EP1310736B1 - Regelverfahren und Regler zur Regelung eines Brenners - Google Patents

Regelverfahren und Regler zur Regelung eines Brenners Download PDF

Info

Publication number
EP1310736B1
EP1310736B1 EP02023855A EP02023855A EP1310736B1 EP 1310736 B1 EP1310736 B1 EP 1310736B1 EP 02023855 A EP02023855 A EP 02023855A EP 02023855 A EP02023855 A EP 02023855A EP 1310736 B1 EP1310736 B1 EP 1310736B1
Authority
EP
European Patent Office
Prior art keywords
temperature
burner
switch
maximum
sdaus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02023855A
Other languages
English (en)
French (fr)
Other versions
EP1310736A3 (de
EP1310736A2 (de
Inventor
Harry Gerstner
Dieter Dr. Pfannstiel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Publication of EP1310736A2 publication Critical patent/EP1310736A2/de
Publication of EP1310736A3 publication Critical patent/EP1310736A3/de
Application granted granted Critical
Publication of EP1310736B1 publication Critical patent/EP1310736B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/082Regulating fuel supply conjointly with another medium, e.g. boiler water using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1069Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water regulation in function of the temperature of the domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/184Preventing harm to users from exposure to heated water, e.g. scalding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/269Time, e.g. hour or date
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/345Control of fans, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/36Control of heat-generating means in heaters of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2035Arrangement or mounting of control or safety devices for water heaters using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/36PID signal processing

Definitions

  • the present invention relates to a control method for controlling a burner of a heater, in particular for controlling the burner of a hot water instantaneous water heater according to the preamble of claim 1, a controller for controlling such a burner according to the preamble of claim 14 and a preferred use of the method or of the regulator according to claim 16.
  • Such control methods and regulators for controlling a burner in particular for controlling the burner of a domestic hot water heater for heating a heat transfer medium, such as water, are already known (e.g., CH 667516 A), where basically two different principles are applied.
  • a heat transfer medium such as water
  • the service water or the heat transfer medium to be heated in the flow principle directly via a heat exchanger heated by a burner, while other manufacturers, a second heat exchanger, i. a so-called.
  • Secondary heat exchanger for domestic water heating is used.
  • the heat transfer medium is heated either directly via a primary heat exchanger or indirectly by means of the heated water of the heater via a secondary heat exchanger and removed at suitable tapping points, for example in the kitchen or bathroom.
  • the control of the burner such spas takes place in the prior art by measuring the outlet temperature at the outlet of the heater.
  • the heating of the heat transfer medium is controlled, for example, by means of a PI controller or a PID controller as a function of a desired temperature and the outlet temperature.
  • the controller is the control difference supplied while this then a suitable manipulated variable, for example, a signal for power adjustment of the burner, outputs.
  • the outlet temperature changes depending on the tap quantity, the condition of the burner and the burner output.
  • the temperature of the heat transfer medium After switching on the burner, for example, due to a request of the heat transfer medium or because a lower switch-on of the heat transfer medium was exceeded, the temperature of the heat transfer medium initially falls slightly from then to rise due to the heating by the turned on burner. In the course of the further tapping of the heat transfer medium, the burner is switched on or off in response to an upper switch-off temperature or a lower switch-on temperature.
  • first tapping of heat transfer medium it comes systemic to greater fluctuations in the temperature of the heat transfer medium. These temperature fluctuations arise, for example, by the heat transfer medium still in the pipes, which must be removed, or by the necessary heating of the pipeline to the tap.
  • the outlet temperature should be kept as constant as possible, i. as close as possible to the set by the user of the heat transfer medium setpoint.
  • a too frequent switching on and off of the burner should be avoided, since this not only pollutes the burner, but is also unfavorable as regards exhaust technology and fuel consumption.
  • the invention is therefore based on the object to improve conventional control method for controlling such burner or corresponding controller such that on the one hand avoid frequent switching on and off of the burner and at the same time as constant a discharge temperature is achieved.
  • the invention is based on the finding that although fluctuations in the outlet temperature are acceptable when switching on a burner by the aforementioned irregularities during heating of the pipe to the tap and by the ejection of the heat transfer medium still in the pipes, but this after a decay short transient.
  • the invention therefore provides a dynamic variable switch-off difference which lies in a corridor between a maximum switch-off temperature and a minimum switch-off temperature.
  • the control method measures at a predeterminable burner output the rise of the outlet temperature, in particular after the first switching on of the burner and detects a first maximum of the outlet temperature, i. every point at which the temperature of the heat transfer medium, after a first increase, for example, due to an increased bleed in comparison to the set burner power drops again. Subsequently, the control method according to the invention uses as the next switch-off temperature, i. as the next upper limit of the dynamic switch-off difference, a value between the previously set maximum switch-off temperature and the first maximum of the outlet temperature, which was previously measured accordingly.
  • the first maximum of the outlet temperature is measured in order then to calculate a first difference between the maximum switch-off temperature and the first maximum of the outlet temperature.
  • the next switch-off temperature is determined by means of this first calculated difference. This can be repeated for each subsequent, resulting maximum temperature of the heat transfer medium. In the following calculations, the difference between the current switch-off temperature and the maximum is then formed.
  • the difference between the current switch-off temperature and half of the first difference is used as the next switch-off temperature.
  • the following rule applies:
  • the next switch-off temperature is the difference between the ith switch-off temperature and the half of the i-th difference and the ith maximum outlet temperature. This corresponds to the previous switch-off temperature minus half of the i-th difference.
