EP2372259A2 - Verfahren zur Erwärmung von Wasser nach dem Durchlaufprinzip und Wassererwärmungssystem - Google Patents

Verfahren zur Erwärmung von Wasser nach dem Durchlaufprinzip und Wassererwärmungssystem Download PDF

Info

Publication number
EP2372259A2
EP2372259A2 EP11159306A EP11159306A EP2372259A2 EP 2372259 A2 EP2372259 A2 EP 2372259A2 EP 11159306 A EP11159306 A EP 11159306A EP 11159306 A EP11159306 A EP 11159306A EP 2372259 A2 EP2372259 A2 EP 2372259A2
Authority
EP
European Patent Office
Prior art keywords
heat
outlet temperature
water
heat generator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11159306A
Other languages
English (en)
French (fr)
Other versions
EP2372259B1 (de
EP2372259A3 (de
Inventor
Bart Verdaasdonk
Robbert Cornelis De Bruin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2372259A2 publication Critical patent/EP2372259A2/de
Publication of EP2372259A3 publication Critical patent/EP2372259A3/de
Application granted granted Critical
Publication of EP2372259B1 publication Critical patent/EP2372259B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1069Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water regulation in function of the temperature of the domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/176Improving or maintaining comfort of users

Definitions

  • the invention relates to a method for heating water flow variable volume according to the flow principle according to the preambles of claims 1 and 3, in which a heat generator heated by a pump in a circulating heating fluid, the heating fluid heats a run-in water, and at least one in A sensor arranged a waterway measures an outlet temperature T W and / or a volume flow V W of the water. Furthermore, the invention relates to a water heating system according to the flow principle according to the preamble of claim 10 with a heat generator, a heated by the heat generator heating fluid circuit, which is funded by a pump, heated by Schufluidniklauf water flow and at least one arranged in a waterway sensor for detecting an outlet temperature T. W and / or a volume flow V W of the water.
  • Combination heaters can solve two heating tasks, such as hot water heating for room heating and domestic hot water for applications in the kitchen and sanitary area.
  • a heater arranged in the heater (heat source) via a primary heat exchanger heats a circulating heating fluid (heating water), which is conveyed in a space heating mode by a pump (circulation pump) from the heater via flow and return lines to the rooms to be heated and there emits the heat, for example via space heaters (consumers, heat sink) to the room.
  • a diverter valve directs the heating fluid to a secondary heat exchanger (eg, plate heat exchanger), often also located in the heater, where it transfers the heat to a flowing drinking water.
  • a secondary heat exchanger eg, plate heat exchanger
  • the heat generator may be a burner fueled with fuel oil or natural gas, but also a heat generator operating with electrical energy.
  • the heat generator can switch its heat output on and off and, as a rule, also modulate it between a minimum power different from zero and a maximum power (nominal power).
  • DHW mode drinking water of different volume flows can be heated.
  • a domestic hot water temperature setpoint and minimum and maximum allowable outlet temperatures are specified.
  • the amount of a request made to the heat generator heat demand to achieve the target hot water temperature results from the drinking water volume flow, the temperature of the incoming into the secondary heat exchanger cold drinking water (inlet temperature), the set temperature of expiring from the secondary heat exchanger warm drinking water (drinking water) and the efficiency chain for the Heat transfer between heat generator and domestic hot water.
  • the outlet temperature of the domestic hot water can not be kept constant at target temperature T W0 , but fluctuates synchronously and possibly a little time offset with the input and Austaktakteptept (on and off) between a minimum allowable outlet temperature T W0, MIN and a maximum permissible outlet temperature T W0, MAX .
  • These minimum and maximum permissible outlet temperatures form a permissible setpoint temperature interval (hysteresis). Since the heat generator generates too much heat even at minimum power measured on the heat demand, the outlet temperature of the water flowing through the secondary heat exchanger increases rapidly when the heat generator and the circulating pump is switched on and soon reaches the maximum permissible outlet temperature.
  • the heat generator and the circulation pump are turned off by the thermostat or the controller to prevent exceeding the maximum allowable outlet temperature and a possible scalding of a user.
  • the outlet temperature falls quickly and soon reaches the minimum allowable outlet temperature, whereupon the heat generator and the circulation pump finally turn on again.
  • a high hot water comfort is required, which means the most accurate compliance with the hot water target temperature for different DHW tap behavior.
  • the relevant standards check, for example, the deviation of the outlet temperature from the setpoint temperature with continuous tapping with low and high volume flows, with interrupted tapping with shorter and longer tapping pauses and much more.
  • the cyclic operation of heat generator and circulating pump is a critical operating point in terms of comfort requirements because of the above-described fluctuations in the outlet temperature.
  • the setpoint temperature can be achieved in continuous operation and without cycles from the heat generator and the circulation pump.
  • Changes in heat demand such as those resulting from a change in water volume flow, water inlet temperature, or setpoint temperature, must equally change the heat generator heat output.
  • sudden changes in the heat demand can generally not be fulfilled immediately, but only with a time delay. This is due to the thermal inertia of the heat transfer system consisting of heat generator, primary heat exchanger, heating fluid circuit and secondary heat exchanger. The time delay also adversely affects DHW comfort.
  • the heat generator usually has a predetermined rate of change (speed), which can not be exceeded, with which the power modulation can be changed.
  • the heat exchangers Due to their mass as well as the specific heat capacity and the thermal conductivity of the material have a thermal inertia, which acts as a heat storage.
  • the Schufluid Vietnameselauf has its thermal inertia due to its water volume and the mass and the material of the pipe elements used. Only two flow states are known for the heating fluid circuit according to the current state of the art for domestic hot water preparation: circulation at a nominal circulation volume (heating fluid volume) or nominal pump speed and zero circulation when the pump is switched off.
  • the heat output transferred to the water is adjusted only with a time delay and the setpoint temperature is reached only with a time delay.
  • the heat generator heat output will increase at the predetermined rate of change and the heat transfer system will adjust to the new heat demand until the outlet temperature returns to the setpoint temperature after an initial undershooting of the setpoint temperature and / or the minimum allowable outflow temperature.
  • the outlet temperature will initially exceed the setpoint temperature or the maximum permissible outlet temperature, until the heat output has decreased correspondingly with its rate of change and the heat transfer system has adapted to the new heat requirement.
  • the invention has for its object to provide a method for heating water by the flow principle and a water heating system, which overcome the disadvantages mentioned in low and changing heat requirements while largely retaining conventional components and provide a high DHW convenience and improved operation in terms of component life ,
  • the method according to the invention for heating water of variable volume flow according to the continuous flow principle in which a heat generator heats a heating fluid circulated by a pump, heats the heating fluid in a continuous flow, and at least one sensor arranged in a waterway has an outlet temperature T W and / or measures a volume flow V W of the water, based on the fact that the outlet temperature T W of the water based on a modulatable and / or switchable heat output Q of the heat generator and a modulatable and / or switchable volume flow V H of the heating fluid regulated to a predetermined target temperature T W0 becomes.
  • this method with the Wienfluidvolumenstrom V H next to the conventional variable parameter of the heat output Q nor a second variable parameter with which the outlet temperature T W can be influenced and regulated.
  • the heat output Q and the volume flow V H have different inertias or reaction times or rates of change and can thus adapt in different ways the heat transfer system to a requested heat demand. In this way, it is possible to react more quickly and more appropriately to a particular situation with respect to overshoot and undershoot of the outlet temperature T W with respect to the setpoint temperature T W0 .
  • the outlet temperature T W is controlled in a permissible set temperature interval.
  • the heat generator will turn on at a non-zero heat output (eg, Q MIN ) while the pump is switching to a low, non-zero heating fluid volume flow (eg, V H, MIN ). Because of the low Schufluidvolumenstroms and the associated low flow rate, the heat transfer from the heat generator on the heating fluid to the water is not optimal, the temperature rise in the water is slowed down compared to the method of the prior art.
  • the heat stored in the heat transfer system including heat generator, primary heat exchanger, heating fluid and secondary heat exchanger, increases.
  • the heat generator turns off while the pump is switching to a high heating fluid volume flow (eg, V H, MAX ). Because of the high Schufluidvolumenstroms and the associated high flow rate, the heat transfer from the heat generator via the heating fluid to the water compared to the above-described case is now significantly improved, the temperature drop in the water is slowed down compared to the method of the prior art. The heat stored in the heat transfer system decreases. The slower temperature rise and fall is made possible by a more effective utilization of the heat storage capacity in the heat transfer system. This lengthens the clock frequencies of the heat generator, which makes the components involved less stressed, so spared.
  • a high heating fluid volume flow eg, V H, MAX
  • the switching on or off of the heat generator takes place shortly before or simultaneously with the achievement of the minimum or maximum allowable outlet temperature, while switching the pump to a low or high Schufluidvolumenstrom each time with or shortly after reaching the minimum or the maximum permissible outlet temperature.
  • the size of the time intervals "shortly before” or “shortly after” arise depending on the given inertia or reaction times or rates of change of the heat generator heat output and the pump delivery rate, these inertias, reaction times or rates of change interacting with the respectively connected systems (transfer from the heat generator via the primary heat exchanger to the heating fluid circuit (thermal) or from the pump to the Schufluidniklauf (mechanical)) must be seen.
  • the outlet temperature T W is controlled in a permissible set temperature interval.
  • the permissible setpoint temperature interval in the heat generator continuous operation may be identical to or deviate from the permissible setpoint temperature interval in the cyclic heat generator mode.
  • the heat generator heats with a heat output corresponding to the heat demand while the pump is delivering a nominal heating fluid volume flow V H, NOM .
  • the heat generator heats the heat generator at a relation to the first heat demand increased heat demand (for example, increased water volume flow) with a heat demand corresponding to the increased heat output, while the pump first switches to an increased Schufluidvolumenstrom and then back to the nominal Schufluidvolumenstrom V H, NOM .
