EP2375425B1 - Device for protecting against surge voltages with enhanced thermal disconnector - Google Patents

Device for protecting against surge voltages with enhanced thermal disconnector Download PDF

Info

Publication number
EP2375425B1
EP2375425B1 EP11161605.8A EP11161605A EP2375425B1 EP 2375425 B1 EP2375425 B1 EP 2375425B1 EP 11161605 A EP11161605 A EP 11161605A EP 2375425 B1 EP2375425 B1 EP 2375425B1
Authority
EP
European Patent Office
Prior art keywords
leaf member
varistor
protection device
blade
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11161605.8A
Other languages
German (de)
French (fr)
Other versions
EP2375425A1 (en
Inventor
Michaël Duval
Lagnoux Alain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Publication of EP2375425A1 publication Critical patent/EP2375425A1/en
Application granted granted Critical
Publication of EP2375425B1 publication Critical patent/EP2375425B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • H01C7/126Means for protecting against excessive pressure or for disconnecting in case of failure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit

Definitions

  • the present invention relates to the general technical field of equipment protection devices or electrical installations against overvoltages, especially against transient overvoltages, due for example to a lightning strike.
  • the present invention relates more particularly to a device for protecting an electrical installation against transient overvoltages, such as a varistor arrester, for low voltage electrical installations.
  • overvoltage protection component in particular one or more varistors and / or one or more spark gaps.
  • overvoltage protection component in particular one or more varistors and / or one or more spark gaps.
  • varistors For single-phase installations, it is usual to use a varistor connected between the phase and the neutral while a spark gap is connected between neutral and earth.
  • varistors For three-phase installations, it is usual to have varistors between the different phases and / or between each phase and the neutral and a spark gap between neutral and earth.
  • electrical installations operating under direct current for example for installations of photovoltaic generators, it is also resorted to varistors and possibly spark gaps.
  • these devices comprise a disconnection system for isolating the protection component of the electrical installation for safety.
  • the thermal protection or thermal disconnector serves to disconnect the varistor of the electrical installation to be protected in case of overheating of the varistor, for example above 140 ° C.
  • This excessive heating of the varistor is due to the increase of the leakage current - generally a few tens of milliamperes - through it because of its aging. In this case, it is called thermal runaway of the varistor.
  • the thermal disconnector is often a low temperature solder now in place a movable contact forming element through which the varistor is connected to the electrical installation, this conductive element being elastically constrained towards the opening. The fusion of the weld results in the displacement of the moving contact under the effect of the elastic stress, which causes the disconnection of the varistor.
  • Thermal disconnectors of this type are described in particular in EP-A-0 716 493 , EP-A-0 905 839 and EP-A-0 987 803 .
  • overvoltage protection devices and in particular their thermal disconnector, can be confronted with various constraining situations during their use, which are dependent in particular on the type of electrical network to which they are connected.
  • the electrical circuit of the protection devices must also be able to withstand the stresses resulting from electric shocks such as the lightning currents for which they are intended. These electrical shocks are transient overvoltages of large amplitude (several thousand volts) and short duration (from the microsecond to the millisecond). These overvoltages induce in particular electrodynamic forces and temperature rises which mechanically solicit the various conductive parts constituting the protection device. Despite these mechanical stresses, the electrical circuit ensuring the connection of the protective component to the electrical installation must remain closed. In particular, the mechanical stresses must not cause the opening of the thermal disconnector by tearing of the hot-melt solder.
  • the electrical circuit of the protection device connecting the protection component to the electrical installation can be subjected to very high currents at the rated voltage of the electrical installation, especially in the case of installations supplied by the power supply network. AC voltage. This is the case when the varistor of the protection device experiences a failure by short circuit. In this case, disconnection of the faulty varistor is caused by specific protection against short circuits such as a fuse or circuit breaker. Given the reaction time of this specific protection, the electrical circuit the protection device, including the thermal disconnector, shall not cause a start of fire within this time, given the importance of the short-circuit currents supplied by the electrical supply network.
  • the overvoltage protection device is still likely to be powered by a temporary overvoltage related to an anomaly in the power supply voltage of the electrical installation or in the event of a short-circuit failure of a varistor.
  • the varistor becomes busy and likely to be traversed by a very high current given its low independence, current which is more or less the current short circuit that can provide the power supply network of the Electrical Installation. Faced with such a situation, the protective device should not cause a fire.
  • the ability of the protection device to satisfy this constraint is verified for installations supplied with alternating low voltage, for example in paragraph 39 (Current testing) of UL 1449, 3rd ed., 29.09.2006 (noted above - after UL paragraph 39), or for photovoltaic generator installations, for example in section 6.7.4 ( end-of-life tests ) of the photovoltaic guide UTE C 61-740-51 of June 2009 (noted below UTE paragraph 6.7 .4).
  • US 2006 245 125 A1 relates to overvoltage protection devices for circuits and electrical equipment; And more specifically, to a circuit protection device.
  • FR 2877156 A1 relates to devices for protecting electrical installations and equipment against transient electrical surges, particularly due to lightning.
  • DE 10 2008031917 A1 relates to a protection element against overvoltages.
  • DE 10 2006 042028 B3 relates to a cutting device in particular for pluggable surge arresters.
  • WO 2006040418 A1 relates to protection devices for installations and electrical equipment against transient electrical surges.
  • the main object of the present invention is to improve the resistance of overvoltage protection devices in situations where the protection component, in particular with respect to a varistor, reaches the end of its life by a short-circuit under nominal voltage, a situation which is taken into account by the IEC standard paragraph 7.7.3 as mentioned above.
  • the specific protections against overcurrents can have a relatively long reaction time, of the order of one second or more.
  • a risk is that during this time, the passage of a high intensity current in the protection device causes the formation of an uncontrolled electric arc in the surge protection device. Such an uncontrolled arc can then be the initiator of a firing of the electrical installation.
  • the invention proposes a device for protecting an electrical installation against transient overvoltages according to claim 1.
  • the overvoltage protection component is a varistor.
  • the device furthermore comprises an electric arc reduction or suppression member which is formed during the displacement of the blade from the first position to the second position, the reduction or suppression member is chosen from the group arc reducing or suppressing means comprising electrical means, electronic means, electromechanical means and mechanical means.
  • the part of which the blade and said one of the two connection terminals have an IACS conductivity greater than or equal to 70%, preferably greater than or equal to 90%, even more preferably greater than or equal to 95% .
  • the part of which the blade and said one of the two connection terminals are parts is made of copper with a copper content greater than or equal to 99.9%.
  • the piece formed by the blade and said one of the two connection terminals comprises an intermediate flexible portion between the blade and the terminal to allow movement of the blade with respect to the terminal, between the first position and the second position.
  • the blade is biased elastically towards the second position
  • the thermal disconnector comprising a thermosensitive element in thermal contact with the protective component which thermosensitive element holds the blade in the first position up to the predetermined temperature threshold and releasing the blade when the temperature of the protection component exceeds the predetermined threshold
  • thermosensitive element is a hot-melt solder by which the blade is welded to a pole of the protection component.
  • the portion of the blade welded to the pole by the hot-melt solder is connected to the remainder of the blade by a local restriction of the section of the blade to concentrate the heat released by the protective component at the level of the hot-melt solder .
  • the portion of the blade welded to the pole of the protective component is tinned.
  • the device comprises a second thermal disconnector for disconnecting the protection component of the electrical installation when the temperature of the protection component exceeds a predetermined threshold.
  • the invention relates to a device for protecting an electrical installation against transient overvoltages.
  • the protection device comprises an overvoltage protection component and two terminals for connecting the device to the electrical installation to be protected.
  • the protection component is electrically connected to the two connection terminals.
  • the protection component may for example be a varistor. It will be understood that this may be a block of several varistors connected in series and / or in parallel with each other.
  • the device also comprises a thermal disconnector comprising a conductive blade.
  • the conductive blade is held in a first position, called the closed position, in which the blade provides an electrical connection between the protection component and one of the two connection terminals.
  • the thermal disconnector is provided to pass the blade in a second position, said open position, when the temperature of the protective component exceeds a predetermined threshold. When the blade is in the second position, the electrical connection between the protection component and said one of the two connection terminals is then open.
  • the conductive blade and said one of the two connection terminals are part of one and the same piece.
  • the short-circuit current supplied by the power supply network under nominal voltage then passes through the protection device and flows through this one-piece part comprising the connection terminal. and the conductive blade without encountering any electrical resistance of contact or welding.
  • This absence of contact resistance or welding limits the heating of the part during the passage of this short-circuit current which can have a very high intensity.
  • the limitation of the heating of the part contributes to limit the risk of destruction of this one by fusion, a situation which would be likely to generate the creation of uncontrolled arcing that can cause a fire.
  • the one-piece component comprising the connection terminal and the conductive blade thus contributes to maintaining the flow of current through the protective device reliably, at least as long as external overcurrent protection cuts off the current.
  • the proposed overvoltage protection device thus has improved resistance to short-circuit currents.
  • the figure 1 represents in perspective a protective cartridge 20 of a low voltage electrical installation.
  • the protective cartridge 20 comprises the protection device described above.
  • This protective cartridge 20 is plugged into a base 82 intended to be mounted on a standard DIN panel rail.
  • the racking of the cartridge 20 on a base 82 facilitates the connection of the protective device to the low voltage electrical installation to be protected.
  • a low-voltage electrical installation is understood to mean rated rated equipment up to 1000 V AC or up to 1500 V DC. Fixing on a DIN rail is standard for such electrical installations.
  • the overvoltage protection device described is also suitable for the protection of photovoltaic generator installations.
  • FIGS. 2A and 2B respectively illustrate one of the main faces of the cartridge 20 and the edge of the cartridge 20.
  • the cartridge 20 for housing the protection device has external dimensions AxBxC less than or equal to 57 x 50.5 x 17.6 mm.
  • the Figures 3A and 3B schematically illustrate the internal volume 21 defined by the housing of the cartridge 20 housing the protective device.
  • the figure 3A shows a section of the housing according to one of the main faces of the housing.
  • the figure 3B shows a section of the case according to the edge of the case.
  • the cartridge 20 intended to house the protection device thus has an internal parallelepipedal volume 21 having dimensions C'xA'xB 'less than or equal to 15 x 42 x 43 mm.
  • the cartridge 20 houses the protective device comprising a varistor 30 as a protective component and a conductive blade 44 forming a moving contact of a thermal disconnector.
  • the movable contact can be formed by a braid or a wire, to ensure the connection of the protective component to the electrical installation.
  • the protection device 30 comprises two terminals 38 and 48 for connecting the device to the electrical installation.
  • the varistor 30 has two poles each connected to a respective one of the terminals 38 and 48.
  • the figure 4 represents the protection device with the blade 44 in the closed position, the blade 44 being electrically connected to the pole 34 (visible on the figure 5 ) of the varistor 30.
  • the pole 34 thus constitutes a fixed contact of the thermal disconnector.
  • the pole 34 is connected to the terminal 48 by means of the blade 44. Furthermore, the blade 44 is biased elastically by a torsion spring 50.
  • the connection of the terminals 38 and 48 to the electrical installation to be protected is carried out, in this example, via the base 82 previously described with reference to the figure 1 .
  • the terminals 38 and 48 may take the form of male terminals as pins.
  • the figure 5 represents the same protection device with the blade 44 in the open position. The blade 44 is then disconnected from the pole 34 of the varistor 30. In this position, the pole 34 of the varistor 30 is no longer connected to the terminal 48.
  • FIGs 5 and 6 illustrate cartridge 20 of the figure 1 with the housing 20 of the cartridge open.
  • the housing is composed of an upper flange 23 represented in figure 6 and a lower flange 24 shown in figure 5 .
  • the compactness of the protective device allows forming with the lower flange 24 an "equipped cradle".
  • the figure 5 represents the blade 44 in the disconnected state.
  • thermosensitive element of the thermal disconnector is a hot-melt solder 70 by which the blade 44 is at the pole 34 of the varistor 30. This solder is still visible on the pole 34 of the varistor 30 on the figure 5 .
  • the solder 70 provides the electrical connection between the blade 44 in the closed position and the terminal 34 until the protection component 30 reaches the threshold temperature (for example 140 ° C.) which is indicative of a failure of the varistor 30.
  • the threshold temperature for example 140 ° C.
  • the solder 70 melts and the end of the blade 44 which was connected to the pole 34 of the varistor 30, moves away from the latter under the action of the spring 50. By therefore, the electrical connection between the blade 44 and the pole 34 is broken.
  • the protective device can cope with temporary overvoltages without risk of explosion or fire, at least if the protective device is likely to be subject to such surge conditions temporary.
  • it may be designed to meet the tests required by UL paragraph 39 or UTE 6.7.4.
  • the applicant recommends an approach to ensure a very rapid thermal disconnection of the varistor 30. Indeed, in these situations of temporary overvoltages, the current through the varistor increases gradually until the varistor goes short circuit franc.
  • the passage time of the varistor 30 in short circuit depends in particular on the ratio between the temporary overvoltage and the maximum permissible operating voltage by the varistor and the electrical behavior of the varistor (variation of the resistivity of the varistor as a function of the voltage applied to it).
  • the ratio between the temporary overvoltage and the maximum permissible voltage of the varistor 30 is high, the passage time of the short-circuited varistor 30 is small.
  • the behavior of the varistor is very strongly non-linear (the resistivity of the varistor varies very sharply with the increase in the voltage applied to it), the passage time of the varistor 30 shorted is low.
  • the transient phase of current increase is accompanied by an increase in temperature of the varistor 30, during the passage time of the varistor in short circuit.
  • the thermal disconnector is designed to disconnect in the transient phase the behavior of the varistor before the current flowing through it becomes too high to be cut by the thermal disconnector. This implies a quick detection of the increase of the temperature of the varistor.
  • the pole 34 is preferably disposed on one of the main faces of the protection component 30.
  • a main face of the protection component is represented by the hatched area 32 on the Figures 4 and 5 .
  • the figure 7 shows the varistor 30 viewed perpendicularly to the plane of its main face 32.
  • the pole 34 is advantageously disposed inside a central zone on the main face 32.
  • This central zone is represented fictitiously by a circle 86 dotted on the figure 7 .
  • the central zone may thus be located inside an imaginary circle 86 centered on said main face 82 of the block 80 and having a diameter equal to 75% of the diameter of the inscribed circle of the main face 82 of the block 80.
  • the pole 34 on the main face 32 in the central zone ensures rapid capture by the hot melt solder 70 of the increase in the temperature of the varistor 30 during the transient phase where the current flowing therethrough. Indeed, the runaway of the varistor 30 causes an increase in temperature first in the deteriorated areas of the varistor 30. These deteriorated areas correspond to areas of the varistor 30 with uncontrolled design defects. The location of these zones is not known a priori , so that the thermal runaway of the varistor begins in an indeterminate zone. The provision of pole 34 in the central zone thus ensures that the pole 34 is statistically closest to the zone where the thermal runaway of the varistor begins.
  • the pole 34 of the varistor 30 may advantageously extend along the main face 32, and not projecting perpendicular thereto.
  • the solder 70 is formed on the pole 34 at a brazing surface which is parallel to the main face 32 of the varistor 30.
  • the solder 70 then has its thickness in the direction perpendicular to the main face of the protective component . Consequently, the solder assembly 70 is as close as possible to the varistor 30 and provides it with instantaneous communication of the temperature of the varistor 30. This measurement is advantageous compared with conventional solutions in which the pole of the protection component forming a fixed contact of the thermal disconnection extends in a plane perpendicular to the main face of the protection component.
  • solder is then made in this perpendicular plane and a portion of the solder is kept away from the protective component.
  • the solder is first thermally stressed in its near part of the protective component, the increase in temperature of the varistor arriving with a delay at the part of the solder furthest from the component of the protection 30, which has the disadvantage of slowing the thermal disconnection.
  • the speed of the thermal disconnection can be further improved by the design of the varistor 30, more precisely by the design of its electrode forming the pole of the varistor which serves to transmit the heat released by the varistor to the thermosensitive element thermal disconnector.
  • the electrode of the varistor is formed by a conductive plate 84, represented in FIG. figure 7 .
  • the varistor 30 then further comprises a block 80, whose figure 7 shows only the main face 82.
  • the block 80 has an electrical resistance whose value varies as a function of the voltage applied to the block 80.
  • This block 80 constitutes the active part of the varistor 30 and makes it possible to limit the overvoltages by exhibiting a resistance. low for overvoltages of strong amplitudes such as those occurring during lightning strikes.
  • the conductive plate 84 is arranged on a main face 82 of the block 80.
  • the main faces of the block 80 correspond to the main faces of the varistor 30.
  • the plate 84 has a projecting portion forming one of the poles 34 of connection of the varistor.
  • the protruding portion forming one of the poles 34 is not an insert on the conductive plate 84, but instead, the protruding portion forming one of the poles 34 is made of material with the rest of the plate Conductive 84.
  • the projecting portion and the conductive plate are part of a single piece.
  • a second pole 36 of the varistor 30 can be formed by a protruding portion of a conductive plate arranged on another main face of the block 80 the varistor 30.
  • the varistor 30 then comprises an electrical insulation coating applied to the assembly formed by the main face 82 of the block 80 and the plate 84.
  • the assembly formed by the main face 82 of the block 80 and the plate 84 is thus isolated electrically from its surrounding environment, including the movable contact of the protective device.
  • the assembly formed of the block 80 and the plate 84 are entirely covered by the electrical insulation coating through which the different connection poles of the varistor also emerge to allow an electrical connection to be made with the rest of the device. protection, particularly with blade 44.
  • the projecting portion forming the pole 34 may emerge out of the electrical insulation coating so as to allow an improvement in breaking capacity as described in more detail later in this document.
  • the projecting portion forming the pole 34 may be connected to the rest of the plate 84 on at least half of its perimeter so as to improve the speed of the disconnection. Indeed, during the deterioration of the varistor 30 subjected to temporary overvoltages, the leakage current of the varistor 30 increases until the varistor 30 passes in short-circuit franc. This transient phase of increase of leakage current is accompanied by an increase in temperature of the varistor 30. This temperature increase is gradual. The temperature first increases in the heart of block 80 of the varistor 30 in areas with inhomogeneities. The increase in temperature then propagates by conduction throughout the block 80 of the varistor to the outer faces of the block and in particular to the main face 82 of the block 80.
  • the arrangement of the conductive plate 84 on the main face 82 of block 80 allows a minimum propagation time of the temperature increase from the defective zones of the block 80 to the electrode plate 84 of the varistor 30.
  • the plate 84 is electrically conductive allowing the plate to form an electrode.
  • the plate 84 is thermally conductive to ensure a rapid propagation of the rise in temperature to the pole 34 of the varistor 30 after the temperature rise has reached the plate 34.
  • the conductive plate is advantageously made of copper.
  • connection of the protruding portion forming the pole 34 to the remainder of the plate 84 over at least half of the perimeter of the pole 34 ensures an effective thermal conduction from the plate 84 to the pole 34, and whatever the location of the zones of the block 80 having defects with respect to pole 34.
  • the varistor previously described allows a reduction in the reaction time of the varistor, which is the time between the first deteriorations of zones of the block 80 of the varistor and the temperature increase of the pole 34 of the varistor 30.
  • the figure 8A illustrates a possible embodiment of the pole portion 34.
  • This pole portion 34 is connected to the remainder of the plate 84 on its dimension sides D.
  • the dimension sides E of the pole portion 34 have been cut from the plate 84 and then not participate in thermal conduction.
  • the Figure 8B illustrates another possible embodiment of the pole portion 34.
  • the pole portion 34 is disposed on the edge of the plate 84.
  • All these embodiments of the pole portion 34 have a connection with the remainder of the plate over at least half of the perimeter of the pole 34.
  • connection pole plate is connected to the remainder of the plate 84 over at least 80% of its perimeter to ensure better thermal conduction.
  • the pole portion 34 may be connected to the remainder of the plate 84 throughout its perimeter, as illustrated by FIG. Figure 8C .
  • the heat, due to the temperature increase of the block 80 and captured by the plate 84, is then thermally conducted at the pole 34 by the entire of its perimeter. Thermal transfer and speed of disconnection are improved.
  • stamping is a manufacturing technique for obtaining, from a flat sheet of thin sheet metal, an object whose form is not developable.
  • the plate 84 has been cut beforehand so as to facilitate the deformation of the plate 84.
  • the formation of one of the poles of the varistor plate stamping 84 ensures a continuity of material between the portion of the plate arranged on the main face 82 of the block 80 and the stamped portion.
  • the part of the plate 84 forming pole 34 of the plate 84 can also be arranged at the central zone of the block 80 which corresponds to the central zone delimited by the circle 86 represented in FIG. figure 7 , allowing a speed of disconnection as previously demonstrated.
  • the conductive plate 84 may be centered on said main face 82 of the block 80.
  • the remainder of the conductive plate 84 around the projecting pole portion 34 may be solid.
  • the remainder of the plate 84 then has no recess material or hole inside the surface delimited by its outer perimeter. Being free of holes, the plate 84 has a large surface area for sensing the temperature increase of the block 80, allowing the improvement of the speed of thermal disconnection.
  • the surface of the plate 84 arranged in contact with the main face 82 of the block 80 has an area which is at least half the area of the main face 82 of the block 80.
  • the plate 84 preferably has a thickness less than or equal to 0.7 mm so as to limit the amount of material to be heated before the increase in temperature reaches the pole 34.
  • the plate 84 preferably has a greater thickness or equal to 0.3 mm so as to allow the plate to withstand the mechanical stresses mentioned later in this document.
  • the hot-melt solder 70 a low-melting temperature alloy to ensure rapid disconnection of the blade 44.
  • a low melting temperature of the solder 70 allows to quickly obtain an opening of the thermal disconnector.
  • the tin / indium alloy In 52 Sn 48 is particularly preferred because it has a liquidus temperature at 118 ° C., whereas the alloys conventionally used have a liquidus temperature that is generally greater than 130 ° C.
  • this alloy complies with the European RoHS Directive 2002/95 / EC ( Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment ).
  • FIGs 9 and 10 illustrate, respectively seen in profile and in perspective, a preferred embodiment of the blade 44 of the figure 5 .
  • the blade 44 has a portion 42 intended to be welded to the pole 34 by the solder 70.
  • the portion 42 is connected to the remainder of the blade 44 by a local restriction 58 of the section of the blade 44.
  • This restriction 58 of the blade 44 allows to concentrate the heat released by the protective component 30 at the portion 42 - and therefore at the level of the solder 70 - because the diffusion of heat from the portion 42 to the rest of the blade 44 is limited by the restriction
  • the rise in temperature of the solder 70 is faster as the temperature of the varistor 30 increases. The speed of the opening of the thermal disconnector is thus increased.
  • the surface of the portion 42 advantageously corresponds to the section of the solder 70.
  • the section of the solder 70 is chosen according to the mechanical considerations mentioned below.
  • the portion 42, as well as the solder 70 preferably have a disc shape to allow a better homogeneity of the heating of the solder 70.
  • the portion 42 can thus be characterized by a mean diameter of this disc.
  • the local restriction 58 has a length of less than 80% of the average diameter of the portion 42 to provide a substantial concentration effect on the solder 70 of the heat emitted by the varistor 30. It is even more advantageous that the local restriction has a length less than 70% of the average diameter of the portion 42.
  • the length of the local restriction 58 above refers to the smallest distance separating two opposite edges of a main face of the blade 44: this length is referenced 'L' on the figure 9 .
  • the local restriction 58 is disposed near the solder 70 so as to limit the thermal energy losses between the local restriction 58 and the solder 70.
  • the distance from the local restriction 58 to the solder 70 can be estimated by the ratio between the surface of the solder 70 (i.e., the section of the solder previously described) and the surface of the portion 42 (represented by hatching and to the right of the restriction 58 on the figure 9 ). This ratio is preferably greater than 70%, and more preferably greater than 80%.
  • the protection device is also advantageously designed to have an improved breaking capacity.