  • the control method according to the invention advantageously uses, as ith difference, the difference between the maximum switch-off temperature or the previous switch-off temperature and a minimum switch-off temperature if the i-th maximum of the outlet temperature is below the minimum switch-off temperature.
  • the maximum switch-off temperature is advantageously used as the next switch-off, if the i-th maximum outlet temperature above the maximum switch-off, i. is above the originally set upper limit of the dynamic switch-off difference.
  • the control method starts the measurement of the i-th maximum only after the measurement of a previous (i-1) th minimum, i. that after the measurement of the (i-1) -th maximum, only a further (i-1) -th minimum has to be detected before the control method begins with the measurement of the i-th maximum.
  • a time counting is started with advantage after switching on the burner at the same time to use the minimum switch-off temperature as the next switch-off after a predeterminable time. This serves to ensure the safety of the regulatory procedure. For example, if no maximum of the temperature of the heat transfer medium can be detected by a very high tapping power, i. if the temperature only gradually approaches the lower limit of the dynamic turn-off difference, i. the minimum switch-off temperature approaches, can be switched directly after the predeterminable period of time to the minimum switch-off, so as to obtain the minimum possible switching difference between the switch-on temperature and the switch-off.
  • the maximum switch-off temperature is limited as a function of the setpoint temperature.
  • a larger switching differential can be allowed for the first overshoot than with higher setpoints. If the switching difference is set too high at a desired value of, for example, 60 ° C., this leads to a short-term overshoot and thus possibly to a scalding of the person tapping, when the taps are geographically close to the spa.
  • the switch-off difference can therefore be limited depending on the setpoint temperature to be set.
  • the burner power is changed modulating in accordance with a preferred embodiment of the present control method.
  • a further preferred embodiment of the invention is in the heating of the heat transfer medium in the clock mode, i. switched at very small amounts of heat transfer medium removed, after a start of the burner of an ignition as directly as possible to a predeterminable and storable clock power.
  • a clock power is advantageously used the last power before the shutdown of the burner or the minimum adjustable power of the burner. This has the advantage that a large overshoot is avoided after restarting the burner, without the switching differential must be increased.
  • the modulation controller For small discharged amounts of heat transfer medium, the problem is that after a renewed involvement of the burner, the modulation controller must downshift the burner performance of a starting power (starting power) when the extracted amount of heat transfer medium is very low. If this does not happen fast enough, the condition occurs that the temperature in the heat exchanger, ie in the heater quickly reaches the Brenn Lucassschaltddling and the burner is switched off again. This leads to a large Brennerschaltphaseufmaschine, which is undesirable. With the help of this preferred embodiment of the control method according to the invention However, the burner is not “started” in the modulation mode, but initially switched to the "remembered” burner power immediately.
  • the blower of the burner is advantageously not switched off, but preferably continues to operate at an ignition speed. This makes it possible to start the burner faster, which reduces a "sagging" of the outlet temperature.
  • An inventive controller for controlling a burner of a heater has corresponding means for measuring a first maximum of the outlet temperature, which is achieved at a predeterminable burner output, and further means for calculating a next switch-off, which is a value between the maximum switch-off and the first maximum Outlet temperature occupies.
  • the controller advantageously has means for measuring gradients of temperature profiles, in order in particular to be able to determine the corresponding maxima and minima.
  • control method according to the invention or the controller according to the invention consists in the control of a domestic hot water heater or boiler control or heating circuit control.
  • FIG. 1 shows the schematic representation of a water heater with primary exchanger 7 (primary heat exchanger), which is heated by a burner 2 (shown only schematically).
  • the cold water KW is fed via a cold water inlet 5 to the primary exchanger 7 and heated there.
  • the heated water is taken from a tapping point 6 as hot water WW.
  • To measure the outlet temperature ⁇ Aus is an outlet temperature sensor B3 (temperature sensor 9).
  • Via a flow switch FS the tap of hot water WW is detected.
  • the burner 2 also serves to heat a heating medium, such as water for example, to heat a house. Only schematically shown is a boiler heat exchanger 8 with flow temperature sensor B2, return temperature sensor B7, flow pump or heating circuit pump Q1, consumer 3 (radiator) and water pipe. 4
  • a regulator 1 controls or controls the burner 2 for heating the cold water KW in the primary exchanger 7.
  • FIG. 2 shows the schematic representation of a water heater with secondary heat exchanger, where the cold water KW is not heated directly from the burner 2, but via a secondary exchanger 10 (secondary heat exchanger).
  • the secondary exchanger 10 is supplied with heat by the heating medium via a three-way valve UV which heats the cold water.
  • an outlet temperature sensor B3 is used to measure the outlet temperature ⁇ out .
  • An inlet temperature sensor B5 and a buffer medium temperature sensor B4 is also indicated schematically.
  • a flow switch FS is arranged on the output side at the tapping point 6 for measuring a tap of hot water WW.
  • the heating circuit pump Q1 is in this case on the return side of the boiler 8 in front of the return temperature sensor B7 and at the same time ensures the circulation of the heating medium in the secondary exchanger 10th
  • FIG. 3 shows an example of the schematic representation of a transient process of the temperature of the heat transfer medium, ie the outlet temperature ⁇ Aus , which is measured for example at the outlet of the heater.
  • FIG. 3 shows a maximum switch-off temperature SdOff from max and a minimum switch-off temperature SdOff min , which represent the upper and lower values of the dynamic switch-off difference.
  • the dynamic switch-off is set when the burner 2 in the present control method first to the maximum switch SdAus max.