  • the increase in the heat generator heat output is gradual with a predetermined, finite (non-erratic) rate of change. Until this increased heat output on the sluggish chain of the heat transfer system in the water volume flow noticeable, the outlet temperature T W would have dropped according to the method of the prior art (undershoot), only gradually approach the target temperature again.
  • the rapidly increased heating fluid volume flow ensures a rapidly increased heat transfer to the water, whereby a drop in the outlet temperature T W is prevented.
  • the Schufluid Vietnamese innovation is gradually reduced back to the nominal Schufluidvolumenstrom V H, NOM .
  • the assumed highest possible rate of change of the Schufluidvolumenstroms (corresponds approximately to the speed change rate of the pump) is significantly higher than the assumed highest possible Rate of change of heat generator heat output.
  • the influence of the outlet temperature T W by the relatively low-mass secondary heat exchanger is much more direct and therefore faster than by the complete, relatively slow heat transfer system. Therefore, the outlet temperature T W can be corrected by means of the Schufluidvolumenstroms much faster than by means of the heat output.
  • the heat generator heats up with a reduced heat output corresponding to the reduced heat requirement, while the pump first switches to a reduced heating fluid volume flow and then back to the nominal heating fluid volume flow V H, Resets NOM .
  • the ratios are exactly reversed from what has been described above:
  • the reduction of the heat generator heat output is gradual with a predetermined, finite (non-erratic) rate of change. Until this reduced heat output on the sluggish chain of the heat transfer system in the water volume flow noticeable, the outlet temperature T W would have already increased according to the method of the prior art (overshoot), only gradually approach the target temperature again.
  • the rapidly reduced Schufidvolumenstrom ensures a rapidly reduced heat transfer to the water, whereby an increase in the outlet temperature T W is prevented.
  • the Schufid35 innovative innovation is gradually reduced back to the nominal Schufluidvolumenstrom V H, NOM .
  • An embodiment of the method is characterized in that a first period of predefinable duration for monitoring a time course of a current temperature deviation .DELTA.T the outlet temperature T W of the target temperature T W0 and a second period of predetermined duration for controlling the outlet temperature T W to target temperature T W0 alternately to repeat.
  • the duration of the first and second time periods can be predetermined as a fixed value or change depending on the temperature deviation, the operating state or other situations.
  • an average temperature deviation ⁇ T D assumes a value different from zero over time
  • at least the heat generator heat output is modulated to regulate the outlet temperature T W.
  • This essentially corresponds to the conventional power modulation of the heat generator, if, in addition, the time profile of the instantaneous temperature deviation .DELTA.T is constant. However, if the time course is not constant, the modulation of the heat generator heat output is supplemented by a modulation of the heating fluid volume flow.
  • for regulating the outlet temperature T W is at least the Schufluidvolumenstrom when a current temperature difference .DELTA.T predeterminable time within a period comprising at least two zero crossings modulated.
  • the outlet temperature here is sometimes greater, sometimes smaller than the setpoint temperature, which can be considered an indication that it is on average approximately equal to the setpoint temperature.
  • the regulation of the outlet temperature corresponds approximately to the above-described case in which an average temperature deviation ⁇ T D over time assumes the value zero.
  • a frequency F of an outlet temperature fluctuation is detected to control the outlet temperature T W and compared with a predefinable limit frequency F G.
  • a frequency F greater than the limit frequency F G at least the Schufluidvolumenstrom is modulated. This case corresponds, for example, shorter-term fluctuations of the outlet temperature to the setpoint temperature.
  • the heating fluid volume flow must be modulated, since the complete inert heat transfer system would not be "behind" these changes.
  • At a frequency F less than the cutoff frequency F G at least the heat generator heat output is modulated. This case corresponds, for example, to longer-term fluctuations in the outlet temperature around the setpoint temperature. To adjust the Outlet temperature then often enough a modulation of the heat generator heat output, since the heat transfer system is fast enough despite its inertia.
  • a further advantageous embodiment of the method is characterized in that a value pair W is detected from the amount and gradient of the temperature deviation .DELTA.T and compared with a predeterminable limit value pair W G of magnitude and gradient. If there is a value pair W with a relatively small amount and a relatively large gradient, then at least the heating fluid volume flow is modulated. In this case, because of the small amount of deviation, the heat generator heat output does not need to be largely corrected, on the other hand, the deviation is so fast (large gradient) that a modulation of the heat output could not respond adequately fast, so here (initially) only Modulation of Schufluidvolumenstromes be reacted appropriately. On the other hand, if a value pair W with a relatively large amount and a relatively small gradient is present, at least the heat generator heat output is modulated, which can react sufficiently quickly with such slow changes.
  • the water heating system according to the invention according to the flow principle with a heat generator, a heated by the heat generator Schufluid Vietnameselauf, which is circulated by a pump, heated by the Schufluid Vietnamese biomass flow and at least one arranged in a waterway sensor for detecting an outlet temperature T W and / or a volume flow V W of Water, is characterized in that for controlling the outlet temperature T W to a predetermined target temperature T W0 the heat output of the heat generator and the volume flow of Schufluid Vietnamese Agricultures are modulated and / or switchable.
  • An advantageous embodiment of the water heating system is characterized by a control unit connected to the heat generator, the pump and the at least one sensor, which comprises an input device for setting desired values and / or constants and / or limit values, which influences the operation of the connected components and thus the Outlet temperature T W controls.
  • a method for heating water by the flow principle and a water heating system which offer a high operating comfort with low deviations of the outlet temperature of the target temperature and with the extended cycle times improved operation with respect to the component life even with low and changing heat requirements.
  • Fig. 1 schematically shows a combination heater for space heating and domestic hot water.
  • the heater comprises a heat generator 1 (heat source), a heated by the heat generator 1 via a primary heat exchanger 2 Schufluid Vietnameselauf 3, which is promoted (circulated) by a pump 4, and a connected to the heater heat consumer 5, for example, a space heater 5.
  • the circulating heating fluid (Heat transfer medium) transports the heat from the heat source 1 to the heat consumer 5.
  • the heater For domestic hot water, the heater comprises a working according to the flow principle water heating system with a heated by the heating fluid circuit 3 via a secondary heat exchanger 6 water flow 7, at least one arranged in a waterway 7 sensor 8, 9 , 10 for detecting an outlet temperature T W and / or an inlet temperature T K and / or a volumetric flow V W of the water and at least one arranged in a Schufluidweg 3 sensor 11, 12 for detecting a flow temperature T HV and / or a remindla temperature T HR of the heating fluid.
  • the heat output Q of the heat generator 1 and the volume flow V H of the heating fluid circuit 3 can be modulated and / or switched.
  • the two heating tasks of space heating and DHW heating are usually not fulfilled simultaneously, but individually.
  • the heating fluid circuit 3 between the two heat consumers space heater 5 and secondary heat exchanger 6 is switched by means of a switching valve 13.
  • Fig. 2 shows the schematic signal flow plan of a control circuit for domestic hot water production according to the input variable (setpoint) T W0 , the output (outlet temperature) T W , the controller R, the actuator (heat generator 1) and the manipulated variable Q.
  • the heat generator 1 is the outlet temperature T W influenced.
  • Fig. 3 shows the schematic signal flow plan of a loop for domestic hot water according to the present invention with the input variable (setpoint) T W0 , the output (outlet temperature) T W , the controller R, the actuators (heat generator 1 and pump 4) and the control variables Q and V H.
  • the outlet temperature T W is influenced.
  • FIG. 11 shows exemplary profiles of typical operating data at a heat requirement below the minimum heat generator heat output.
  • FIG. The water volume flow V W and / or the required temperature increase from the inlet temperature T K (cold water) to the setpoint temperature T W0 are so low that the heat generator must clock (on and off).
  • the heat generator (Q) is switched on with a small heat output Q MIN .
  • the delivery rate of the pump is reduced to a small heating fluid volume flow V H, MIN .
  • the heat generator Upon reaching or shortly before reaching the maximum permissible outlet temperature T W0, MAX , the heat generator is switched off (Q off). Upon reaching or shortly after reaching the maximum permissible outlet temperature T W0 , MAX , the delivery capacity of the pump is raised to a high heating fluid volume flow V H, MAX .
  • Fig. 5 shows exemplary courses of typical operating data at a heat request lying above the minimum heat generator heat output.
  • the water volume flow V W and / or the required temperature increase from the inlet temperature T K (cold water) to the setpoint temperature T W0 are so high that the outlet temperature in the heat generator continuous operation reaches the setpoint temperature.
  • the heat generator increases its heat output Q.
  • the increase in the heat output Q is relatively slow.
  • the transferred to the water heat output is always adapted to the increasing water volume flow V W and the setpoint temperature T W0 , whereby the outlet temperature T W is almost constant at the lowest temperature fluctuations at the target temperature T W0 .
  • the pump briefly modulates its delivery capacity to a low volume flow in order to avoid an otherwise sharp increase in temperature (dashed line).
  • the heat generator also begins to reduce its heat output Q. Soon after, and in the meantime fallen thermal power the pump begins to Schufluidvolumenstrom VH gradual to the nominal volume flow V H, NOM raise.
  • control signals for the heat generator 1 and the pump 4 with regard to the modulation of the heat output Q and the Schufluidvolumenstrom V H are given by a control device R, the control algorithm on readings of the outlet temperature T W and / or the water volume flow V W.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Erwärmung von Wasser variablen Volumenstroms nach dem Durchlaufprinzip sowie ein Wassererwärmungssystem, bei dem ein Wärmeerzeuger ein von einer Pumpe in einem Kreislauf umgewälztes Heizfluid erwärmt, das Heizfluid ein im Durchlauf geführtes Wasser erwärmt, und mindestens ein in einem Wasserweg angeordneter Messfühler eine Auslauftemperatur T W und/oder einen Volumenstrom V W des Wassers misst. Der Erfindung liegt die Aufgabe zugrunde, unter weitgehender Beibehaltung herkömmlicher Komponenten die Taktzeiten bei geringen Wärmeanforderungen zu verlängern und die Abweichungen von der Solltemperatur bei wechselnden Wärmeanforderungen zu verkleinern und damit einen hohen Warmwasserkomfort und eine verbesserte Betriebsweise hinsichtlich der Komponentenlebensdauer zu bieten. Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, dass die Modulationsbereiche von Pumpe und Wärmeerzeuger sowie die unterschiedlichen thermischen und strömungsmechanischen Trägheiten des Wassererwärmungssystems gezielt in das Temperaturregelverfahren mit einbezogen werden.

