfassen von während dieser Systemüberprüfung im Flugkörper auftretenden Fehlerdaten und Speichern dieser Fehlerdaten im flüchtigen Arbeitsspeicher;
- Übertragen der im Arbeitsspeicher gespeicherten Fehlerdaten in zumindest ein freies Speichersegment des nichtflüchtigen Datenspeichers (beispielsweise Flash-Speicher), sobald ein zu einem Missionsabbruch führender fataler Fehler erfasst und im Arbeitsspeicher abgespeichert worden ist;
- Erzeugen eines Missionsabbruchsignals und Übertragen dieses Signals an den Waffensteuerungscomputer des Trägerflugzeugs und
- Abschalten der ersten Energiezufuhr.
- the missile having a central on-board computer on which a control software stored in a memory can be run for the operation of the missile, and a volatile main memory and a non-volatile, reprogrammable data memory,
- the missile having a first energy supply for electrical energy supplied by the carrier aircraft;
- wherein the missile has a second, autonomous energy supply for electrical energy, which is acted upon by an energy storage device provided in the missile with electrical energy, and
- wherein the energy storage in the missile supplies the missile with electrical energy via the second energy supply when the missile receives a corresponding activation signal from a weapon control computer in the carrier aircraft;
- Performing a triggered and periodic system inspection of the missile in the wing flight while the missile is powered by the first power supply from the carrier aircraft with energy;
- Detecting error data occurring in the missile during this system check and storing that error data in the volatile random access memory;
- Transferring the error data stored in the main memory into at least one free memory segment of the non-volatile data memory (eg flash memory) as soon as a fatal error resulting in a mission abort has been detected and stored in the main memory;
- Generating a mission abort signal and transmitting that signal to the weapon control computer of the carrier aircraft and
- Switching off the first power supply.
Die der vorliegenden Erfindung zugrunde liegende Idee liegt somit darin, eine oder mehrere freie Sektoren des im Bordcomputer des Flugkörpers vorgesehenen nichtflüchtigen, reprogrammierbaren Datenspeichers zur Speicherung der Fehlerinformation zu nutzen. Dazu wird beim Auftreten eines fatalen Fehlers, der einen Missionsabbruch zur Folge haben muss, das Missionsabbruchssignal nicht sofort vom Bordcomputer des Flugkörpers an den Waffensteuerungscomputer des Trägerflugzeugs übertragen, sondern dieses Missionsabbruchssignal wird erst mit einer solchen geringfügigen Verzögerung an den Waffensteuerungscomputer des Trägerflugzeugs übertragen, die ausreichend ist, um während dieser Verzögerung die Übertragung der im flüchtigen Arbeitsspeicher gespeicherten Fehlerdaten in den nichtflüchtigen Datenspeicher zu ermöglichen. Wird dann vom Waffensteuerungscomputer des Trägerflugzeugs nach Erhalt des Missionsabbruchssignals die Mission abgebrochen und die elektrische Energieversorgung vom Trägerflugzeug zum Flugkörper abgeschaltet, so werden zwar die im flüchtigen Arbeitsspeicher des Bordcomputer des Flugkörpers enthaltenen Fehlerdaten gelöscht, nicht aber deren Kopie im nichtflüchtigen reprogrammierbaren Datenspeicher. Die Servicemannschaft am Boden kann folglich nach der Landung des Trägerflugzeugs die Fehlerdaten aus dem nichtflüchtigen Datenspeicher auslesen und entsprechende Service- oder Reparaturarbeiten am Flugkörper vornehmen.The idea on which the present invention is based is therefore to use one or more free sectors of the nonvolatile, reprogrammable data memory provided in the onboard computer of the missile for storing the error information. For this purpose, when a fatal error, which must result in a mission abort, the mission abort signal is not transmitted immediately from the onboard computer of the missile to the weapon control computer of the carrier aircraft, but this mission abort signal is transmitted only with such a slight delay to the weapon control computer of the carrier aircraft, the sufficient is to allow during this delay, the transmission of the error data stored in the volatile memory in the nonvolatile data memory. If the mission is then terminated by the weapon control computer of the carrier aircraft after receiving the mission abort signal and the electrical energy supply from the carrier aircraft to the missile is switched off, the error data contained in the volatile main memory of the missile computer is deleted, but not its copy in the non-volatile reprogrammable data memory. The service crew on the ground can therefore read the fault data from the non-volatile memory after landing the carrier aircraft and make appropriate service or repair work on the missile.
Ein besonders vorteilhafter Einsatz des erfindungsgemäßen Verfahrens erfolgt in einem Überprüfungsflug, wobei die Übertragung des Aktivlerungssignals für den Energiespeicher des Flugkörpers vom Waffensteuerungscomputer des Trägerflugzeugs zum Flugkörper unterbunden ist. Bei derartigen Überprüfungsflügen wird in der Regel ein spezielles Umbilical-Kabel verwendet, bei dem die das Steuersignal für den Energiespeicher (beispielsweise das Zündsignal 'Release Consent' für eine Thermalbatterie) übertragende Leitung unterbrochen ist und bei welchem aus Sicherheitsgründen auch jene Leitung unterbrochen ist, die die Energie für die Aktivierung des Energiespeichers überträgt. Dadurch, dass das erfindungsgemäße Verfahren bei derartigen Überprüfungsflügen eingesetzt wird, kann auf systematische Weise ein verbesserter Erkenntnisgewinn während des Überprüfungsfluges erzielt werden.A particularly advantageous use of the method according to the invention is carried out in a check flight, wherein the transmission of the Aktivlerungssignals for the energy storage of the missile is prevented by the weapon control computer of the carrier aircraft to the missile. In such verification flights a special umbilical cable is usually used in which the control signal for the energy storage (for example, the ignition signal 'Release Consent' for a thermal battery) transmitting line is interrupted and in which, for security reasons, that line is interrupted, the transfers the energy for activating the energy storage. By using the method according to the invention in such checking flights, an improved knowledge gain during the checking flight can be achieved in a systematic manner.