  • a timer (Sd_counter) is started when starting the burner. This counter is used to reset the switch-off difference to the minimum switch-off temperature SdOff min after a settable time. This ensures that the fluctuations of the outlet temperature ⁇ Aus are limited.
  • Figure 4 shows a further possible transient of the outlet temperature of the heat carrier medium, the minimum switch-off temperature SdAus min never exceeds the dynamic switch-off.
  • the i-th difference between the previous switch-off temperature SdAus (k + i-1) (or the first time between the maximum switch SdAus max) and the minimum switch-off temperature SdAus min is calculated, if the i te maximum of the outlet temperature ⁇ Off below the minimum switch-off temperature SdAuS min is.
  • the upper limit of the dynamic turn-off difference ie the upper turn-off temperature SdOff (k + i) iteratively approaches infinitely near the lower turn-off temperature, ie the minimum possible turn-off temperature SdOff min .
  • the minimum switch-off temperature SdAus min to use min a certain limit below.
  • Figure 5 shows the schematic representation of setting the starting power in the cyclic operation of the burner 2, ie at small bleed amounts. While it has been applied in the upper part of FIG 5 as shown in Fig. 4, the outlet temperature ⁇ from versus time, in the lower part of the figure 5 is shown the power of the burner 2 with respect to the time corresponding to the overlying outlet temperature ⁇ off. Once a clock mode has been detected, ie the tap particularly small amounts of hot water WW and the burner 2 turns off, the last related power of the burner 2 is stored in a memory of the controller 1.
  • the burner 2 While the burner 2 remains switched off, it is possible to keep the fan of the burner running in order to get into the appropriate speed range as quickly as possible when the burner is switched on again. As soon as the outlet temperature ⁇ out crosses the lower limit of the switching difference SdOn, the burner 2 switches back on, in which case the previously "remembered” power, ie the power stored in the controller 1, is used, which can then also be used, for example, to measure the slew rate v A if this has not been done before. After the identification phase (power constant), the modulation controller is enabled.
  • control method according to the invention or the controller according to the invention are advantageously suitable for controlling a hot water instantaneous water heater, they can also be used, for example, for the heating operation of a heating system. In this case, only the parameters between service water operation and heating operation must be differentiated, ie switched over.
  • the controller has suitable input means for separately setting the minimum and maximum switch-off temperatures SdAus min and SdAus max for heating operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Combustion (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Paper (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Regelverfahren zur Regelung eines Brenners einer Heizvorrichtung, insbesondere zur Regelung des Brenners eines Brauchwasser-Durchlauferhitzers nach dem Oberbegriff des Patentanspruches 1, einen Regler zur Regelung eines solchen Brenners nach dem Oberbegriff des Patentanspruches 14 und eine bevorzugte Verwendung des Verfahrens bzw. des Reglers nach Patentanspruch 16.
  • Derartige Regelverfahren und Regler zur Regelung eines Brenners, insbesondere zur Regelung des Brenners eines Brauchwasser-Durchlauferhitzers zur Erwärmung eines Wärmeträgermediums, wie beispielsweise Wasser, sind bereits bekannt (z.B. CH 667516 A), wobei hier grundsätzlich zwei verschiedene Prinzipien angewandt werden. So wird bei einigen Herstellern solcher Heizvorrichtungen das Brauchwasser bzw. das zu erwärmende Wärmeträgermedium im Durchlaufprinzip direkt über einen Wärmetauscher von einem Brenner erwärmt, während bei anderen Herstellern ein zweiter Wärmetauscher, d.h. ein sog. Sekundärwärmetauscher für die Brauchwassererwärmung eingesetzt wird.
  • Bei den bekannten Thermen bzw. Durchlauferhitzern wird das Wärmeträgermedium entweder direkt über einen Primärwärmetauscher oder indirekt mittels des erwärmten Wassers der Heizung über einen Sekundärwärmetauscher erwärmt und an geeigneten Zapfstellen, beispielsweise in der Küche oder im Bad, entnommen. Die Regelung des Brenners solcher Thermen erfolgt beim bekannten Stand der Technik durch die Messung der Auslauftemperatur am Auslauf der Heizvorrichtung. Das über einen Einlauf der Heizvorrichtung zugeführte Wärmeträgermedium hat dort eine bestimmte Einlauftemperatur und am Auslauf der Heizvorrichtung eine bestimmte Auslauftemperatur. Die Erwärmung des Wärmeträgermediums wird beispielsweise mittels eines PI-Reglers oder eines PID-Reglers in Abhängigkeit einer Solltemperatur und der Auslauftemperatur geregelt. Dem Regler wird die Regeldifferenz zugeführt, während dieser dann eine geeignete Stellgröße, beispielsweise ein Signal zur Leistungseinstellung des Brenners, abgibt.
  • Die Auslauftemperatur ändert sich in Abhängigkeit der Zapfmenge, des Zustands des Brenners und der Brennerleistung. Nach dem Einschalten des Brenners, beispielsweise aufgrund einer Anforderung des Wärmeträgermediums oder weil eine untere Einschalttemperatur des Wärmeträgermediums unterschritten wurde, fällt die Temperatur des Wärmeträgermediums zunächst noch etwas ab, um dann aufgrund der Erwärmung durch den eingeschalteten Brenner anzusteigen. Im Verlaufe der weiteren Zapfung von Wärmeträgermedium wird der Brenner in Abhängigkeit einer oberen Ausschalttemperatur bzw. einer unteren Einschalttemperatur aus- bzw. eingeschaltet. Beim erstmaligen Zapfen von Wärmeträgermedium kommt es systembedingt zu stärkeren Schwankungen der Temperatur des Wärmeträgermediums. Diese Temperaturschwankungen ergeben sich beispielsweise durch das sich noch in den Rohrleitungen befindliche Wärmeträgermedium, das abgeführt werden muß, bzw. durch die notwendige Erwärmung der Rohrleitung bis hin zur Zapfstelle.