Description

  • Die Erfindung betrifft Verfahren zur Erwärmung von Wasser variablen Volumenstroms nach dem Durchlaufprinzip nach den Oberbegriffen der Patentansprüche 1 und 3, bei denen ein Wärmeerzeuger ein von einer Pumpe in einem Kreislauf gefördertes Heizfluid erwärmt, das Heizfluid ein im Durchlauf geführtes Wasser erwärmt, und mindestens ein in einem Wasserweg angeordneter Messfühler eine Auslauftemperatur TW und/oder einen Volumenstrom VW des Wassers misst. Ferner betrifft die Erfindung ein Wassererwärmungssystem nach dem Durchlaufprinzip nach dem Oberbegriff des Patentanspruches 10 mit einem Wärmeerzeuger, einem vom Wärmeerzeuger beheizten Heizfluidkreislauf, der von einer Pumpe gefördert wird, einem vom Heizfluidkreislauf beheizten Wasserdurchlauf und mindestens einem in einem Wasserweg angeordneten Messfühler zum Erfassen einer Auslauftemperatur TW und/oder eines Volumenstroms VW des Wassers.
  • Diese Verfahren kommen zum Beispiel in sogenannten Kombinationsheizgeräten zur Anwendung. Kombinationsheizgeräte können zwei Heizaufgaben lösen, beispielsweise eine Warmwasserheizung für die Raumerwärmung sowie eine Trinkwarmwasserbereitung für Anwendungen in Küche und Sanitärbereich. In der Regel erwärmt ein im Heizgerät angeordneter Wärmeerzeuger (Wärmequelle) über einen Primärwärmetauscher ein im Kreislauf fließendes Heizfluid (Heizungswasser), das in einem Raumheizungsmodus von einer Pumpe (Umwälzpumpe) von dem Heizgerät über Vorlauf- und Rücklaufleitungen bis in die zu beheizenden Räume gefördert wird und dort die Wärme beispielsweise über Raumheizkörper (Verbraucher, Wärmesenke) an den Raum abgibt. In einem Modus zur Trinkwarmwasserbereitung lenkt ein Umschaltventil das Heizfluid zu einem oft ebenfalls im Heizgerät angeordneten Sekundärwärmetauscher (zum Beispiel Plattenwärmetauscher), wo es die Wärme an ein durchfließendes Trinkwasser überträgt.
  • Der Wärmeerzeuger kann ein mit Heizöl oder Erdgas befeuerter Brenner, aber auch ein mit elektrischer Energie arbeitender Wärmeerzeuger sein. Der Wärmeerzeuger kann seine Wärmeleistung einschalten und ausschalten sowie in der Regel auch zwischen einer von Null verschiedenen Minimalleistung und einer Maximalleistung (Nennleistung) modulieren. Im Trinkwarmwassermodus kann damit Trinkwasser unterschiedlicher Volumenströme erwärmt werden. Für die Trinkwarmwasserbereitung können über einen Thermostaten, ein Regelgerät und/oder andere Komponenten eine Trinkwarmwasser-Solltemperatur sowie minimal und maximal zulässige Auslauftemperaturen vorgegeben werden. Der Betrag einer an den Wärmeerzeuger gestellten Wärmeanforderung zur Erreichung der Trinkwarmwasser-Solltemperatur ergibt sich aus dem Trinkwasservolumenstrom, der Temperatur des in den Sekundärwärmetauscher einlaufenden kalten Trinkwassers (Einlauftemperatur), der Solltemperatur des aus dem Sekundärwärmetauscher auslaufenden warmen Trinkwassers (Trinkwarmwasser) und der Wirkungsgradkette für die Wärmeübertragung zwischen Wärmeerzeuger und Trinkwarmwasser.
  • Es können nur solche Wärmeanforderungen, die im Bereich zwischen Minimalleistung und Maximalleistung des Wärmeerzeugers liegen, kontinuierlich und zuverlässig erfüllt werden. Ist die Wärmeanforderung größer als die maximale Wärmeleistung, so wird entweder die Solltemperatur oder der Volumenstrom des Trinkwarmwassers nicht erreicht (unterschritten). Ist die Wärmeanforderung kleiner als die minimale Wärmeleistung, so bleiben der Wärmeerzeuger und die Umwälzpumpe entweder dauerhaft ausgeschaltet oder sie müssen takten. Der Wärmeerzeuger geht dann in einen taktenden Betrieb über, wenn bei minimaler Wärmeleistung die gemessene Wasser-Auslauftemperatur die vorgegebene Wasser-Solltemperatur beziehungsweise die vorgegebene maximal zulässige Auslauftemperatur überschreitet. Takten bedeutet, dass der Wärmeerzeuger und/oder die Umwälzpumpe in kurzen Zeitabständen wiederholt einschalten und ausschalten und so im zeitlichen Durchschnitt gemittelte Wärmeleistungen bereitstellen, die kleiner als die minimale Wärmeleistung sind.
  • Im Taktbetrieb von Wärmeerzeuger und Umwälzpumpe kann die Auslauftemperatur des Trinkwarmwassers nicht konstant auf Solltemperatur TW0 gehalten werden, sondern schwankt synchron und eventuell etwas zeitversetzt mit den Ein- und Austaktungen (Ein-und Ausschaltungen) zwischen einer minimal zulässigen Auslauftemperatur TW0,MIN und einer maximal zulässigen Auslauftemperatur TW0,MAX. Diese minimal und maximal zulässigen Auslauftemperaturen bilden ein zulässiges Solltemperaturintervall (Hysterese). Da der Wärmeerzeuger selbst bei Minimalleistung gemessen an der Wärmeanforderung zuviel Wärme erzeugt, steigt die Auslauftemperatur des durch den Sekundärwärmetauscher fließenden Wassers bei eingeschaltetem Wärmeerzeuger und eingeschalteter Umwälzpumpe schnell an und erreicht bald die maximal zulässige Auslauftemperatur. Zu diesem Zeitpunkt werden der Wärmeerzeuger und die Umwälzpumpe durch den Thermostaten oder das Regelgerät ausgeschaltet, um ein Überschreiten der maximal zulässigen Auslauftemperatur und ein eventuelles Verbrühen eines Nutzers zu verhindern. Somit strömt anschließend bei ausgeschaltetem Wärmeerzeuger und ausgeschalteter Umwälzpumpe unerwärmtes, kaltes Wasser aus dem Sekundärwärmetauscher aus, die Auslauftemperatur fällt schnell und erreicht bald die minimal zulässige Auslauftemperatur, woraufhin der Wärmeerzeuger und die Umwälzpumpe schließlich wieder einschalten.
  • Besonders von Trinkwarmwasserbereitern wird ein hoher Warmwasserkomfort gefordert, das bedeutet eine möglichst genaue Einhaltung der Trinkwarmwasser-Solltemperatur bei verschiedenen Trinkwarmwasser-Zapfverläufen. Die einschlägigen Normen prüfen beispielsweise die Abweichung der Auslauftemperatur von der Solltemperatur bei andauernder Zapfung mit geringen und hohen Volumenströmen, bei unterbrochener Zapfung mit kürzeren und längeren Zapfpausen und anderes mehr. Gerade der Taktbetrieb von Wärmeerzeuger und Umwälzpumpe stellt hinsichtlich der Komfortanforderungen wegen der oben beschriebenen Schwankungen der Auslauftemperatur einen kritischen Betriebspunkt dar.
  • Neben den ungünstigen Auswirkungen eines Taktbetriebes auf den Trinkwarmwasserkomfort gibt es auch Aspekte der Lebensdauer und Effizienz, die gegen einen Taktbetrieb sprechen. Ein häufiges Ein- und Ausschalten verringert durch die hohe Anzahl mechanischer und thermischer Belastungszyklen die Lebensdauer und verkürzt die Wartungsintervalle der verwendeten Komponenten. Außerdem wird auch die Wärmeübertragungseffizienz durch häufige und wiederholte Auskühlverluste des Wärmeerzeugers verringert.
  • Bei Wärmeanforderungen zur Erwärmung von Wasser, die zwischen einer minimalen und einer maximalen Wärmeerzeugerwärmeleistung liegen, kann die Solltemperatur im Dauerbetrieb und ohne Takten von Wärmeerzeuger und Umwälzpumpe erreicht werden. Bei Änderungen der Wärmeanforderung, wie sie sich beispielsweise aus einer Änderung des Wasservolumenstroms, der Wassereinlauftemperatur oder der Solltemperatur ergeben, muss sich in gleichem Maße auch die Wärmeerzeugerwärmeleistung ändern. Sprunghafte Änderungen der Wärmeanforderung können in aller Regel jedoch nicht sofort, sondern nur zeitverzögert erfüllt werden. Das liegt an der thermischen Trägheit des aus Wärmeerzeuger, primärem Wärmetauscher, Heizfluidkreislauf und sekundärem Wärmetauscher bestehenden Wärmeübertragungssystems. Auch durch die Zeitverzögerung wird der Warmwasserkomfort negativ beeinflusst.
  • Der Wärmeerzeuger hat in der Regel eine vorgegebene, nicht überschreitbare Änderungsrate (Geschwindigkeit), mit der die Leistungsmodulation verändert werden kann. Die Wärmetauscher haben aufgrund ihrer Masse sowie der spezifischen Wärmekapazität und der Wärmeleitfähigkeit des Materials eine thermische Trägheit, die wie ein Wärmespeicher wirkt. Auch der Heizfluidkreislauf hat aufgrund seines Wasservolumens sowie der Masse und des Materials der verwendeten Rohrleitungselemente seine thermische Trägheit. Für den Heizfluidkreislauf sind nach heutigem Stand der Technik zur Trinkwarmwasserbereitung nur zwei Strömungszustände bekannt: Umwälzung bei nominellem Umwälzvolumen (Heizfluidvolumen) bzw. nomineller Pumpendrehzahl sowie Null-Umwälzung bei ausgeschalteter Pumpe.