Besonders vorteilhaft ist es, wenn zusätzlich zu dem den Missionsabbruch auslösenden fatalen Fehler, auch baugruppenspezifische Daten der den Missionsabbruch bewirkenden Baugruppe sowie fehlerrelevante Daten anderer Baugruppen im nichtflüchtigen Datenspeicher abgespeichert werden. Hierdurch wird es ermöglicht, eine genaue Analyse der Ursachen des fatalen Fehlers durchzuführen und somit dem Servicepersonal erleichtert, den eigentlichen Defekt, der zum fatalen Fehler geführt hat, zu identifizieren.It is particularly advantageous if, in addition to the fatal error triggering the mission termination, also module-specific data of the assembly causing the mission termination as well as error-relevant data of other modules are stored in the non-volatile data memory. This makes it possible to carry out a precise analysis of the causes of the fatal error and thus makes it easier for service personnel to identify the actual defect that led to the fatal error.
Zusätzlich ist es von Vorteil, wenn auch nicht-fatale Fehler (vorzugsweise aus anderen oder allen Baugruppen des Flugkörpers), die vor dem Missionsabbruch aufgetreten sind, im nichtflüchtigen Datenspeicher abgespeichert werden. Auf diese Weise wird die Vorgeschichte des fatalen Fehlers abgebildet und damit ein noch umfassenderes Bild der Fehlersituation des Flugkörper erhalten. Das Servicepersonal am Boden kann daraus Rückschlüsse auf den gesamten Zustand des Flugkörpers ziehen, was für die effiziente Identifizierung der den Missionsabbruchs auslösenden Ursache und deren Nebenwirkungen Voraussetzung ist. Zudem können weitere Fehlerquellen erkannt und behoben werden, die sonst möglicherweise in einem späteren Flug zu fatalen Fehlern und damit zu Missionsabbruch führen würden.In addition, it is advantageous if non-fatal errors (preferably from other or all subassemblies of the missile) that occurred before the mission abort are stored in the nonvolatile data memory. In this way, the history of the fatal flaw is mapped and thus obtained an even more complete picture of the fault situation of the missile. The service personnel on the ground can thus draw conclusions about the overall condition of the missile, which is a prerequisite for the efficient identification of the triggering cause of the mission and its side effects. In addition, other sources of error can be detected and eliminated, which could otherwise lead to fatal errors and thus to mission cancellation in a later flight.
Verbessert wird dieser Erkenntnisgewinn noch dadurch, dass zusätzlich zu den Fehlerdaten auch allgemeine Daten des Flugkörpers, die den Zustand des Flugkörpers zum Zeitpunkt des Missionsabbruchs beschreiben (beispielsweise Position, Höhe über Grund, Geschwindigkeit, Eulerwinkel, UTC-Zeit, interne Zeit, interner Mode etc.), im nichtflüchtigen Datenspeicher abgespeichert werden.This knowledge gain is further enhanced by the fact that in addition to the error data also general data of the missile describing the state of the missile at the time of mission abort (eg position, altitude above ground, speed, Euler angle, UTC time, internal time, internal mode etc .), are stored in the non-volatile data memory.
Somit werden gegebenenfalls folgende Datengruppen im nichtflüchtigen Datenspeicher des Flugkörpers abgespeichert und bilden die den Missionsabbruch herbeiführende Fehlersituation als Fehlerbild ab:
- allgemeine Daten, die den Zustand des Flugkörpers zum Zeitpunkt des Missionsabbruchs beschreiben,
- die Kennung der den Missionsabbruch bewirkenden Baugruppe,
- baugruppenspezifische Daten der den Missionsabbruch bewirkenden Baugruppe sowie fehlerrelevante Daten anderer Baugruppen des Flugkörpers,
- alle vor dem Missionsabbruch aufgetretenen nicht-fatalen Fehler aller Baugruppen des Flugkörpers.
- general data describing the state of the missile at the time of the mission crash,
- the identifier of the module causing the mission crash,
- module-specific data of the mission-interrupting module as well as error-relevant data of other subassemblies of the missile,
- all non-fatal flaws of all assemblies of the missile that occurred before the mission crash.
Falls das erfindungsgemäße Verfahren bei operationellen Übungen oder Einsätzen zur Anwendung kommt, wobei ein operationelles Umbilical-Kabel verwendet wird, und falls im Tragflug ein Flugkörper als defekt erkannt wird, können aufgrund des ausgelesenen Fehlerbildes nachfolgend am Boden gezielte Untersuchungs- und Reparaturmaßnahmen eingeleitet werden, um den Flugkörper schnellstmöglich wieder einsatzbereit zu machen.If the method according to the invention is used for operational exercises or operations, where an operational umbilical cable is used, and if a missile is detected as defective during flight, targeted examination and repair measures can subsequently be initiated on the ground on the basis of the fault pattern read to make the missile ready for use as soon as possible.
Durch all diese Maßnahmen wird die Verfügbarkeit der mit dem erfindungsgemäßen Verfahren betriebenen Flugkörper deutlich erhöht und der Aufwand zur Fehlersuche nach einem aufgetretenen fatalen Fehler wird spürbar reduziert.All of these measures significantly increase the availability of the missiles operated using the method according to the invention and noticeably reduce the effort required to troubleshoot a fatal error that has occurred.