  • Grundsätzlich werden zwei wichtige Anforderungen an ein solches Regelverfahren gestellt. Einerseits soll die Auslauftemperatur möglichst konstant gehalten werden, d.h. möglichst nahe an dem vom Benutzer des Wärmeträgermediums eingestellten Sollwert. Andererseits soll ein zu häufiges Ein- und Ausschalten des Brenners vermieden werden, da dies nicht nur den Brenner belastet, sondern auch abgastechnisch und bezüglich des Brennstoffverbrauchs ungünstig ist.
  • Der Erfindung liegt daher die Aufgabe zugrunde, herkömmliche Regelverfahren zur Regelung solcher Brenner bzw. entsprechende Regler dergestalt zu verbessern, dass einerseits ein häufiges Ein- und Ausschalten des Brenners vermieden und gleichzeitig eine möglichst konstante Auslauftemperatur erzielt wird.
  • Die Erfindung löst die ihr zugrunde liegende Aufgabe durch die kennzeichnenden Merkmale der unabhängigen Patentansprüche 1 und 14. Eine vorteilhafte Verwendung des erfindungsgemäßen Regelverfahrens bzw. des erfindungsgemäßen Reglers ist in Patentanspruch 16 beansprucht. Weitere bevorzugte Ausführungsformen der Erfindung sind in den Unteransprüchen beschrieben und dort gekennzeichnet.
  • Die Erfindung beruht auf der Erkenntnis, daß zwar beim Einschalten eines Brenners durch die vorerwähnten Unregelmäßigkeiten während der Erwärmung der Rohrleitung bis hin zur Zapfstelle als auch durch das Ausstoßen des sich noch in den Rohrleitungen befindlichen Wärmeträgermediums Schwankungen in der Auslauftemperatur akzeptierbar sind, diese jedoch nach einem kurzen Einschwingvorgang abklingen. Die Erfindung sieht daher eine dynamische veränderliche Ausschaltdifferenz vor, die in einem Korridor zwischen einer maximalen Ausschalttemperatur und einer minimalen Ausschalttemperatur liegt.
  • Das Regelverfahren mißt bei einer vorbestimmbaren Brennerleistung den Anstieg der Auslauftemperatur, insbesondere nach dem ersten Einschalten des Brenners und detektiert ein erstes Maximum der Auslauftemperatur, d.h. jeden Punkt, an dem die Temperatur des Wärmeträgermediums, nach einem ersten Ansteigen, beispielsweise aufgrund einer gestiegenen Zapfmenge im Vergleich zur eingestellten Brennerleistung, wieder abfällt. Anschließend verwendet das erfindungsgemäße Regelverfahren als nächste Ausschalttemperatur, d.h. als nächste obere Grenze der dynamischen Ausschaltdifferenz einen Wert zwischen der vorherig eingestellten maximalen Ausschalttemperatur und dem ersten Maximum der Auslauftemperatur, das zuvor entsprechend gemessen wurde.
  • Mit Vorteil wird nach dem Einschalten des Brenners das erste Maximum der Auslauftemperatur gemessen, um dann eine erste Differenz zwischen der maximalen Ausschalttemperatur und dem ersten Maximum der Auslauftemperatur zu berechnen. Im Anschluß daran wird mittels dieser ersten berechneten Differenz die nächste Ausschalttemperatur ermittelt. Dies kann für jedes darauffolgende, sich ergebende Maximum der Temperatur des Wärmeträgermediums wiederholt werden. Bei den nachfolgenden Berechnungen wird dann die Differenz zwischen der aktuellen Ausschalttemperatur und dem Maximum gebildet.
  • Mit Vorteil wird als nächste Ausschalttemperatur die Differenz aus der aktuellen Ausschalttemperatur und der Hälfte der ersten Differenz verwendet. Im Allgemeinen gilt folgende Regel:
  • Als nächste Ausschalttemperatur wird die Differenz aus der i-ten Ausschalttemperatur und der Hälfte der i-ten Differenz und dem i-ten Maximum der Auslauftemperatur verwendet. Dies entspricht der vorherigen Ausschalttemperatur abzüglich der Hälfte der i-ten Differenz.
  • Das erfindungsgemäße Regelverfahren verwendet mit Vorteil als i-te Differenz die Differenz zwischen der maximalen Ausschalttemperatur bzw. der vorherigen Ausschalttemperatur und einer minimalen Ausschalttemperatur, falls das i-te Maximum der Auslauftemperatur unterhalb der minimalen Ausschalttemperatur liegt. Andererseits wird mit Vorteil als nächste Ausschalttemperatur die maximale Ausschalttemperatur verwendet, falls das i-te Maximum der Auslauftemperatur oberhalb der maximalen Ausschalttemperatur, d.h. oberhalb der ursprünglich eingestellten oberen Grenze der dynamischen Ausschaltdifferenz liegt.
  • Weiterhin startet das Regelverfahren nach einer bevorzugten Ausführungsform der vorliegenden Erfindung die Messung des i-ten Maximums erst nach der Messung eines vorherliegenden (i-1)-ten Minimums, d.h. daß nach der Messung des (i-1)-ten Maximums erst ein weiteres (i -1)-tes Minimum detektiert werden muß, bevor das Regelverfahren mit der Messung des i-ten Maximums beginnt.