  • improved breaking capacity can be useful both in the case of thermal disconnection at the nominal operating voltage and in the case of a temporary overvoltage such as in the tests of the UL standard paragraph 39 and / or the UTE guide section 6.7.4.
  • the protection device may comprise an arc reduction or suppression member that is formed during blade movement 44 to the open position.
  • an arc reduction or suppression device is particularly useful for electrical installations powered by direct current.
  • Such members are for example constituted by electrical means (such as a capacitor 22), electronic means, electromechanical means (such as an arc extinguishing chamber), or mechanical means (such as an insulating shutter coming from interpose between the movable contact and the fixed contact, by elastic stress or by gravity).
  • the capacitor 22 is used, it is arranged in parallel with the thermal disconnector to reduce the voltage of the electric arc formed during the displacement of the blade 44 to the open position.
  • Figure 11B represents the electrical diagram corresponding to the protective device of the figure 11A which represents it schematically in cross section.
  • the protection device may have a second thermal disconnector as illustrated by the Figure 12A and 12B .
  • the second disconnector is formed of a movable contact 64 and a fixed contact 36 on the same varistor 30.
  • the fixed contact 36 corresponds to the figure 12A at the second pole of the varistor 30.
  • the movable contact 64 can be made by a blade similar to the blade 44 of the first thermal disconnector.
  • the protection component is associated with the two thermal disconnectors, that is to say that the two thermal disconnectors and the protective component are connected in series.
  • the presence of the second thermal disconnector on the same varistor makes it possible to increase the breaking capacity of the proposed protection device, since the isolation distances between the moving contact and the fixed contact (s) of the two thermal disconnectors come from add up.
  • the disconnection of the first thermal disconnector is followed by the disconnection of the second thermal disconnector only when the electric current continues to flow through the protection component despite the first disconnection.
  • the two thermal disconnectors can be mechanically interconnected to coordinate the disconnection of the second disconnector and the disconnection of the first disconnector.
  • the mechanical coordination of the two thermal disconnectors is for example carried out using an organ or mechanical coordination mechanism of insulating material.
  • figure 12B which represents the equivalent electrical scheme of the protection device of the figure 12A capacitors 22 in parallel with each of the thermal disconnectors may also be provided in order to further improve the breaking capacity.
  • the protection device may comprise a torsion spring 50 for elastically biasing the blade 44 from the closed position to the open position.
  • the varistor 30 reaches the threshold temperature
  • the solder 70 melts and releases the blade 44 which is driven to the open position due to elastic biasing by the spring 50.
  • the use of a 50 separate spring blade 44 allows a calibration of the opening speed of the blade 44 and a precise orientation of the biasing force of the blade 44.
  • the movable contact blades of a thermal disconnector are elastically stressed because of the intrinsic elasticity of the blades. As the elasticity is intrinsically tied to the blade, it is difficult to predict a large opening speed of the blade without modify the geometry of the blade.
  • the spring 50 can be sized to drive the blade 44 to the open position with a large opening speed without changing the blade geometry 44 which can then be defined solely according to the other considerations. Furthermore, the choice of a high opening speed of the thermal disconnector increases the breaking capacity of the disconnector.
  • the blade 44 comprises a support 56 for the spring 50, for transmitting the bias of the spring 50 to the blade 44.
  • the blade 44 extends in a first plane parallel to the main face 32 of the varistor 30 with a movement of the blade 44 between the closed position and the open position taking place mainly in this first plane.
  • the insulation distance for a thermal disconnector can be substantially greater than 5 mm and reach at least 10 mm.
  • the movement of the blade 44 parallel to the main face 32 of the varistor 30 is confined in a volume based on the main face 32 of the varistor and having a small thickness relative to the dimensions of the varistor.
  • Such a movement of the blade 44 along the main face 32 of the varistor 30, and thus having the largest dimensions of the varistor 30, results in the possibility of obtaining a large breaking distance inside the volume confining the movement. of the blade 44.
  • the thickness of this volume being small, the compactness of the protective device is close to the compactness of the varistor 30.
  • This embodiment of the blade 44 is particularly advantageous when the protective device comprises a second disconnector thermal on the same varistor as previously described. This second thermal disconnector is then connected in series to the first thermal disconnector by through the varistor. We then obtain a compact design in accordance with the figure 12A .
  • the electrode 84 of the varistor 30 may advantageously have the protruding part forming pole 34.
  • This pole portion 34 emerges out of the electrical insulation coating such as the brazing surface for the electrical connection of the pole and stamped extends above the level of the electrical insulation coating, as represented by the figure 12A .
  • the arrangement of the portion of the pole plate 84 projecting and emerging from the electrical insulation coating ensures that the movable contact blade 44 moves to the open position parallel to the main face 32 of the varistor 30 while remaining at a distance from the insulating coating.
  • the movement to the open position is thus performed without friction of the blade 44 on the insulating coating.
  • the absence of friction of the blade 44 on the insulating coating provides a good speed of disconnection without trailing liquefied residue of solder 70 on the main face 32 of the varistor 30.
  • a good speed of disconnection thermal disconnector contributes to the improvement of the breaking capacity of the disconnector.
  • the prevention of the formation of a liquefied solder streak 70 makes it possible to ensure that the insulation distance provided by the thermal disconnector in the open state is effectively equal to the distance separating the blade 44 and pole 34, thus improving the breaking power.
  • the provision of the portion of the plate 84 projecting to form the pole 34 further allows to electrically isolate the blade 44 of the electrical insulation coating without using an additional partition.
  • the protection device can thus be made so that only an air gap separates the main face 32 of the blade 44 during its movement from the closed position to the open position.
  • the absence of additional partition between the blade 44 and the main face 32 of the varistor 30 further reduces the size of the protective device.
  • the pole portion 34 has its brazing surface at least 0.1 mm above the level of the electrical insulation coating. Even more preferably, the brazing surface is at least 0.3 mm from the level of the electrical insulation coating.
  • the electrical insulation coating preferably has a thickness of between 0.1 mm and 1 mm. Even more preferably, the thickness is greater than or equal to 0.6 mm to allow improved electrical insulation of the varistor 30 relative to the remainder of the protection device.
  • the protective device is still advantageously designed to reliably withstand the shock currents, in particular to meet the tests of IEC standards paragraph 7.6 or UL paragraph 37, or the UTE paragraph 6.6 guide as appropriate.
  • the resistance of the solder 70 to the mechanical tearing of the electrodynamic forces can be adapted by increasing the cross section of the solder 70, more particularly by increasing the surface of the solder 70 welded to the pole 34 - that is to say by increasing the brazing surface of the pole portion 34 -.
  • the brazing section extends in a plane perpendicular to the main face of the protection component. Sizing the section of the solder relative to the electrodynamic forces causes an increase in the thickness of the entire protective device (that is to say in the direction perpendicular to the main face of the protective component).
  • the increase in the section of the solder 70 is in the plane of the face 32.
  • L Increasing the section of solder 70 for the resistance to electrodynamic forces is then limited by the requirement of compactness of the protective device.
  • the blade 44 may be integral with a flexible portion 46.
  • This flexible portion 46 forms a bend 46 (or a lyre) about an axis perpendicular to the plane of the figure 9 .
  • This bend 46 allows movement of the blade 44 between the open position and the closed position.
  • the electrodynamic forces bias the opening of the flexible elbow 46.
  • Such an opening urging of the elbow 46 causes a biasing of the blade 44 to the open position.
  • the electrodynamic forces stress the solder 70 in shear.
  • the solder 70 can be sized to withstand stresses such as shear without damaging the compactness of the device.
  • the flexible elbow 46 thus contributes to both the compactness of the protective device and its resistance to shock currents.
  • the shearing stress of the solder 70 also makes it possible to overcome problems encountered during a tensile stressing of the solder. Indeed in a tensile situation of the solder, the stresses in the solder may not be evenly distributed. The portion of the braze with the highest stresses then begins to deteriorate locally creating a start of the braze which decreases the effective section of the solder facing the traction. It is then in a situation of cleavage where the most stressed portion of the solder gradually causes tearing of all the solder. The shear stress of the proposed solder allows a more uniform distribution of the stresses in the solder 70 avoiding a situation equivalent to the tensile cleavage.
  • the elbow material 46 preferably has a low elastic resistance (Re).
  • a low elastic resistance allows the bend 46 to absorb some of the energy by opening plastically. The absorption of a portion of the energy due to the electrodynamic effects makes it possible to limit the stress on the solder 70.
  • the elastic resistance is conventionally approached by the plastic deformation stress at 0.2% (denoted Rp0.2).
  • the material used for the elbow is Cu-a1 copper as discussed in more detail later, the latter has an advantageously low Rp0.2, namely 250 MPa (N.mm -2 ).
  • the use of the tin / indium alloy In 52 Sn 48 for the solder 70 makes it possible to obtain a shear strength of the order of 11.2 MPa (N.mm -2 ), which constitutes a good resistance to comparison with the alloys conventionally used for brazing.
  • a conventional alloy such as Bi 58 Sn 42 has a shear strength of the order of 3.4 MPa only. Consequently, it is possible to limit the supply of material for producing solder 70 by reducing the section of solder 70, for example to a surface area of 25 mm 2 while having a satisfactory mechanical shear strength.
  • the blade 44 may comprise a stiffening zone 52 of the part 40.
  • the bending inertia of the blade 44 is thus increased so that the biasing engagement of the blade 44 by the spring 50 or by the electrodynamic forces is substantially exclusively pure shear.
  • the sizing of the solder 70 for the resistance to the shock currents is thus facilitated.
  • a low bending inertia can be provided between the portion 42 of the blade 44 which is welded to the pole 34 and the restriction 58. compensating the dimensional clearances during the assembly of the various parts of the protection device without having to deform the blade 44 to weld it to the pole 34.
  • the portion 42 of the blade 44 intended to be welded to the pole 34 by the solder 70, is preferably tinned.
  • the tinning of the portion 42 allows an improvement in the quality of the solder resulting in a better mechanical strength thereof, including impact currents.
  • the varistor 30 may have a greater thickness, which allows a service voltage of the higher varistor.
  • the protection device can be adapted for an installation operating at a higher voltage, for example between 500 and 1000 V in the case of installations with photovoltaic generators to be compared with the 230 V or 400 V usual for the networks of alternative power supply in Europe.
  • the Figures 13A and 13B respectively illustrate front and side, the dimensions A ", B", C “of a varistor 30 which can be accommodated in the cartridge 20 with the rest of the proposed compact protection device.
  • the dimensions A” and B “of the varistor 30 is typically 35mm.
  • the varistor 30 can have a thickness C "up to 9mm.
  • the varistor 30 with a thickness of 9 mm has an operating voltage of the order of 680 V and exhibiting a leakage current of the order of 1 mA at a voltage of 1100 V in direct current.
  • the compactness of the protection device then makes it possible to use it for a voltage range of 75 V to 680 V. In particular, it allows the use of the protection device for the protection of photovoltaic generator installations.
  • the two poles 34 and 36 of the varistor 30 are arranged on opposite main faces of the varistor 30.
  • the first electrical disconnector which comprises the blade 44 connected by hot-melt soldering to the first pole 34 of the varistor 30, is produced as previously described.
  • the second thermal disconnector comprises a blade 64 forming a movable contact connected by hot-melt soldering to the second pole 36 of the varistor 30.
  • This second disconnector advantageously has the same characteristics as the first disconnector which have been previously described.
  • the varistor 30 is associated with two thermal disconnectors, that is to say that the two thermal disconnectors and the protection component are connected in series, which allows to increase the breaking capacity in case failure of the protection component.
  • the protective device is still advantageously designed to safely withstand the case where the varistor 30 short-circuits below the nominal operating voltage while specific short-circuit protections - such as a fuse or circuit breaker external to the device - intervene.
  • specific short-circuit protections - such as a fuse or circuit breaker external to the device - intervene.
  • the difficulty comes from the fact that these external protections have a certain reaction time during which the protective device is traversed by high currents. The protective device must not explode or start a fire during this time.
  • the applicant recommends an approach to limit the heating of the conductive parts of the protective device, in particular its thermal disconnector.
  • the short-circuit current is such that it causes a heating of these parts by Joule effect. Uncontrolled heating of the various parts of the protective device can then lead to the melting of one of the parts constituting a possible fire start before the external devices cut off the current.
  • the blade 44 and the terminal 48 are part of a single piece to form the workpiece 40.
  • the workpiece 40 can be obtained by stamping, bending or folding of a rolled sheet. Since the piece 40 is not obtained by assembling several pieces, but constitutes only one, the current flowing through the workpiece 40 of the terminal 48 to the blade 44 does not encounter any electrical contact resistance or Welding. This absence of contact resistance or welding limits the heating of the workpiece 40 when it is traversed by currents of high intensity.
  • the part 40 is preferably made of copper with a purity sufficient to have an international annealed copper standard (IACS) conductivity greater than 70%.
  • IACS international annealed copper standard
  • the IACS conductivity of a part corresponds to the ratio between a resistivity of 1.7241 ⁇ .cm and the resistivity of the part, the IACS conductivity is dimensionless. Therefore, the piece 40 has a low electrical resistivity and thus ensures the passage of electric current while limiting its heating. From this point of view, it is advantageous that the purity of copper is such that its IACS conductivity is greater than or equal to 90% or even 95%.
  • the electrical resistivity of the part 40 can thus be less than or equal to 1.7241 ⁇ .cm and can very effectively limit the heating of the part 40 subjected to short-circuit currents.
  • blades with intrinsic elasticity were commonly used to form the moving contact of the thermal disconnector. But only copper alloys provide sufficient intrinsic elasticity, but at the expense of the resistivity is significantly higher.
  • the use of a resilient bias external to the blade 44 allows the blade 44 to be made with a copper of sufficient purity to substantially limit its heating during the tests. short circuits.
  • the part 40 preferably has a minimum section designed to allow the continuous passage without deterioration of a short circuit current to which the protective device can be exposed. Furthermore, the piece 40 preferably has a thickness of 0.4 mm to 0.6 mm to provide the flexibility of the elbow 46 discussed above. The thickness of the sheet used to obtain the piece 40 may be equal to 0.5 mm.
  • the blade 44 has - outside the portion 42 - a significant heat exchange surface with the ambient air, but without detriment to the compactness of the device.
  • the main faces of the blade 44 extend parallel to the main face 32 of the varistor 30.
  • the blade 44 thus provides a cooling fin function, which further improves the resistance of the piece 40 to the currents of short circuits.
  • the part 40 may comprise zones of maximum cross-section to dissipate the heat obtained by Joule effect with a substantially constant thickness, which makes it possible to increase the contact surface of the part 40 with the ambient air and thus to limit the heating during the passage of the short-circuit current.
  • the maximum section of the piece 40 is preferably provided at the blade 44, between the elbow 46 and the part 42 or the constriction 58.
  • FIG. 9 and 10 thus illustrate a cooling fin 54.
  • This cooling fin 54 makes it possible in particular to limit the temperature rise of the flexible elbow 46 during passage of the short-circuit current.
  • the elbow 46 may in fact have a minimum cross section of the workpiece 40 for considerations for shaping the workpiece 40, or for considerations of sufficient flexibility of the elbow 46.
  • the blade 44 is thus provided with an exchange surface that limits the heating of the part 40 makes it possible to locally reduce the minimum section of the part 40 previously mentioned, given the temporary nature of the short circuit. It is thus possible to realize the restriction 58 with a length less than or equal to 5.5 mm, or even 5 mm, remaining below this point of the minimum section of the part 40 as previously defined.
  • the material of the part 40 is preferably bare at the pin 48 to limit the welding effect with the elastic couplings of the base 82 through which the protective device is electrically connected to the electrical installation to be protected.
  • the previously described characteristics each contribute to increasing the resistance to short-circuit currents, in particular as verified by the IEC standard paragraph 7.7.3. They can be implemented independently of one another. It is possible to use only some of them or all according to the importance of short-circuit currents that can be provided by the power supply network of the installation to be protected.
  • provision may be made to have two protective components in the same cartridge 20.
  • the Figures 14A and 14B represent the protection device comprising two varistors 30 each with a respective thermal disconnector comprising a blade 44a connected to the pole 34 of the corresponding varistor.
  • the figure 14A represents the protection device with the two thermal disconnectors in the closed position.
  • the Figure 14B represents the protection device with the two thermal disconnectors in the open position.
  • the figure 14C represents schematically in cross section such an embodiment of the protective device.
  • the blades 44a are thus each welded to one of the varistors 30 at one of their main faces.
  • the other main faces of the varistors are connected together so as to produce a parallel connection of the varistors 30.
  • the Figures 15A and 15B represent an alternative embodiment of the protection device comprising two varistors 30 each with a respective thermal disconnector formed of a blade 44b connected to the pole 34 of the corresponding varistor.
  • the figure 15A represents the protection device with the two thermal disconnectors in the closed position.
  • the figure 15B represents the protection device with the two thermal disconnectors in the open position.
  • each varistor 30 is arranged next to each other in the same plane parallel to the main faces of the varistors.
  • the thickness of each varistor 30 is thus similar to the thickness of the varistor 30 in the embodiments of the protection device with a single varistor. The operating voltage of the protection device remains the same.
  • each thermal disconnector in these embodiments with two protection components may be as described above.
  • the blades 44a or 44b are made in a manner similar to the preceding description.
  • the blades 44a and the terminal 48 are preferably parts of one and the same piece 40a so as to provide a resistance to short-circuit currents as previously described.
  • the blades 44b and the terminal 48 are preferably parts of one and the same piece so as to provide a resistance to the currents of short circuits as previously described.
  • the figure 16A represents another alternative embodiment of the protection device comprising two varistors 30 each with a thermal disconnector formed of a respective blade 44 connected to a pole 34 of the respective varistor.
  • the varistors 30 are arranged one above the other in the direction of the thickness of the cartridge 20. The compactness conferred by the previously described characteristics of the thermal disconnector enables such an embodiment to be realized. with interesting operating voltages for varistors 30.
  • the protection device may have an electrical diagram in accordance with that shown in figure 16B .
  • these variants correspond to an electrical assembly where a single thermal disconnector is provided for each varistor considered.
  • These embodiments then do not correspond to the series connection of a protection component with two thermal disconnectors of this protection component.
  • a second thermal disconnect connected in series to the first thermal disconnector via the varistor.
  • this second thermal disconnector may, for example, be common to both varistors being disposed on the common part of the electrical branches connected to the terminal 38 (embodiment not shown).
  • a capacitor 22 may be arranged in parallel with the two thermal disconnectors to improve the breaking capacity, especially when using direct current.
  • this additional varistor in the same internal volume 21 of the cartridge 20 ensures continuity of service and protection when one of the varistors, end of life, has been disconnected.
  • the disconnection of one of the varistors by a thermal disconnector can be signaled to the user of the electrical installation using a display element known per se. The user is notified of the arrival at the end of life of one of the protective components of the cartridge 20, with a surge protection function still provided by the second varistor the time for the user to replace the cartridge 20 .
  • the figure 5 illustrates a possible embodiment of the display element 26 of the state of one of the thermal disconnectors.
  • the protection devices of the Figures 14A, 14B , 15A, 15B and 16A, 16B can be in a cartridge 20 with the dimensions as defined above.
  • varistors in the same protection component. These varistors can be connected in series and / or in parallel with each other according to the applications. The varistors are then assembled into a compact mass, comprising at least two varistors.
  • protection component the block disposed between two successive electric poles and formed of a varistor or at least two varistors interconnected.
  • the Figure 17B illustrates an alternative embodiment of a double protection component 30 composed of two blocks 80 having a non-linear electrical resistance. These two blocks 80 form two varistors.
  • the dual protection component 30 further comprises an electrode 98 forming a common pole of the varistors for electrically connecting the two varistors together.
  • the electrode 98 thus connects a pole of the first block 30 to a pole of the second block 80.
  • the other poles 34 of the blocks 80 are connected to movable contacts 44 of thermal disconnectors electrically connected to the terminals 38 and 48 of the protection device such as previously described.
  • the set of varistors - that is to say the combination of the two blocks 80 - is entirely encapsulated by the electrical insulation coating 88 through which the connection poles of the varistors emerge. the electrode 98.
  • Such an embodiment of the double protection component provides the combination of two varistors in parallel, because of the intermediate potential taken by the electrode 98.
  • the two blocks 80 of varistors being separated by an electrode 98 forming a pole, this embodiment with a double protection component is to be distinguished from the previous embodiment, where several varistors are associated with each other between two successive poles, thus forming a single protection component.
  • FIG. 17A illustrates a photovoltaic installation comprising a photovoltaic panel 90.
  • This panel 90 generates an electrical voltage between the son 95 and 96.
  • a bypass son 95 and 96 (not shown) then retrieves the electrical current generated by the photovoltaic system.
  • each of its son 95 and 96 can be connected to one of the terminals 48 and 38 of the protection device comprising the previous double protective component 30.
  • the electrode 98 of the double protection component 30 is connected to the earth 94 via a spark gap 92.
  • Each of the wires 95 and 96 is thus connected to the ground via a respective varistor and the earth. a spark gap 92 common.
  • a single thermal disconnector is provided for each protection component considered. This embodiment therefore does not correspond to the series connection of a protection component with two thermal disconnectors of this protection component.
  • it may be provided to add, for a varistor considered, a second thermal disconnect connected in series to the first thermal disconnector via the varistor. With reference to the Figure 17B this second thermal disconnector may, for example, be common to both varistors by ensuring the disconnection of the electrode 98 (embodiment not shown).
  • the two thermal disconnectors and the corresponding protection component are connected in series.
  • Embodiments of multiple protection components 30 are possible by the combination of a larger number of varistors in series or in parallel.
  • One embodiment of the multiple protection component 30 thus consists in the superposition of several blocks 80 having a non-linear electrical resistance by connecting the blocks 80 by electrodes 98 in a manner similar to the embodiment illustrated by FIG. Figure 17B . All of these blocks 80 may be coated with the electrical insulation coating 88 previously described (such modes are not represented).
  • a triple protection component 30 may be formed by the superposition of three blocks 80 separated by electrodes 98. This triple protection component then has four poles, including two electrodes 98, for carrying out the differential voltage surge protection of a three-phase electrical installation.
  • each block 80 of varistors being separated by a pole electrode 98 this embodiment with a triple protection component is to be distinguished from the embodiment with a single protection component for which several varistors are associated with each other between two successive poles.
  • a triple protection component at most only one thermal disconnector is provided for each protection component considered. This embodiment therefore does not correspond to the series connection of a protection component with two thermal disconnectors of this protection component.
  • it may be provided to add, for a protection component considered, a second thermal disconnect connected in series to one of the first thermal disconnectors via one of the blocks.
  • Such an embodiment can be obtained by arranging a second thermal disconnector at one of the electrodes 98 (embodiment not shown).
  • the two thermal disconnectors and the corresponding protection component are connected in series.
  • the protection device has more than two terminals for connection to the electrical installation to be protected.
  • Such an embodiment of the invention corresponds, for example, to the use of a multiple protection component 30 with a number of poles greater than two, such as the embodiment described with reference to FIGS. Figures 17A and 17B .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuses (AREA)
  • Thermistors And Varistors (AREA)
  • Thermally Actuated Switches (AREA)

Description

La présente invention se rapporte au domaine technique général des dispositifs de protection d'équipements ou d'installations électriques contre les surtensions, notamment contre les surtensions transitoires, dues par exemple à un impact de foudre. La présente invention concerne plus particulièrement un dispositif de protection d'une installation électrique contre les surtensions transitoires, tel qu'un parafoudre à varistances, pour des installations électriques basse tension.The present invention relates to the general technical field of equipment protection devices or electrical installations against overvoltages, especially against transient overvoltages, due for example to a lightning strike. The present invention relates more particularly to a device for protecting an electrical installation against transient overvoltages, such as a varistor arrester, for low voltage electrical installations.