  • Ändert sich also die Wärmeanforderung sprunghaft, so wird die an das Wasser übertragene Wärmeleistung nur zeitverzögert angepasst und wird die Solltemperatur nur zeitverzögert erreicht. Beispielsweise wird sich bei einer sprunghaften Erhöhung des Wasservolumenstroms die Wärmeerzeugerwärmeleistung mit der vorgegebenen Änderungsrate solange erhöhen und das Wärmeübertragungssystem an die neue Wärmeanforderung anpassen, bis die Auslauftemperatur nach einer anfänglichen Unterschreitung der Solltemperatur und/oder der minimal zulässigen Auslauftemperatur die Solltemperatur wieder erreicht. Bei einer sprunghaften Verringerung des Wasservolumenstroms wird dagegen die Auslauftemperatur die Solltemperatur oder die maximal zulässige Auslauftemperatur anfänglich überschreiten, und zwar solange, bis sich die Wärmeleistung mit seiner Änderungsrate entsprechend verringert und das Wärmeübertragungssystem an die neue Wärmeanforderung angepasst hat. Durch schlecht an die thermische Trägheit des Wärmeübertragungssystems angepasste Parameter eines der Temperaturregelung zugrundeliegenden Regelungsalgorithmus' kann es auch zu mehreren Über- und Unterschwingern der Auslauftemperatur gegenüber der Solltemperatur kommen.
  • Eine mögliche Lösung zur Gewährleistung eines hohen Trinkwarmwasserkomforts, einer Schonung der Komponenten und einer Effizienzsteigerung ist die Ausweitung des Leistungsmodulationsbereiches des Wärmeerzeugers. Heute weit verbreitete Wärmeerzeuger sind beispielsweise Ölbrenner und Gasbrenner. Sie decken oft einen Leistungsmodulationsbereich von etwa 1 : 4 ab, das bedeutet, dass sie zwischen 25 % und 100 % ihrer Nennwärmeleistung modulieren können. Bei Wärmeanforderungen unterhalb von 25 % gehen sie in den taktenden Betrieb über. Bei einer Ausweitung des Leistungsmodulationsbereiches auf zum Beispiel 1 : 10 können noch deutlich kleinere Wärmeanforderungen ohne Taktbetrieb erfüllt werden. Diese Erweiterung des Modulationsbereiches erfordert jedoch oft den Einsatz teurer Komponenten.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Erwärmung von Wasser nach dem Durchlaufprinzip und ein Wassererwärmungssystem zu schaffen, die unter weitgehender Beibehaltung herkömmlicher Komponenten die genannten Nachteile bei geringen und bei wechselnden Wärmeanforderungen überwinden sowie einen hohen Warmwasserkomfort und eine verbesserte Betriebsweise hinsichtlich der Komponentenlebensdauer bieten.
  • Erfindungsgemäß wird dies durch die Gegenstände mit den Merkmalen der Patentansprüche 1, 3 und 10 gelöst. Vorteilhafte Weiterbildungen sind den Unteransprüchen zu entnehmen.
  • Das erfindungsgemäße Verfahren zur Erwärmung von Wasser variablen Volumenstroms nach dem Durchlaufprinzip, bei dem ein Wärmeerzeuger ein von einer Pumpe in einem Kreislauf umgewälztes Heizfluid erwärmt, das Heizfluid ein im Durchlauf geführtes Wasser erwärmt, und mindestens ein in einem Wasserweg angeordneter Messfühler eine Auslauftemperatur TW und/oder einen Volumenstrom VW des Wassers misst, basiert darauf, dass die Auslauftemperatur TW des Wassers anhand einer modulierbaren und/oder schaltbaren Wärmeleistung Q des Wärmeerzeugers sowie eines modulierbaren und/oder schaltbaren Volumenstroms VH des Heizfluides auf eine vorgebbare Solltemperatur TW0 geregelt wird.
  • Dabei kann zur Regelung der Auslauftemperatur TW und bei vorhandener Temperaturabweichung ΔT der Auslauftemperatur TW von der Solltemperatur TW0, wobei ΔT = TW - TW0, entweder nur die Wärmeerzeugerwärmeleistung Q, oder nur der Heizfluidvolumenstrom VH, oder sowohl die Wärmeerzeugerwärmeleistung Q als auch der Heizfluidvolumenstrom VH moduliert und/oder geschaltet werden.
  • Damit umfasst dieses Verfahren mit dem Heizfluidvolumenstrom VH neben dem herkömmlichen variablen Parameter der Wärmeleistung Q noch einen zweiten variablen Parameter, mit dem die Auslauftemperatur TW beeinflusst und geregelt werden kann. Die Wärmeleistung Q und der Volumenstrom VH weisen unterschiedliche Trägheiten beziehungsweise Reaktionszeiten beziehungsweise Änderungsraten auf und können damit auf jeweils unterschiedliche Weise das Wärmeübertragungssystem an eine gestellte Wärmeanforderung anpassen. Damit kann mit diesem Verfahren schneller und einer jeweiligen Situation angemessener auf Über- und Unterschwinger der Auslauftemperatur TW gegenüber der Solltemperatur TW0 reagiert werden.
  • Erfindungsgemäß wird bei einem taktendem Wärmeerzeugerbetrieb mit abwechselnden Ein- und Aus-Schaltungen des Wärmeerzeugers, wobei eine Wärmeanforderung zur Erwärmung des Wassers kleiner als eine minimale, von Null verschiedene Wärmeerzeugerwärmeleistung QMIN ist, die Auslauftemperatur TW in einem zulässigen Solltemperaturintervall geregelt.
  • So schaltet ungefähr zum Zeitpunkt des Erreichens einer minimal zulässigen Auslauftemperatur TW0,MIN der Wärmeerzeuger bei einer von Null verschiedenen Wärmeleistung (beispielsweise QMIN) ein, während die Pumpe auf einen niedrigen, von Null verschiedenen Heizfluidvolumenstrom (beispielsweise VH,MIN) umschaltet. Wegen des niedrigen Heizfluidvolumenstroms und der damit verbundenen niedrigen Strömungsgeschwindigkeit ist die Wärmeübertragung vom Wärmeerzeuger über das Heizfluid auf das Wasser nicht optimal, der Temperaturanstieg im Wasser wird dadurch gegenüber den Verfahren nach dem Stand der Technik verlangsamt. Die im Wärmeübertragungssystem, umfassend Wärmeerzeuger, primärer Wärmetauscher, Heizfluid und sekundärer Wärmetauscher, gespeicherte Wärme nimmt zu.
  • Ungefähr zum Zeitpunkt des Erreichens einer maximal zulässigen Auslauftemperatur TW0,MAX schaltet der Wärmeerzeuger aus, während die Pumpe auf einen hohen Heizfluidvolumenstrom (beispielsweise VH,MAX) umschaltet. Wegen des hohen Heizfluidvolumenstroms und der damit verbundenen hohen Strömungsgeschwindigkeit ist die Wärmeübertragung vom Wärmeerzeuger über das Heizfluid auf das Wasser gegenüber dem vorstehend geschilderten Fall nun deutlich verbessert, der Temperaturabfall im Wasser wird dadurch gegenüber den Verfahren nach dem Stand der Technik verlangsamt. Die im Wärmeübertragungssystem gespeicherte Wärme nimmt ab. Der langsamere Temperaturanstieg und Temperaturabfall wird durch eine effektivere Ausnutzung des Wärmespeichervermögens im Wärmeübertragungssystem ermöglicht. Damit verlängern sich die Taktfrequenzen des Wärmeerzeugers, wodurch die beteiligten Komponenten weniger beansprucht, also geschont werden.
  • In einer Ausgestaltung des Verfahrens erfolgt das Einschalten oder Ausschalten des Wärmeerzeugers jeweils kurz vor oder gleichzeitig mit dem Erreichen der minimal oder der maximal zulässigen Auslauftemperatur, während das Umschalten der Pumpe auf einen niedrigen oder hohen Heizfluidvolumenstrom jeweils gleichzeitig mit oder kurz nach dem Erreichen der minimal oder der maximal zulässigen Auslauftemperatur erfolgt. Die Größe der zeitlichen Abstände "kurz vor" oder "kurz nach" ergeben sich in Abhängigkeit der gegebenen (thermischen oder strömungsmechanischen) Trägheiten beziehungsweise Reaktionszeiten beziehungsweise Änderungsraten der Wärmeerzeugerwärmeleistung und der Pumpenförderleistung, wobei diese Trägheiten, Reaktionszeiten beziehungsweise Änderungsraten im wechselwirkenden Zusammenhang mit den jeweils angeschlossenen Systemen (Übertragung vom Wärmeerzeuger über den Primärwärmetauscher auf den Heizfluidkreislauf (thermisch) beziehungsweise von der Pumpe auf den Heizfluidkreislauf (mechanisch)) gesehen werden müssen.
  • Bei einem Wärmeerzeugerdauerbetrieb, wobei eine Wärmeanforderung zur Erwärmung des Wassers größer oder gleich einer minimalen Wärmeerzeugerwärmeleistung QMIN ist, wird die Auslauftemperatur TW in einem zulässigen Solltemperaturintervall geregelt. Das zulässige Solltemperaturintervall im Wärmeerzeugerdauerbetrieb kann identisch sein mit dem zulässigen Solltemperaturintervall im taktenden Wärmeerzeugerbetrieb oder hiervon abweichen.