  • Weiterhin wird mit Vorteil nach dem Einschalten des Brenners gleichzeitig eine Zeitzählung gestartet, um nach Ablauf einer vorbestimmbaren Zeit die minimale Ausschalttemperatur als nächste Ausschalttemperatur zu verwenden. Dies dient zur Sicherheit des Regelverfahrens. Falls beispielsweise durch eine sehr hohe Zapfleistung kein Maximum der Temperatur des Wärmeträgermediums detektiert werden kann, d.h. wenn sich die Temperatur nur allmählich der unteren Grenze der dynamischen Ausschaltdifferenz, d.h. der minimalen Ausschalttemperatur nähert, kann nach der vorbestimmbaren Zeitdauer direkt auf die minimale Ausschalttemperatur umgeschaltet werden, um so die minimal mögliche Schaltdifferenz zwischen der Einschalttemperatur und der Ausschalttemperatur zu erhalten.
  • Mit Vorteil werden alle Temperatur- und Ausschaltwerte nach dem Ausschalten des Brenners zurückgesetzt und die Berechnung beginnt beim nächsten Brennerstart wieder von vorne. Weiterhin wird die maximale Ausschalttemperatur nach einer bevorzugten Ausführungsform der Erfindung in Abhängigkeit von der Solltemperatur begrenzt. Bei niedrigeren Sollwerten für die Auslauftemperaturen kann für das erste Überschwingen eine größere Schaltdifferenz zugelassen werden als bei höheren Sollwerten. Ist die Schaltdifferenz bei einem Sollwert von beispielsweise 60°C zu groß eingestellt, so führt dies zu einem kurzfristig großen Überschwingen und damit bei den der Therme geographisch nahegelegenen Zapfstellen evtl. zu einer Verbrühung der zapfenden Person. Die Ausschaltdifferenz kann daher in Abhängigkeit von der einzustellenden Solltemperatur begrenzt werden.
  • Falls aufgrund großer Zapfmengen die Temperatur nicht die Solltemperatur bei einer vorbestimmbaren Brennerleistung nach Ablauf einer vorbestimmbaren Zeitdauer erreicht, wird gemäß einer bevorzugten Ausführungsform des vorliegenden Regelverfahrens die Brennerleistung modulierend verändert.
  • Nach einer weiteren bevorzugten Ausführungsform der Erfindung wird bei der Erwärmung des Wärmeträgermediums im Taktbetrieb, d.h. bei sehr geringen Mengen von abgeführtem Wärmeträgermedium, nach einem Starten des Brenners von einer Zündleistung möglichst unmittelbar auf eine vorbestimmbare und abspeicherbare Taktleistung umgeschaltet. Als Taktleistung wird mit Vorteil die letzte Leistung vor der Abschaltung des Brenners oder die minimale einstellbare Leistung des Brenners verwendet. Dies hat den Vorteil, daß ein großes Überschwingen nach dem Wiedereinschalten des Brenners vermieden wird, ohne daß die Schaltdifferenz vergrößert werden muß.
  • Bei kleinen abgeführten Mengen von Wärmeträgermedium besteht das Problem, daß nach einer erneuten Einschaltung des Brenners der Modulationsregler die Brennerleistung von einer Zündleistung (Startleistung) herunterregeln muß, wenn die entnommene Menge an Wärmeträgermedium nur sehr gering ist. Wenn dies nicht schnell genug erfolgt, so tritt der Zustand ein, daß die Temperatur im Wärmetauscher, d.h. in der Heizvorrichtung schnell den Brennerausschaltpunkt erreicht und der Brenner wieder abgeschaltet wird. Dies führt zu einer großen Brennerschalthäufigkeit, die unerwünscht ist. Mit Hilfe dieser bevorzugten Ausführungsform des erfindungsgemäßen Regelverfahrens wird der Brenner jedoch nicht im Modulationsbetrieb "gestartet", sondern zunächst auf die "gemerkte" Brennerleistung sofort umgeschaltet.
  • Während des abgeschalteten Zustands des Brenners im Taktbetrieb wird mit Vorteil das Gebläse des Brenners nicht ausgeschaltet, sondern vorzugsweise mit einer Zünddrehzahl weiterhin betrieben. Dadurch ist es möglich, den Brenner schneller zu starten, was ein "Durchsacken" der Auslauftemperatur reduziert.
  • Ein erfindungsgemäßer Regler zur Regelung eines Brenners einer Heizvorrichtung weist entsprechende Mittel zur Messung eines ersten Maximums der Auslauftemperatur auf, das bei einer vorbestimmbaren Brennerleistung erreicht wird, sowie weitere Mittel zur Berechnung einer nächsten Ausschalttemperatur, die einen Wert zwischen der maximalen Ausschalttemperatur und dem ersten Maximum der Auslauftemperatur einnimmt. Mit Vorteil weist der Regler darüber hinaus Mittel zur Messung von Gradienten von Temperaturverläufen auf, um insbesondere die entsprechenden Maxima und Minima bestimmen zu können.
  • Eine vorteilhafte Verwendung des erfindungsgemäßen Regelverfahrens bzw. des erfindungsgemäßen Reglers besteht in der Regelung eines Brauchwasser-Durchlauferhitzers oder zur Kesselregelung oder zur Heizkreisregelung.