Die auf den Flugkörper gerichtete Aufgabe wird gelöst durch den unbemannten Flugkörper mit den Merkmalen des Patentanspruchs 6.The task directed to the missile is achieved by the unmanned missile having the features of
Dieser erfindungsgemäße unbemannte Flugkörper enthält einen zentralen Bordcomputer, auf dem eine in einem Speicher gespeicherte Steuerungssoftware für den Betrieb des Flugkörpers ablaufbar ist und der einen flüchtigen Arbeitsspeicher sowie einen nichtflüchtigen, reprogrammierbaren Datenspeicher (üblicherweise Flash-Speicher) aufweist. Der Flugkörper weist eine erste Energiezufuhr für elektrische Energie auf, die von einem Trägerflugzeug gespeist wird, an welches der Flugkörper im Tragflugzustand angekoppelt ist. Der Flugkörper weist weiterhin eine zweite Energiezufuhr für elektrische Energie auf, die von einem im Flugkörper vorgesehenen autonomen Energiespeicher gespeist wird. Dieser Energiespeicher ist so ausgestaltet, dass er den Flugkörper über die zweite Energiezufuhr mit elektrischer Energie versorgt, wenn der Flugkörper von einem Waffensteuerungscomputer im Trägerflugzeug ein entsprechendes Aktivierungssignal erhält.This unmanned missile according to the invention comprises a central on-board computer on which a stored in a memory control software for the operation of the missile is expired and a volatile memory and a non-volatile, reprogrammable data memory (usually flash memory) has. The missile has a first energy supply for electrical energy, which is fed by a carrier aircraft, to which the missile is coupled in Tragflugzustand. The missile also has a second energy supply for electrical energy, which is fed by an autonomous energy storage provided in the missile. This energy store is designed such that it supplies the missile with electrical energy via the second energy supply when the missile receives a corresponding activation signal from a weapon control computer in the carrier aircraft.
Die auf dem Bordcomputer des Flugkörpers ablaufende Steuerungssoftware ist so ausgestaltet, dass sie vor dem Abkoppeln des Flugkörpers vom Trägerflugzeug, zum Beispiel bei einer ausgelösten oder der zyklischen Systemüberprüfung, im Flugkörper auftretende technische Fehlerdaten erfasst und als Fehlerbild im Arbeitsspeicher speichert und dass sie dieses gespeicherte Fehlerbild im Falle eines Missionsabbruchs in einem freien Segment des nichtflüchtigen Datenspeichers abspeichert, bevor die vom Trägerflugzeug über die erste Energiezufuhr zum Flugkörper geleitete elektrische Energie abgeschaltet wird. Dies gilt auch für einen fehlerbedingten Missionsabbruch während der Abgangssequenz.The running on the onboard computer of the missile control software is designed so that before the uncoupling of the missile from the carrier aircraft, for example, in a triggered or cyclic system check, occurring in the missile technical error data recorded and stored as a fault image in memory and that this stored error image in the event of a mission crash, stored in a free segment of the nonvolatile data memory before the electrical energy conducted by the carrier aircraft over the first power supply to the missile is shut off. This also applies to an erroneous mission termination during the departure sequence.
Vorzugsweise erfolgt die Fehlerspeicherung im nichtflüchtigen Datenspeicher nur dann, wenn der Missionsabbruch von einem flugkörper-intern auftretenden Fehler ausgelöst worden ist.Preferably, the fault storage in the nonvolatile data memory takes place only when the mission abort has been triggered by an internal missile-occurring error.
Weiter vorzugsweise erfolgt keine Fehlerspeicherung in den nichtflüchtigen Datenspeicher mehr, wenn die Trennung des Flugkörpers vom Trägerflugzeug erkannt worden ist.Further preferably, no error storage in the non-volatile memory data more, if the separation of the missile has been recognized by the carrier aircraft.
Vorteilhaft ist es auch, wenn die Fehlerspeicherung in den nichtflüchtigen Datenspeicher nur dann erfolgt, wenn der Flugkörper mit dem Trägerflugzeug in Kommunikationsverbindung steht.It is also advantageous if the error storage in the non-volatile memory only takes place when the missile is in communication with the carrier aircraft in communication.
Wenn die Steuerungssoftware die Trennung des Flugkörpers vom Trägerflugzeug sensiert hat (Freiflugphase), erfolgt zweckmäßigerweise keine Fehlerbildspeicherung mehr im nichtflüchtigen Datenspeicher. Während des Freifluges des Flugkörpers wird üblicherweise die zyklische Funktionsüberwachung der Baugruppen abgeschaltet und somit die Möglichkeit des Missionsabbruches blockiert.If the control software has sensed the separation of the missile from the carrier aircraft (free-flight phase), advantageously no error image storage takes place in the nonvolatile data memory. During the free flight of the missile usually the cyclic function monitoring of the modules is turned off and thus blocks the possibility of mission abort.
Die Steuerungssoftware ist zudem so ausgestaltet, dass sie Fehlerbilder nur dann in den nichtflüchtigen Datenspeicher speichert, wenn sie eindeutig erkannt hat, dass sie mit dem Trägerflugzeug, also nicht mit einen Testgerät oder einem Missionsplan-Ladegerät, kommuniziert. Falls ein Testgerät mit dem Flugkörper interagiert und dabei ein fataler Fehler im Flugkörper identifiziert wird, wird das zugehörige Fehlerbild unmittelbar zum Testgerät übertragen, so dass eine Zwischenspeicherung im Flugkörper nicht mehr notwendig ist.The control software is also designed so that it stores error images in the non-volatile memory only if it has clearly recognized that it communicates with the carrier aircraft, so not with a test device or a mission plan charger. If a tester interacts with the missile, identifying a fatal flaw in the missile, the associated flaw is transmitted directly to the tester so that caching in the missile is no longer necessary.
Ein zusätzliches Merkmal der Steuerungssoftware ist, dass mehrere Fehlerbilder hintereinander im nichtflüchtigen Datenspeicher des Flugkörpers gespeichert werden können, beispielsweise als verkettete Liste.An additional feature of the control software is that several fault images can be stored one behind the other in the non-volatile data memory of the missile, for example as a linked list.