  • So heizt bei einer beliebigen ersten Wärmeanforderung der Wärmeerzeuger mit einer der Wärmeanforderung entsprechenden Wärmeleistung, während die Pumpe einen Nenn-Heizfluidvolumenstrom VH,NOM fördert.
  • Erfindungsgemäß heizt der Wärmeerzeuger bei einer gegenüber der ersten Wärmeanforderung erhöhten Wärmeanforderung (beispielsweise erhöhter Wasservolumenstrom) mit einer der erhöhten Wärmeanforderung entsprechenden erhöhten Wärmeleistung, während die Pumpe zunächst auf einen erhöhten Heizfluidvolumenstrom umschaltet und anschließend wieder auf den Nenn-Heizfluidvolumenstrom VH,NOM zurückstellt. Die Erhöhung der Wärmeerzeugerwärmeleistung erfolgt allmählich mit einer vorgegebenen, endlichen (nicht sprunghaften) Änderungsrate. Bis sich diese erhöhte Wärmeleistung über die träge Kette des Wärmeübertragungssystems im Wasservolumenstrom bemerkbar macht, wäre nach den Verfahren nach dem Stand der Technik die Auslauftemperatur TW bereits abgefallen (Unterschwinger), um sich erst allmählich wieder der Solltemperatur anzunähern. Nach dem erfindungsgemäßen Verfahren sorgt der schnell erhöhte Heizfluidvolumenstrom für eine schnell erhöhte Wärmeübertragung auf das Wasser, wodurch ein Abfallen der Auslauftemperatur TW verhindert wird. Mit zunehmender Wärmeerzeugerwärmeleistung und Erwärmung auch des Wärmeübertragungssystems wird die Heizfluidförderleistung allmählich wieder auf den Nenn-Heizfluidvolumenstrom VH,NOM zurückgefahren. Die angenommene höchstmögliche Änderungsrate des Heizfluidvolumenstroms (entspricht in etwa der Drehzahländerungsrate der Pumpe) liegt deutlich höher als die angenommene höchstmögliche Änderungsrate der Wärmeerzeugerwärmeleistung. Auch ist die Beeinflussung der Auslauftemperatur TW durch den vergleichsweise massearmen Sekundärwärmetauscher viel direkter und daher schneller als durch das komplette, vergleichsweise träge Wärmeübertragungssystem. Deshalb lässt sich die Auslauftemperatur TW mittels des Heizfluidvolumenstroms viel schneller korrigieren als mittels der Wärmeleistung.
  • Bei einer gegenüber der ersten und/oder der erhöhten Wärmeanforderung verringerten Wärmeanforderung (beispielsweise verringerter Wasservolumenstrom) heizt der Wärmeerzeuger mit einer der verringerten Wärmeanforderung entsprechenden verringerten Wärmeleistung, während die Pumpe zunächst auf einen erniedrigten Heizfluidvolumenstrom umschaltet und anschließend wieder auf den Nenn-Heizfluidvolumenstrom VH,NOM zurückstellt. Hier sind die Verhältnisse gegenüber dem vorstehend Geschilderten genau vertauscht: Die Verringerung der Wärmeerzeugerwärmeleistung erfolgt allmählich mit einer vorgegebenen, endlichen (nicht sprunghaften) Änderungsrate. Bis sich diese verringerte Wärmeleistung über die träge Kette des Wärmeübertragungssystems im Wasservolumenstrom bemerkbar macht, wäre nach den Verfahren nach dem Stand der Technik die Auslauftemperatur TW bereits angestiegen (Überschwinger), um sich erst allmählich wieder der Solltemperatur anzunähern. Nach dem erfindungsgemäßen Verfahren sorgt der schnell verringerte Heizfluidvolumenstrom für eine schnell verringerte Wärmeübertragung auf das Wasser, wodurch ein Ansteigen der Auslauftemperatur TW verhindert wird. Mit abnehmender Wärmeerzeugerwärmeleistung und Abkühlung auch des Wärmeübertragungssystems wird die Heizfluidförderleistung allmählich wieder auf den Nenn-Heizfluidvolumenstrom VH,NOM zurückgefahren.
  • Eine Ausgestaltung des Verfahrens ist dadurch gekennzeichnet, dass sich eine erste Zeitspanne vorgebbarer Dauer zur Beobachtung eines zeitlichen Verlaufs einer aktuellen Temperaturabweichung ΔT der Auslauftemperatur TW von der Solltemperatur TW0 und eine zweite Zeitspanne vorgebbarer Dauer zur Regelung der Auslauftemperatur TW auf Solltemperatur TW0 abwechselnd wiederholen. Die Dauer der ersten und zweiten Zeitspanne kann als Festwert vorgegeben sein oder sich in Abhängigkeit der Temperaturabweichung, des Betriebszustandes oder anderer Situationen ändern.
  • In einer anderen Ausgestaltung des Verfahrens wird, wenn eine durchschnittliche Temperaturabweichung ΔTD über der Zeit den Wert Null annimmt, zur Regelung der Auslauftemperatur TW nur der Heizfluidvolumenstrom moduliert. Die Dauer einer betrachteten Zeitspanne darf dabei nicht zu groß sein. Dieser Fall tritt beispielsweise dann ein, wenn der Wasservolumenstrom leicht um einen Mittelwert schwankt. Die Auslauftemperatur TW würde bei konstanter Wärmeleistung und konstantem Heizfluidvolumenstrom proportional zur Wasserdurchflussänderung schwanken. Der Wärmeerzeuger stellt dann die im Mittel erforderliche Energie zur Erwärmung des Wassers auf Solltemperatur bereit. Mittels einer angepassten Modulation des Heizfluidvolumenstroms wird erfindungsgemäß immer die dem momentanen Wasserdurchsatz zugeordnete Wärmemenge im Sekundärwärmetauscher zur Verfügung gestellt und so die Auslauftemperatur konstant auf Solltemperatur gehalten.
  • In einer weiteren Ausgestaltung des Verfahrens wird, wenn eine durchschnittliche Temperaturabweichung ΔTD über der Zeit einen Wert verschieden von Null annimmt, zur Regelung der Auslauftemperatur TW mindestens die Wärmeerzeugerwärmeleistung moduliert. Dies entspricht im Wesentlichen der herkömmlichen Leistungsmodulation des Wärmeerzeugers, wenn zusätzlich der zeitliche Verlauf der momentanen Temperaturabweichung ΔT konstant ist. Ist der zeitliche Verlauf jedoch nicht konstant, so kommt zu der Modulation der Wärmeerzeugerwärmeleistung auch noch eine Modulation des Heizfluidvolumenstroms hinzu.
  • In einer weiteren Ausgestaltung des Verfahrens wird, wenn eine aktuelle Temperaturabweichung ΔT innerhalb einer Zeitspanne vorgebbarer Dauer mindestens zwei Nulldurchgänge aufweist, zur Regelung der Auslauftemperatur TW mindestens der Heizfluidvolumenstrom moduliert. Die Auslauftemperatur ist hierbei mal größer, mal kleiner als die Solltemperatur, was als Indiz dafür gelten kann, dass sie im Durchschnitt etwa gleich der Solltemperatur ist. Die Regelung der Auslauftemperatur entspricht ungefähr dem vorstehend geschilderten Fall, bei dem eine durchschnittliche Temperaturabweichung ΔTD über der Zeit den Wert Null annimmt.
  • In einer vorteilhaften Ausgestaltung des Verfahrens wird zur Regelung der Auslauftemperatur TW eine Frequenz F einer Auslauftemperaturschwankung erfasst und mit einer vorgebbaren Grenzfrequenz FG verglichen. Bei einer Frequenz F größer als die Grenzfrequenz FG wird mindestens der Heizfluidvolumenstrom moduliert. Dieser Fall entspricht beispielsweise kürzerfristigen Schwankungen der Auslauftemperatur um die Solltemperatur. Zur Ausregelung der Auslauftemperatur muss mindestens der Heizfluidvolumenstrom moduliert werden, da das komplette träge Wärmeübertragungssystem diesen Änderungen gar nicht "hinterher" käme. Bei einer Frequenz F kleiner als die Grenzfrequenz FG wird mindestens die Wärmeerzeugerwärmeleistung moduliert. Dieser Fall entspricht beispielsweise längerfristigen Schwankungen der Auslauftemperatur um die Solltemperatur. Zur Ausregelung der Auslauftemperatur reicht dann oft eine Modulation der Wärmeerzeugerwärmeleistung, da das Wärmeübertragungssystem trotz seiner Trägheit schnell genug ist.
  • Eine weitere vorteilhafte Ausgestaltung des Verfahrens ist dadurch gekennzeichnet, dass ein Wertepaar W aus Betrag und Gradient der Temperaturabweichung ΔT erfasst und mit einem vorgebbaren Grenzwertepaar WG aus Betrag und Gradient verglichen wird. Liegt ein Wertepaar W mit relativ kleinem Betrag und relativ großem Gradienten vor, so wird mindestens der Heizfluidvolumenstrom moduliert wird. In diesem Fall muss die Wärmeerzeugerwärmeleistung wegen des kleinen Betrages der Abweichung gar nicht groß korrigiert werden, andererseits erfolgt die Abweichung so schnell (großer Gradient), dass eine Modulation der Wärmeleistung gar nicht angemessen schnell reagieren könnte, hier kann also (zunächst) nur mittels einer Modulation des Heizfluidvolumenstromes angemessen reagiert werden. Liegt dagegen ein Wertepaar W mit relativ großem Betrag und relativ kleinem Gradienten vor, so wird mindestens die Wärmeerzeugerwärmeleistung moduliert, die bei derart langsamen Änderungen ausreichend schnell reagieren kann.