  • Eine bevorzugte Ausführungsform der vorliegenden Erfindung wird anhand der nachfolgenden Zeichnungen für die zwei Prinzipien der Auslauftemperaturregelung (Figur 1 ) und der sog. Komforttemperatur-Regelung (Figur 2) näher erläutert. Dabei zeigen:
  • Figur 1
    die schematische Darstellung eines Durchlauferhitzers mit Primärwärmetauscher (Auslauftemperatur-Regelung);
    Figur 2
    die schematische Darstellung eines Durchlauferhitzers mit Sekundärwärmetauscher (optional mit Komforttemperatur-Regelung);
    Figur 3
    ein schematisches Diagramm eines ersten Einschwingvorgangs der Temperatur des Wärmeträgermediums;
    Figur 4
    ein schematisches Diagramm eines weiteren Einschwingvorgangs der Temperatur des Wärmeträgermediums; und
    Figur 5
    die graphische Darstellung des Setzens der Startleistung im Taktbetrieb des Brenners.
  • Figur 1 zeigt die schematische Darstellung eines Durchlauferhitzers mit Primärtauscher 7 (Primärwärmetauscher), der von einem Brenner 2 (lediglich schematisch dargestellt) erhitzt wird. Das Kaltwasser KW wird über einen Kaltwassereinlauf 5 dem Primärtauscher 7 zugeführt und dort erhitzt. Das erhitzte Wasser wird an einer Zapfstelle 6 als Warmwasser WW entnommen. Zur Messung der Auslauftemperatur ϑAus dient ein Auslauftemperaturfühler B3 (Temperatursensor 9). Über einen Strömungsschalter (flow-switch) FS wird die Zapfung von Warmwasser WW erkannt. Der Brenner 2 dient gleichzeitig auch zur Erwärmung eines Heizmediums, wie beispielswasser Wasser, zur Wärmeversorgung eines Hauses. Lediglich schematisch dargestellt ist ein Kesselwärmetauscher 8 mit Vorlauftemperaturfühler B2, Rücklauftemperaturfühler B7, Vorlaufpumpe oder Heizkreispumpe Q1, Verbraucher 3 (Heizkörper) und Wasserleitung 4.
  • Ein Regler 1 regelt bzw. steuert den Brenner 2 zur Erwärmung des Kaltwassers KW im Primärtauscher 7.
  • Figur 2 zeigt die schematische Darstellung eines Durchlauferhitzers mit Sekundärwärmetauscher, wo das Kaltwasser KW nicht direkt vom Brenner 2, sondern über einen Sekundärtauscher 10 (Sekundärwärmetauscher) erwärmt wird. Der Sekundärtauscher 10 wird von dem Heizmedium über ein Drei-Wege-Ventil UV mit Wärme versorgt, die das Kaltwasser erwärmt. Auch hier dient ein Auslauftemperaturfühler B3 zur Messung der Auslauftemperatur ϑAus. Ein Einlauftemperaturfühler B5 und ein Puffermediumtemperaturfühler B4 ist ebenfalls schematisch angedeutet. Ein Strömungsschalter FS ist hier ausgangsseitig an der Zapfstelle 6 zur Messung einer Zapfung von Warmwasser WW angeordnet. Die Heizkreispumpe Q1 liegt in diesem Fall auf der Rücklaufseite des Kessels 8 vor dem Rücklauftemperaturfühler B7 und sorgt gleichzeitig zur Umwälzung des Heizmediums im Sekundärtauscher 10.
  • Eine zu große Schaltdifferenz zwischen der Einschalttemperatur SdEin und der Ausschalttemperatur SdAus soll nun an den Zapfstellen 6 in den Figuren 1 und 2 vermieden werden, da der Benutzer sonst große Schwankungen in der Auslauftemperatur ϑAus erhält.
  • Figur 3 zeigt beispielhaft die schematische Darstellung eines Einschwingvorganges der Temperatur des Wärmeträgermediums, d.h. der Auslauftemperatur ϑAus, die beispielsweise am Auslauf der Heizvorrichtung gemessen wird. Figur 3 zeigt eine maximale Ausschalttemperatur SdAusmax und eine minimale Ausschalttemperatur SdAusmin, die die oberen und unteren Werte der dynamischen Ausschaltdifferenz darstellen. Die dynamische Ausschaltdifferenz wird beim Einschalten des Brenners 2 bei dem vorliegenden Regelverfahren zunächst auf die maximale Ausschalttemperatur SdAusmax gesetzt. Gleichzeitig wird beim Start des Brenners eine Zeitzählung (Sd_Zähler) gestartet. Dieser Zähler dient dazu, nach einer einstellbaren Zeit die Ausschaltdifferenz auf die minimale Ausschalttemperatur SdAusmin rückzusetzen. Dabei wird sichergestellt, daß die Schwankungen der Auslauftemperatur ϑAus begrenzt werden.
  • Im Folgenden wird der in Figur 3 gezeigte Algorithmus beispielhaft als bevorzugte Ausführungsform der Erfindung beschrieben:
    • 1. Aufgrund einer Anforderung des Wärmeträgermediums beispielsweise über das Ansprechen eines Strömungsschalters FS oder weil die Einschalttemperatur SdEin unterschritten wurde, wird der Brenner 2 eingeschaltet.
    • 2. Mit Einschalten des Brenners 2 wird der Zeitzähler (Sd_Zähler) gestartet. Das Zeitende kann ggf. durch die Bedienperson oder durch den Heizungsinstallateur als Abbruchkriterium veränderlich einstellbar gestaltet werden.