Vorteilhaft ist es auch, wenn das Auslesen von Fehlerdaten aus dem nichtflüchtigen Datenspeicher nur dann durchführbar ist, wenn der Flugkörper mit einem Testgerät in Kommunikationsverbindung steht. Das Auslesen von im nichtflüchtigen Datenspeicher gespeicherten Fehlerbildern erlaubt die Steuerungssoftware folglich nur dann, wenn sie mit dem Testgerät, wie es beispielsweise in der nicht vorveröffentlichten
Ein weiteres Merkmal der Steuerungssoftware ist, dass das Löschen von Fehlerdaten im nichtflüchtigen Datenspeicher nur dann durchführbar ist, wenn der Flugkörper mit einem Testgerät in Kommunikationsverbindung steht und sich unmittelbar davor als fehlerfrei erwiesen hat. Das Löschen der Fehlerbilder im nichtflüchtigen Datenspeicher ist also nur dann möglicht, wenn die Software eindeutig erkannt hat, dass sie mit dem Testgerät kommuniziert. Das Löschen kann dabei nur am Ende eines erfolgreich bestandenen Tests, beispielsweise eines D-Level Tests, wie er in der nicht vorveröffentlichten
Eine weitere, vorteilhafte Ausprägung der Steuerungssoftware ist, dass sie aus zwei unabhängigen Teilen besteht: einem operationellen Teil und einem Testteil, wobei der operationelle Teil ausgebildet ist, um mit dem Trägerflugzeug zu interagieren und die Fehlerspeicherung im nichtflüchtigen Datenspeicher auszuführen, und wobei der Testteil ausgebildet ist, um mit einem Testgerät zu interagieren und das Auslesen der Fehlerdaten aus dem nichtflüchtigen Datenspeicher sowie das Löschen des nichtflüchtigen Datenspeichers auszuführen. Dabei führt der operationelle Teil, der mit dem Trägerflugzeug interagiert, das Schreiben der Fehlerbilder in den nichtflüchtigen Datenspeicher aus. Dem Testteil, der mit dem Testgerät kommuniziert, obliegt das Lesen und Löschen der Fehlerbilder aus dem nichtflüchtigen Datenspeicher.Another advantageous feature of the control software is that it consists of two independent parts: an operational part and a test part, the operational part being designed to interact with the carrier aircraft and to execute the fault storage in the nonvolatile data memory, and the test part is formed is to interact with a test device and to perform the reading of the error data from the non-volatile memory and the deletion of the non-volatile data memory. In doing so, the operational part that interacts with the carrier aircraft executes the writing of the fault images into the nonvolatile data memory. The test part that communicates with the tester is responsible for reading and erasing the error images from the nonvolatile data memory.
Vorzugsweise sind der operationelle Teil und der Testteil der Steuerungssoftware alternativ im Programmspeicher des Bordcomputers speicherbar.Preferably, the operational part and the test part of the control software can alternatively be stored in the program memory of the on-board computer.
In einer alternativen bewvorzugten Ausführungsform sind der operationelle Teil und der Testteil der Steuerungssoftware gleichzeitig im Programmspeicher des Bordcomputers speicherbar und unabhängig voneinander aufrufbar.In an alternative preferred embodiment, the operational part and the test part of the control software can be stored simultaneously in the program memory of the on-board computer and can be called independently of one another.
Der operationelle Teil und der Testteil der Steuerungssoftware können also alternativ in den Bordcomputer ladbar oder unabhängig voneinander im Bordcomputer gespeichert und aufrufbar sein.The operational part and the test part of the control software can thus alternatively be stored in the on-board computer or independently of one another in the on-board computer and be retrievable.
In einer bevorzugten Weiterbildung des erfindungsgemäßen Flugkörpers erfolgt die Fehlerspeicherung in den nichtflüchtigen Datenspeicher nur dann, wenn der Missionsabbruch von einem flugkörperintern auftretenden Fehler ausgelöst worden ist. Diese Variante hat den Vorteil, dass bei einem beispielsweise manuell von der Besatzung des Trägerflugzeugs ausgelösten Missionsabbruch keine Zeitverzögerung auftritt, da die Übertragung der Daten aus dem flüchtigen Arbeitsspeicher in den nichtflüchtigen Datenspeicher in diesem Fall nicht erforderlich ist.In a preferred embodiment of the missile according to the invention, the fault storage in the non-volatile data memory only occurs when the mission abort has been triggered by an error occurring inside the missile. This variant has the advantage that, for example, in the case of a mission termination triggered manually, for example, by the crew of the carrier aircraft, there is no time delay since the transmission of the data from the volatile main memory into the nonvolatile data memory is not necessary in this case.
Dieser erfindungsgemäße Flugkörper eignet sich besonders zur Durchführung des erfindungsgemäßen Verfahrens.This missile according to the invention is particularly suitable for carrying out the method according to the invention.
Bevorzugte Ausführungsbeispiele der Erfindung mit zusätzlichen Ausgestaltungsdetails und weiteren Vorteilen sind nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben und erläutert.Preferred embodiments of the invention with additional design details and other advantages are described and explained in more detail below with reference to the accompanying drawings.
Es zeigt:
- Fig. 1
- eine schematische Darstellung eines an einem Luftfahrzeug angekoppelten unbemannten Flugkörpers gemäß der Erfindung:
- Fig. 2
- ein Blockschaubild der relevanten Komponenten eines an einem Luftfahrzeug angekoppelten unbemannten Flugkörpers gemäß der Erfindung und
- Fig. 3
- eine schematische Darstellung der Anteile der Steuerungssoftware.
- Fig. 1
- a schematic representation of an aircraft coupled to an unmanned missile according to the invention:
- Fig. 2
- a block diagram of the relevant components of a coupled to an aircraft unmanned missile according to the invention and
- Fig. 3
- a schematic representation of the shares of the control software.