  • Das erfindungsgemäße Wassererwärmungssystem nach dem Durchlaufprinzip mit einem Wärmeerzeuger, einem vom Wärmeerzeuger beheizten Heizfluidkreislauf, der von einer Pumpe umgewälzt wird, einem vom Heizfluidkreislauf beheizten Wasserdurchlauf und mindestens einem in einem Wasserweg angeordneten Messfühler zum Erfassen einer Auslauftemperatur TW und/oder eines Volumenstroms VW des Wassers, ist dadurch gekennzeichnet, dass zur Regelung der Auslauftemperatur TW auf eine vorgebbare Solltemperatur TW0 die Wärmeleistung des Wärmeerzeugers und der Volumenstrom des Heizfluidkreislaufs modulierbar und/oder schaltbar sind.
  • Eine vorteilhafte Ausgestaltung des Wassererwärmungssystems ist gekennzeichnet durch eine mit dem Wärmeerzeuger, der Pumpe und dem mindestens einen Messfühler verbundene Reglereinheit, die eine Eingabevorrichtung zur Einstellung von Sollwerten und/oder Konstanten und/oder Grenzwerten umfasst, die den Betrieb der verbundenen Komponenten beeinflusst und somit die Auslauftemperatur TW regelt.
  • Mit dieser Erfindung ist ein Verfahren zur Erwärmung von Wasser nach dem Durchlaufprinzip und ein Wassererwärmungssystem geschaffen, die auch bei geringen und bei wechselnden Wärmeanforderungen einen hohen Warmwasserkomfort mit geringen Abweichungen der Auslauftemperatur von der Solltemperatur sowie mit den verlängerten Taktzeiten eine verbesserte Betriebsweise hinsichtlich der Komponentenlebensdauer bieten.
  • Die Zeichnungen stellen verschiedene Aspekte von Ausführungsbeispielen der Erfindung dar und zeigen in den Figuren:
  • Fig. 1
    ein der Erfindung zugrundeliegendes Wassererwärmungssystem,
    Fig. 2
    einen Signalflussplan eines Regelkreises zur Trinkwarmwasserbereitung nach dem Stand der Technik,
    Fig. 3
    einen Signalflussplan eines Regelkreises zur Trinkwarmwasserbereitung nach der vorliegenden Erfindung,
    Fig. 4
    beispielhafte Verläufe von typischen Betriebsdaten bei einer unter der minimalen Wärmeerzeugerwärmeleistung liegenden Wärmeanforderung,
    Fig. 5
    beispielhafte Verläufe von typischen Betriebsdaten bei einer über der minimalen Wärmeerzeugerwärmeleistung liegenden Wärmeanforderung.
  • Fig. 1 zeigt schematisch ein Kombinationsheizgerät für die Raumheizung und Trinkwarmwasserbereitung. Das Heizgerät umfasst einen Wärmeerzeuger 1 (Wärmequelle), einen vom Wärmeerzeuger 1 über einen Primärwärmetauscher 2 beheizten Heizfluidkreislauf 3, der von einer Pumpe 4 gefördert (umgewälzt) wird, sowie einen an das Heizgerät angeschlossenen Wärmeverbraucher 5, beispielsweise ein Raumheizkörper 5. Das zirkulierende Heizfluid (Wärmeträgermedium) transportiert die Wärme von der Wärmequelle 1 zum Wärmeverbraucher 5. Für die Trinkwarmwasserbereitung umfasst das Heizgerät ein nach dem Durchlaufprinzip arbeitendes Wassererwärmungssystem mit einem vom Heizfluidkreislauf 3 über einen Sekundärwärmetauscher 6 beheizten Wasserdurchlauf 7, mindestens einem in einem Wasserweg 7 angeordneten Messfühler 8, 9, 10 zum Erfassen einer Auslauftemperatur TW und/oder einer Einlauftemperatur TK und/oder eines Volumenstroms VW des Wassers sowie mindestens einem in einem Heizfluidweg 3 angeordneten Messfühler 11, 12 zum Erfassen einer Vorlauftemperatur THV und/oder einer Rücklauftemperatur THR des Heizfluides. Zur Regelung der Auslauftemperatur TW auf eine vorgebbare Solltemperatur TW0 sind die Wärmeleistung Q des Wärmeerzeugers 1 und der Volumenstrom VH des Heizfluidkreislaufs 3 modulierbar und/oder schaltbar. Die beiden Heizaufgaben Raumheizung und Trinkwarmwasserbereitung werden in der Regel nicht gleichzeitig, sondern jeweils einzeln erfüllt. Dazu wird der Heizfluidkreislauf 3 zwischen den beiden Wärmeverbrauchern Raumheizkörper 5 und Sekundärwärmetauscher 6 mittels eines Umschaltventils 13 umgeschaltet.
  • Fig. 2 zeigt den schematischen Signalflussplan eines Regelkreises zur Trinkwarmwasserbereitung nach dem Stand der Technik mit der Eingangsgröße (Sollwert) TW0, der Ausgangsgröße (Auslauftemperatur) TW, dem Regler R, dem Stellglied (Wärmeerzeuger 1) und der Stellgröße Q. Mit dem Wärmeerzeuger 1 wird die Auslauftemperatur TW beeinflusst.
  • Fig. 3 zeigt den schematischen Signalflussplan eines Regelkreises zur Trinkwarmwasserbereitung nach der vorliegenden Erfindung mit der Eingangsgröße (Sollwert) TW0, der Ausgangsgröße (Auslauftemperatur) TW, dem Regler R, den Stellgliedern (Wärmeerzeuger 1 und Pumpe 4) sowie den Stellgrößen Q und VH. Mit dem Wärmeerzeuger 1 und der Pumpe 4 wird die Auslauftemperatur TW beeinflusst.
  • Fig. 4 zeigt beispielhafte Verläufe von typischen Betriebsdaten bei einer unter der minimalen Wärmeerzeugerwärmeleistung liegenden Wärmeanforderung. Der Wasservolumenstrom VW und/oder die erforderliche Temperaturerhöhung von der Einlauftemperatur TK (Kaltwasser) auf die Solltemperatur TW0 liegen so niedrig, dass der Wärmeerzeuger takten (ein- und ausschalten) muss. Bei Erreichen oder kurz vor Erreichen der minimal zulässigen Auslauftemperatur TW0,MIN wird der Wärmeerzeuger (Q) bei kleiner Wärmeleistung QMIN eingeschaltet. Bei Erreichen oder kurz nach Erreichen der minimal zulässigen Auslauftemperatur TW0, MIN wird die Förderleistung der Pumpe auf einen kleinen Heizfluidvolumenstrom VH,MIN heruntergefahren. Bei Erreichen oder kurz vor Erreichen der maximal zulässigen Auslauftemperatur TW0,MAX wird der Wärmeerzeuger ausgeschaltet (Q off). Bei Erreichen oder kurz nach Erreichen der maximal zulässigen Auslauftemperatur TW0, MAX wird die Förderleistung der Pumpe auf einen hohen Heizfluidvolumenstrom VH,MAX heraufgefahren.
  • Fig. 5 zeigt beispielhafte Verläufe von typischen Betriebsdaten bei einer über der minimalen Wärmeerzeugerwärmeleistung liegenden Wärmeanforderung. Der Wasservolumenstrom VW und/oder die erforderliche Temperaturerhöhung von der Einlauftemperatur TK (Kaltwasser) auf die Solltemperatur TW0 liegen so hoch, dass die Auslauftemperatur im Wärmeerzeugerdauerbetrieb die Solltemperatur erreicht. Bei einer plötzlichen Erhöhung der Wärmeanforderung durch eine plötzliche Erhöhung des Wasservolumenstroms VW erhöht der Wärmeerzeuger seine Wärmeleistung Q. Jedoch ist die Erhöhung der Wärmeleistung Q relativ langsam. Bei einem Verfahren nach dem Stand der Technik ohne Pumpenmodulation (VH = konstant) würde die Auslauftemperatur TW stark abfallen (gestrichelte Linie), bis der Wärmeerzeuger und das komplette, träge Wärmeübertragungssystem (...) eine dem neuen Wasservolumenstrom VW und der Solltemperatur TW0 entsprechende Wärmeleistung Q bereitstellt. Bei dem erfindungsgemäßen Verfahren erhöht die Pumpe kurzfristig ihre Förderleistung (VH ≠ konstant) und damit den geförderten Heizfluidvolumenstrom VH von einem Nenn-Volumenstrom VH,NOM auf einen erhöhten Wert. Bald darauf und bei inzwischen gestiegener Wärmeleistung beginnt die Pumpe den Heizfluidvolumenstrom VH langsam wieder auf den Nenn-Volumenstrom VH,NOM zu senken. Durch dieses Verfahren ist die auf das Wasser übertragene Wärmeleistung immer dem sich erhöhenden Wasservolumenstrom VW und der Solltemperatur TW0 angepasst, wodurch die Auslauftemperatur TW bei geringsten Temperaturschwankungen beinah konstant auf der Solltemperatur TW0 liegt. Bei einer plötzlichen Verringerung der Wärmeanforderung, beispielsweise durch eine plötzliche Verringerung des Wasservolumenstroms VW, moduliert die Pumpe ihre Förderleistung kurzfristig auf einen niedrigen Volumenstrom herunter, um einen ansonsten starken Temperaturanstieg (gestrichelte Linie) zu vermeiden. Gleichzeitig beginnt auch der Wärmeerzeuger seine Wärmeleistung Q zu verringern. Bald darauf und bei inzwischen gefallener Wärmeleistung beginnt die Pumpe den Heizfluidvolumenstrom VH langsam wieder auf den Nenn-Volumenstrom VH,NOM anzuheben.
  • Die Stellsignale für den Wärmeerzeuger 1 und die Pumpe 4 hinsichtlich der Modulation der Wärmeleistung Q und des Heizfluidvolumenstrom VH werden von einem Regelgerät R gegeben, dessen Regelalgorithmus auf Messwerte der Auslauftemperatur TW und/oder des Wasservolumenstroms VW zurückgreift.