Il est connu d'assurer la protection d'une installation électrique contre les surtensions à l'aide de dispositifs incluant au moins un composant de protection contre les surtensions, en particulier une ou plusieurs varistances et/ou un ou plusieurs éclateurs. Pour les installations monophasées, il est habituel de recourir à une varistance branchée entre la phase et le neutre alors qu'un éclateur est connecté entre le neutre et la terre. Pour les installations triphasées, il est habituel de disposer des varistances entre les différentes phases et/ou entre chaque phase et le neutre et un éclateur entre le neutre et la terre. Pour des installations électriques fonctionnant sous courant continu, par exemple pour des installations de générateurs photovoltaïques, il est aussi recouru à des varistances et éventuellement des éclateurs.It is known to ensure the protection of an electrical installation against overvoltages using devices including at least one overvoltage protection component, in particular one or more varistors and / or one or more spark gaps. For single-phase installations, it is usual to use a varistor connected between the phase and the neutral while a spark gap is connected between neutral and earth. For three-phase installations, it is usual to have varistors between the different phases and / or between each phase and the neutral and a spark gap between neutral and earth. For electrical installations operating under direct current, for example for installations of photovoltaic generators, it is also resorted to varistors and possibly spark gaps.

En cas de défaillance du composant de protection, ces dispositifs comprennent un système de déconnexion servant à isoler le composant de protection de l'installation électrique par mesure de sécurité. En particulier, dans le cas des varistances, il est classique de prévoir une protection thermique. La protection thermique ou déconnecteur thermique sert à déconnecter la varistance de l'installation électrique à protéger en cas d'échauffement excessif de la varistance, par exemple au-delà de 140°C. Cet échauffement excessif de la varistance est dû à l'augmentation du courant de fuite - généralement quelques dizaines de milliampères - au travers de celle-ci en raison de son vieillissement. Dans ce cas, on parle d'emballement thermique de la varistance.In case of failure of the protection component, these devices comprise a disconnection system for isolating the protection component of the electrical installation for safety. In particular, in the case of varistors, it is conventional to provide thermal protection. The thermal protection or thermal disconnector serves to disconnect the varistor of the electrical installation to be protected in case of overheating of the varistor, for example above 140 ° C. This excessive heating of the varistor is due to the increase of the leakage current - generally a few tens of milliamperes - through it because of its aging. In this case, it is called thermal runaway of the varistor.

Le déconnecteur thermique consiste souvent en une soudure basse température maintenant en place un élément conducteur formant contact mobile par le biais duquel est connecté la varistance à l'installation électrique, cet élément conducteur étant contraint élastiquement vers l'ouverture. La fusion de la soudure a pour conséquence le déplacement du contact mobile sous l'effet de la contrainte élastique, ce qui provoque la déconnexion de la varistance. Des déconnecteurs thermiques de ce type sont décrits notamment dans EP-A-0 716 493 , EP-A-0 905 839 et EP-A-0 987 803 .The thermal disconnector is often a low temperature solder now in place a movable contact forming element through which the varistor is connected to the electrical installation, this conductive element being elastically constrained towards the opening. The fusion of the weld results in the displacement of the moving contact under the effect of the elastic stress, which causes the disconnection of the varistor. Thermal disconnectors of this type are described in particular in EP-A-0 716 493 , EP-A-0 905 839 and EP-A-0 987 803 .

Ces dispositifs de protection contre les surtensions, et notamment de leur déconnecteur thermique, peuvent être confrontés à différentes situations contraignantes au cours de leur utilisation, et qui sont dépendantes notamment du type de réseau électrique auquel ils sont branchés.These overvoltage protection devices, and in particular their thermal disconnector, can be confronted with various constraining situations during their use, which are dependent in particular on the type of electrical network to which they are connected.

D'abord, leur déconnecteur thermique doit présenter un pouvoir de coupure suffisant pour déconnecter efficacement le composant de protection en cas d'emballement thermique de celui-ci. Cette contrainte est plus délicate dans le cas des installations fonctionnant sous courant continu, étant donné qu'il n'y a pas de passage périodique au zéro volt de tension, comme c'est le cas en courant alternatif, contribuant à l'extension de l'arc électrique généré à l'ouverture du contact mobile.First, their thermal disconnector must have a breaking capacity sufficient to effectively disconnect the protective component in case of thermal runaway thereof. This constraint is more delicate in the case of installations operating under direct current, since there is no periodic transition to zero voltage volt, as is the case in alternating current, contributing to the extension of the electric arc generated at the opening of the moving contact.

Le circuit électrique des dispositifs de protection doit aussi pouvoir supporter les contraintes résultants des chocs électriques tels que les courants de foudre pour lesquels ils sont prévus. Ces chocs électriques sont des surtensions transitoires d'amplitude importante (plusieurs milliers de volts) et de courte durée (de la microseconde à la milliseconde). Ces surtensions induisent notamment des efforts électrodynamiques et des montées en température qui sollicitent mécaniquement les différentes pièces conductrices composant le dispositif de protection. Malgré ces sollicitations mécaniques, le circuit électrique assurant la connexion du composant de protection à l'installation électrique doit resté fermé. En particulier, les sollicitations mécaniques ne doivent pas provoquer l'ouverture du déconnecteur thermique par arrachement de la brasure thermofusible. L'aptitude du dispositif à satisfaire à cette contrainte est vérifiée par les normes applicables, en particulier pour les installations alimentées en courant alternatif basse tension, au paragraphe 7.6 (essais de fonctionnement en charge) de la norme IEC 61643-1, 2ième éd., 2005-03 (noté ci-après IEC paragraphe 7.6) ou encore au paragraphe 37 (Surge testing) de la norme UL 1449, 3ieme éd., 29.09.2006 (noté ci-après UL paragraphe 37). Pour les installations de courant continu telles que les installations de générateurs photovoltaïques, on peut citer à titre d'exemple le paragraphe 6.6 (Essais de fonctionnement en charge) du guide photovoltaïque UTE C 61-740-51 de juin 2009 (noté ci-après UTE paragraphe 6.6).The electrical circuit of the protection devices must also be able to withstand the stresses resulting from electric shocks such as the lightning currents for which they are intended. These electrical shocks are transient overvoltages of large amplitude (several thousand volts) and short duration (from the microsecond to the millisecond). These overvoltages induce in particular electrodynamic forces and temperature rises which mechanically solicit the various conductive parts constituting the protection device. Despite these mechanical stresses, the electrical circuit ensuring the connection of the protective component to the electrical installation must remain closed. In particular, the mechanical stresses must not cause the opening of the thermal disconnector by tearing of the hot-melt solder. The ability of the device to satisfy this constraint is verified by the applicable standards, particularly for installations supplied with alternating low voltage, in paragraph 7.6 (charging function tests) of the IEC 61643-1, 2nd ed ., 2005-03 (noted hereinafter IEC paragraph 7.6) or in subsection 37 (Surge testing) of the UL 1449, 3 rd ed., 29.09.2006 (hereafter noted UL paragraph 37). For direct current installations such as photovoltaic generator installations, the following may be mentioned in paragraph 6.6 ( Loaded operating tests ) of the photovoltaic guide UTE C 61-740-51 of June 2009 (noted below). UTE paragraph 6.6).

Par ailleurs, le circuit électrique du dispositif de protection reliant le composant de protection à l'installation électrique peut être soumis à des courants très élevés sous la tension nominale de l'installation électrique, surtout dans le cas d'installations alimentées par le réseau de tension alternative. Cela est le cas lorsque la varistance du dispositif de protection connaît une défaillance par court-circuit. Dans ce cas, la déconnexion de la varistance défaillante est provoquée par une protection spécifique contre les courts-circuits tels qu'un fusible ou un disjoncteur. Compte tenu du temps de réaction de cette protection spécifique, le circuit électrique du dispositif de protection, incluant le déconnecteur thermique, ne doit pas provoquer de départ de feu dans ce laps de temps, compte tenu de l'importance des courants de court-circuit fournis par le réseau électrique d'alimentation. L'aptitude du dispositif à satisfaire à cette contrainte est vérifiée pour les installations alimentées en courant alternatif basse tension, par exemple au paragraphe 7.7.3 (Tenue aux courts-circuits) de la norme IEC 61643-1, 2ième éd., 2005-03 (noté ci-après IEC paragraphe 7.7.3).Furthermore, the electrical circuit of the protection device connecting the protection component to the electrical installation can be subjected to very high currents at the rated voltage of the electrical installation, especially in the case of installations supplied by the power supply network. AC voltage. This is the case when the varistor of the protection device experiences a failure by short circuit. In this case, disconnection of the faulty varistor is caused by specific protection against short circuits such as a fuse or circuit breaker. Given the reaction time of this specific protection, the electrical circuit the protection device, including the thermal disconnector, shall not cause a start of fire within this time, given the importance of the short-circuit currents supplied by the electrical supply network. The ability of the device to satisfy this constraint is verified for installations supplied with alternating low voltage, for example in paragraph 7.7.3 (Resistance to short circuits) of the IEC 61643-1, 2 nd ed. 2005 -03 (noted below IEC paragraph 7.7.3).

Le dispositif de protection contre les surtensions est encore susceptible d'être alimentée par une surtension temporaire liée à une anomalie de la tension du réseau d'alimentation de l'installation électrique ou encore en cas de défaillance par court-circuit d'une varistance s'il y en a au moins deux branchées en série entre les lignes du réseau d'alimentation. Dans un tel cas, la varistance devient passante et susceptible d'être traversée par un courant très élevée compte tenu de son indépendance faible, courant qui est peu ou prou le courant de court-circuit que peut fournir le réseau d'alimentation de l'installation électrique. Face à une telle situation, le dispositif de protection ne devrait pas provoquer de départ de feu.The overvoltage protection device is still likely to be powered by a temporary overvoltage related to an anomaly in the power supply voltage of the electrical installation or in the event of a short-circuit failure of a varistor. there are at least two branches connected in series between the lines of the supply network. In such a case, the varistor becomes busy and likely to be traversed by a very high current given its low independence, current which is more or less the current short circuit that can provide the power supply network of the Electrical Installation. Faced with such a situation, the protective device should not cause a fire.

L'aptitude du dispositif de protection à satisfaire à cette contrainte est vérifiée pour les installations alimentées en courant alternatif basse tension, par exemple au paragraphe 39 (Current testing) de la norme UL 1449, 3ième éd., 29.09.2006 (noté ci-après UL paragraphe 39), ou pour les installations de générateurs photovoltaïques, par exemple au paragraphe 6.7.4 (Essais de fin de vie) du guide photovoltaïque UTE C 61-740-51 de juin 2009 (noté ci-après UTE paragraphe 6.7.4).The ability of the protection device to satisfy this constraint is verified for installations supplied with alternating low voltage, for example in paragraph 39 (Current testing) of UL 1449, 3rd ed., 29.09.2006 (noted above - after UL paragraph 39), or for photovoltaic generator installations, for example in section 6.7.4 ( end-of-life tests ) of the photovoltaic guide UTE C 61-740-51 of June 2009 (noted below UTE paragraph 6.7 .4).

US 2006 245 125 A1 concerne des dispositifs de protection contre les surtensions pour circuits et équipements électriques; Et plus précisément, à un dispositif de protection de circuit. US 2006 245 125 A1 relates to overvoltage protection devices for circuits and electrical equipment; And more specifically, to a circuit protection device.

FR 2877156 A1 concerne des dispositifs de protection d'installations et d'équipements électriques contre les surtensions électriques transitoires, notamment dues à la foudre. FR 2877156 A1 relates to devices for protecting electrical installations and equipment against transient electrical surges, particularly due to lightning.

DE 10 2008031917 A1 concerne un élément de protection contre les surtensions. DE 10 2008031917 A1 relates to a protection element against overvoltages.

DE 10 2006 042028 B3 concerne un dispositif de coupe en particulier pour les parafoudres enfichables. DE 10 2006 042028 B3 relates to a cutting device in particular for pluggable surge arresters.

WO 2006040418 A1 concerne des dispositifs de protection d'installations et d'équipements électriques contre les surtensions électriques transitoires. WO 2006040418 A1 relates to protection devices for installations and electrical equipment against transient electrical surges.

Ces dispositifs de protection doivent donc selon le cas satisfaire à de nombreuses contraintes. La présente invention vise avant tout à améliorer la tenue des dispositifs de protection contre les surtensions dans les situations où le composant de protection, notamment s'agissant d'une varistance, arrive en fin de vie par court-circuit sous tension nominale, situation qui est prise en compte par la norme IEC paragraphe 7.7.3 comme mentionné plus haut. En effet, les protections spécifiques contre les surintensités peuvent présenter un temps de réaction relativement long, de l'ordre de la seconde, voire plus. Un risque est que pendant ce laps de temps, le passage d'un courant de forte intensité dans le dispositif de protection provoque la formation d'un arc électrique non maîtrisé dans le dispositif de protection contre les surtensions. Un tel arc non maîtrisé peut alors être l'initiateur d'une mise à feu de l'installation électrique.These protection devices must therefore, depending on the case, meet many constraints. The main object of the present invention is to improve the resistance of overvoltage protection devices in situations where the protection component, in particular with respect to a varistor, reaches the end of its life by a short-circuit under nominal voltage, a situation which is taken into account by the IEC standard paragraph 7.7.3 as mentioned above. Indeed, the specific protections against overcurrents can have a relatively long reaction time, of the order of one second or more. A risk is that during this time, the passage of a high intensity current in the protection device causes the formation of an uncontrolled electric arc in the surge protection device. Such an uncontrolled arc can then be the initiator of a firing of the electrical installation.

Pour cela l'invention propose un dispositif de protection d'une installation électrique contre les surtensions transitoires selon la revendication 1.For this, the invention proposes a device for protecting an electrical installation against transient overvoltages according to claim 1.

Selon une variante, le composant de protection contre les surtensions est une varistance.According to one variant, the overvoltage protection component is a varistor.

Selon une variante, le dispositif comporte en outre un organe de réduction ou de suppression d'arc électrique se formant lors du déplacement de la lame de la première position vers la deuxième position, l'organe de réduction ou de suppression est choisi parmi le groupe d'organes de réduction ou de suppression d'arc comprenant des moyens électriques, des moyens électroniques, des moyens électromécaniques et des moyens mécaniques.According to one variant, the device furthermore comprises an electric arc reduction or suppression member which is formed during the displacement of the blade from the first position to the second position, the reduction or suppression member is chosen from the group arc reducing or suppressing means comprising electrical means, electronic means, electromechanical means and mechanical means.

Selon une variante, la pièce dont font parties la lame et ladite une des deux bornes de connexion présente une conductivité IACS supérieure ou égale à 70%, de préférence supérieure ou égale à 90%, de façon encore plus préférée supérieure ou égale à 95%.According to a variant, the part of which the blade and said one of the two connection terminals have an IACS conductivity greater than or equal to 70%, preferably greater than or equal to 90%, even more preferably greater than or equal to 95% .

Selon une variante, la pièce dont font parties la lame et ladite une des deux bornes de connexion, est en cuivre de teneur en cuivre supérieure ou égale à 99,9%.According to one variant, the part of which the blade and said one of the two connection terminals are parts is made of copper with a copper content greater than or equal to 99.9%.

Selon une variante, la pièce formée par la lame et ladite une des deux bornes de connexion comporte une partie flexible intermédiaire entre la lame et la borne pour autoriser le mouvement de la lame par rapport à la borne, entre la première position et la deuxième position.According to a variant, the piece formed by the blade and said one of the two connection terminals comprises an intermediate flexible portion between the blade and the terminal to allow movement of the blade with respect to the terminal, between the first position and the second position. .

Selon une variante, la lame est sollicitée élastiquement vers la deuxième position, le déconnecteur thermique comprenant un élément thermosensible en contact thermique avec le composant de protection lequel élément thermosensible maintient la lame dans la première position jusqu'au seuil prédéterminé de température et libérant la lame lorsque la température du composant de protection dépasse le seuil prédéterminé.According to a variant, the blade is biased elastically towards the second position, the thermal disconnector comprising a thermosensitive element in thermal contact with the protective component which thermosensitive element holds the blade in the first position up to the predetermined temperature threshold and releasing the blade when the temperature of the protection component exceeds the predetermined threshold.

Selon une variante, l'élément thermosensible est une brasure thermofusible par laquelle la lame est soudée à un pôle du composant de protection.According to one variant, the thermosensitive element is a hot-melt solder by which the blade is welded to a pole of the protection component.

Selon une variante, la partie de la lame soudée au pôle par la brasure thermofusible, est reliée au reste de la lame par une restriction locale de la section de la lame pour concentrer la chaleur dégagée par le composant de protection au niveau de la brasure thermofusible.Alternatively, the portion of the blade welded to the pole by the hot-melt solder is connected to the remainder of the blade by a local restriction of the section of the blade to concentrate the heat released by the protective component at the level of the hot-melt solder .

Selon une variante, la partie de la lame soudée au pôle du composant de protection est étamée.According to a variant, the portion of the blade welded to the pole of the protective component is tinned.

Selon une variante, le dispositif comprend un deuxième déconnecteur thermique pour déconnecter le composant de protection de l'installation électrique lorsque la température du composant de protection dépasse un seuil prédéterminé.According to one variant, the device comprises a second thermal disconnector for disconnecting the protection component of the electrical installation when the temperature of the protection component exceeds a predetermined threshold.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit des modes de réalisation de l'invention, donnés à titre d'exemple uniquement et en références aux dessins qui montrent :

  • figure 1, une vue en perspective d'une cartouche de protection d'une installation électrique basse tension, embrochée sur une embase montée sur un rail DIN ;
  • figure 2, des vues de face et de profil avec cotes dimensionnelles de la cartouche de la figure 1, embrochée sur l'embase ;
  • figure 3, un schéma de principe du volume intérieur défini par le boîtier de la cartouche de la figure 2 avec vues de profil et de face et munis de cotes dimensionnelles ;
  • figure 4 , un schéma de principe illustrant à l'intérieur de la cartouche le contact mobile du dispositif de protection en position fermée ;
  • figures 5 et 6, un schéma de principe de l'intérieur de la cartouche avec le boîtier de la cartouche ouvert illustrant le contact mobile du dispositif de protection en position ouverte et un schéma de la partie du boîtier enlevée ;
  • figure 7, une vue de face de la varistance susceptible d'être logée avec le reste du dispositif de protection dans la cartouche de la figure 1 ;
  • figures 8A, 8B ett 8C, une vue en perspective de différents modes de réalisation de l'électrode de la varistance ;
  • figure 8D, une vue de profil de l'électrode de la varistance de la figure 8C ;
  • figures 9 et 10, une vue de profil et en perspective de la pièce de contact électrique de la figure 6A ;
  • figures 11A et 11B, une vue en coupe d'un mode de réalisation du dispositif de protection et son schéma équivalent électrique ;
  • figures 12A et 12B, une vue en coupe d'un mode de réalisation du dispositif de protection avec déconnecteurs thermiques dédoublés et son schéma équivalent électrique ;
  • figures 13A et 13B, une vue de face et de profil d'un composant de protection destiné à être logé dans le volume intérieur de la cartouche en figure 1 ;
  • figures 14A, 14B, 14C, 15A, 15B et 16A, des vues de différents modes de réalisation du dispositif de protection avec deux composants de protection
  • figure 16B, le schéma équivalent électrique du mode de réalisation de la figure 16A ;
  • figure 17A et 17B, une application d'un mode de réalisation du dispositif de protection avec un composant de protection comprenant deux blocs non linéaires pour une installation photovoltaïque et une vue en coupe de ce mode de réalisation.
Other features and advantages of the invention will appear on reading the following detailed description of the embodiments of the invention, given by way of example only and with reference to the drawings which show:
  • figure 1 , a perspective view of a protective cartridge of a low-voltage electrical installation, plugged on a base mounted on a DIN rail;
  • figure 2 , front and side views with dimensional dimensions of the cartridge of the figure 1 , skewered on the base;
  • figure 3 , a schematic diagram of the interior volume defined by the case of the cartridge of the figure 2 with side and side views and dimensional dimensions;
  • figure 4 a block diagram illustrating inside the cartridge the movable contact of the protective device in the closed position;
  • Figures 5 and 6 a schematic diagram of the interior of the cartridge with the open cartridge case illustrating the movable contact of the protection device in the open position and a diagram of the part of the housing removed;
  • figure 7 , a front view of the varistor may be housed with the rest of the protective device in the cartridge of the figure 1 ;
  • Figures 8A, 8B andt 8C, a perspective view of various embodiments of the varistor electrode;
  • figure 8D , a profile view of the electrode of the varistor of the Figure 8C ;
  • Figures 9 and 10 , a profile and perspective view of the electrical contact piece of the Figure 6A ;
  • Figures 11A and 11B , a sectional view of an embodiment of the protection device and its electrical equivalent diagram;
  • Figures 12A and 12B , a sectional view of an embodiment of the protection device with split thermal disconnectors and its electrical equivalent diagram;
  • Figures 13A and 13B , a front and side view of a protective component intended to be housed in the interior volume of the cartridge in figure 1 ;
  • Figures 14A, 14B, 14C , 15A, 15B and 16A , views of different embodiments of the protective device with two protective components
  • figure 16B , the electrical equivalent diagram of the embodiment of the figure 16A ;
  • Figure 17A and 17B , an application of an embodiment of the protection device with a protection component comprising two non-linear blocks for a photovoltaic installation and a sectional view of this embodiment.

L'invention se rapporte à un dispositif de protection d'une installation électrique contre les surtensions transitoires. Le dispositif de protection comprend un composant de protection contre les surtensions et deux bornes de connexion du dispositif à l'installation électrique à protéger. Le composant de protection est relié électriquement aux deux bornes de connexion. Le composant de protection peut par exemple être une varistance. L'on comprendra qu'il peut s'agir d'un bloc de plusieurs varistances reliées en série et/ou en parallèle entre elles.The invention relates to a device for protecting an electrical installation against transient overvoltages. The protection device comprises an overvoltage protection component and two terminals for connecting the device to the electrical installation to be protected. The protection component is electrically connected to the two connection terminals. The protection component may for example be a varistor. It will be understood that this may be a block of several varistors connected in series and / or in parallel with each other.

Le dispositif comprend aussi un déconnecteur thermique comprenant une lame conductrice. La lame conductrice est maintenue dans une première position, dite position fermée, dans laquelle la lame assure une liaison électrique entre le composant de protection et l'une des deux bornes de connexion. Le déconnecteur thermique est prévu pour faire passer la lame dans une deuxième position, dite position ouverte, lorsque la température du composant de protection dépasse un seuil prédéterminé. Lorsque la lame est dans la deuxième position, la liaison électrique entre le composant de protection et ladite une des deux bornes de connexion est alors ouverte.The device also comprises a thermal disconnector comprising a conductive blade. The conductive blade is held in a first position, called the closed position, in which the blade provides an electrical connection between the protection component and one of the two connection terminals. The thermal disconnector is provided to pass the blade in a second position, said open position, when the temperature of the protective component exceeds a predetermined threshold. When the blade is in the second position, the electrical connection between the protection component and said one of the two connection terminals is then open.