Der Flugkörper 1 ist an einem schematisch dargestellten Trägerflugzeug 2 angekoppelt. Das Trägerflugzeug 2 weist dafür an seiner Rumpfunterseite oder an der Unterseite einer Tragfläche einen Bombenpylon 20 auf, der in
Der Flugkörper 1 ist weiterhin mit einer Avionik 3 versehen, die ebenfalls nur schematisch dargestellt ist und die sich im Inneren des Rumpfs 10 befindet. Die Avionik 3 des Flugkörpers ist mit einem Bordcomputer 30 versehen, der über den Gegensteckverbinder 17 an der Oberseite des Flugkörpers 1 und die trägerflugzeugseitige elektrische Steckverbindung 26 mittels eines Umbilical-Kabels 27 mit einem Bordcomputer 28 des Trägerflugzeugs 2 zum Datenaustausch verbunden ist. Der Bordcomputer 28 enthält einen Waffensteuerungscomputer 29. Über das Umbilical-Kabel 27 wird der Flugkörper 1 vom Trägerflugzeug 2 im Tragflug auch mit elektrischer Energie versorgt.The
Der Flugkörper 1 weist eine autonome elektrische Stromversorgung auf, die von einer irreversibel aktivierbaren Batterie 5 gebildet ist. Üblicherweise ist diese irreversibel aktivierbare Batterie 5 eine Thermalbatterie, die von einem vom Waffensteuerungscomputer 29 des Trägerflugzeugs 2 aufgebrachten elektrischen Impuls aktivierbar ist und dann für einen vorgegebenen Zeitraum eine vorgegebene Menge an elektrischer Energie abgibt.The
In
Des Weiteren ist das Umbilical-Kabel 27 über den Steckverbinder 26 mit einer Stromversorgungsleitung 25 des Trägerflugzeugs 2 verbunden, die von einer (nicht dargestellten) Quelle für elektrische Energie gespeist wird.Furthermore, the
Die so in das Umbilical-Kabel 27 eingespeiste elektrische Energie wird in der Gegensteckverbindung 17 des Flugkörpers 1 an eine Versorgungsleitung 40 einer Energieversorgungsstruktur 4 im Flugkörper abgegeben. Auf diese Weise ist eine erste Energiezufuhr 42 für die in den Figuren nur schematisch dargestellte Energieversorgungsstruktur 4 des Flugkörpers 1 gebildet.The electrical energy thus fed into the
Die autonome elektrische Stromversorgung des Flugkörpers 1 mittels der irreversibel aktivierbaren Batterie 5 bildet eine zweite, autonome elektrische Energiezufuhr 44 für den Flugkörper 1. Dazu ist die Batterie 5 über eine Stromversorgungsleitung 46 ebenfalls mit der Energieversorgungsstruktur 4 des Flugkörpers 1 verbunden. Die irreversibel aktivierbare Batterie 5 ist über eine Datenübertragungsleitung 50 mit der Gegensteckverbindung 17 des Flugkörpers 1 und somit mit dem über das Umbilical-Kabel 27 und die Datenleitung 24 mit dem im Bordcomputer 28 des Trägerflugzeugs 2 vorgesehenen WaffensteuerungscomputerThe autonomous electrical power supply of the
29 direkt verbunden oder indirekt über ein zwischengeschaltenes Steuergerät. Der Waffensteuerungscomputer 29 kann über diese Verbindung ein oder mehrere Aktivierungssignale an die irreversibel aktivierbare Batterie 5 senden oder an das zwischengeschaltetes Steuergerät, um diese in Betrieb zu setzen. In dem in den Figuren gezeigten Testaufbau kann ein für einen Systemtest in einem Trainingsflug vorgesehenes spezielles Umbilical-Kabel 27' vorgesehen sein, bei welchem diese Verbindung zwischen der Datenleitung 50 und dem Waffensteuerungscomputer 29 unterbrochen ist. Dadurch wird sichergestellt, dass die irreversibel aktivierbare Batterie 5 während eines Trainings- oder Überprüfungsfluges nicht versehentlich aktiviert werden kann. Nachstehend wird beschrieben, wie das erfindungsgemäße Verfahren zur Fehlererfassung bei einem Systemtest des im Tragflug an das Trägerflugzeug angekoppelten unbemannten Flugkörpers 1 durchgeführt wird.29 directly connected or indirectly via an intermediate control unit. The
Während des Tragflugs und der dabei durchgeführten Überprüfung der einzelnen Subsysteme des Flugkörpers 1 wird der Flugkörper 1 durch die erste Energiezufuhr 42 vom Trägerflugzeug 2 mit Energie versorgt. Die Systemüberprüfung wird dabei von einer auf dem Prozessor 31 des Bordcomputers 30 ablaufenden Software durchgeführt, die mit dem Waffensteuerungscomputer 29 des Trägerflugzeugs 2 interagiert. Treten während der ausgelösten oder periodischen Systemüberprüfung im Flugkörper 1 Fehler auf, so werden diese Fehler im Bordcomputer 30 des Flugkörpers 1 erfasst und zunächst im Arbeitsspeicher 32 zusammen mit einer Information darüber, in welcher Baugruppe des Flugkörpers der Fehler aufgetreten ist, abgespeichert. Des Weiteren werden im Arbeitsspeicher Betriebszustandsdaten des Flugkörpers 1 und seiner einzelnen Komponenten gespeichert.During the flight and thereby carried out review of the individual subsystems of the
Tritt während der ausgelösten oder zyklischen Systemüberprüfung ein fataler Fehler auf, der einen Missionsabbruch zur Folge haben muss, so wird vom Bordcomputer 30 des Flugkörpers 1 der interne Missionsabbruchszustand eingenommen. Damit werden die im flüchtigen Arbeitsspeicher vorhandene Fehlerdaten, also
- die allgemeine Daten, die den Zustand des Flugkörpers zum Zeitpunkt des Missionsabbuches kennzeichnen und
- die Kennung der den Missionsabbruch bewirkenden Baugruppe und
- die baugruppenspezifische Daten der den Missionsabbruch bewirkenden Baugruppe sowie fehlerrelevante Daten anderer Baugruppen des Flugkörpers und
- alle vor dem Missionsabbruch aufgetretenen nicht-fatale Fehler aller Baugruppen des Flugkörpers,
- the general data identifying the state of the missile at the time of the mission's debit and
- the identifier of the mission termination causing assembly and
- the module-specific data of the mission abort causing assembly and error-related data of other assemblies of the missile and
- all non-fatal flaws of all assemblies of the missile that occurred before the mission crash,