Claims (11)

  1. Verfahren zur Erwärmung von Wasser variablen Volumenstroms nach dem Durchlaufprinzip, bei dem ein Wärmeerzeuger ein von einer Pumpe in einem Kreislauf gefördertes Heizfluid erwärmt, das Heizfluid ein im Durchlauf geführtes Wasser erwärmt, und mindestens ein in einem Wasserweg angeordneter Messfühler eine Auslauftemperatur TW und/oder einen Volumenstrom VW des Wassers misst, wobei die Auslauftemperatur TW des Wassers anhand einer modulierbaren und/oder schaltbaren Wärmeleistung Q des Wärmeerzeugers sowie eines modulierbaren und/oder schaltbaren Volumenstroms VH des Heizfluides auf eine vorgebbare Wasser-Solltemperatur TW0 geregelt wird,
    dadurch gekennzeichnet, dass bei einem taktendem Wärmeerzeugerbetrieb mit abwechselnden Ein- und Aus-Schaltungen des Wärmeerzeugers, wobei eine Wärmeanforderung zur Erwärmung des Wassers kleiner als eine minimale, von Null verschiedene Wärmeerzeugerwärmeleistung QMIN ist, die Auslauftemperatur TW geregelt wird, indem
    • etwa bei Erreichen einer minimal zulässigen Auslauftemperatur TW0,MIN der Wärmeerzeuger bei einer von Null verschiedenen Wärmeleistung einschaltet und die Pumpe auf einen niedrigen, von Null verschiedenen Heizfluidvolumenstrom VH,MIN umschaltet, und
    • etwa bei Erreichen einer maximal zulässigen Auslauftemperatur TW0,MAX der Wärmeerzeuger ausschaltet und die Pumpe auf einen hohen Heizfluidvolumenstrom VH,MAX umschaltet.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass das Einschalten oder Ausschalten des Wärmeerzeugers jeweils kurz vor oder gleichzeitig mit dem Erreichen der minimal oder der maximal zulässigen Auslauftemperatur erfolgt, und das Umschalten der Pumpe auf einen niedrigen oder hohen Heizfluidvolumenstrom jeweils gleichzeitig mit oder kurz nach dem Erreichen der minimal oder der maximal zulässigen Auslauftemperatur erfolgt.
  3. Verfahren zur Erwärmung von Wasser variablen Volumenstroms nach dem Durchlaufprinzip, bei dem ein Wärmeerzeuger ein von einer Pumpe in einem Kreislauf gefördertes Heizfluid erwärmt, das Heizfluid ein im Durchlauf geführtes Wasser erwärmt, und mindestens ein in einem Wasserweg angeordneter Messfühler eine Auslauftemperatur TW und/oder einen Volumenstrom VW des Wassers misst, wobei die Auslauftemperatur TW des Wassers anhand einer modulierbaren und/oder schaltbaren Wärmeleistung Q des Wärmeerzeugers sowie eines modulierbaren und/oder schaltbaren Volumenstroms VH des Heizfluides auf eine vorgebbare Wasser-Solltemperatur TW0 geregelt wird,
    dadurch gekennzeichnet, dass bei einem Wärmeerzeugerdauerbetrieb, wobei eine Wärmeanforderung zur Erwärmung des Wassers größer oder gleich einer minimalen Wärmeerzeugerwärmeleistung QMIN ist, die Auslauftemperatur TW geregelt wird, indem
    • bei einer ersten Wärmeanforderung der Wärmeerzeuger mit einer der Wärmeanforderung entsprechenden Wärmeleistung heizt und die Pumpe einen Nenn-Heizfluidvolumenstrom VH,NOM fördert, und
    • bei gegenüber der ersten Wärmeanforderung erhöhter Wärmeanforderung der Wärmeerzeuger mit einer der erhöhten Wärmeanforderung entsprechenden erhöhten Wärmeleistung heizt und die Pumpe zunächst auf einen erhöhten Heizfluidvolumenstrom umschaltet und anschließend wieder auf den Nenn-Heizfluidvolumenstrom VH,NOM zurückstellt, und
    • bei gegenüber der ersten und/oder der erhöhten Wärmeanforderung erniedrigten Wärmeanforderung der Wärmeerzeuger mit einer der erniedrigten Wärmeanforderung entsprechenden erniedrigten Wärmeleistung heizt und die Pumpe zunächst auf einen erniedrigten Heizfluidvolumenstrom umschaltet und anschließend wieder auf den Nenn-Heizfluidvolumenstrom VH,NOM zurückstellt.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass sich
    • eine erste Zeitspanne vorgebbarer Dauer zur Beobachtung eines zeitlichen Verlaufs einer aktuellen Temperaturabweichung ΔT, die sich aus der Auslauftemperatur TW und der Solltemperatur TW0 ergibt, wobei ΔT = TW - TW0, und
    • eine zweite Zeitspanne vorgebbarer Dauer zur Regelung der Auslauftemperatur TW abwechselnd wiederholen, wobei die Dauer der ersten und zweiten Zeitspanne als Festwert vorgegeben ist oder sich in Abhängigkeit einer Temperaturabweichung und/oder eines Betriebszustandes ändert.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass zur Regelung der Auslauftemperatur TW nur der Heizfluidvolumenstrom moduliert wird, wenn eine durchschnittliche Temperaturabweichung ΔTD der Auslauftemperatur TW von der Solltemperatur TW0 den Wert Null annimmt.
  6. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass zur Regelung der Auslauftemperatur TW mindestens die Wärmeerzeugerwärmeleistung moduliert wird, wenn eine durchschnittliche Temperaturabweichung ΔTD einen Wert verschieden von Null annimmt.
  7. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass zur Regelung der Auslauftemperatur TW mindestens der Heizfluidvolumenstrom moduliert wird, wenn eine Temperaturabweichung ΔT innerhalb einer Zeitspanne vorgebbarer Dauer mindestens zwei Nulldurchgänge aufweist.
  8. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass eine Frequenz F einer Auslauftemperaturschwankung erfasst und mit einer vorgebbaren Grenzfrequenz FG verglichen wird, und dass zur Regelung der Auslauftemperatur TW
    • bei einer Frequenz F größer als die Grenzfrequenz FG mindestens der Heizfluidvolumenstrom VH moduliert wird, und
    • bei einer Frequenz F kleiner als die Grenzfrequenz FG mindestens die Wärmeerzeugerwärmeleistung Q moduliert wird.
  9. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass ein Wertepaar W aus Betrag und Gradient der Temperaturabweichung ΔT erfasst und mit einem vorgebbaren Grenzwertepaar WG aus Betrag und Gradient verglichen wird, und dass zur Regelung der Auslauftemperatur TW
    • bei einem Wertepaar W mit relativ kleinem Betrag und relativ großem Gradienten mindestens der Heizfluidvolumenstrom VH moduliert wird, und dass
    • bei einem Wertepaar W mit relativ großem Betrag und relativ kleinem Gradienten mindestens die Wärmeerzeugerwärmeleistung Q moduliert wird.
  10. Wassererwärmungssystem nach dem Durchlaufprinzip mit
    • einem Wärmeerzeuger,
    • einem vom Wärmeerzeuger beheizten, von einer Pumpe im Kreislauf geförderten Heizfluid,
    • einem vom Heizfluid beheizten, im Durchlauf geförderten Wasser und
    • mindestens einem in einem Wasserweg angeordneten Messfühler zum Erfassen einer Auslauftemperatur TW und/oder eines Volumenstroms VW des Wassers,
    dadurch gekennzeichnet, dass zur Regelung der Auslauftemperatur TW auf eine vorgebbare Solltemperatur TW0 die Wärmeleistung Q des Wärmeerzeugers und der Volumenstrom VH des Heizfluidkreislaufs modulierbar und/oder schaltbar sind.
  11. Wassererwärmungssystem nach Anspruch 10,
    gekennzeichnet durch eine mit dem Wärmeerzeuger, der Pumpe und dem mindestens einen Messfühler verbundene Reglereinheit,
    • die eine Eingabevorrichtung zur Einstellung von Sollwerten und/oder Konstanten und/oder Grenzwerten umfasst,
    • die den Betrieb der verbundenen Komponenten beeinflusst und
    • somit die Auslauftemperatur TW regelt.
EP11159306.7A 2010-03-27 2011-03-23 Verfahren zur Erwärmung von Wasser nach dem Durchlaufprinzip und Wassererwärmungssystem Active EP2372259B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010013139A DE102010013139A1 (de) 2010-03-27 2010-03-27 Verfahren zur Erwärmung von Wasser nach dem Durchlaufprinzip und Wassererwärmungssystem