Par ailleurs, la lame conductrice et ladite une des deux bornes de connexion font parties d'une seule et même pièce. En cas de défaillance du composant de protection par court-circuit, le courant de court-circuit fourni par le réseau d'alimentation sous tension nominale, traverse alors le dispositif de protection et s'écoule à travers cette pièce monobloc comprenant la borne de connexion et la lame conductrice sans rencontrer de résistance électrique de contact ou de soudure. Cette absence de résistance de contact ou de soudure limite l'échauffement de la pièce lors du passage de ce courant de court-circuit lequel peut présenter une intensité très élevée. La limitation de l'échauffement de la pièce contribue à limiter le risque de destruction de celle-ci par fusion, situation qui serait susceptible d'engendrer la création d'arcs électriques non maîtrisés pouvant occasionner un départ de feu. La pièce monobloc comprenant la borne de connexion et la lame conductrice contribue ainsi à maintenir le passage du courant à travers le dispositif de protection de manière fiable, au moins le temps qu'une protection externe contre les surintensités coupe le courant. Le dispositif de protection contre les surtensions proposé dispose de ce fait une tenue améliorée aux courants de courts-circuits.Furthermore, the conductive blade and said one of the two connection terminals are part of one and the same piece. In the event of a failure of the short-circuit protection component, the short-circuit current supplied by the power supply network under nominal voltage, then passes through the protection device and flows through this one-piece part comprising the connection terminal. and the conductive blade without encountering any electrical resistance of contact or welding. This absence of contact resistance or welding limits the heating of the part during the passage of this short-circuit current which can have a very high intensity. The limitation of the heating of the part contributes to limit the risk of destruction of this one by fusion, a situation which would be likely to generate the creation of uncontrolled arcing that can cause a fire. The one-piece component comprising the connection terminal and the conductive blade thus contributes to maintaining the flow of current through the protective device reliably, at least as long as external overcurrent protection cuts off the current. The proposed overvoltage protection device thus has improved resistance to short-circuit currents.

La figure 1 représente en perspective une cartouche de protection 20 d'une installation électrique basse tension. La cartouche de protection 20 comprend le dispositif de protection précédemment décrit. Cette cartouche de protection 20 est embrochée sur une embase 82 prévue pour être montée sur un rail DIN de tableau électrique standardisé. L'embrochage de la cartouche 20 sur une embase 82 facilite le raccordement du dispositif de protection à l'installation électrique basse tension à protéger. De façon standard, on entend par installation électrique basse tension des équipements de tension assignée efficace jusqu'à 1 000 V en courant alternatif ou jusqu'à 1 500 V en courant continu. La fixation sur un rail DIN est standard pour de telles installations électriques. Le dispositif de protection contre les surtensions décrit est également adapté à la protection des installations de générateurs photovoltaïques.The figure 1 represents in perspective a protective cartridge 20 of a low voltage electrical installation. The protective cartridge 20 comprises the protection device described above. This protective cartridge 20 is plugged into a base 82 intended to be mounted on a standard DIN panel rail. The racking of the cartridge 20 on a base 82 facilitates the connection of the protective device to the low voltage electrical installation to be protected. As standard, a low-voltage electrical installation is understood to mean rated rated equipment up to 1000 V AC or up to 1500 V DC. Fixing on a DIN rail is standard for such electrical installations. The overvoltage protection device described is also suitable for the protection of photovoltaic generator installations.

L'utilisation courante de cartouches et d'embases pour rail DIN, dans le domaine de la basse tension, impose une contrainte de conception compacte des dispositifs de protection contre les surtensions. Les figures 2A et 2B illustrent respectivement une des faces principales de la cartouche 20 et la tranche de la cartouche 20. La cartouche 20 destinée à loger le dispositif de protection, possède des dimensions extérieures AxBxC inférieures ou égales à 57 x 50,5 x 17,6 mm.The common use of DIN rail cartridges and bases, in the low voltage field, imposes a compact design constraint on overvoltage protection devices. The Figures 2A and 2B respectively illustrate one of the main faces of the cartridge 20 and the edge of the cartridge 20. The cartridge 20 for housing the protection device, has external dimensions AxBxC less than or equal to 57 x 50.5 x 17.6 mm.

Les figures 3A et 3B illustrent schématiquement le volume intérieur 21 défini par le boîtier de la cartouche 20 logeant le dispositif de protection. La figure 3A montre une coupe du boîtier selon une des faces principales du boîtier. La figure 3B montre une coupe du boîtier selon la tranche du boîtier. La cartouche 20 destinée à loger le dispositif de protection, possède ainsi un volume parallélépipédique intérieur 21 ayant des dimensions C'xA'xB' inférieures ou égales à 15 x 42 x 43 mm.The Figures 3A and 3B schematically illustrate the internal volume 21 defined by the housing of the cartridge 20 housing the protective device. The figure 3A shows a section of the housing according to one of the main faces of the housing. The figure 3B shows a section of the case according to the edge of the case. The cartridge 20 intended to house the protection device, thus has an internal parallelepipedal volume 21 having dimensions C'xA'xB 'less than or equal to 15 x 42 x 43 mm.

Dans la suite sont décrites différentes caractéristiques du dispositif de protection permettant d'obtenir un dispositif de protection compact susceptible d'être logé dans le volume intérieur 21 défini précédemment.In the following are described various features of the protective device for obtaining a compact protective device capable of being housed in the interior volume 21 defined above.

Selon la figure 4, la cartouche 20 loge le dispositif de protection comportant une varistance 30 en tant que composant de protection et une lame conductrice 44 formant contact mobile d'un déconnecteur thermique. Alternativement le contact mobile peut être formé par une tresse ou un fil, pour assurer la connexion du composant de protection à l'installation électrique. Le dispositif de protection 30 comporte deux bornes 38 et 48 de connexion du dispositif à l'installation électrique. La varistance 30 présente deux pôles reliés chacun à l'une respective des bornes 38 et 48. La figure 4 représente le dispositif de protection avec la lame 44 en position fermée, la lame 44 étant connectée électriquement au pôle 34 (visible sur la figure 5) de la varistance 30. Le pôle 34 constitue ainsi un contact fixe du déconnecteur thermique. Le pôle 34 est relié à la borne 48 par le biais de la lame 44. Par ailleurs, la lame 44 est sollicitée élastiquement par un ressort de torsion 50. La connexion des bornes 38 et 48 à l'installation électrique à protéger est réalisée, dans cet exemple, par l'intermédiaire de l'embase 82 précédemment décrite en référence à la figure 1. Les bornes 38 et 48 peuvent prendre la forme de bornes mâles comme des broches. La figure 5 représente le même dispositif de protection avec la lame 44 en position ouverte. La lame 44 est alors débranchée du pôle 34 de la varistance 30. Dans cette position, le pôle 34 de la varistance 30 n'est plus reliée à la borne 48.According to figure 4 , the cartridge 20 houses the protective device comprising a varistor 30 as a protective component and a conductive blade 44 forming a moving contact of a thermal disconnector. Alternatively the movable contact can be formed by a braid or a wire, to ensure the connection of the protective component to the electrical installation. The protection device 30 comprises two terminals 38 and 48 for connecting the device to the electrical installation. The varistor 30 has two poles each connected to a respective one of the terminals 38 and 48. The figure 4 represents the protection device with the blade 44 in the closed position, the blade 44 being electrically connected to the pole 34 (visible on the figure 5 ) of the varistor 30. The pole 34 thus constitutes a fixed contact of the thermal disconnector. The pole 34 is connected to the terminal 48 by means of the blade 44. Furthermore, the blade 44 is biased elastically by a torsion spring 50. The connection of the terminals 38 and 48 to the electrical installation to be protected is carried out, in this example, via the base 82 previously described with reference to the figure 1 . The terminals 38 and 48 may take the form of male terminals as pins. The figure 5 represents the same protection device with the blade 44 in the open position. The blade 44 is then disconnected from the pole 34 of the varistor 30. In this position, the pole 34 of the varistor 30 is no longer connected to the terminal 48.

Les figures 5 et 6 illustrent la cartouche 20 de la figure 1 avec le boîtier 20 de la cartouche ouvert. Le boîtier est composé d'un flasque supérieur 23 représenté en figure 6 et d'un flasque inférieur 24 représenté en figure 5. La compacité du dispositif de protection permet de former avec le flasque inférieur 24 un "berceau équipé". La figure 5 représente la lame 44 à l'état déconnectée.The Figures 5 and 6 illustrate cartridge 20 of the figure 1 with the housing 20 of the cartridge open. The housing is composed of an upper flange 23 represented in figure 6 and a lower flange 24 shown in figure 5 . The compactness of the protective device allows forming with the lower flange 24 an "equipped cradle". The figure 5 represents the blade 44 in the disconnected state.

L'élément thermosensible du déconnecteur thermique est une brasure thermofusible 70 par laquelle la lame 44 est au pôle 34 de la varistance 30. Cette brasure est encore visible sur le pôle 34 de la varistance 30 sur la figure 5. La brasure 70 assure la liaison électrique entre la lame 44 en position fermée et la borne 34 jusqu'à ce que le composant de protection 30 atteigne la température de seuil (par exemple 140°C) qui est indicative d'une défaillance de la varistance 30. Lorsque la varistance 30 atteint la température de seuil, la brasure 70 fond et l'extrémité de la lame 44 qui était reliée au pôle 34 de la varistance 30, s'éloigne de ce dernier sous l'action du ressort 50. Par conséquent, la liaison électrique entre la lame 44 et le pôle 34 est rompue.The thermosensitive element of the thermal disconnector is a hot-melt solder 70 by which the blade 44 is at the pole 34 of the varistor 30. This solder is still visible on the pole 34 of the varistor 30 on the figure 5 . The solder 70 provides the electrical connection between the blade 44 in the closed position and the terminal 34 until the protection component 30 reaches the threshold temperature (for example 140 ° C.) which is indicative of a failure of the varistor 30. When the varistor 30 reaches the threshold temperature, the solder 70 melts and the end of the blade 44 which was connected to the pole 34 of the varistor 30, moves away from the latter under the action of the spring 50. By therefore, the electrical connection between the blade 44 and the pole 34 is broken.

Il est souhaitable de prévoir que le dispositif de protection puisse faire face à des situations de surtensions temporaires sans risque d'explosion ou de départ d'incendie, du moins si le dispositif de protection est susceptible d'être soumis à de telles conditions de surtensions temporaires. En particulier, il peut être conçu pour satisfaire aux essais prévus par la norme UL paragraphe 39 ou par le guide UTE paragraphe 6.7.4. Pour cela, la demanderesse préconise une approche visant à assurer une déconnexion thermique très rapide de la varistance 30. En effet, dans ces situations de surtensions temporaires, le courant traversant la varistance augmente progressivement jusqu'à ce que la varistance passe en court-circuit franc.It is desirable to provide that the protective device can cope with temporary overvoltages without risk of explosion or fire, at least if the protective device is likely to be subject to such surge conditions temporary. In particular, it may be designed to meet the tests required by UL paragraph 39 or UTE 6.7.4. For this, the applicant recommends an approach to ensure a very rapid thermal disconnection of the varistor 30. Indeed, in these situations of temporary overvoltages, the current through the varistor increases gradually until the varistor goes short circuit franc.

Le temps de passage de la varistance 30 en court-circuit dépend notamment du ratio entre la surtension temporaire et la tension maximale de service admissible par la varistance et du comportement électrique de la varistance (variation de la résistivité de la varistance en fonction de la tension qui lui est appliquée). D'une part lorsque le ratio entre la surtension temporaire et la tension maximale admissible de la varistance 30 est élevé, le temps de passage de la varistance 30 en court-circuit est faible. D'autre part lorsque le comportement de la varistance est très fortement non linéaire (la résistivité de la varistance varie très brutalement avec l'augmentation de la tension qui lui est appliquée), le temps de passage de la varistance 30 en court-circuit est faible. On peut alors choisir la varistance en fonction de ces différentes caractéristiques pour augmenter le temps de passage en court-circuit franc dans les conditions d'utilisation de la varistance. La phase transitoire d'augmentation de courant s'accompagne d'une augmentation de température de la varistance 30, durant le temps de passage de la varistance en court-circuit. Le déconnecteur thermique est conçu pour assurer la déconnexion dans la phase transitoire du comportement de la varistance avant que le courant la traversant ne devienne trop élevé pour pouvoir être coupé par le déconnecteur thermique. Cela implique une détection rapide de l'augmentation de la température de la varistance.The passage time of the varistor 30 in short circuit depends in particular on the ratio between the temporary overvoltage and the maximum permissible operating voltage by the varistor and the electrical behavior of the varistor (variation of the resistivity of the varistor as a function of the voltage applied to it). On the one hand, when the ratio between the temporary overvoltage and the maximum permissible voltage of the varistor 30 is high, the passage time of the short-circuited varistor 30 is small. On the other hand, when the behavior of the varistor is very strongly non-linear (the resistivity of the varistor varies very sharply with the increase in the voltage applied to it), the passage time of the varistor 30 shorted is low. It is then possible to choose the varistor according to these different characteristics to increase the free-passage time in the operating conditions of the varistor. The transient phase of current increase is accompanied by an increase in temperature of the varistor 30, during the passage time of the varistor in short circuit. The thermal disconnector is designed to disconnect in the transient phase the behavior of the varistor before the current flowing through it becomes too high to be cut by the thermal disconnector. This implies a quick detection of the increase of the temperature of the varistor.

Différentes caractéristiques techniques contribuent à l'obtention de cette déconnexion rapide.Different technical characteristics contribute to obtaining this quick disconnect.

Ainsi, le pôle 34 est de préférence disposé sur une des faces principales du composant de protection 30. Une telle face principale du composant de protection est représentée par la zone hachurée 32 sur les figures 4 et 5. La figure 7 montre la varistance 30 vue perpendiculairement au plan de sa face principale 32. Le pôle 34 est avantageusement disposé à l'intérieur d'une zone centrale sur la face principale 32. Cette zone centrale est représentée fictivement par un cercle 86 en pointillées sur la figure 7. La zone centrale peut ainsi être située à l'intérieur d'un cercle imaginaire 86 centré sur ladite face principale 82 du bloc 80 et ayant un diamètre égal à 75 % du diamètre du cercle inscrit de la face principale 82 du bloc 80. La disposition du pôle 34 sur la face principale 32 dans la zone centrale assure un captage rapide par la brasure thermofusible 70 de l'augmentation de la température de la varistance 30 lors de la phase transitoire où le courant la traversant augmente. En effet, l'emballement de la varistance 30 entraîne une augmentation de la température d'abord dans les zones détériorées de la varistance 30. Ces zones détériorées correspondent à des zones de la varistance 30 présentant des défauts de conception non maîtrisés. La localisation de ces zones n'est a priori pas connue, de sorte que l'emballement thermique de la varistance commence dans une zone indéterminée. La disposition du pôle 34 dans la zone centrale assure ainsi que le pôle 34 est statistiquement le plus proche de la zone où l'emballement thermique de la varistance commence.Thus, the pole 34 is preferably disposed on one of the main faces of the protection component 30. Such a main face of the protection component is represented by the hatched area 32 on the Figures 4 and 5 . The figure 7 shows the varistor 30 viewed perpendicularly to the plane of its main face 32. The pole 34 is advantageously disposed inside a central zone on the main face 32. This central zone is represented fictitiously by a circle 86 dotted on the figure 7 . The central zone may thus be located inside an imaginary circle 86 centered on said main face 82 of the block 80 and having a diameter equal to 75% of the diameter of the inscribed circle of the main face 82 of the block 80. the pole 34 on the main face 32 in the central zone ensures rapid capture by the hot melt solder 70 of the increase in the temperature of the varistor 30 during the transient phase where the current flowing therethrough. Indeed, the runaway of the varistor 30 causes an increase in temperature first in the deteriorated areas of the varistor 30. These deteriorated areas correspond to areas of the varistor 30 with uncontrolled design defects. The location of these zones is not known a priori , so that the thermal runaway of the varistor begins in an indeterminate zone. The provision of pole 34 in the central zone thus ensures that the pole 34 is statistically closest to the zone where the thermal runaway of the varistor begins.

Ensuite, le pôle 34 de la varistance 30 peut avantageusement s'étendre selon la face principale 32, et non pas en saillie perpendiculairement à celle-ci. Ainsi la brasure 70 est réalisée sur le pôle 34 au niveau d'une surface de brasage qui est parallèle à la face principale 32 de la varistance 30. La brasure 70 présente alors son épaisseur selon la direction perpendiculaire à la face principale du composant de protection. Par conséquent, l'ensemble de la brasure 70 est au plus près de la varistance 30 et lui assure une communication sans délai de la température de la varistance 30. Cette mesure est avantageuse par rapport aux solutions classiques dans lesquelles le pôle du composant de protection formant contact fixe de la déconnexion thermique s'étend dans un plan perpendiculaire à la face principale du composant de protection. La brasure est alors réalisée selon ce plan perpendiculaire et une partie de la brasure est maintenue à distance du composant de protection. Lors de la défaillance du composant de protection, la brasure est d'abord sollicitée thermiquement dans sa partie proche du composant de protection, l'augmentation de température de la varistance parvenant avec un retard à la partie de la brasure la plus éloignée du composant de protection 30, ce qui a pour inconvénient de ralentir la déconnexion thermique.Then, the pole 34 of the varistor 30 may advantageously extend along the main face 32, and not projecting perpendicular thereto. Thus the solder 70 is formed on the pole 34 at a brazing surface which is parallel to the main face 32 of the varistor 30. The solder 70 then has its thickness in the direction perpendicular to the main face of the protective component . Consequently, the solder assembly 70 is as close as possible to the varistor 30 and provides it with instantaneous communication of the temperature of the varistor 30. This measurement is advantageous compared with conventional solutions in which the pole of the protection component forming a fixed contact of the thermal disconnection extends in a plane perpendicular to the main face of the protection component. The solder is then made in this perpendicular plane and a portion of the solder is kept away from the protective component. When the protection component fails, the solder is first thermally stressed in its near part of the protective component, the increase in temperature of the varistor arriving with a delay at the part of the solder furthest from the component of the protection 30, which has the disadvantage of slowing the thermal disconnection.

Par ailleurs, la rapidité de la déconnexion thermique peut encore être améliorée par la conception de la varistance 30, plus précisément par la conception de son électrode formant le pôle de la varistance qui sert à transmettre la chaleur dégagée par la varistance à l'élément thermosensible du déconnecteur thermique.Furthermore, the speed of the thermal disconnection can be further improved by the design of the varistor 30, more precisely by the design of its electrode forming the pole of the varistor which serves to transmit the heat released by the varistor to the thermosensitive element thermal disconnector.

De ce point de vue, il est avantageux que l'électrode de la varistance soitformée par une plaque conductrice 84, représentée en figure 7. La varistance 30 comporte alors en outre un bloc 80, dont la figure 7 ne montre que la face principale 82. Le bloc 80 présente une résistance électrique dont la valeur varie en fonction de la tension appliquée au bloc 80. Ce bloc 80 constitue la partie active de la varistance 30 et permet de limiter les surtensions en présentant une résistance faible pour des surtensions de fortes amplitudes telles que celles survenant lors de coups de foudre. La plaque conductrice 84 est agencée sur une face principale 82 du bloc 80. Les faces principales du bloc 80 correspondent aux faces principales de la varistance 30. La plaque 84 présente une partie en saillie formant un des pôles 34 de connexion de la varistance. En d'autres termes, la partie en saillie formant un des pôles 34 n'est pas une pièce rapportée sur la plaque conductrice 84, mais au contraire, la partie en saillie formant un des pôles 34 vient de matière avec le reste de la plaque conductrice 84. Ainsi la partie en saillie et la plaque conductrice font parties d'une seule et même pièce. De manière analogue un deuxième pôle 36 de la varistance 30 peut être constituée par une partie en saillie d'une plaque conductrice agencée sur une autre face principale du bloc 80 la varistance 30. Dans la suite du document, seule la constitution du pôle 34 par la partie en saillie de la plaque 84 est décrite.From this point of view, it is advantageous that the electrode of the varistor is formed by a conductive plate 84, represented in FIG. figure 7 . The varistor 30 then further comprises a block 80, whose figure 7 shows only the main face 82. The block 80 has an electrical resistance whose value varies as a function of the voltage applied to the block 80. This block 80 constitutes the active part of the varistor 30 and makes it possible to limit the overvoltages by exhibiting a resistance. low for overvoltages of strong amplitudes such as those occurring during lightning strikes. The conductive plate 84 is arranged on a main face 82 of the block 80. The main faces of the block 80 correspond to the main faces of the varistor 30. The plate 84 has a projecting portion forming one of the poles 34 of connection of the varistor. In other words, the protruding portion forming one of the poles 34 is not an insert on the conductive plate 84, but instead, the protruding portion forming one of the poles 34 is made of material with the rest of the plate Conductive 84. Thus the projecting portion and the conductive plate are part of a single piece. Similarly, a second pole 36 of the varistor 30 can be formed by a protruding portion of a conductive plate arranged on another main face of the block 80 the varistor 30. In the following document, only the constitution of the pole 34 by the projecting portion of the plate 84 is described.

La varistance 30 comporte ensuite un revêtement d'isolation électrique appliqué sur l'ensemble formé par la face principale 82 du bloc 80 et de la plaque 84. L'ensemble formé par la face principale 82 du bloc 80 et la plaque 84 est ainsi isolé électriquement de son milieu environnant, dont le contact mobile du dispositif de protection. De préférence l'ensemble formé du bloc 80 et de la plaque 84 sont entièrement enrobé par le revêtement d'isolation électrique à travers lequel émerge aussi les différents pôles de connexion de la varistance pour permettre de réaliser une connexion électrique avec le reste du dispositif de protection, particulièrement avec la lame 44.The varistor 30 then comprises an electrical insulation coating applied to the assembly formed by the main face 82 of the block 80 and the plate 84. The assembly formed by the main face 82 of the block 80 and the plate 84 is thus isolated electrically from its surrounding environment, including the movable contact of the protective device. Preferably the assembly formed of the block 80 and the plate 84 are entirely covered by the electrical insulation coating through which the different connection poles of the varistor also emerge to allow an electrical connection to be made with the rest of the device. protection, particularly with blade 44.

La partie en saillie formant le pôle 34 peut émerger hors du revêtement d'isolation électrique de manière à permettre une amélioration du pouvoir de coupure tel que décrit plus en détail dans la suite de ce document.The projecting portion forming the pole 34 may emerge out of the electrical insulation coating so as to allow an improvement in breaking capacity as described in more detail later in this document.

La partie en saillie formant le pôle 34 peut être reliée au reste de la plaque 84 sur au moins la moitié de son périmètre de manière à améliorer la rapidité de la déconnexion. En effet lors de la détérioration de la varistance 30 soumise à des surtensions temporaires, le courant de fuite de la varistance 30 augmente jusqu'à ce que la varistance 30 passe en court-circuit franc. Cette phase transitoire d'augmentation de courant de fuite s'accompagne d'une augmentation de température de la varistance 30. Cette augmentation de température est progressive. La température augmente d'abord au coeur du bloc 80 de la varistance 30 dans des zones présentant des défauts d'homogénéité. L'augmentation de température se propage ensuite par conduction dans tout le bloc 80 de la varistance jusqu'aux faces extérieures du bloc et notamment jusqu'à la face principale 82 du bloc 80. L'agencement de la plaque 84 conductrice sur la face principale 82 du bloc 80 permet un temps de propagation minimum de l'augmentation de température depuis les zones défectueuses du bloc 80 jusqu'à la plaque 84 formant électrode de la varistance 30. D'une part la plaque 84 est conductrice électriquement permettant à la plaque de former une électrode. D'autre part la plaque 84 est conductrice thermiquement pour assurer une propagation rapide de la montée de la température jusqu'au pôle 34 de la varistance 30 après que l'augmentation de température a atteint la plaque 34. La plaque conductrice est de façon avantageuse réalisée en cuivre. Le lien de la partie en saillie formant le pôle 34 au reste de la plaque 84 sur au moins la moitié du périmètre du pôle 34 assure une conduction thermique efficace depuis la plaque 84 vers le pôle 34, et ce quelque soit la localisation des zones du bloc 80 présentant des défauts par rapport au pôle 34. En définitive la varistance précédemment décrit permet une diminution du temps de réaction de la varistance, qui est le temps s'écoulant entre les premières détériorations de zones du bloc 80 de la varistance et l'augmentation de température du pôle 34 de la varistance 30.The projecting portion forming the pole 34 may be connected to the rest of the plate 84 on at least half of its perimeter so as to improve the speed of the disconnection. Indeed, during the deterioration of the varistor 30 subjected to temporary overvoltages, the leakage current of the varistor 30 increases until the varistor 30 passes in short-circuit franc. This transient phase of increase of leakage current is accompanied by an increase in temperature of the varistor 30. This temperature increase is gradual. The temperature first increases in the heart of block 80 of the varistor 30 in areas with inhomogeneities. The increase in temperature then propagates by conduction throughout the block 80 of the varistor to the outer faces of the block and in particular to the main face 82 of the block 80. The arrangement of the conductive plate 84 on the main face 82 of block 80 allows a minimum propagation time of the temperature increase from the defective zones of the block 80 to the electrode plate 84 of the varistor 30. On the one hand the plate 84 is electrically conductive allowing the plate to form an electrode. On the other hand, the plate 84 is thermally conductive to ensure a rapid propagation of the rise in temperature to the pole 34 of the varistor 30 after the temperature rise has reached the plate 34. The conductive plate is advantageously made of copper. The connection of the protruding portion forming the pole 34 to the remainder of the plate 84 over at least half of the perimeter of the pole 34 ensures an effective thermal conduction from the plate 84 to the pole 34, and whatever the location of the zones of the block 80 having defects with respect to pole 34. Finally the varistor previously described allows a reduction in the reaction time of the varistor, which is the time between the first deteriorations of zones of the block 80 of the varistor and the temperature increase of the pole 34 of the varistor 30.