Dadurch, dass das Missionsabbruchsignal nicht unmittelbar nach Erkennung des Missionsabbruches an den Waffensteuerungscomputer 29 des Trägerflugzeugs 2 übertragen wird, sondern erst dann, wenn die Übertragung der Daten vom Arbeitsspeicher 32 in den nichtflüchtigen Datenspeicher 33 abgeschlossen ist, wird sichergestellt, dass die für die Fehleranalyse am Boden nach der Landung des Trägerflugzeugs 2 erforderlichen Fehlerinformationen nicht mehr in dem durch den Verlust der elektrischen Energieversorgung gelöschten Arbeitsspeicher 32 enthalten sind, sondern in dem nichtflüchtigen Datenspeicher 33.The fact that the mission abort signal is not transmitted immediately after detection of the mission abort to the
Wird eine Mission in der Einsatzkonfiguration der Einheit aus Trägerflugzeug 2 und Flugkörper 1 durchgeführt, in welcher das vollständig bestückte Umbilical-Kabel 27 vorgesehen ist, und erfolgt beispielsweise während der Abgangssequenz der Missionsabbruch bei aktivierter Batterie 5 des Flugkörpers 1 (Hangfire-Situation), so wird das Speichern des Fehlerbildes in den nichtflüchtigen Datenspeicher 33 auch dann wegen der Eigenversorgung ausgeführt, wenn das Trägerflugzeug 2 aus anderen Gründen die Energiezufuhr einstellt noch bevor der Bordcomputer 30 des Flugkörpers 1 das Missionsabbruchsignal gesendet hat.If a mission in the deployment configuration of the unit from
Nachdem das Bodenpersonal den nichtflüchtigen Datenspeicher 33 mit Hilfe des Testgerätes ausgelesen hat, kann es diesen Speicher oder zumindest den Bereich dieses Datenspeichers 33, in dem die Fehlerdaten und die Betriebszustandsdaten des Flugkörpers 1 gespeichert gewesen sind, gezielt löschen. Zweckmäßigerweise ist dies erst dann möglich, wenn sich der Flugkörper 1 nach erfolgter Reparatur durch einen Bodentest, beispielsweise einen sogenannten D-Level Test, wieder als fehlerfrei erweist.After the ground personnel has read out the
Die aus dem nichtflüchtigen Datenspeicher 33 ausgelesenen Daten können vom Bodenpersonal beispielsweise mit Fehlerbildern verglichen werden, die in einer Fehlerdatenbank gespeichert sind, um die Ursache des fatalen Fehlers schnell und zielsicher identifizieren zu können.The data read out from the
Die ausführende Steuerungssoftware des Bordcomputers 30 kann in unterschiedlicher Weise ausgeprägt sein, als integrierte Software oder, wie beispielhaft in
Bezugszeichen in den Ansprüchen, der Beschreibung und den Zeichnungen dienen lediglich dem besseren Verständnis der Erfindung und sollen den Schutzumfang nicht einschränken.Reference signs in the claims, the description and the drawings are only for the better understanding of the invention and are not intended to limit the scope.
Es bezeichnen:
- 1
- Flugkörper
- 2
- Trägerflugzeug
- 3
- Avionik
- 4
- Energieversorgungsstruktur
- 5
- Batterie
- 10
- Rumpf
- 11
- Tragelement
- 13
- Gegenhalteeinrichtung
- 13'
- Gegenhalteeinrichtung
- 17
- Gegensteckverbindung
- 20
- Bombenpylon
- 22
- Halteeinrichtung
- 22'
- Halteeinrichtung
- 24
- Datenleitung
- 25
- Stromversorgungsleitung
- 26
- Steckverbinder
- 27
- Umbilical-Kabel
- 27'
- Umbilical-Kabel
- 28
- Bordcomputer
- 29
- Waffensteuerungscomputer
- 30
- Bordcomputer
- 31
- Prozessor
- 32
- flüchtiger Arbeitsspeicher
- 33
- nichtflüchtiger, reprogrammierbarer Speicher
- 34
- Programmspeicher
- 35
- Datenleitung
- 40
- Versorgungsleitung
- 42
- erste Energiezufuhr
- 44
- zweite Energiezufuhr
- 46
- Stromversorgungsleitung
- 50
- Datenübertragungsleitung
- 1
- missile
- 2
- carrier aircraft
- 3
- Avionics
- 4
- Energy supply structure
- 5
- battery
- 10
- hull
- 11
- supporting member
- 13
- Backup device
- 13 '
- Backup device
- 17
- Against connector
- 20
- bomb pylon
- 22
- holder
- 22 '
- holder
- 24
- data line
- 25
- Power line
- 26
- Connectors
- 27
- Umbilical cable
- 27 '
- Umbilical cable
- 28
- board computer
- 29
- Weapons control computer
- 30
- board computer
- 31
- processor
- 32
- volatile memory
- 33
- non-volatile, reprogrammable memory
- 34
- program memory
- 35
- data line
- 40
- supply line
- 42
- first energy intake
- 44
- second energy supply
- 46
- Power line
- 50
- Data transmission line
Claims (14)
- Method for detecting errors of an unmanned missile (1) that is coupled in the carrier flight mode to a carrier aircraft (2),- wherein the missile (1) comprises a central on-board computer (30) on which it is possible to run control software that is stored in a memory device (34) for the operation of the missile (1), and said on-board computer also comprises a volatile random access memory device and a non-volatile, reprogrammable data storage device,- wherein the missile (1) comprises a first energy supply (42) for electrical energy that is supplied by the carrier aircraft (2),- wherein the missile (1) comprises a second, autonomous energy supply (44) for electrical energy that can be supplied with electrical energy from an energy storage device (5) that is provided in the missile (1), and- wherein the energy storage device (5) in the missile (1) supplies the missile (1) by way of the second energy supply (44) with electrical energy if the missile (1) receives a corresponding activating signal from a weapon control computer (29) in the carrier aircraft (2),wherein the method comprises the following steps:- performing a triggered and periodic system monitoring procedure of the missile (1) in the carrier flight mode while the missile (1) is supplied with energy from the carrier aircraft (2) by way of the first energy supply (42),- ascertaining error data that occurs in the missile during this system monitoring procedure and storing said error data in the volatile random access memory device,- transmitting the error data that is stored in the random access memory device into at least one free storage segment of the non-volatile data storage device, by way of example a flash memory storage device, as soon as a fatal error that leads to a mission abort is detected and has been stored in the random access memory,- generating a mission abort signal and transmitting this signal to the weapon control computer (29) of the carrier aircraft (2) and- disconnecting the first energy supply (42).