    • 3. Gleichzeitig wird auch die Berechnung des ersten Maximums 1a gestartet. Der Startwert für die Maximumberechnung wird beim Brennerstart auf "0" gesetzt.
    • 4. Die im ersten Maximum 1 a der Ausschalttemperatur berechnete Differenz Δϑ1 zwischen der maximalen Ausschalttemperatur SdAusmax und dem ersten Maximum 1a der Auslauftemperatur ϑAus bestimmt die Reduzierung der Ausschaltdifferenz für die nächste Schwingung der Auslauftemperatur des Wärmeträgermediums.
    • 5. Nach der Berechnung des Maximums 1a erfolgt das Zurücksetzen der Schaltdifferenz auf den berechneten Wert. Als oberer Wert der dynamischen Ausschaltdifferenz wird daher mit Vorteil genau die Mitte zwischen der maximalen Ausschalttemperatur SdAusmax und dem ersten Maximum 1a genommen.
    • 6. Wird das erste Minimum 1b erkannt, so wird hier eine erneute Berechnung des nächsten Maximums gestartet und der Startwert für diese Maximumberechnung auf 0 gesetzt.
    • 7. Wird ein zweites Maximum 2a erkannt, so wird die Differenz Δϑ2 zwischen der aktuellen oberen Ausschalttemperatur SdAus (k+1) und dem zweiten Maximum 2a bestimmt. Die Reduzierung der Schaltdifferenz für die nächste Schwingung berechnet sich wie oben bereits beschrieben.
  • Liegt das berechnete Maximum unterhalb der unteren Ausschalttemperatur SdAusmin, so wird die Differenz zwischen dem aktuellen oberen Wert der Ausschalttemperatur SdAus (k+i) und der minimalen Ausschalttemperatur SdAusmin gebildet. Mit Hilfe dieses Regelverfahrens kann jeder beliebige Einschwingvorgang gehandhabt werden, wie dies beispielsweise auch in Figur 4 gezeigt wird.
  • Figur 4 zeigt einen weiteren möglichen Einschwingvorgang der Auslauftemperatur des Wärmeträgermediums, die zu keiner Zeit die minimale Ausschalttemperatur SdAusmin der dynamischen Ausschaltdifferenz überschreitet. Auch hier wird bei jedem Erkennen eines Maximums die i-te Differenz zwischen der vorherigen Ausschalttemperatur SdAus (k+i -1) (bzw. beim ersten Mal zwischen der maximalen Ausschalttemperatur SdAusmax) und der minimalen Ausschalttemperatur SdAusmin berechnet, falls das i-te Maximum der Auslauftemperatur ϑAus unterhalb der minimalen Ausschalttemperatur SdAuSmin liegt. Wie in Figur 4 gezeigt, nähert sich die obere Grenze der dynamischen Ausschaltdifferenz, d.h. die obere Ausschalttemperatur SdAus (k+i) iterativ unendlich nah der unteren Ausschalttemperatur, d.h. der minimal möglichen Ausschalttemperatur SdAusmin an.
  • Hier kann darüber hinaus vorgesehen werden, als Ausschalttemperatur die minimale Ausschalttemperatur SdAusmin zu verwenden, falls die Differenz zwischen aktueller oberer Ausschalttemperatur SdAus (k+i) und minimaler Ausschalttemperatur SdAuSmin einen bestimmten Grenzwert (bsp. 2-5 K) unterschreitet.
  • Figur 5 zeigt die schematische Darstellung des Setzens der Startleistung im Taktbetrieb des Brenners 2, d.h. bei kleinen Zapfmengen. Während im oberen Teil der Figur 5 wie in Fig. 4 die Auslauftemperatur ϑAus gegenüber der Zeit aufgetragen wurde, ist im unteren Teil der Figur 5 die Leistung des Brenners 2 gegenüber der Zeit entsprechend der darüber liegenden Auslauftemperatur ϑAus dargestellt. Sobald ein Taktbetrieb erkannt wurde, d.h. die Zapfung besonders kleiner Mengen von Warmwasser WW und der Brenner 2 ausschaltet, wird die zuletzt verwandte Leistung des Brenners 2 in einem Speicher des Reglers 1 abgespeichert.
  • Während der Brenner 2 ausgeschaltet bleibt, ist es möglich, das Gebläse des Brenners weiterlaufen zu lassen, um beim Wiederanschalten des Brenners möglichst schnell in den geeigneten Drehzahlbereich zu kommen. Sobald die Auslauftemperatur ϑAus die untere Grenze der Schaltdifferenz SdEin kreuzt, schaltet der Brenner 2 wieder ein, wobei hier die zuvor "gemerkte", d.h. im Regler 1 abgespeicherte Leistung verwandt wird, die dann auch beispielsweise zur Messung der Anstiegsgeschwindigkeit vA verwendet werden kann, falls dies zuvor noch nicht erfolgt ist. Nach der Identifikationsphase (Leistung konstant) wird der Modulationsregler freigegeben.
  • Während sich das erfindungsgemäße Regelverfahren bzw. der erfindungsgemäße Regler mit Vorteil zur Regelung eines Brauchwasser-Durchlauferhitzers eignen, können diese auch beispielsweise für den Heizbetrieb einer Heizanlage verwendet werden. Es müssen hierbei lediglich die Parameter zwischen Brauchwasserbetrieb und Heizbetrieb unterschieden, d.h. umgeschaltet werden. Der Regler verfügt dabei über geeignete Eingabemittel, um die jeweils minimale und maximale Ausschalttemperatur SdAusmin und SdAusmax für den Heizbetrieb separat einzustellen.