La figure 8A illustre un mode de réalisation possible de la partie formant pôle 34. Cette partie formant pôle 34 est reliée au reste de la plaque 84 sur ses côtés de dimensions D. Les côtés de dimensions E de la partie formant pôle 34 ont été découpé de la plaque 84 et participe alors pas à la conduction thermique.The figure 8A illustrates a possible embodiment of the pole portion 34. This pole portion 34 is connected to the remainder of the plate 84 on its dimension sides D. The dimension sides E of the pole portion 34 have been cut from the plate 84 and then not participate in thermal conduction.

La figure 8B, illustre un autre mode de réalisation possible de la partie formant pôle 34. Dans ce mode de réalisation, la partie formant pôle 34 est disposé sur le bord de la plaque 84.The Figure 8B , illustrates another possible embodiment of the pole portion 34. In this embodiment, the pole portion 34 is disposed on the edge of the plate 84.

Tous ces modes de réalisation de la partie formant pôle 34 présente un lien avec le reste de la plaque sur au moins la moitié du périmètre du pôle 34.All these embodiments of the pole portion 34 have a connection with the remainder of the plate over at least half of the perimeter of the pole 34.

De manière avantageuse la partie de la plaque formant pôle de connexion est reliée au reste de la plaque 84 sur au moins 80 % de son périmètre pour assurer une meilleure conduction thermique.Advantageously, the part of the connection pole plate is connected to the remainder of the plate 84 over at least 80% of its perimeter to ensure better thermal conduction.

De manière encore plus préférée la partie formant pôle 34 peut être reliée au reste de la plaque 84 sur tout son périmètre, tel qu'illustré par la figure 8C. La chaleur, due à l'augmentation de température du bloc 80 et captée par la plaque 84, est alors conduite thermiquement au pôle 34 par la totalité de son périmètre. Le transfert thermique et la rapidité de la déconnexion sont améliorés.Even more preferably, the pole portion 34 may be connected to the remainder of the plate 84 throughout its perimeter, as illustrated by FIG. Figure 8C . The heat, due to the temperature increase of the block 80 and captured by the plate 84, is then thermally conducted at the pole 34 by the entire of its perimeter. Thermal transfer and speed of disconnection are improved.

Tous ces modes de réalisation de la partie formant pôle 34 ont été obtenus par emboutissage de la plaque 84. L'emboutissage est une technique de fabrication permettant d'obtenir, à partir d'une feuille de tôle plane et mince, un objet dont la forme n'est pas développable. Dans le mode de réalisation de la figure 8A, la plaque 84 a été préalablement découpé de manière à faciliter la déformation de la plaque 84.All these embodiments of the pole portion 34 have been obtained by stamping the plate 84. The stamping is a manufacturing technique for obtaining, from a flat sheet of thin sheet metal, an object whose form is not developable. In the embodiment of the figure 8A , the plate 84 has been cut beforehand so as to facilitate the deformation of the plate 84.

La constitution d'un des pôles de la varistance par emboutissage de plaque 84 permet d'assurer une continuité de matière entre la partie de la plaque agencée sur la face principale 82 du bloc 80 et la partie emboutie.The formation of one of the poles of the varistor plate stamping 84 ensures a continuity of material between the portion of the plate arranged on the main face 82 of the block 80 and the stamped portion.

La partie de la plaque 84 formant pôle 34 de la plaque 84 peut être aussi être disposée au niveau de la zone centrale du bloc 80 qui correspond à la zone centrale délimité par le cercle 86 représenté en figure 7, permettant une rapidité de déconnexion tel que précédemment démontrée. Dans un but analogue, la plaque conductrice 84 peut être centrée sur ladite face principale 82 du bloc 80.The part of the plate 84 forming pole 34 of the plate 84 can also be arranged at the central zone of the block 80 which corresponds to the central zone delimited by the circle 86 represented in FIG. figure 7 , allowing a speed of disconnection as previously demonstrated. For a similar purpose, the conductive plate 84 may be centered on said main face 82 of the block 80.

Le reste de la plaque conductrice 84 autour de la partie en saillie formant pôle 34 peut être pleine. Le reste de la plaque 84 ne présente alors aucun évidement de matière ou trou à l'intérieur de la surface délimité par son périmètre extérieur. En étant exempt de trou, la plaque 84 possède une importante surface de captage de l'augmentation de température du bloc 80 permettant l'amélioration de la rapidité de la déconnexion thermique. Dans le même but, on peut aussi prévoir que la surface de la plaque 84 agencée en contact avec la face principale 82 du bloc 80 présente une aire qui est au moins la moitié de l'aire de la face principale 82 du bloc 80.The remainder of the conductive plate 84 around the projecting pole portion 34 may be solid. The remainder of the plate 84 then has no recess material or hole inside the surface delimited by its outer perimeter. Being free of holes, the plate 84 has a large surface area for sensing the temperature increase of the block 80, allowing the improvement of the speed of thermal disconnection. For the same purpose, it can also be provided that the surface of the plate 84 arranged in contact with the main face 82 of the block 80 has an area which is at least half the area of the main face 82 of the block 80.

La plaque 84 présente de préférence une épaisseur inférieure ou égale à 0,7 mm de manière à limiter la quantité de matière à échauffer avant que l'augmentation de température n'atteigne le pôle 34. La plaque 84 présente de préférence une épaisseur supérieure ou égale à 0,3 mm de manière à permettre à la plaque de résister aux contraintes mécaniques évoquées dans la suite de ce document.The plate 84 preferably has a thickness less than or equal to 0.7 mm so as to limit the amount of material to be heated before the increase in temperature reaches the pole 34. The plate 84 preferably has a greater thickness or equal to 0.3 mm so as to allow the plate to withstand the mechanical stresses mentioned later in this document.

Une autre mesure consiste à choisir pour la brasure thermofusible 70 un alliage à faible température de fusion pour assurer la déconnexion rapide de la lame 44. Une faible température de fusion de la brasure 70 permet d'obtenir rapidement une ouverture du déconnecteur thermique. L'alliage étain/indium In52Sn48 est particulièrement préféré car il présente une température de liquidus à 118°C alors que les alliages classiquement utilisées ont une température de liquidus généralement supérieure à 130°C. De plus, cet alliage respecte la directive européenne 2002/95/CE dite RoHS (Restriction of the use of certain Hazardous Substances in electrical and electronic equipment).Another measure is to choose for the hot-melt solder 70 a low-melting temperature alloy to ensure rapid disconnection of the blade 44. A low melting temperature of the solder 70 allows to quickly obtain an opening of the thermal disconnector. The tin / indium alloy In 52 Sn 48 is particularly preferred because it has a liquidus temperature at 118 ° C., whereas the alloys conventionally used have a liquidus temperature that is generally greater than 130 ° C. In addition, this alloy complies with the European RoHS Directive 2002/95 / EC ( Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment ).

Encore une autre mesure consiste à optimiser la forme de la lame 44. Les figures 9 et 10 illustrent, respectivement vue de profil et en perspective, une forme préférée de réalisation de la lame 44 de la figure 5. La lame 44 présente une partie 42 destinée à être soudée au pôle 34 par la brasure 70. La partie 42 est reliée au reste de la lame 44 par une restriction locale 58 de la section de la lame 44. Cette restriction 58 de la lame 44 permet de concentrer la chaleur dégagée par le composant de protection 30 au niveau de la partie 42 - et donc au niveau de la brasure 70 - car la diffusion de la chaleur depuis la partie 42 vers le reste de la lame 44 est limitée par la restriction locale 58. De ce fait, la montée en température de la brasure 70 est plus rapide lors de l'augmentation de température de la varistance 30. La rapidité de l'ouverture du déconnecteur thermique s'en trouve augmentée.Yet another measure is to optimize the shape of the blade 44. Figures 9 and 10 illustrate, respectively seen in profile and in perspective, a preferred embodiment of the blade 44 of the figure 5 . The blade 44 has a portion 42 intended to be welded to the pole 34 by the solder 70. The portion 42 is connected to the remainder of the blade 44 by a local restriction 58 of the section of the blade 44. This restriction 58 of the blade 44 allows to concentrate the heat released by the protective component 30 at the portion 42 - and therefore at the level of the solder 70 - because the diffusion of heat from the portion 42 to the rest of the blade 44 is limited by the restriction As a result, the rise in temperature of the solder 70 is faster as the temperature of the varistor 30 increases. The speed of the opening of the thermal disconnector is thus increased.

La surface de la partie 42 correspond avantageusement à la section de la brasure 70. La section de la brasure 70 est choisie en fonction des considérations mécaniques évoquées plus loin.The surface of the portion 42 advantageously corresponds to the section of the solder 70. The section of the solder 70 is chosen according to the mechanical considerations mentioned below.

La partie 42, ainsi que la brasure 70 présentent de préférence une forme de disque pour permettre une meilleure homogénéité de l'échauffement de la brasure 70. La partie 42 peut ainsi être caractérisé par un diamètre moyen de ce disque. Il est préférable que la restriction locale 58 ait une longueur inférieure à 80% au diamètre moyen de la partie 42 pour assurer un effet sensible de concentration sur la brasure 70 de la chaleur émise par la varistance 30. Il est plus avantageux encore que la restriction locale ait une longueur inférieure à 70% du diamètre moyen de la partie 42. La longueur de la restriction locale 58 précitée s'entend de la distance la plus petite séparant deux bords opposés d'une face principale de la lame 44 : cette longueur est référencée 'L' sur la figure 9.The portion 42, as well as the solder 70 preferably have a disc shape to allow a better homogeneity of the heating of the solder 70. The portion 42 can thus be characterized by a mean diameter of this disc. It is preferable that the local restriction 58 has a length of less than 80% of the average diameter of the portion 42 to provide a substantial concentration effect on the solder 70 of the heat emitted by the varistor 30. It is even more advantageous that the local restriction has a length less than 70% of the average diameter of the portion 42. The length of the local restriction 58 above refers to the smallest distance separating two opposite edges of a main face of the blade 44: this length is referenced 'L' on the figure 9 .

La restriction locale 58 est disposée à proximité de la brasure 70 de manière à limiter les pertes d'énergie thermique entre la restriction locale 58 et la brasure 70. La distance de la restriction locale 58 à la brasure 70 peut être estimée par le rapport entre la surface de la brasure 70 (c'est-à-dire la section de la brasure précédemment décrite) et la surface de la partie 42 (représenté par des hachures et à droite de la restriction 58 sur la figure 9). Ce rapport est de préférence supérieur à 70%, et plus avantageusement supérieur à 80%.The local restriction 58 is disposed near the solder 70 so as to limit the thermal energy losses between the local restriction 58 and the solder 70. The distance from the local restriction 58 to the solder 70 can be estimated by the ratio between the surface of the solder 70 (i.e., the section of the solder previously described) and the surface of the portion 42 (represented by hatching and to the right of the restriction 58 on the figure 9 ). This ratio is preferably greater than 70%, and more preferably greater than 80%.

Les caractéristiques précédemment décrites contribuent chacune à augmenter la rapidité de la déconnexion thermique. Elles peuvent être mise en oeuvre indépendamment les une des autres. Il est possible de recourir seulement à certaines d'entre elles ou à toutes selon la rapidité de déconnexion souhaitée. Ces mesures permettent notamment de satisfaire aux exigences de la norme UL paragraphe 39 et/ou du guide UTE paragraphe 6.7.4. Le fait de combiner toutes ces mesures est particulièrement avantageux dans le cas où le dispositif de protection est prévu pour satisfaire aux exigences particulièrement sévères de la norme UL paragraphe 39.The previously described features each contribute to increasing the speed of thermal disconnection. They can be implemented independently of one another. It is possible to use only some of them or all according to the desired speed of disconnection. These measures make it possible in particular to meet the requirements of UL paragraph 39 and / or UTE 6.7.4. The fact of combining all these measures is particularly advantageous in the case where the protection device is designed to meet the particularly stringent requirements of the UL paragraph 39 standard.

Le dispositif de protection est aussi conçu avantageusement pour présenter un pouvoir de coupure amélioré. Un tel pouvoir de coupure amélioré peut être utile aussi bien dans le cas d'une déconnexion thermique sous la tension nominale d'utilisation que dans le cas d'une surtension temporaire tel que dans les essais de la norme UL paragraphe 39 et/ou du guide UTE paragraphe 6.7.4.The protection device is also advantageously designed to have an improved breaking capacity. Such improved breaking capacity can be useful both in the case of thermal disconnection at the nominal operating voltage and in the case of a temporary overvoltage such as in the tests of the UL standard paragraph 39 and / or the UTE guide section 6.7.4.

Différentes caractéristiques techniques contribuent à l'obtention d'un pouvoir de coupure amélioré.Different technical characteristics contribute to obtaining an improved breaking capacity.

Ainsi, le dispositif de protection peut comprendre un organe de réduction ou de suppression d'arc se formant lors du déplacement de lame 44 vers la position ouverte. Un tel organe de réduction ou de suppression d'arc est particulièrement utile pour les installations électriques alimentées sous courant continu. De tels organes sont par exemple constitués par des moyens électriques (comme un condensateur 22), des moyens électroniques, des moyens électromécaniques (comme une chambre d'extinction d'arc), ou encore des moyens mécaniques (comme un volet isolant venant s'interposer entre le contact mobile et le contact fixe, par sollicitation élastique ou par gravité). Lorsqu'on utilise le condensateur 22, il est disposé en parallèle du déconnecteur thermique pour réduire la tension de l'arc électrique se formant lors du déplacement de la lame 44 vers la position ouverte. Dans ce sens, la figure 11B représente le schéma électrique correspondant au dispositif de protection de la figure 11A qui le représente schématiquement en coupe transversale.Thus, the protection device may comprise an arc reduction or suppression member that is formed during blade movement 44 to the open position. Such an arc reduction or suppression device is particularly useful for electrical installations powered by direct current. Such members are for example constituted by electrical means (such as a capacitor 22), electronic means, electromechanical means (such as an arc extinguishing chamber), or mechanical means (such as an insulating shutter coming from interpose between the movable contact and the fixed contact, by elastic stress or by gravity). When the capacitor 22 is used, it is arranged in parallel with the thermal disconnector to reduce the voltage of the electric arc formed during the displacement of the blade 44 to the open position. In this sense, Figure 11B represents the electrical diagram corresponding to the protective device of the figure 11A which represents it schematically in cross section.

Ensuite, pour les installations alimentées en courant continu ou celles alimentées en courant alternatif, le dispositif de protection peut comporter un deuxième déconnecteur thermique comme l'illustre les figure 12A et 12B. Le deuxième déconnecteur est formé d'un contact mobile 64 et d'un contact fixe 36 sur la même varistance 30. Le contact fixe 36 correspond sur la figure 12A au deuxième pôle de la varistance 30. Le contact mobile 64 peut être réalisé par une lame de façon similaire à la lame 44 du premier déconnecteur thermique. Conformément aux figures 12A et 12B, le composant de protection est associé aux deux déconnecteurs thermiques, c'est-à-dire que les deux déconnecteurs thermiques et le composant de protection sont branchés en série. Ainsi la présence du deuxième déconnecteur thermique sur la même varistance permet d'augmenter le pouvoir de coupure du dispositif de protection proposé, étant donné que les distances d'isolation entre contact mobile et contact(s) fixe(s) des deux déconnecteurs thermiques viennent s'additionner. Dans ce mode de réalisation, la déconnexion du premier déconnecteur thermique est suivie de la déconnexion du deuxième déconnecteur thermique uniquement lorsque le courant électrique continue à circuler à travers le composant de protection malgré la première déconnexion. Alternativement, les deux déconnecteurs thermiques peuvent être reliés mécaniquement entre eux pour coordonner la déconnexion du deuxième déconnecteur et la déconnexion du premier déconnecteur. La coordination mécanique des deux déconnecteurs thermiques est par exemple réalisée à l'aide d'un organe ou d'un mécanisme de coordination mécanique en matériau isolant. Comme l'illustre la figure 12B qui représente le schéma électrique équivalent du dispositif de protection de la figure 12A, on peut en plus disposer des condensateurs 22 en parallèle de chacun des déconnecteurs thermiques pour améliorer encore le pouvoir de coupure.Then, for DC or AC powered installations, the protection device may have a second thermal disconnector as illustrated by the Figure 12A and 12B . The second disconnector is formed of a movable contact 64 and a fixed contact 36 on the same varistor 30. The fixed contact 36 corresponds to the figure 12A at the second pole of the varistor 30. The movable contact 64 can be made by a blade similar to the blade 44 of the first thermal disconnector. In accordance with Figures 12A and 12B , the protection component is associated with the two thermal disconnectors, that is to say that the two thermal disconnectors and the protective component are connected in series. Thus, the presence of the second thermal disconnector on the same varistor makes it possible to increase the breaking capacity of the proposed protection device, since the isolation distances between the moving contact and the fixed contact (s) of the two thermal disconnectors come from add up. In this embodiment, the disconnection of the first thermal disconnector is followed by the disconnection of the second thermal disconnector only when the electric current continues to flow through the protection component despite the first disconnection. Alternatively, the two thermal disconnectors can be mechanically interconnected to coordinate the disconnection of the second disconnector and the disconnection of the first disconnector. The mechanical coordination of the two thermal disconnectors is for example carried out using an organ or mechanical coordination mechanism of insulating material. As illustrated by figure 12B which represents the equivalent electrical scheme of the protection device of the figure 12A capacitors 22 in parallel with each of the thermal disconnectors may also be provided in order to further improve the breaking capacity.

Par ailleurs, comme illustré sur la figure 5, le dispositif de protection peut comporter un ressort de torsion 50 pour solliciter élastiquement la lame 44 de la position fermée à la position ouverte. Dans un tel mode de réalisation, lorsque la varistance 30 atteint la température de seuil, la brasure 70 fond et libère la lame 44 qui est entraînée vers la position ouverte du fait de la sollicitation élastique par le ressort 50. L'utilisation d'un ressort 50 distinct de la lame 44 permet une calibration de la vitesse d'ouverture de la lame 44 et une orientation précise de l'effort de sollicitation de la lame 44. Dans des systèmes classiques, les lames formant contact mobile d'un déconnecteur thermique sont sollicitées élastiquement du fait de l'élasticité intrinsèque des lames. L'élasticité étant liée intrinsèquement à la lame, il est alors difficile de prévoir une vitesse d'ouverture importante de la lame sans modifier la géométrie de la lame. Dans le dispositif de protection proposé avec le ressort 50, le ressort 50 peut être dimensionné pour entraîner la lame 44 vers la position ouverte avec une vitesse d'ouverture importante sans modifier la géométrie de lame 44 qui peut alors être définie uniquement en fonction d'autres considérations. Par ailleurs, le choix d'une vitesse d'ouverture élevée du déconnecteur thermique permet d'augmenter le pouvoir de coupure du déconnecteur.Moreover, as illustrated on the figure 5 , the protection device may comprise a torsion spring 50 for elastically biasing the blade 44 from the closed position to the open position. In such an embodiment, when the varistor 30 reaches the threshold temperature, the solder 70 melts and releases the blade 44 which is driven to the open position due to elastic biasing by the spring 50. The use of a 50 separate spring blade 44 allows a calibration of the opening speed of the blade 44 and a precise orientation of the biasing force of the blade 44. In conventional systems, the movable contact blades of a thermal disconnector are elastically stressed because of the intrinsic elasticity of the blades. As the elasticity is intrinsically tied to the blade, it is difficult to predict a large opening speed of the blade without modify the geometry of the blade. In the protective device proposed with the spring 50, the spring 50 can be sized to drive the blade 44 to the open position with a large opening speed without changing the blade geometry 44 which can then be defined solely according to the other considerations. Furthermore, the choice of a high opening speed of the thermal disconnector increases the breaking capacity of the disconnector.

Comme illustré dans les figures 9 et 10, la lame 44 comprend un appui 56 pour le ressort 50, permettant de transmettre la sollicitation du ressort 50 à la lame 44. Comme illustré dans les figures 4 et 5, la lame 44 s'étend dans un premier plan parallèle à la face principale 32 de la varistance 30 avec un mouvement de la lame 44 entre la position fermée et la position ouverte s'effectuant principalement dans ce premier plan. En référence à la figure 5, on peut ainsi obtenir une distance d'isolation D importante entre le contact mobile - c'est-à-dire la lame 44 - et le contact fixe - c'est-à-dire le pôle 34 - du déconnecteur thermique. Ainsi la distance d'isolation pour un déconnecteur thermique peut être sensiblement supérieure à 5 mm et atteindre au moins 10 mm.As illustrated in Figures 9 and 10 , the blade 44 comprises a support 56 for the spring 50, for transmitting the bias of the spring 50 to the blade 44. As illustrated in FIGS. Figures 4 and 5 , the blade 44 extends in a first plane parallel to the main face 32 of the varistor 30 with a movement of the blade 44 between the closed position and the open position taking place mainly in this first plane. With reference to the figure 5 it is thus possible to obtain a large isolation distance D between the moving contact - that is to say the blade 44 - and the fixed contact - that is to say the pole 34 - of the thermal disconnector. Thus the insulation distance for a thermal disconnector can be substantially greater than 5 mm and reach at least 10 mm.

De plus, un tel mouvement de la lame 44 dans un plan parallèle à la face principale 32 permet aussi d'obtenir un dispositif de protection compact pouvant être logé dans la cartouche 20. Dans des solutions classiques de déconnecteurs thermiques constitués d'une lame de déconnexion, le mouvement de la lame vers la position ouverte est un mouvement s'effectuant perpendiculairement à la face principale du composant de protection. Dans de tels dispositifs, l'augmentation de la distance de déconnexion passe par l'augmentation de l'épaisseur du dispositif (c'est-à-dire la dimension du dispositif dans la direction perpendiculaire à une face principale du composant de protection), ce qui nuit à sa compacité.In addition, such a movement of the blade 44 in a plane parallel to the main face 32 also makes it possible to obtain a compact protection device that can be accommodated in the cartridge 20. In conventional solutions of thermal disconnectors consisting of a blade of disconnection, the movement of the blade to the open position is a movement carried out perpendicularly to the main face of the protective component. In such devices, the increase of the disconnection distance passes through the increase in the thickness of the device (that is to say the dimension of the device in the direction perpendicular to a main face of the protection component), which hinders its compactness.