- Method according to Claim 1,
characterized in that
the method is implemented in a monitoring flight, wherein the transmission of the activating signal for the energy storage device (5) of the missile (1) from the weapons control computer (29) of the carrier aircraft (2) to the missile (1) is inhibited. - Method according to Claim 1 or 2,
characterized in that
in addition to the fatal error that triggers the mission abort, assembly-specific errors of the assembly of the missile (1) in which the fatal error has occurred are also stored in the non-volatile data storage device (33). - Method according to any one of the preceding claims,
characterized in that
non-fatal errors, preferably in all the assemblies of the missile (1) that occur prior to the mission abort are also stored in the non-volatile data storage device (33). - Method according to any one of the preceding claims,
characterized in that
in addition to the error data, general data of the missile that describes the state of the missile at the point in time of the mission abort is also stored in the non-volatile data storage device (33). - Unmanned missile having a central on-board computer (30) on which it is possible to run control software that is stored in a memory device (34) for the operation of the missile (1), and said on-board computer comprises a volatile random access memory device (32) and a non-volatile, reprogrammable data storage device (33),- wherein the missile (1) comprises a first energy supply (42) for electrical energy that is supplied by a carrier aircraft (2) to which the missile (1) is coupled in the carrier flight mode,- wherein the missile (1) comprises a second, autonomous energy supply (44) for electrical energy that is supplied by an energy storage device (5) that is provided in the missile (1), and- wherein the energy storage device (5) is configured in the missile (1) in such a manner that said energy storage device supplies the missile (1) with electrical energy by way of the second energy supply (44) if the missile (1) receives a corresponding activating signal from a weapon control computer (29) in the carrier aircraft (2),characterized in that- the control software that runs on the on-board computer (30) is configured in such a manner that said software prior to uncoupling the missile (1) from the carrier aircraft (2), for example in the event of a triggered or the cyclical system-monitoring procedure, ascertains technical error data that occurs in the missile (1) and stores said data as an error image in the volatile random access memory (32), and that said software stores said stored error image in the event of a mission abort in a free storage segment of the non-volatile data storage device (33) prior to the electrical energy that is supplied from the carrier aircraft (2) by way of the first energy supply (42) to the missile (1) being disconnected.
- Unmanned missile according to Claim 6,
characterized in that
the error is only stored in the non-volatile data storage device (33) if the mission abort has been triggered by an error that occurs internally in the missile. - Unmanned missile according to Claim 6 or 7,
characterized in that
the error is no longer stored in the non-volatile data storage device (33) if the separation of the missile from the carrier aircraft has been identified. - Unmanned missile according to Claim 6, 7 or 8
characterized in that
the error is only stored in the non-volatile data storage device (33) if the missile is in a communications connection with the carrier aircraft. - Unmanned missile according to any one of the claims 6 to 9,
characterized in that
it is only possible to read error data from the non-volatile data storage device (33) if the missile is in a communications connection with a testing device. - Unmanned missile according to any one of the claims 6 to 10,
characterized in that
it is only possible to delete error data in the non-volatile data storage device (33) if the missile is in a communications connection with a testing device and has proven to be error free immediately prior to said deletion. - Unmanned missile according to any one of the claims 6 to 11,
characterized in that
the control software is configured from two independent parts, the operational part and the testing part, wherein the operational part is configured in order to interact with the carrier aircraft and to store the error in the non-volatile data storage device (33), and wherein the testing part is configured in order to interact with a testing device and to read error data from the non-volatile data storage device (33) and also to erase the non-volatile data storage device (33). - Unmanned missile according to Claim 12,
characterized in that
the operational part and the testing part of the control software can alternatively be stored in the program storage device (34) of the on-board computer. - Unmanned missile according to Claim 12,
characterized in that
the operational part and the testing part of the control software can be stored simultaneously in the program storage device (34) of the on-board computer and can be called up independently of one another.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010018186A DE102010018186B4 (en) | 2010-04-26 | 2010-04-26 | Method for error detection of an unmanned missile coupled to a carrier aircraft in a wing flight and unmanned missile |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2381206A1 EP2381206A1 (en) | 2011-10-26 |
EP2381206B1 true EP2381206B1 (en) | 2017-07-12 |
Family
ID=44227808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11002913.9A Active EP2381206B1 (en) | 2010-04-26 | 2011-04-07 | Method for detecting errors of an unmanned aerial vehicle connected to a carrier plane in flight and unmanned aerial vehicle |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2381206B1 (en) |
DE (1) | DE102010018186B4 (en) |
ES (1) | ES2641018T3 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011115963B3 (en) * | 2011-10-13 | 2012-10-25 | Lfk-Lenkflugkörpersysteme Gmbh | Unmanned training and test missile |
DE102012015363B4 (en) | 2012-08-06 | 2014-10-23 | Mbda Deutschland Gmbh | Device for detecting errors of an unmanned missile designed to fly on a carrier aircraft and method therefor |
DE102012015364B3 (en) * | 2012-08-06 | 2013-09-05 | Mbda Deutschland Gmbh | Method for detecting error of unmanned operational missile, involves storing technical test carrying flight data of selected device in data region of data memory when carrying flight is provided with missile in predetermined time intervals |