Publications (3)

Publication Number Publication Date
EP2372259A2 true EP2372259A2 (de) 2011-10-05
EP2372259A3 EP2372259A3 (de) 2014-01-22
EP2372259B1 EP2372259B1 (de) 2016-05-11

Family

ID=44310247

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11159306.7A Active EP2372259B1 (de) 2010-03-27 2011-03-23 Verfahren zur Erwärmung von Wasser nach dem Durchlaufprinzip und Wassererwärmungssystem

Country Status (4)

Country Link
EP (1) EP2372259B1 (de)
DE (1) DE102010013139A1 (de)
ES (1) ES2586689T3 (de)
PT (1) PT2372259T (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579023A (zh) * 2018-06-11 2019-12-17 芜湖美的厨卫电器制造有限公司 壁挂炉水路循环的控制方法、装置及系统
EP3604933A4 (de) * 2017-03-23 2020-03-25 Mitsubishi Electric Corporation System für hitzemediumzirkulation
CN115597238A (zh) * 2022-10-19 2023-01-13 珠海格力电器股份有限公司(Cn) 一种用水设备的水温控制方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019005722A1 (de) * 2019-08-12 2021-02-18 Huu-Thoi Le Verfahren zum Betrieb einer Heizungsanlage
CN112826327B (zh) * 2020-12-31 2022-11-18 佛山市顺德区美的饮水机制造有限公司 用于饮水机的补水方法、装置、存储介质及处理器
WO2023235393A1 (en) * 2022-06-01 2023-12-07 Laars Heating Systems Company System and method for determining heat transfer capacity of an indirect water heater

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59306480D1 (de) * 1992-02-18 1997-06-26 Vaillant Joh Gmbh & Co Verfahren zur Steuerung eines Kessels
DE19725952C2 (de) * 1997-06-19 2001-09-13 Bosch Gmbh Robert Verfahren zur Brauchwasserbereitstellung in einem kombinierten System
DE19725951A1 (de) * 1997-06-19 1999-01-21 Bosch Gmbh Robert Verfahren zur Brauchwasserbereitstellung in einem kombinierten System
DE102005006757A1 (de) * 2005-02-15 2006-08-17 Robert Bosch Gmbh Kombiniertes Heizgerät zur Raumheizung und Warmwasserbereitung sowie Verfahren zum Betreiben desselben

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3604933A4 (de) * 2017-03-23 2020-03-25 Mitsubishi Electric Corporation System für hitzemediumzirkulation
CN110579023A (zh) * 2018-06-11 2019-12-17 芜湖美的厨卫电器制造有限公司 壁挂炉水路循环的控制方法、装置及系统
CN110579023B (zh) * 2018-06-11 2024-01-16 芜湖美的厨卫电器制造有限公司 壁挂炉水路循环的控制方法、装置及系统
CN115597238A (zh) * 2022-10-19 2023-01-13 珠海格力电器股份有限公司(Cn) 一种用水设备的水温控制方法及装置
CN115597238B (zh) * 2022-10-19 2024-05-10 珠海格力电器股份有限公司 一种用水设备的水温控制方法及装置

Also Published As

Publication number Publication date
EP2372259B1 (de) 2016-05-11
PT2372259T (pt) 2016-07-14
EP2372259A3 (de) 2014-01-22
ES2586689T3 (es) 2016-10-18
DE102010013139A1 (de) 2011-09-29

Similar Documents

Publication Publication Date Title
EP2372259B1 (de) Verfahren zur Erwärmung von Wasser nach dem Durchlaufprinzip und Wassererwärmungssystem
DE69633933T2 (de) Flüssigkeitserhitzer mit verbesserter kontrolle des heizelements
EP2423619B1 (de) Durchlauferhitzer zum Erhitzen eines Fluids und Verfahren zum Betreiben eines Durchlauferhitzers
EP2187136A2 (de) Verfahren zum Betreiben eines Systems zum Transport thermischer Energie über ein flüssiges Medium
EP0279939B2 (de) Verfahren zum Einstellen der Förderleistung einer Umwälzpumpe
EP2372260B1 (de) Verfahren zur Erwärmung von Wasser nach dem Durchlaufprinzip und Wassererwärmungssystem
EP0444269B1 (de) Verfahren zur Regelung der Leistung einer Pumpe
DE102013105786B4 (de) Verfahren zur Regelung einer Zentral-Heizungsanlage
DE19512025C2 (de) Gasheizgerät
EP2090836A2 (de) Schichtladespeichersystem und Verfahren zum Betreiben eines Schichtladespeichersystems
EP2674684B1 (de) Hocheffizientes Heizsystem mit Luft-Wasser-Wärmepumpe
DE3325993A1 (de) Regel- und steuerverfahren zum betrieb einer heizungsanlage sowie regel- und steuereinrichtung zur durchfuehrung des verfahrens
EP1310736B1 (de) Regelverfahren und Regler zur Regelung eines Brenners
DE2307109A1 (de) Heizgeraet fuer brauch- und heizwasser
AT411632B (de) Verfahren zum regeln der entnahmetemperatur von brauchwasser
AT402575B (de) Verfahren zur steuerung eines volumenstrombegrenzers
EP0563752A1 (de) Verfahren zur Optimierung der Brennerlaufzeiten und der Anzahl der Brennerstarts je Zeiteinheit in einer Heizungsanlage
EP1195561B1 (de) Kaskade mit Durchlauf-Wärmetauschern zur Brauchwasser- oder Frischwassererwärmung
EP3800403B1 (de) Verfahren zum betreiben einer heizvorrichtung, heizvorrichtung
CH678887A5 (de)
AT408381B (de) Heizungsanlage
DE102013012724A1 (de) Vorrichtung zur Erwärmung von Heizwasser für eine Warmwasserbereitung
EP2199690B1 (de) Verfahren und Vorrichtung zum Regeln einer thermischen Solaranlage
EP2218967A2 (de) Verfahren und Vorrichtung zum Regeln der Laufzeit eines Brenners
EP0936413B1 (de) Wasserheizungsanlage mit Regler für die Heizwassertemperatur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F24D 19/10 20060101AFI20131217BHEP

17P Request for examination filed

Effective date: 20140722

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20150216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 798970

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011009691

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2372259

Country of ref document: PT

Date of ref document: 20160714

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20160707

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2586689

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160811

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160812

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011009691

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

26N No opposition filed

Effective date: 20170214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170323

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 798970

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220314

Year of fee payment: 12

Ref country code: PT

Payment date: 20220322

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220420

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502011009691

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230524

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240322

Year of fee payment: 14

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240507

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240320

Year of fee payment: 14