Le mouvement de la lame 44 parallèlement à la face principale 32 de la varistance 30 est confiné dans un volume ayant pour base la face principale 32 de la varistance et présentant une faible épaisseur relativement aux dimensions de la varistance. Un tel mouvement de la lame 44 selon la face principale 32de la varistance 30, et donc présentant les plus grandes dimensions de la varistance 30, entraîne la possibilité d'obtention d'une importante distance de coupure à l'intérieur du volume confinant le mouvement de la lame 44. L'épaisseur de ce volume étant faible, la compacité du dispositif de protection est proche de la compacité de la varistance 30. Ce mode de réalisation de la lame 44 est particulièrement avantageux quand le dispositif de protection comprend un deuxième déconnecteur thermique sur la même varistance comme précédemment décrit. Ce deuxième déconnecteur thermique est alors relié en série au premier déconnecteur thermique par l'intermédiaire de la varistance. On obtient alors une conception compacte conformément à la figure 12A.The movement of the blade 44 parallel to the main face 32 of the varistor 30 is confined in a volume based on the main face 32 of the varistor and having a small thickness relative to the dimensions of the varistor. Such a movement of the blade 44 along the main face 32 of the varistor 30, and thus having the largest dimensions of the varistor 30, results in the possibility of obtaining a large breaking distance inside the volume confining the movement. of the blade 44. The thickness of this volume being small, the compactness of the protective device is close to the compactness of the varistor 30. This embodiment of the blade 44 is particularly advantageous when the protective device comprises a second disconnector thermal on the same varistor as previously described. This second thermal disconnector is then connected in series to the first thermal disconnector by through the varistor. We then obtain a compact design in accordance with the figure 12A .

En référence à la figure 8D et tel que précédemment décrit, l'électrode 84 de la varistance 30 peut avantageusement présenter la partie en saillie formant pôle 34. Cette partie formant pôle 34 émerge hors du revêtement d'isolation électrique tel que la surface de brasage pour le raccordement électrique du pôle et emboutie s'étend au-dessus du niveau du revêtement d'isolation électrique, tel que représenté par la figure 12A.With reference to the figure 8D and as previously described, the electrode 84 of the varistor 30 may advantageously have the protruding part forming pole 34. This pole portion 34 emerges out of the electrical insulation coating such as the brazing surface for the electrical connection of the pole and stamped extends above the level of the electrical insulation coating, as represented by the figure 12A .

La disposition de la partie de la plaque 84 formant pôle 34 en saillie et émergeant du revêtement d'isolation électrique assure que la lame 44, formant contact mobile, effectue un mouvement vers la position ouverte, de façon parallèle à la face principale 32 de la varistance 30 tout en restant à distance du revêtement isolant. Le mouvement vers la position ouverte est ainsi effectué sans frottement de la lame 44 sur le revêtement isolant. L'absence de frottement de la lame 44 sur le revêtement isolant permet d'obtenir une bonne vitesse de déconnexion sans traîner de résidu liquéfié de la brasure 70 sur la face principale 32 de la varistance 30. D'une part une bonne vitesse de déconnexion du déconnecteur thermique contribue à l'amélioration du pouvoir de coupure du déconnecteur. D'autre part l'empêchement de la formation d'une traînée de brasure 70 liquéfié permet d'assurer que la distance d'isolation procurée par le déconnecteur thermique à l'état ouvert, est effectivement égale à la distance séparant la lame 44 et le pole 34, améliorant ainsi le pouvoir de coupure.The arrangement of the portion of the pole plate 84 projecting and emerging from the electrical insulation coating ensures that the movable contact blade 44 moves to the open position parallel to the main face 32 of the varistor 30 while remaining at a distance from the insulating coating. The movement to the open position is thus performed without friction of the blade 44 on the insulating coating. The absence of friction of the blade 44 on the insulating coating provides a good speed of disconnection without trailing liquefied residue of solder 70 on the main face 32 of the varistor 30. On the one hand a good speed of disconnection thermal disconnector contributes to the improvement of the breaking capacity of the disconnector. On the other hand, the prevention of the formation of a liquefied solder streak 70 makes it possible to ensure that the insulation distance provided by the thermal disconnector in the open state is effectively equal to the distance separating the blade 44 and pole 34, thus improving the breaking power.

La disposition de la partie de la plaque 84 en saillie pour former le pôle 34 permet en outre d'isoler électriquement la lame 44 du revêtement d'isolation électrique sans utiliser une cloison séparatrice supplémentaire. Le dispositif de protection peut ainsi être réalisé de sorte que seule une lame d'air sépare la face principale 32 de la lame 44 lors de son mouvement de la position fermée vers la position ouverte. L'absence de cloison séparatrice supplémentaire entre la lame 44 et la face principale 32 de la varistance 30 permet de réduire encore l'encombrement du dispositif de protection.The provision of the portion of the plate 84 projecting to form the pole 34 further allows to electrically isolate the blade 44 of the electrical insulation coating without using an additional partition. The protection device can thus be made so that only an air gap separates the main face 32 of the blade 44 during its movement from the closed position to the open position. The absence of additional partition between the blade 44 and the main face 32 of the varistor 30 further reduces the size of the protective device.

Dans le même but d'amélioration du pouvoir de coupure, la partie formant pôle 34 présente sa surface de brasage au moins 0,1 mm au-dessus du niveau du revêtement d'isolation électrique. De façon encore plus préférée la surface de brasage est située à au moins 0,3 mm du niveau du revêtement d'isolation électrique.For the same purpose of improving the breaking capacity, the pole portion 34 has its brazing surface at least 0.1 mm above the level of the electrical insulation coating. Even more preferably, the brazing surface is at least 0.3 mm from the level of the electrical insulation coating.

Le revêtement d'isolation électrique possède de préférence une épaisseur comprise entre 0,1 mm et 1 mm. De façon encore plus préférée, l'épaisseur est supérieure ou égale à 0,6 mm pour permettre une isolation électrique améliorée de la varistance 30 par rapport au reste du dispositif de protection.The electrical insulation coating preferably has a thickness of between 0.1 mm and 1 mm. Even more preferably, the thickness is greater than or equal to 0.6 mm to allow improved electrical insulation of the varistor 30 relative to the remainder of the protection device.

Les caractéristiques précédemment décrites contribuent chacune à augmenter le pouvoir de coupure. Elles peuvent être mise en oeuvre indépendamment les une des autres. Il est possible de recourir seulement à certaines d'entre elles ou à toutes selon le pouvoir de coupure souhaitéThe characteristics described above each contribute to increasing the breaking capacity. They can be implemented independently of one another. It is possible to use only some of them or all according to the desired breaking capacity

Le dispositif de protection est encore conçu avantageusement pour résister fiablement aux courants de choc, notamment pour satisfaire aux essais des normes IEC paragraphe 7.6 ou UL paragraphe 37, ou encore au guide UTE paragraphe 6.6 selon le cas.The protective device is still advantageously designed to reliably withstand the shock currents, in particular to meet the tests of IEC standards paragraph 7.6 or UL paragraph 37, or the UTE paragraph 6.6 guide as appropriate.

La réalisation de la brasure 70 dans le plan de la face principale 32 de la varistance 30 déjà décrite permet de résister efficacement aux efforts électrodynamiques dus au choc foudre. La résistance de la brasure 70 à l'arrachement mécanique des efforts électrodynamiques peut être adaptée en augmentant la section de la brasure 70, plus particulièrement en augmentant la surface de la brasure 70 soudée au pôle 34 - c'est-à-dire en augmentant la surface de brasage de la partie formant pôle 34 - . Dans des solutions classiques, la section de la brasure s'étend dans un plan perpendiculaire à la face principale du composant de protection. Le dimensionnement de la section de la brasure par rapport aux efforts électrodynamiques entraîne une augmentation de l'épaisseur de l'ensemble du dispositif de protection (c'est-à-dire dans la direction perpendiculaire à la face principale du composant de protection). Dans le dispositif de protection proposé avec la brasure 70 réalisée dans le plan de la face 32 au niveau du pôle 34 disposé sur la face 32, l'augmentation de la section de la brasure 70 se fait selon le plan de la face 32. L'augmentation de la section de la brasure 70 pour la tenue aux efforts électrodynamique n'est alors par limitée par l'exigence de compacité du dispositif de protection. On peut ainsi choisir obtenir une section de la brasure 70 supérieure ou égale à 50 mm2, voire supérieure ou égale à 100mm2 sans impacter la compacité du dispositif de protection à loger dans la cartouche 20 telle que précédemment définie. Même pour des surfaces de section de soudure aussi importante, la rapidité de la déconnexion est satisfaisante avec les différentes caractéristiques déjà décrites.The realization of the braze 70 in the plane of the main face 32 of the varistor 30 already described effectively withstands the electrodynamic forces due to lightning shock. The resistance of the solder 70 to the mechanical tearing of the electrodynamic forces can be adapted by increasing the cross section of the solder 70, more particularly by increasing the surface of the solder 70 welded to the pole 34 - that is to say by increasing the brazing surface of the pole portion 34 -. In conventional solutions, the brazing section extends in a plane perpendicular to the main face of the protection component. Sizing the section of the solder relative to the electrodynamic forces causes an increase in the thickness of the entire protective device (that is to say in the direction perpendicular to the main face of the protective component). In the protective device proposed with the solder 70 made in the plane of the face 32 at the pole 34 disposed on the face 32, the increase in the section of the solder 70 is in the plane of the face 32. L Increasing the section of solder 70 for the resistance to electrodynamic forces is then limited by the requirement of compactness of the protective device. One can thus choose to obtain a section of the solder 70 greater than or equal to 50 mm 2 , or even greater than or equal to 100 mm 2 without impacting the compactness of the protection device to be housed in the cartridge 20 as previously defined. Even for surfaces of weld section as important, the speed of the disconnection is satisfactory with the various features already described.

En référence à la figure 9, la lame 44 peut être solidaire d'une partie flexible 46. Cette partie flexible 46 forme un coude 46 (ou une lyre) autour d'un axe perpendiculaire au plan de la figure 9. Ce coude 46 autorise le mouvement de la lame 44 entre la position ouverte et la position fermée. En cas de courants de choc écoulés par le dispositif de protection, les efforts électrodynamiques sollicitent en ouverture le coude flexible 46. Une telle sollicitation en ouverture du coude 46 entraîne une sollicitation de la lame 44 vers la position ouverte. Autrement dit, les efforts électrodynamiques sollicitent en cisaillement la brasure 70. Or comme il a été décrit précédemment, la brasure 70 peut être dimensionnée pour résister à des sollicitations comme le cisaillement sans détériorer la compacité du dispositif. Le coude flexible 46 contribue donc à la fois à la compacité du dispositif de protection et à sa tenue au courants de choc.With reference to the figure 9 , the blade 44 may be integral with a flexible portion 46. This flexible portion 46 forms a bend 46 (or a lyre) about an axis perpendicular to the plane of the figure 9 . This bend 46 allows movement of the blade 44 between the open position and the closed position. In the event of shock currents flowing through the protection device, the electrodynamic forces bias the opening of the flexible elbow 46. Such an opening urging of the elbow 46 causes a biasing of the blade 44 to the open position. In other words, the electrodynamic forces stress the solder 70 in shear. However, as has been described previously, the solder 70 can be sized to withstand stresses such as shear without damaging the compactness of the device. The flexible elbow 46 thus contributes to both the compactness of the protective device and its resistance to shock currents.

La sollicitation en cisaillement de la brasure 70 permet de plus de s'affranchir de problèmes rencontrés lors d'une sollicitation en traction de la brasure. En effet dans une situation de traction de la brasure, les contraintes dans la brasure peuvent ne pas être réparties uniformément. La partie de la brasure avec les plus fortes contraintes commence alors à se détériorer localement créant une entame de la brasure qui diminue la section efficace de la brasure face à la traction. On est alors dans une situation de clivage où la partie la plus sollicitée de la brasure entraîne progressivement l'arrachement de l'ensemble de la brasure. La sollicitation en cisaillement de la brasure proposée permet une répartition plus uniforme des contraintes dans la brasure 70 évitant une situation équivalente au clivage en traction.The shearing stress of the solder 70 also makes it possible to overcome problems encountered during a tensile stressing of the solder. Indeed in a tensile situation of the solder, the stresses in the solder may not be evenly distributed. The portion of the braze with the highest stresses then begins to deteriorate locally creating a start of the braze which decreases the effective section of the solder facing the traction. It is then in a situation of cleavage where the most stressed portion of the solder gradually causes tearing of all the solder. The shear stress of the proposed solder allows a more uniform distribution of the stresses in the solder 70 avoiding a situation equivalent to the tensile cleavage.

Le matériau du coude 46 présente de préférence une résistance élastique basse (Re). Une faible résistance élastique permet au coude 46 d'absorber une partie de l'énergie en s'ouvrant de façon plastique. L'absorption d'une partie de l'énergie due aux effets électrodynamique permet de limiter la sollicitation de la brasure 70. La résistance élastique est classiquement approché par la contrainte de déformation plastique à 0,2% (notée Rp0,2). Lorsque le matériau utilisé pour le coude est du cuivre Cu-a1 comme discuté plus en détail plus loin, ce dernier présente un Rp0,2 avantageusement faible, à savoir de 250 MPa (N.mm-2).The elbow material 46 preferably has a low elastic resistance (Re). A low elastic resistance allows the bend 46 to absorb some of the energy by opening plastically. The absorption of a portion of the energy due to the electrodynamic effects makes it possible to limit the stress on the solder 70. The elastic resistance is conventionally approached by the plastic deformation stress at 0.2% (denoted Rp0.2). When the material used for the elbow is Cu-a1 copper as discussed in more detail later, the latter has an advantageously low Rp0.2, namely 250 MPa (N.mm -2 ).

L'utilisation de l'alliage étain/indium In52Sn48 pour la brasure 70 permet d'obtenir une résistance au cisaillement de l'ordre de 11,2 MPa (N.mm-2), ce qui constitue une bonne résistance en comparaison aux alliages classiquement utilisés pour la brasure. Ainsi un alliage classique tel que le Bi58Sn42 présente une résistance au cisaillement de l'ordre de 3,4 MPa seulement. En conséquence, on peut limiter l'apport en matériau pour la réalisation de la brasure 70 en diminuant la section de la brasure 70 par exemple jusqu'à une surface de 25mm2 tout en ayant une tenue mécanique au cisaillement satisfaisante.The use of the tin / indium alloy In 52 Sn 48 for the solder 70 makes it possible to obtain a shear strength of the order of 11.2 MPa (N.mm -2 ), which constitutes a good resistance to comparison with the alloys conventionally used for brazing. Thus a conventional alloy such as Bi 58 Sn 42 has a shear strength of the order of 3.4 MPa only. Consequently, it is possible to limit the supply of material for producing solder 70 by reducing the section of solder 70, for example to a surface area of 25 mm 2 while having a satisfactory mechanical shear strength.

Comme illustré sur les figures 9 et 10, la lame 44 peut comprendre une zone de raidissement 52 de la pièce 40. L'inertie en flexion de la lame 44 est ainsi augmentée pour que la sollicitation en déconnexion de la lame 44 par le ressort 50 ou par les efforts électrodynamiques soit quasi-exclusivement un cisaillement pur. Le dimensionnement de la brasure 70 pour la tenue aux courants de choc est ainsi facilitée. Cependant, il peut être prévu une inertie en flexion faible entre la partie 42 de la lame 44 qui est soudée au pôle 34 et la restriction 58. Ceci permet de compenser les jeux dimensionnels lors de l'assemblage des différentes pièces du dispositif de protection sans avoir à déformer la lame 44 pour la souder au pôle 34.As illustrated on Figures 9 and 10 , the blade 44 may comprise a stiffening zone 52 of the part 40. The bending inertia of the blade 44 is thus increased so that the biasing engagement of the blade 44 by the spring 50 or by the electrodynamic forces is substantially exclusively pure shear. The sizing of the solder 70 for the resistance to the shock currents is thus facilitated. However, a low bending inertia can be provided between the portion 42 of the blade 44 which is welded to the pole 34 and the restriction 58. compensating the dimensional clearances during the assembly of the various parts of the protection device without having to deform the blade 44 to weld it to the pole 34.

La partie 42 de la lame 44, destinée à être soudée au pôle 34 par la brasure 70, est de préférence étamée. L'étamage de la partie 42 permet une amélioration de la qualité de la brasure entraînant une meilleure tenue mécanique de celle-ci, notamment aux courants de choc.The portion 42 of the blade 44, intended to be welded to the pole 34 by the solder 70, is preferably tinned. The tinning of the portion 42 allows an improvement in the quality of the solder resulting in a better mechanical strength thereof, including impact currents.

Les caractéristiques précédemment décrites contribuent chacune à augmenter la tenue mécanique aux courants de choc tout en autorisant une mise en oeuvre compact du dispositif de protection. Elles peuvent être mise en oeuvre indépendamment les une des autres. Il est possible de recourir seulement à certaines d'entre elles ou à toutes selon la tenue mécanique souhaitée.The previously described characteristics each contribute to increasing the mechanical resistance to shock currents while allowing a compact implementation of the protective device. They can be implemented independently of one another. It is possible to use only some of them or all according to the desired mechanical strength.

Du fait de la compacité, une varistance 30 avec des dimensions plus importantes peut être logée au sein de cartouches aux dimensions mentionnées en relation avec les figures 2A, 2B 3A et 3B. En particulier, la varistance 30 peut avoir une épaisseur plus importante, ce qui permet une tension de service de la varistance plus élevée. Autrement dit, le dispositif de protection peut être adaptée pour une installation fonctionnant sous une tension plus élevée, par exemple entre 500 et 1000 V dans le cas des installations à générateurs photovoltaïques à comparer avec les 230 V ou 400 V habituel pour les réseaux d'alimentation alternatif en Europe. Les figures 13A et 13B illustrent respectivement de face et de profil, les dimensions A", B", C" d'une varistance 30 susceptible d'être logée dans la cartouche 20 avec le reste du dispositif de protection compact proposé. Les dimensions A" et B" de la varistance 30 sont classiquement égales à 35mm). La varistance 30 peut avoir une épaisseur C" jusqu'à 9mm. La varistance 30 avec une épaisseur de 9 mm possède une tension de service de l'ordre de 680 V et ne présentant qu'un courant de fuite de l'ordre de 1mA sous une tension de 1100 V en courant continu. La compacité du dispositif de protection permet alors de l'utiliser pour une gamme de tension de 75 V à 680 V. Elle permet en particulier l'utilisation du dispositif de protection pour la protection d'installations de générateurs photovoltaïques.Because of the compactness, a varistor 30 with larger dimensions can be accommodated within cartridges of the dimensions mentioned in relation to the FIGS. 2A, 2B, 3A and 3B . In particular, the varistor 30 may have a greater thickness, which allows a service voltage of the higher varistor. In other words, the protection device can be adapted for an installation operating at a higher voltage, for example between 500 and 1000 V in the case of installations with photovoltaic generators to be compared with the 230 V or 400 V usual for the networks of alternative power supply in Europe. The Figures 13A and 13B respectively illustrate front and side, the dimensions A ", B", C "of a varistor 30 which can be accommodated in the cartridge 20 with the rest of the proposed compact protection device.The dimensions A" and B "of the varistor 30 is typically 35mm.) The varistor 30 can have a thickness C "up to 9mm. The varistor 30 with a thickness of 9 mm has an operating voltage of the order of 680 V and exhibiting a leakage current of the order of 1 mA at a voltage of 1100 V in direct current. The compactness of the protection device then makes it possible to use it for a voltage range of 75 V to 680 V. In particular, it allows the use of the protection device for the protection of photovoltaic generator installations.

Selon un mode préféré de réalisation compacte du dispositif de protection à double déconnecteur thermique et en référence à la figure 12A, les deux pôles 34 et 36 de la varistance 30 sont disposés sur des faces principales opposées de la varistance 30. Le premier déconnecteur électrique qui comprend la lame 44 connectée par brasure thermofusible au premier pôle 34 de la varistance 30, est réalisé comme précédemment décrit. Le deuxième déconnecteur thermique comprend une lame 64 formant contact mobile connecté par brasure thermofusible au deuxième pôle 36 de la varistance 30. Ce deuxième déconnecteur présente avantageusement les mêmes caractéristiques que le premier déconnecteur lesquelles ont été précédemment décrits. Selon ce mode de réalisation, la varistance 30 est associée à deux déconnecteurs thermiques, c'est-à-dire que les deux déconnecteurs thermiques et le composant de protection sont branchés en série, ce qui permet d'augmenter le pouvoir de coupure en cas de défaillance du composant de protection.According to a compact preferred embodiment of the double thermal disconnector protection device and with reference to the figure 12A the two poles 34 and 36 of the varistor 30 are arranged on opposite main faces of the varistor 30. The first electrical disconnector which comprises the blade 44 connected by hot-melt soldering to the first pole 34 of the varistor 30, is produced as previously described. . The second thermal disconnector comprises a blade 64 forming a movable contact connected by hot-melt soldering to the second pole 36 of the varistor 30. This second disconnector advantageously has the same characteristics as the first disconnector which have been previously described. According to this embodiment, the varistor 30 is associated with two thermal disconnectors, that is to say that the two thermal disconnectors and the protection component are connected in series, which allows to increase the breaking capacity in case failure of the protection component.

Le dispositif de protection est encore conçu avantageusement pour résister en toute sécurité au cas où la varistance 30 passe en court-circuit sous la tension nominale de fonctionnement le temps que des protections spécifiques contre les courts-circuits - tels qu'un fusible ou un disjoncteur externe au dispositif - intervienne. En particulier, il est prévu pour pouvoir satisfaire à la norme IEC paragraphe 7.7.3. La difficulté vient du fait ces protections externes possèdent un certain temps de réaction pendant lequel le dispositif de protection est traversé par des courants élevés. Le dispositif de protection ne doit pas exploser ou déclencher un incendie pendant ce temps.The protective device is still advantageously designed to safely withstand the case where the varistor 30 short-circuits below the nominal operating voltage while specific short-circuit protections - such as a fuse or circuit breaker external to the device - intervene. In particular, it is intended to meet the IEC standard paragraph 7.7.3. The difficulty comes from the fact that these external protections have a certain reaction time during which the protective device is traversed by high currents. The protective device must not explode or start a fire during this time.

Pour cela, la demanderesse préconise une approche visant à limiter l'échauffement des pièces conductrices du dispositif de protection, en particulier de son déconnecteur thermique. En effet, le courant de court-circuit est tel qu'il provoque un échauffement de ces pièces par effet Joule. Un échauffement non maîtrisé des différentes pièces du dispositif de protection peut alors conduire à la fusion d'une des pièces constituant un éventuel départ de feu avant que les dispositifs externes ne coupent le courant.For this, the applicant recommends an approach to limit the heating of the conductive parts of the protective device, in particular its thermal disconnector. Indeed, the short-circuit current is such that it causes a heating of these parts by Joule effect. Uncontrolled heating of the various parts of the protective device can then lead to the melting of one of the parts constituting a possible fire start before the external devices cut off the current.

Différentes caractéristiques contribuent à limiter l'échauffement des pièces du dispositif de protection.Different characteristics contribute to limiting the heating of the parts of the protective device.

Ainsi, comme illustré par les figures 5, 9 et 10, la lame 44 et la borne 48 font parties d'une seule et même pièce pour former la pièce 40. La pièce 40 peut être obtenue par emboutissage, cintrage ou pliage d'une tôle laminée. Du fait que la pièce 40 n'est pas obtenue par assemblage de plusieurs pièces, mais n'en constitue qu'une seule, le courant traversant la pièce 40 de la borne 48 à la lame 44 ne rencontre pas de résistance électrique de contact ou de soudure. Cette absence de résistance de contact ou de soudure limite l'échauffement de la pièce 40 lorsqu'elle est parcourue par des courants de fortes intensités.Thus, as illustrated by figures 5 , 9 and 10 , the blade 44 and the terminal 48 are part of a single piece to form the workpiece 40. The workpiece 40 can be obtained by stamping, bending or folding of a rolled sheet. Since the piece 40 is not obtained by assembling several pieces, but constitutes only one, the current flowing through the workpiece 40 of the terminal 48 to the blade 44 does not encounter any electrical contact resistance or Welding. This absence of contact resistance or welding limits the heating of the workpiece 40 when it is traversed by currents of high intensity.