DE102012017891B4 (en) * | 2012-09-11 | 2019-05-02 | Mbda Deutschland Gmbh | A method for testing the correct communication between a missile and a carrier aircraft and a missile test device |
CN103777545B (en) * | 2013-12-17 | 2016-06-01 | 中国航天空气动力技术研究院 | Without man-machine mission payload controller system |
CN108845922A (en) * | 2018-06-01 | 2018-11-20 | 深圳市道通智能航空技术有限公司 | The recording method of unmanned plane battery information, device and storage medium |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4935881A (en) * | 1987-04-14 | 1990-06-19 | Jeffrey Lowenson | Method and apparatus for testing missile systems |
JPH04210346A (en) * | 1990-12-06 | 1992-07-31 | Toyota Motor Corp | Assembling system |
DE102004042990B4 (en) * | 2004-09-06 | 2008-11-20 | Michael Grabmeier | Method and device for testing an operational cruise missile in various test scenarios by means of maintenance mode |
DE102006041140B4 (en) * | 2006-09-01 | 2009-11-26 | Lfk-Lenkflugkörpersysteme Gmbh | Procedure for checking the functioning of unmanned armed missiles |
DE102006054340A1 (en) * | 2006-11-17 | 2008-05-21 | Lfk-Lenkflugkörpersysteme Gmbh | A method for verifying the ability to interact between an aircraft and an armed unmanned missile coupled thereto |
JP4733168B2 (en) * | 2008-09-16 | 2011-07-27 | 豊田合成株式会社 | Steering wheel with airbag device |
DE102008054264B4 (en) * | 2008-10-31 | 2012-09-13 | Lfk-Lenkflugkörpersysteme Gmbh | Multifunctional service and test facility for unmanned aerial vehicles |
-
2010
- 2010-04-26 DE DE102010018186A patent/DE102010018186B4/en not_active Expired - Fee Related
-
2011
- 2011-04-07 EP EP11002913.9A patent/EP2381206B1/en active Active
- 2011-04-07 ES ES11002913.9T patent/ES2641018T3/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2381206A1 (en) | 2011-10-26 |
DE102010018186B4 (en) | 2013-11-14 |
ES2641018T3 (en) | 2017-11-07 |
DE102010018186A1 (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2381206B1 (en) | Method for detecting errors of an unmanned aerial vehicle connected to a carrier plane in flight and unmanned aerial vehicle | |
DE69733512T2 (en) | Improved maintenance system for aircraft and military weapons | |
EP1895265B1 (en) | Method for checking the functionality of unmanned armed missiles | |
EP1923658B2 (en) | Method for testing the interactive capability between an aircraft and an unmanned attachable armed missile | |
DE69607882T2 (en) | Method and system for checking the weapon carriers of an aircraft | |
DE102009040304B4 (en) | Device for controlling functional tests and / or service procedures for aircraft-unmanned aerial vehicles | |
DE102008054264B4 (en) | Multifunctional service and test facility for unmanned aerial vehicles | |
EP2573500B1 (en) | Missile training unit | |
DE102007022672B3 (en) | Intelligent weapon's i.e. cruise missile, condition monitoring method, involves comparing resulting data of function test of weapon and determining differences and trends in individual data and remaining duration and maintenance requirement | |
DE102004042990B4 (en) | Method and device for testing an operational cruise missile in various test scenarios by means of maintenance mode | |
EP3270092B1 (en) | Military operations vehicle with multifunctional operating and display system | |
EP2767795A2 (en) | Method for operating a stationary missile | |
EP2253537B1 (en) | Unmanned aircraft | |
DE102012017891B4 (en) | A method for testing the correct communication between a missile and a carrier aircraft and a missile test device | |
EP2390615B1 (en) | Method for accessing measurement and/or status data from a data storage unit of an armed unmanned aerial vehicle and device for performing the method | |
EP2381205B1 (en) | Method for simulating a mission of an unmanned armed aerial vehicle | |
DE102012015363B4 (en) | Device for detecting errors of an unmanned missile designed to fly on a carrier aircraft and method therefor | |
EP2648103A2 (en) | Method and apparatus for integrating technical systems | |
DE102012015364B3 (en) | Method for detecting error of unmanned operational missile, involves storing technical test carrying flight data of selected device in data region of data memory when carrying flight is provided with missile in predetermined time intervals | |
DE102022002703A1 (en) | Effector data connector for data connection of an effector to a firing platform | |
DE202021104039U1 (en) | Test device for an aircraft self-protection system | |
DE102015006799A1 (en) | Test device for a missile launch device | |
DE102016000121A1 (en) | Multifunctional testing device for arming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111119 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MBDA DEUTSCHLAND GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F42B 35/00 20060101ALI20170323BHEP Ipc: F41G 7/00 20060101AFI20170323BHEP Ipc: F42B 15/10 20060101ALI20170323BHEP |
|
INTG | Intention to grant announced |
Effective date: 20170418 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GRABMEIER, MICHAEL Inventor name: LOTTES, ALEXANDER Inventor name: FORSTER, CHRISTIAN |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 908758 Country of ref document: AT Kind code of ref document: T Effective date: 20170715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011012571 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2641018 Country of ref document: ES Kind code of ref document: T3 Effective date: 20171107 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170712 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171012 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171112 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171013 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171012 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011012571 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 |
|
26N | No opposition filed |
Effective date: 20180413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180407 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 908758 Country of ref document: AT Kind code of ref document: T Effective date: 20180407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230509 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240419 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240430 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240524 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240424 Year of fee payment: 14 Ref country code: FR Payment date: 20240426 Year of fee payment: 14 |