De plus, la pièce 40 est de préférence réalisée en cuivre avec une pureté suffisante pour présenter une conductivité IACS (international annealed copper standard) supérieure à 70%. La conductivité de IACS d'une pièce correspond au rapport entre une résistivité de 1,7241 µΩ.cm et la résistivité de la pièce, la conductivité IACS est sans dimension. De ce fait, la pièce 40 présente une faible résistivité électrique et donc assure le passage du courant électrique tout en limitant son échauffement. De ce point de vue, il est avantageux que la pureté du cuivre soit telle que sa conductivité IACS soit supérieure ou égale à 90%, voire 95 %. Il est encore plus avantageux d'utiliser du cuivre ayant une pureté de 99,9%, autrement dit qui présente une conductivité IACS de 100%, ce qui est le cas du cuivre Cu-a1 (ou Cu-ETP, encore appelé cuivre électrolytique). La résistivité électrique de la pièce 40 peut ainsi être inférieure ou égale à 1,7241 µΩ.cm et permet de limiter de façon très efficace l'échauffement de la pièce 40 soumis à des courants de courts-circuits. Dans des solutions classiques, il était couramment utilisé des lames avec une élasticité intrinsèque pour former le contact mobile du déconnecteur thermique. Or seuls des alliages de cuivre procurent une élasticité intrinsèque suffisante, mais au détriment de la résistivité qui est sensiblement plus élevée. Dans le dispositif de protection proposé, l'utilisation d'une sollicitation élastique extérieure à la lame 44 (par le ressort 50 dans notre exemple) permet de réaliser la lame 44 avec un cuivre de pureté suffisante pour limiter sensiblement son échauffement lors des essais en courts-circuits.In addition, the part 40 is preferably made of copper with a purity sufficient to have an international annealed copper standard (IACS) conductivity greater than 70%. The IACS conductivity of a part corresponds to the ratio between a resistivity of 1.7241 μΩ.cm and the resistivity of the part, the IACS conductivity is dimensionless. Therefore, the piece 40 has a low electrical resistivity and thus ensures the passage of electric current while limiting its heating. From this point of view, it is advantageous that the purity of copper is such that its IACS conductivity is greater than or equal to 90% or even 95%. It is even more advantageous to use copper having a purity of 99.9%, that is to say that has a 100% IACS conductivity, which is the case of copper Cu-a1 (or Cu-ETP, also called electrolytic copper ). The electrical resistivity of the part 40 can thus be less than or equal to 1.7241 μΩ.cm and can very effectively limit the heating of the part 40 subjected to short-circuit currents. In conventional solutions, blades with intrinsic elasticity were commonly used to form the moving contact of the thermal disconnector. But only copper alloys provide sufficient intrinsic elasticity, but at the expense of the resistivity is significantly higher. In the proposed protection device, the use of a resilient bias external to the blade 44 (by the spring 50 in our example) allows the blade 44 to be made with a copper of sufficient purity to substantially limit its heating during the tests. short circuits.

La pièce 40 a de préférence une section minimale prévue pour permettre le passage en continu sans détérioration d'un courant de court-circuit auquel le dispositif de protection peut être exposé. Par ailleurs, la pièce 40 présente de préférence une épaisseur de 0,4 mm à 0,6 mm pour fournir la flexibilité du coude 46 discutée plus haut. L'épaisseur de la tôle utilisée pour l'obtention de la pièce 40 peut être égale à 0,5 mm.The part 40 preferably has a minimum section designed to allow the continuous passage without deterioration of a short circuit current to which the protective device can be exposed. Furthermore, the piece 40 preferably has a thickness of 0.4 mm to 0.6 mm to provide the flexibility of the elbow 46 discussed above. The thickness of the sheet used to obtain the piece 40 may be equal to 0.5 mm.

Par ailleurs, il est avantageux que la lame 44 présente - en-dehors de la partie 42 - une surface d'échange thermique importante avec l'air ambiant, mais sans préjudicier à la compacité du dispositif. Pour cela, les faces principales de la lame 44 s'étendent parallèlement à la face principale 32 de la varistance 30. La lame 44 assure ainsi une fonction d'ailette de refroidissement, ce qui améliore encore la résistance de la pièce 40 aux courants de courts-circuits.Furthermore, it is advantageous that the blade 44 has - outside the portion 42 - a significant heat exchange surface with the ambient air, but without detriment to the compactness of the device. For this, the main faces of the blade 44 extend parallel to the main face 32 of the varistor 30. The blade 44 thus provides a cooling fin function, which further improves the resistance of the piece 40 to the currents of short circuits.

Plus généralement, la pièce 40 peut comporter des zones de section maximale pour dissiper la chaleur obtenue par effet Joule à épaisseur sensiblement constante, ce qui, permet d'augmenter la surface de contact de la pièce 40 avec l'air ambiant et donc limiter l'échauffement lors du passage du courant de court-circuit. La section maximale de la pièce 40 est de préférence prévue au niveau de la lame 44, entre d'une part le coude 46 et d'autre part la partie 42 ou le cas échéant la constriction 58.More generally, the part 40 may comprise zones of maximum cross-section to dissipate the heat obtained by Joule effect with a substantially constant thickness, which makes it possible to increase the contact surface of the part 40 with the ambient air and thus to limit the heating during the passage of the short-circuit current. The maximum section of the piece 40 is preferably provided at the blade 44, between the elbow 46 and the part 42 or the constriction 58.

Une augmentation de la largeur de la pièce 40 peut aussi être prévue entre le coude 46 et la borne 48. Les figures 9 et 10 illustrent ainsi une ailette de refroidissement 54. Cette ailette de refroidissement 54 permet notamment de limiter l'élévation de température du coude flexible 46 lors de passage du courant de court-circuit. Le coude 46 peut en effet présenter une section minimale de la pièce 40 pour des considérations de mise en forme de la pièce 40, ou encore pour des considérations de flexibilité suffisante du coude 46.An increase in the width of the part 40 can also be provided between the bend 46 and the terminal 48. Figures 9 and 10 thus illustrate a cooling fin 54. This cooling fin 54 makes it possible in particular to limit the temperature rise of the flexible elbow 46 during passage of the short-circuit current. The elbow 46 may in fact have a minimum cross section of the workpiece 40 for considerations for shaping the workpiece 40, or for considerations of sufficient flexibility of the elbow 46.

Le fait que la lame 44 soit ainsi pourvue de surface d'échange limitant l'échauffement de la pièce 40 permet de diminuer localement la section minimale de la pièce 40 précédemment évoquée, compte tenu du caractère temporaire du court-circuit. On peut ainsi réaliser la restriction 58 avec une longueur inférieure ou égale à 5,5 mm, voire à 5 mm, en restant en-deça à cet endroit de la section minimale de la pièce 40 tel que précédemment définie.The fact that the blade 44 is thus provided with an exchange surface that limits the heating of the part 40 makes it possible to locally reduce the minimum section of the part 40 previously mentioned, given the temporary nature of the short circuit. It is thus possible to realize the restriction 58 with a length less than or equal to 5.5 mm, or even 5 mm, remaining below this point of the minimum section of the part 40 as previously defined.

Le matériau de la pièce 40 est de préférence nu au niveau du brochage 48 pour limiter l'effet de soudage avec les accouplements élastiques de l'embase 82 par le biais desquels le dispositif de protection est relié électriquement à l'installation électrique à protéger.The material of the part 40 is preferably bare at the pin 48 to limit the welding effect with the elastic couplings of the base 82 through which the protective device is electrically connected to the electrical installation to be protected.

Les caractéristiques précédemment décrites contribuent chacune à augmenter la tenue aux courants de court-circuit, notamment tel que vérifié par la norme IEC paragraphe 7.7.3. Elles peuvent être mise en oeuvre indépendamment les une des autres. Il est possible de recourir seulement à certaines d'entre elles ou à toutes selon l'importance des courants de court-circuit susceptible d'être fourni par le réseau d'alimentation de l'installation à protéger.The previously described characteristics each contribute to increasing the resistance to short-circuit currents, in particular as verified by the IEC standard paragraph 7.7.3. They can be implemented independently of one another. It is possible to use only some of them or all according to the importance of short-circuit currents that can be provided by the power supply network of the installation to be protected.

Suivant un mode de réalisation, il peut être prévu de disposer deux composants de protection dans la même cartouche 20.According to one embodiment, provision may be made to have two protective components in the same cartridge 20.

Les figures 14A et 14B représentent le dispositif de protection comprenant deux varistances 30 avec chacun un déconnecteur thermique respectif comprenant une lame 44a connectée au pôle 34 de la varistance correspondante. La figure 14A représente le dispositif de protection avec les deux déconnecteurs thermique en position fermée. La figure 14B représente le dispositif de protection avec les deux déconnecteurs thermique en position ouverte. La figure 14C représente schématiquement en coupe transversale un tel mode de réalisation du dispositif de protection. Les lames 44a sont ainsi chacune soudée à une des varistances 30 au niveau de l'une de leur faces principales. Les autres faces principales des varistances sont connectées entre elles de manière à réaliser un assemblage en parallèle des varistances 30.The Figures 14A and 14B represent the protection device comprising two varistors 30 each with a respective thermal disconnector comprising a blade 44a connected to the pole 34 of the corresponding varistor. The figure 14A represents the protection device with the two thermal disconnectors in the closed position. The Figure 14B represents the protection device with the two thermal disconnectors in the open position. The figure 14C represents schematically in cross section such an embodiment of the protective device. The blades 44a are thus each welded to one of the varistors 30 at one of their main faces. The other main faces of the varistors are connected together so as to produce a parallel connection of the varistors 30.

Les figures 15A et 15B représentent une variante de réalisation du dispositif de protection comprenant deux varistances 30 avec chacun un déconnecteur thermique respectif formé d'une lame 44b connectée au pôle 34 de la varistance correspondante. La figure 15A représente le dispositif de protection avec les deux déconnecteurs thermiques en position fermée. La figure 15B représente le dispositif de protection avec les deux déconnecteurs thermiques en position ouverte.The Figures 15A and 15B represent an alternative embodiment of the protection device comprising two varistors 30 each with a respective thermal disconnector formed of a blade 44b connected to the pole 34 of the corresponding varistor. The figure 15A represents the protection device with the two thermal disconnectors in the closed position. The figure 15B represents the protection device with the two thermal disconnectors in the open position.

Dans les modes de réalisations des figures 14A, 14B, 14C, 15A et 15B, les varistances 30 sont disposées l'une à côté de l'autre dans un même plan parallèle aux faces principales des varistances. En référence à la figure 14C, l'épaisseur de chaque varistance 30 est ainsi similaire à l'épaisseur de la varistance 30 dans les modes de réalisation du dispositif de protection avec une seule varistance. La tension de service du dispositif de protection reste alors la même.In the embodiments of Figures 14A, 14B, 14C , 15A and 15B the varistors 30 are arranged next to each other in the same plane parallel to the main faces of the varistors. With reference to the figure 14C the thickness of each varistor 30 is thus similar to the thickness of the varistor 30 in the embodiments of the protection device with a single varistor. The operating voltage of the protection device remains the same.

La réalisation de chaque déconnecteur thermique dans ces modes de réalisation avec deux composants de protection peut être conforme à la description précédente.Les lames 44a ou 44b sont réalisées de manière semblable à la description précédente. En référence aux figures 14A à 14C, les lames 44a et la borne 48 font parties de préférence d'une seule et même pièce 40a de manière à procurer une tenue aux courants de courts-circuits tel que précédemment décrit. En référence aux figures 15A et 15B, les lames 44b et la borne 48 font parties de préférence d'une seule et même pièce de manière à procurer une tenue aux courants de courts-circuits tel que précédemment décrit. Dans la variante des figures 14A et 14B, les lames 44 sont contraintes élastiquement par un ressort de torsion unique 50a tandis que dans la variante des figures 15A et 15B, les lames 44 sont contraintes élastiquement chacune par un ressort de torsion respectif réalisé avec un seul fil 50b. Les autres références numériques des figures 14A, 14B, 14C, 15A et 15B sont les mêmes que celles utilisées pour les modes de réalisation précédemment décrit.The realization of each thermal disconnector in these embodiments with two protection components may be as described above. The blades 44a or 44b are made in a manner similar to the preceding description. With reference to Figures 14A to 14C , the blades 44a and the terminal 48 are preferably parts of one and the same piece 40a so as to provide a resistance to short-circuit currents as previously described. With reference to Figures 15A and 15B , the blades 44b and the terminal 48 are preferably parts of one and the same piece so as to provide a resistance to the currents of short circuits as previously described. In the variant of Figures 14A and 14B , the blades 44 are elastically constrained by a single torsion spring 50a while in the variant of Figures 15A and 15B the blades 44 are elastically constrained each by a respective torsion spring made with a single wire 50b. Other numerical references of Figures 14A, 14B, 14C , 15A and 15B are the same as those used for the previously described embodiments.

La figure 16A représente une autre variante de réalisation du dispositif de protection comprenant deux varistances 30 avec chacun un déconnecteur thermique formé d'une lame 44 respective connectée à un pôle 34 de la varistance respective. Dans cette variante, les varistances 30 sont disposées l'une au-dessus de l'autre dans le sens de l'épaisseur de la cartouche 20. La compacité conférée par les caractéristiques précédemment décrites du déconnecteur thermique permet de réaliser un tel mode de réalisation avec des tensions de service intéressantes pour les varistances 30.The figure 16A represents another alternative embodiment of the protection device comprising two varistors 30 each with a thermal disconnector formed of a respective blade 44 connected to a pole 34 of the respective varistor. In this variant, the varistors 30 are arranged one above the other in the direction of the thickness of the cartridge 20. The compactness conferred by the previously described characteristics of the thermal disconnector enables such an embodiment to be realized. with interesting operating voltages for varistors 30.

Dans ces variantes à deux composants de protection 30 illustrées aux figures 14A, 14B, 15A, 15B et 16A, le dispositif de protection peut présenter un schéma électrique conformément à celui représenté en figure 16B. Ainsi ces variantes correspondent à un montage électrique où un seul déconnecteur thermique est prévu pour chaque varistance considérée. Ces modes de réalisation ne correspondent alors pas au montage en série d'un composant de protection avec deux déconnecteurs thermiques de ce composant de protection. De façon alternative, à ces variantes des figures 14A, 14B, 15A, 15B et 16A, il peut être prévu de rajouter, pour chaque varistance considérée, un deuxième déconnecteur thermique relié en série au premier déconnecteur thermique par l'intermédiaire de la varistance. En référence à la figure 16B, ce deuxième déconnecteur thermique peut, par exemple, être commun aux deux varistances en étant disposé sur la partie commune des branches électriques reliées à la borne 38 (mode de réalisation non représenté).In these two-component protection variants illustrated in FIGS. Figures 14A, 14B , 15A, 15B and 16A , the protection device may have an electrical diagram in accordance with that shown in figure 16B . Thus these variants correspond to an electrical assembly where a single thermal disconnector is provided for each varistor considered. These embodiments then do not correspond to the series connection of a protection component with two thermal disconnectors of this protection component. Alternatively, to these variants of Figures 14A, 14B , 15A, 15B and 16A it may be provided to add, for each varistor considered, a second thermal disconnect connected in series to the first thermal disconnector via the varistor. With reference to the figure 16B this second thermal disconnector may, for example, be common to both varistors being disposed on the common part of the electrical branches connected to the terminal 38 (embodiment not shown).

Comme illustré sur la figure 16B, un condensateur 22 peut être disposé en parallèle des deux déconnecteurs thermiques pour améliorer le pouvoir de coupure notamment lors d'utilisation en courant continu.As illustrated on the figure 16B a capacitor 22 may be arranged in parallel with the two thermal disconnectors to improve the breaking capacity, especially when using direct current.

La présence de cette varistance supplémentaire dans le même volume interne 21 de la cartouche 20 permet d'assurer la continuité de service et de protection lorsqu'une des varistances, arrivée en fin de vie, a été déconnectée. La déconnexion d'une des varistances par un déconnecteur thermique peut être signalée à l'utilisateur de l'installation électrique à l'aide d'un élément de visualisation connu en soi. L'utilisateur est averti de l'arrivée en fin de vie d'un des composants de protection de la cartouche 20, avec une fonction de protection contre les surtensions encore assurée par la deuxième varistance le temps pour l'utilisateur de remplacer la cartouche 20. La figure 5 illustre un mode de réalisation possible de l'élément de visualisation 26 de l'état d'un des déconnecteurs thermiques.The presence of this additional varistor in the same internal volume 21 of the cartridge 20 ensures continuity of service and protection when one of the varistors, end of life, has been disconnected. The disconnection of one of the varistors by a thermal disconnector can be signaled to the user of the electrical installation using a display element known per se. The user is notified of the arrival at the end of life of one of the protective components of the cartridge 20, with a surge protection function still provided by the second varistor the time for the user to replace the cartridge 20 . The figure 5 illustrates a possible embodiment of the display element 26 of the state of one of the thermal disconnectors.

Grâce à la compacité du déconnecteur thermique précédemment décrit, les dispositifs de protection des figures 14A, 14B, 15A, 15B et 16A, 16B peuvent être dans une cartouche 20 aux dimensions telles que définies plus haut.Thanks to the compactness of the thermal disconnector previously described, the protection devices of the Figures 14A, 14B , 15A, 15B and 16A, 16B can be in a cartridge 20 with the dimensions as defined above.

Suivant un mode de réalisation, il peut être prévu de disposer une pluralité de varistances dans le même composant de protection. Ces varistances peuvent être reliées en série et/ou en parallèle entre elles selon les applications. Les varistances sont alors assemblées en une masse compacte, comprenant au moins deux varistances. Dans le cas où il est prévu d'associer plusieurs varistances en série et/ou en parallèle, on entend par "composant de protection", le bloc disposé entre deux pôles électriques successifs et formé d'une varistance ou d'au moins deux varistances reliées entre elles.According to one embodiment, it may be provided to have a plurality of varistors in the same protection component. These varistors can be connected in series and / or in parallel with each other according to the applications. The varistors are then assembled into a compact mass, comprising at least two varistors. In the case where it is intended to associate several varistors in series and / or in parallel, the term "protection component", the block disposed between two successive electric poles and formed of a varistor or at least two varistors interconnected.

La figure 17B illustre une variante de réalisation d'un double composant de protection 30 composé de deux blocs 80 présentant une résistance électrique non linéaire. Ces deux blocs 80 forment deux varistances. Le double composant de protection 30 comporte en outre une électrode 98 formant pôle commun des varistances pour connecter électriquement les deux varistances entre elles. L'électrode 98 relie ainsi un pôle du premier bloc 30 à un pôle du deuxième bloc 80. Les autres pôles 34 des blocs 80 sont connectés à des contacts mobiles 44 de déconnecteurs thermiques reliés électriquement aux bornes 38 et 48 du dispositif de protection tel que précédemment décrit. L'ensemble de varistances - c'est dire l'association des deux blocs 80 - est entièrement enrobé par le revêtement d'isolation électrique 88 à travers lequel émerge les pôles de connexion des varistances dont l'électrode 98. Un tel mode de réalisation du double composant de protection réalise l'association de deux varistances en parallèle, du fait de la prise de potentiel intermédiaire par l'électrode 98. Les deux blocs 80 de varistances étant séparés par une électrode 98 formant pôle, ce mode de réalisation avec un double composant de protection est à distinguer du mode de réalisation précédent, où plusieurs varistances sont associées entre elles entre deux pôles successifs, formant ainsi un seul composant de protection.The Figure 17B illustrates an alternative embodiment of a double protection component 30 composed of two blocks 80 having a non-linear electrical resistance. These two blocks 80 form two varistors. The dual protection component 30 further comprises an electrode 98 forming a common pole of the varistors for electrically connecting the two varistors together. The electrode 98 thus connects a pole of the first block 30 to a pole of the second block 80. The other poles 34 of the blocks 80 are connected to movable contacts 44 of thermal disconnectors electrically connected to the terminals 38 and 48 of the protection device such as previously described. The set of varistors - that is to say the combination of the two blocks 80 - is entirely encapsulated by the electrical insulation coating 88 through which the connection poles of the varistors emerge. the electrode 98. Such an embodiment of the double protection component provides the combination of two varistors in parallel, because of the intermediate potential taken by the electrode 98. The two blocks 80 of varistors being separated by an electrode 98 forming a pole, this embodiment with a double protection component is to be distinguished from the previous embodiment, where several varistors are associated with each other between two successive poles, thus forming a single protection component.

Ce mode de réalisation du double composant de protection est particulièrement utile pour la protection d'installation photovoltaïque. La figure 17A illustre une installation photovoltaïque comprenant un panneau photovoltaïque 90. Ce panneau 90 génère une tension électrique entre les fils 95 et 96. Une dérivation des fils 95 et 96 (non représentée) permet alors de récupérer le courant électrique généré par l'installation photovoltaïque. De manière à assurer la protection contre les surtensions de cette installation, chacun de ses fils 95 et 96 peut être relié à une des bornes 48 et 38 du dispositif de protection comprenant le double composant de protection 30 précédent. L'électrode 98 du double composant de protection 30 est elle reliée à la terre 94 par l'intermédiaire d'une éclateur 92. Chacun des fils 95 et 96 est ainsi relié à la terre par l'intermédiaire d'une varistance respective et d'un éclateur 92 commun.This embodiment of the dual protection component is particularly useful for photovoltaic installation protection. The Figure 17A illustrates a photovoltaic installation comprising a photovoltaic panel 90. This panel 90 generates an electrical voltage between the son 95 and 96. A bypass son 95 and 96 (not shown) then retrieves the electrical current generated by the photovoltaic system. In order to ensure the overvoltage protection of this installation, each of its son 95 and 96 can be connected to one of the terminals 48 and 38 of the protection device comprising the previous double protective component 30. The electrode 98 of the double protection component 30 is connected to the earth 94 via a spark gap 92. Each of the wires 95 and 96 is thus connected to the ground via a respective varistor and the earth. a spark gap 92 common.

Dans ce mode de réalisation, un seul déconnecteur thermique est prévu pour chaque composant de protection considéré. Ce mode de réalisation ne correspond alors pas au montage en série d'un composant de protection avec deux déconnecteurs thermiques de ce composant de protection. De façon alternative à ce mode de réalisation, il peut être prévu de rajouter, pour une varistance considérée, un deuxième déconnecteur thermique relié en série au premier déconnecteur thermique par l'intermédiaire de la varistance. En référence à la figure 17B, ce deuxième déconnecteur thermique peut, par exemple, être commun aux deux varistances en assurant la déconnexion de l'électrode 98 (mode de réalisation non représenté). Dans ce mode de réalisation alternatif, pour chaque composant de protection considéré, les deux déconnecteurs thermiques et le composant de protection correspondant sont branchés en série.In this embodiment, a single thermal disconnector is provided for each protection component considered. This embodiment therefore does not correspond to the series connection of a protection component with two thermal disconnectors of this protection component. As an alternative to this embodiment, it may be provided to add, for a varistor considered, a second thermal disconnect connected in series to the first thermal disconnector via the varistor. With reference to the Figure 17B this second thermal disconnector may, for example, be common to both varistors by ensuring the disconnection of the electrode 98 (embodiment not shown). In this alternative embodiment, for each protection component considered, the two thermal disconnectors and the corresponding protection component are connected in series.

Des modes de réalisation de multiple composant de protection 30 sont possibles par l'association d'un plus grand nombre de varistances en série ou en parallèle. Un mode de réalisation du multiple composant de protection 30 consiste ainsi en la superposition de plusieurs blocs 80 présentant une résistance électrique non linéaire en reliant les blocs 80 par des électrodes 98 de façon similaire au mode de réalisation illustré par la figure 17B. L'ensemble de ces blocs 80 peuvent être enrobé du revêtement d'isolation électrique 88 précédemment décrit (De tels modes de réalisation ne sont pas représentés). Selon un exemple de ce mode de réalisation, un triple composant de protection 30 peut être formée par la superposition de trois blocs 80 séparés par des électrodes 98. Ce triple composant de protection possède alors quatre pôles, dont deux électrodes 98, permettant de réaliser la protection contre les surtensions en mode différentiel d'une installation électrique triphasée. Chaque bloc 80 de varistances étant séparés par une électrode 98 formant pôle, ce mode de réalisation avec un triple composant de protection est à distinguer du mode de réalisation avec un seul composant de protection pour lequel plusieurs varistances sont associées entre elles entre deux pôles successifs. Selon le mode de réalisation d'un triple composant de protection, au plus un seul déconnecteur thermique est prévu pour chaque composant de protection considéré. Ce mode de réalisation ne correspond alors pas au montage en série d'un composant de protection avec deux déconnecteurs thermiques de ce composant de protection. De façon alternative à ce mode de réalisation, il peut être prévu de rajouter, pour un composant de protection considéré, un deuxième déconnecteur thermique relié en série à un des premiers déconnecteurs thermiques par l'intermédiaire d'un des blocs. On peut obtenir un tel mode de réalisation en disposant un deuxième déconnecteur thermique au niveau d'une des électrodes 98 (mode de réalisation non représenté). Dans ce mode de réalisation alternatif, pour au moins un composant de protection considéré, les deux déconnecteurs thermiques et le composant de protection correspondant sont branchés en série.Embodiments of multiple protection components 30 are possible by the combination of a larger number of varistors in series or in parallel. One embodiment of the multiple protection component 30 thus consists in the superposition of several blocks 80 having a non-linear electrical resistance by connecting the blocks 80 by electrodes 98 in a manner similar to the embodiment illustrated by FIG. Figure 17B . All of these blocks 80 may be coated with the electrical insulation coating 88 previously described (such modes are not represented). According to an example of this embodiment, a triple protection component 30 may be formed by the superposition of three blocks 80 separated by electrodes 98. This triple protection component then has four poles, including two electrodes 98, for carrying out the differential voltage surge protection of a three-phase electrical installation. Each block 80 of varistors being separated by a pole electrode 98, this embodiment with a triple protection component is to be distinguished from the embodiment with a single protection component for which several varistors are associated with each other between two successive poles. According to the embodiment of a triple protection component, at most only one thermal disconnector is provided for each protection component considered. This embodiment therefore does not correspond to the series connection of a protection component with two thermal disconnectors of this protection component. As an alternative to this embodiment, it may be provided to add, for a protection component considered, a second thermal disconnect connected in series to one of the first thermal disconnectors via one of the blocks. Such an embodiment can be obtained by arranging a second thermal disconnector at one of the electrodes 98 (embodiment not shown). In this alternative embodiment, for at least one protection component considered, the two thermal disconnectors and the corresponding protection component are connected in series.

Suivant un mode de réalisation, il peut être prévu que le dispositif de protection possède plus de deux bornes de connexion à l'installation électrique à protéger. Un tel mode de réalisation de l'invention correspond par exemple à l'utilisation d'un multiple composant de protection 30 avec un nombre de pôles supérieur à deux tel que le mode de réalisation décrit en référence aux figures 17A et 17B.According to one embodiment, it may be provided that the protection device has more than two terminals for connection to the electrical installation to be protected. Such an embodiment of the invention corresponds, for example, to the use of a multiple protection component 30 with a number of poles greater than two, such as the embodiment described with reference to FIGS. Figures 17A and 17B .

Les caractéristiques décrites plus haut, prises toutes ensemble ou seulement certaines d'entre elles, permettent de réaliser des dispositifs de protection contre les surtensions transitoires qui puissent satisfaire à la fois les normes IEC et UL, ainsi que le guide UTE qui ont été mentionnés plus haut. Chacune de ces caractéristiques peut, indépendamment les unes des autres ou en combinaison, être mise en oeuvre dans le dispositif de protection selon le niveau de performance souhaité. Le dispositif de protection ainsi réalisé bénéficie des avantages associés aux caractéristiques précédemment décrites et qu'il incorpore.The characteristics described above, taken together or only some of them, make it possible to provide transient overvoltage protection devices which can satisfy both IEC and UL standards, as well as the UTE guide which have been mentioned more above. Each of these features may, independently of one another or in combination, be implemented in the protection device according to the desired level of performance. The protection device thus produced benefits from the advantages associated with the characteristics previously described and which it incorporates.

Ces caractéristiques permettent de notamment de réaliser des dispositifs de protection prévus pour une tension nominale d'utilisation jusqu'à 690V en courant alternatif sous 50 Hz ou 60 Hz et jusqu'à 895V en courant continu et de présenter une protection contre les chocs foudres de courant nominal (Imax) de 40kA pour une onde de choc 8/20 selon la norme IEC et contre les chocs foudres de courant nominal (In) de 20kA pour une onde de choc 8/20 selon la norme UL. Ces performances peuvent être obtenus avec une varistance unique choisie de façon appropriée. La tension nominale maximale peut facilement être augmentée en assemblant une ou plusieurs de ces varistances en série.These characteristics make it possible in particular to provide protection devices provided for a nominal operating voltage up to 690V AC at 50 Hz or 60 Hz and up to 895V DC and to provide protection against lightning strikes. rated current (Imax) of 40kA for a shock wave 8/20 according to the IEC standard and against lightning current shocks (In) of 20kA for an 8/20 shock wave according to the UL standard. These performances can be obtained with a single varistor chosen appropriately. The maximum rated voltage can easily be increased by assembling one or more of these varistors in series.

Claims (15)

  1. A device for protecting an electric installation against transient overvoltages, comprising:
    - two terminals (38, 48) connecting the device to the electric installation to be protected;
    - a protective component (30) against overvoltages electrically connected to the two connection terminals (38, 48), and
    a thermal disconnector comprising a conductive leaf member (44) held in a first position in which the leaf member (44) ensures an electric connection between the protective component and one of the two connection terminals (48), the thermal disconnector being designed to cause the leaf member (44) to move to a second position when the temperature of the protective component (30) exceeds a predetermined threshold, said electric connection being open in said second position;
    wherein the leaf member (44) and said one of the two connection terminals (38, 48) belong to one and the same part (40), and
    wherein the leaf member (44) principally extends in a first plane parallel to one of the main faces (32) of the protective component (30), the movement of the leaf member (44) between the first position and the second position principally occurring in this first plane.
  2. The protection device according to claim 1, wherein the protective component (30) against overvoltages is a varistor.
  3. The protection device according to claim 1 or 2, further comprising a member (22) for reducing or eliminating an electric arc formed during movement of the leaf member (44) from the first position to the second position, the arc reducing or eliminating member (22) being chosen from the group of arc reducing or eliminating members comprising electric means, electronic means, electromechanical means and mechanical means.
  4. The protection device according to any of claims 1 to 3 wherein the part (40), to which the leaf member (44) and said one of two connection terminals (48) belong, has an IACS conductivity of 70 % or higher, preferably 90 % or higher, and further preferably 95 % or higher.
  5. The protection device according to claim 4 wherein the part (40), to which the leaf member (44) and said one of two connection terminals (48) belong, is in copper with a copper content of 99.9 % or more.
  6. The protection device according to any of claims 1 to 5, wherein the part (40) formed by the leaf member (44) and said one of two connection terminals (48) comprises an intermediate flexible portion (46) between the leaf member (44) and the terminal (48) to allow movement of the leaf member (44) relative to the terminal (48) between the first position and the second position.
  7. The protection device according to any of claims 1 to 6, wherein the leaf member (44) is resiliently urged towards the second position, the thermal disconnector comprising a heat-sensitive element (70) in thermal contact with the protective component (30), the heat-sensitive element holding the leaf member (44) in the first position up to the predetermined temperature threshold and releasing the leaf member (44) when the temperature of the protective component (30) exceeds the predetermined threshold.
  8. The protection device according to claim 7, wherein the heat-sensitive element (70) is a heat-meltable solder joint (70) via which the leaf member (44) is soldered to a pole (34) of the protective component (30).
  9. The protection device according to claim 8, wherein the portion (42) of the leaf member (44) soldered to the pole (34) by the fusible solder (70) is connected to the remainder of the leaf member (44) via a local restriction (58) of the cross-sectional area of the leaf member (44) to concentrate the heat, released by the protective component (30), at the fusible solder (70).
  10. The protection device according to claim 8 or 9, wherein the portion (42) of the leaf member (44) soldered to the pole (34) of the protective component (30) is tinned.
  11. The protection device according to any of claims 1 to 10, in which the pole (34) of the protective component (30) extends along the main face (32).
  12. The protection device according to any of claims 1 to 11, comprising a second thermal disconnector to disconnect the protective component from the electric installation when the temperature of the protective component exceeds a predetermined threshold.
  13. The protection device according to any of claims 1 to 12, comprising a separate torsion spring (50) through which leaf member (44) is resiliently urged from the closed to the open position.
  14. The protection device according claim13, in which the leaf member (44) includes a region (52) of stiffening of part (40) and a support (56) for spring (50), to transmit the urging force of spring (50) to leaf member (44).
  15. The protection device according to any of claims 1 to 14, in which the leaf member (44) includes a flexible portion forming an elbow (46) about an axis perpendicular to the first plane, the elbow (46) permitting the movement of leaf member (44) between the open and closed position.
EP11161605.8A 2010-04-09 2011-04-08 Device for protecting against surge voltages with enhanced thermal disconnector Active EP2375425B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1052736A FR2958789B1 (en) 2010-04-09 2010-04-09 DEVICE FOR PROTECTION AGAINST TRANSIENT OVERVOLTAGES WITH IMPROVED THERMAL DISCONNECTOR

Publications (2)

Publication Number Publication Date
EP2375425A1 EP2375425A1 (en) 2011-10-12
EP2375425B1 true EP2375425B1 (en) 2019-03-20

Family

ID=43086864

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11161605.8A Active EP2375425B1 (en) 2010-04-09 2011-04-08 Device for protecting against surge voltages with enhanced thermal disconnector

Country Status (4)

Country Link
US (1) US20120086540A1 (en)
EP (1) EP2375425B1 (en)
CN (1) CN102254659B (en)
FR (1) FR2958789B1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011015449B4 (en) * 2011-01-25 2014-09-25 Ellenberger & Poensgen Gmbh Switching unit for switching high DC voltages
US8743525B2 (en) 2012-06-19 2014-06-03 Raycap Intellectual Property, Ltd Overvoltage protection devices including wafer of varistor material
DE102012112487A1 (en) * 2012-12-18 2014-06-18 Thermik Gerätebau GmbH Temperature protection circuit
DE102013021936B3 (en) * 2013-10-08 2015-02-12 Dehn + Söhne Gmbh + Co. Kg Compact, prefabricatable surge protection device
US9906017B2 (en) 2014-06-03 2018-02-27 Ripd Research And Ip Development Ltd. Modular overvoltage protection units
DE102015225376B3 (en) * 2015-12-16 2017-01-19 Phoenix Contact Gmbh & Co. Kg Overvoltage protection device of type II
FR3058276B1 (en) * 2016-11-03 2019-05-10 Citel DEVICE FOR PROTECTING TRANSIENT OVERVOLTAGES
US10319545B2 (en) 2016-11-30 2019-06-11 Iskra Za{hacek over (s)}{hacek over (c)}ite d.o.o. Surge protective device modules and DIN rail device systems including same
US10447026B2 (en) 2016-12-23 2019-10-15 Ripd Ip Development Ltd Devices for active overvoltage protection
US10707678B2 (en) 2016-12-23 2020-07-07 Ripd Research And Ip Development Ltd. Overvoltage protection device including multiple varistor wafers
US10340110B2 (en) 2017-05-12 2019-07-02 Raycap IP Development Ltd Surge protective device modules including integral thermal disconnect mechanisms and methods including same
US10685767B2 (en) 2017-09-14 2020-06-16 Raycap IP Development Ltd Surge protective device modules and systems including same
DE102017124219A1 (en) * 2017-10-18 2019-04-18 Phoenix Contact Gmbh & Co. Kg Surge protection device
DE102018118247B3 (en) * 2018-07-17 2019-09-19 Borgwarner Ludwigsburg Gmbh Thermal fuse
US11223200B2 (en) 2018-07-26 2022-01-11 Ripd Ip Development Ltd Surge protective devices, circuits, modules and systems including same
FR3107781B1 (en) * 2020-02-27 2023-06-30 Legrand France Electrical device against transient overvoltages and a thermal runaway detection varistor device
US11862967B2 (en) 2021-09-13 2024-01-02 Raycap, S.A. Surge protective device assembly modules
US11723145B2 (en) 2021-09-20 2023-08-08 Raycap IP Development Ltd PCB-mountable surge protective device modules and SPD circuit systems and methods including same
US11990745B2 (en) 2022-01-12 2024-05-21 Raycap IP Development Ltd Methods and systems for remote monitoring of surge protective devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040418A1 (en) * 2004-10-08 2006-04-20 Abb France Overvoltage protection device provided with arc cutting means and corresponding method
FR2877156A1 (en) * 2004-10-25 2006-04-28 Soule Prot Surtensions Sa OVERVOLTAGE PROTECTION DEVICE HAVING AN IMPROVED DISCONNECT CAPABILITY
DE102006042028B3 (en) * 2006-07-19 2007-09-27 Dehn + Söhne Gmbh + Co. Kg Separation device for pluggable surge arrester, has metallic form part and finger standing under self-spring stress, where finger is supported at guide and is engaged into space closed by u-shaped end of metallic form part
DE102008031917A1 (en) * 2008-07-08 2010-01-14 Phoenix Contact Gmbh & Co. Kg Overvoltage protection element i.e. protective plug, has separation guide provided with end that executes both linear movement in direction of another end of guide and swiveling movement while separating solder joint

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913049A (en) * 1973-04-02 1975-10-14 Bk Patent Dev Thermostatic circuit breaker
US4109376A (en) * 1977-06-24 1978-08-29 General Motors Corporation Method of manufacturing a circuit breaker assembly or the like
US4365226A (en) * 1981-02-23 1982-12-21 Fasco Industries, Inc. Plug-in type fuse
US4492602A (en) * 1983-07-13 1985-01-08 Revere Copper And Brass, Inc. Copper base alloys for automotive radiator fins, electrical connectors and commutators
IT1196620B (en) * 1986-09-11 1988-11-16 Metalli Ind Spa METALLIC ALLOY BASED ON COPPER OF THE PERFECT TYPE, PARTICULARLY FOR THE CONSTRUCTION OF ELECTRONIC COMPONENTS
US5148345A (en) * 1986-10-28 1992-09-15 Allina Edward F Prepackaged electrical transient surge protection
DE3820272C1 (en) * 1987-10-20 1989-04-06 Krone Ag, 1000 Berlin, De
US5224013A (en) * 1990-12-26 1993-06-29 Tii Industries Inc. Miniature station protector modules
FR2727806A1 (en) 1994-12-05 1996-06-07 Soule Sa PROTECTION DEVICE AGAINST TRANSIENT OVERVOLTAGES BASED ON VARISTORS AND THERMAL DISCONNECTORS
US5945903A (en) * 1995-06-07 1999-08-31 Littelfuse, Inc. Resettable automotive circuit protection device with female terminals and PTC element
JP3119124B2 (en) * 1995-06-29 2000-12-18 株式会社村田製作所 Electronic parts for communication line protection
JPH0992110A (en) * 1995-09-26 1997-04-04 Denso Corp Resistor provided with thermal fuse
US5790359A (en) * 1996-03-16 1998-08-04 Joslyn Electronic Systems Corporation Electrical surge protector with thermal disconnect
US6254702B1 (en) * 1997-02-18 2001-07-03 Dowa Mining Co., Ltd. Copper base alloys and terminals using the same
US5781394A (en) * 1997-03-10 1998-07-14 Fiskars Inc. Surge suppressing device
DE19717634C2 (en) * 1997-04-25 2000-06-08 Epcos Ag Electrical component with safety disconnect device
AT406207B (en) * 1997-09-30 2000-03-27 Felten & Guilleaume Ag Oester PLUG-IN SURGE PROTECTOR
US6603385B2 (en) * 1997-11-21 2003-08-05 Safety Thermal Components, Inc. Safety devices for electrical circuits and systems
US5901027A (en) * 1998-05-06 1999-05-04 Leviton Manufacturing Co., Inc. Metal oxide varistors having thermal protection
US5933310A (en) * 1998-05-07 1999-08-03 Alan Scientific Corporation Circuit breaker with wide operational current range
US6430019B1 (en) * 1998-06-08 2002-08-06 Ferraz S.A. Circuit protection device
FR2783365B1 (en) 1998-09-15 2000-12-01 Soule Materiel Electr DEVICE FOR PROTECTING ELECTRICAL INSTALLATIONS AGAINST INTERFERENCE WITH THE POWER SUPPLY
US6031446A (en) * 1999-03-09 2000-02-29 Eaton Corporation Combination fuse clip and line terminal connection device
US6211770B1 (en) * 1999-04-27 2001-04-03 Mcg Electronics, Inc. Metal oxide varistor module
US6252488B1 (en) * 1999-09-01 2001-06-26 Leviton Manufacturing Co., Inc. Metal oxide varistors having thermal protection
US6304166B1 (en) * 1999-09-22 2001-10-16 Harris Ireland Development Company, Ltd. Low profile mount for metal oxide varistor package and method
US6327129B1 (en) * 2000-01-14 2001-12-04 Bourns, Inc. Multi-stage surge protector with switch-grade fail-short mechanism
MXPA06012057A (en) * 2004-04-19 2007-01-25 Soule Protection Surtensions Surge voltage protection device with improved disconnection and visual indication means.
US11217413B2 (en) * 2004-09-13 2022-01-04 Eaton Intelligent Power Limited Electronically controlled fusible switching disconnect modules and devices
US7477503B2 (en) * 2005-04-30 2009-01-13 Efi Electronics Corporation Circuit protection device
WO2006120522A1 (en) * 2005-05-04 2006-11-16 Kiwa Spol. S R.O. An overvoltage protection
RU2412496C2 (en) * 2005-08-05 2011-02-20 Кива Спол. С Р.О. Overvoltage protection device with state alarm
FR2897989B1 (en) * 2006-02-24 2008-05-09 Soule Prot Surtensions Sa OVERVOLTAGE PROTECTION DEVICE WITH SIMPLIFIED VISUALIZATION SYSTEM AND METHOD OF MANUFACTURING THE SAME
FR2925216B1 (en) * 2007-12-18 2010-04-23 Abb France OVERVOLTAGE PROTECTION DEVICE HAVING A DISCONNECTION AUXILIARY
DE102008048644B4 (en) * 2008-08-01 2017-08-24 DEHN + SÖHNE GmbH + Co. KG. Overvoltage protection device with one or more parallel-connected, located in a structural unit overvoltage limiting elements
DE102008047396B3 (en) * 2008-08-22 2010-03-11 Dehn + Söhne Gmbh + Co. Kg Overvoltage protection device with thermal cut-off device
DE102008061323B3 (en) * 2008-12-11 2010-06-24 Phoenix Contact Gmbh & Co. Kg Excess voltage protection unit has a varistor which, on a thermal overload, shifts for separation from the contacts
US8031456B2 (en) * 2009-05-12 2011-10-04 Ceramate Technical Co., Ltd. Explosion-roof and flameproof pullout safety surge absorbing module
US20100328016A1 (en) * 2009-06-24 2010-12-30 Robert Wang Safe surge absorber module
DE102009030629A1 (en) * 2009-06-25 2010-12-30 Phoenix Contact Gmbh & Co. Kg Snubber
DE102009036125A1 (en) * 2009-08-05 2011-02-10 Phoenix Contact Gmbh & Co. Kg Snubber
DE102009053145A1 (en) * 2009-11-05 2011-05-12 Phoenix Contact Gmbh & Co. Kg Overvoltage protection device, has thermal expandable material arranged within housing such that pole of varistor does not stay in electrically conductive contact with connection elements
CN101741081A (en) * 2010-01-12 2010-06-16 佛山市浦斯电子有限公司 Surge suppressor with thermal protective function
US8502637B2 (en) * 2010-09-22 2013-08-06 Thomas & Betts International, Inc. Surge protective device with thermal decoupler and arc suppression

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040418A1 (en) * 2004-10-08 2006-04-20 Abb France Overvoltage protection device provided with arc cutting means and corresponding method
FR2877156A1 (en) * 2004-10-25 2006-04-28 Soule Prot Surtensions Sa OVERVOLTAGE PROTECTION DEVICE HAVING AN IMPROVED DISCONNECT CAPABILITY
DE102006042028B3 (en) * 2006-07-19 2007-09-27 Dehn + Söhne Gmbh + Co. Kg Separation device for pluggable surge arrester, has metallic form part and finger standing under self-spring stress, where finger is supported at guide and is engaged into space closed by u-shaped end of metallic form part
DE102008031917A1 (en) * 2008-07-08 2010-01-14 Phoenix Contact Gmbh & Co. Kg Overvoltage protection element i.e. protective plug, has separation guide provided with end that executes both linear movement in direction of another end of guide and swiveling movement while separating solder joint

Also Published As

Publication number Publication date
FR2958789A1 (en) 2011-10-14
FR2958789B1 (en) 2012-05-11
US20120086540A1 (en) 2012-04-12
CN102254659B (en) 2017-03-01
EP2375425A1 (en) 2011-10-12
CN102254659A (en) 2011-11-23

Similar Documents

Publication Publication Date Title
EP2375426B1 (en) Varistor including an electrode with jag portion forming a pole and lightning including such a varistor
EP2375424B1 (en) Device for protecting against overvoltages with parallel thermal disconnectors
EP2375425B1 (en) Device for protecting against surge voltages with enhanced thermal disconnector
EP1826793B1 (en) Device for protection against overvoltage with thermal disconnector with double contact surface
EP2096657B1 (en) Device for protecting against voltage surges comprising selective disconnection means
EP1743346B1 (en) Surge voltage protection device with arc-breaking means
EP3319194B1 (en) Transient surge protection device
FR3023988A3 (en)
EP2602805B1 (en) Gehäuse für Schutzvorrichtung gegen Überlastspannungen, und entsprechende Schutzvorrichtung gegen Überlastspannungen
EP3244504B1 (en) Transient surge protection device
EP1579542A1 (en) Device for protection against surge voltages
EP1815569B1 (en) Overvoltage-protection device with improved disconnection
EP3712908B1 (en) Device for surge protection
EP1803137B1 (en) Overvoltage protection device provided with arc cutting means and corresponding method
FR2967293A1 (en) ELECTRICAL DISCONNECTING DEVICE AND PARAFOUDRE COMPRISING SUCH A DEVICE
EP0027061B1 (en) Lightning arrester device allowing an external short-circuiting and corresponding protection assembly
EP0782753B1 (en) Lightning arrester device
EP2006874B1 (en) Fuse cut-off device for voltage surge protection and device for protecting against voltage surges comprising such a cut-off device
EP1829176B1 (en) Improved-disconnection overvoltage protection device and corresponding method
FR2982705A1 (en) DEVICE FOR PROTECTING AN ELECTRICAL CIRCUIT POWERED BY AN INTEGRABLE ALTERNATING CURRENT IN A CONTACTOR.
EP4006944A1 (en) Switchable electrical connection system
WO2022043399A1 (en) Apparatus for interrupting an electric current
FR3094147A1 (en) Surge protection device
FR2484695A1 (en) Gas filled lightning arrester with external short-circuit - imposed by spring conductor making contact with electrode after melting of spacer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120328

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB FRANCE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170315

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB SCHWEIZ AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01C 7/12 20060101AFI20181001BHEP

Ipc: H01H 37/76 20060101ALI20181001BHEP

INTG Intention to grant announced

Effective date: 20181029

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011057276

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1111334

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1111334

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190408

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011057276

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

26N No opposition filed

Effective date: 20200102

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190620

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240426

Year of fee payment: 14