Claims (16)

  1. Regelverfahren zur Regelung eines Brenners (2) einer Heizvorrichtung, insbesondere zur Regelung des Brenners eines Brauchwasser-Durchlauferhitzers, wobei der Brenner (2) ein Wärmeträgermedium erwärmt, das an einem Einlauf der Heizvorrichtung eine bestimmte Einlauftemperatur (ϑEin) und an einem Auslauf der Heizvorrichtung eine bestimmte Auslauftemperatur (ϑAus) aufweist, und wobei die Erwärmung des Wärmeträgermediums zumindest in Abhängigkeit einer Solltemperatur (ϑSoll) und der Auslauftemperatur (ϑAus) geregelt wird, dadurch gekennzeichnet, dass ein erstes Maximum (1a) der Auslauftemperatur (ϑAus) gemessen wird, und dass als eine nächste Ausschalttemperatur (SdAus(k+1)) ein Wert zwischen einer maximalen Ausschalttemperatur (SdAusmax) und dem ersten Maximum (1a) der Auslauftemperatur (ϑAus) verwendet wird.
  2. Regelverfahren nach Anspruch 1, dadurch gekennzeichnet, dass nach dem Einschalten des Brenners (2) das erste Maximum (1a) der Auslauftemperatur (ϑAus) gemessen wird, dass eine erste Differenz (Δϑ1) zwischen der maximalen Ausschalttemperatur (SdAusmax) und dem ersten Maximum (1a) der Auslauftemperatur (ϑAus) berechnet wird, und dass die nächste Ausschalttemperatur (SdAus(k+1)) mittels dieser ersten Differenz (Δϑ1) berechnet wird.
  3. Regelverfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass als nächste Ausschalttemperatur (SdAus(k+i)) die Differenz aus der aktuellen Ausschalttemperatur (SdAus (k)) und aus der Hälfte der i-ten Differenz (Δϑi) verwendet wird.
  4. Regelverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als i-te Differenz (Δϑi) die Differenz zwischen der maximalen Ausschalttemperatur (SdAusmax) bzw. der vorherigen Ausschalttemperatur (SdAus(k+i-1)) und einer minimalen Ausschalttemperatur (SdAusmin) verwendet wird, falls das i-te Maximum (ia) der Auslauftemperatur (ϑAus) unterhalb der minimalen Ausschalttemperatur (SdAusmin) liegt.
  5. Regelverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als nächste Ausschalttemperatur (SdAus(k+i)) die maximale Ausschalttemperatur (SdAusmax) verwendet wird, falls das i-te Maximum (ia) der Auslauftemperatur (ϑAus) oberhalb der maximalen Ausschalttemperatur (SdAusmax) liegt.
  6. Regelverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach der Messung des i-ten Maximums (ia) die Messung eines weiteren Maximums ((i+1)a) erst nach der Messung eines i-ten Minimums (ib) gestartet wird.
  7. Regelverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach dem Einschalten des Brenners (2) eine Zeitzählung gestartet wird, und dass nach Ablauf einer vorbestimmbaren Zeit die minimale Ausschalttemperatur (SdAusmin) als nächste Ausschalttemperatur (SdAus(k+i)) verwendet wird.
  8. Regelverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach dem Ausschalten des Brenners (2) alle Temperatur- und Ausschaltwerte zurückgesetzt werden und die Berechnung beim nächsten Brennerstart wieder neu gestartet wird.
  9. Regelverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die maximale Ausschalttemperatur (SdAusmax) in Abhängigkeit von der Solltemperatur (ϑSoll) begrenzt wird.
  10. Regelverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Regler (1) bei der vorbestimmbaren Brennerleistung und bei Nichterreichen der Solltemperatur (ϑSoll) nach Ablauf einer vorbestimmbaren Zeitdauer die Brennerleistung modulierend verändert.
  11. Regelverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach einem Starten des Brenners (2) von einer Zündleistung auf eine vorbestimmbare und abspeicherbare Taktleistung umgeschaltet wird.
  12. Regelverfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Taktleistung die letzte Leistung vor der Abschaltung des Brenners (2) oder die minimale einstellbare Leistung des Brenners (2) ist.
  13. Regelverfahren nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass ein Gebläse des Brenners (2) im Taktbetrieb, d.h. bei kleinen abgeführten Mengen des Wärmeträgermediums, nicht ausgeschaltet und vorzugsweise mit einer Zünddrehzahl betrieben wird.
  14. Regler zur Regelung eines Brenners (2) einer Heizvorrichtung, insbesondere zur Regelung des Brenners eines Brauchwasser-Durchlauferhitzers, wobei der Brenner (2) ein Wärmeträgermedium erwärmt, das an einem Einlauf der Heizvorrichtung eine bestimmte Einlauftemperatur (ϑEin) und an einem Auslauf der Heizvorrichtung eine bestimmte Auslauftemperatur (ϑAus) aufweist, und wobei die Erwärmung des Wärmeträgermediums zumindest in Abhängigkeit einer Solltemperatur (ϑSoll) und der Auslauftemperatur (ϑAus) geregelt wird, dadurch gekennzeichnet, dass der Regler Mittel zur Messung eines ersten Maximums (1a) der Auslauftemperatur (ϑAus) und dass der Regler Mittel zur Berechnung einer nächsten Ausschalttemperatur (SdAus(k+1)) aufweist, die einen Wert zwischen einer maximalen Ausschalttemperatur (SdAusmax) und dem ersten Maximum (1a) der Auslauftemperatur (ϑAus) einnimmt.
  15. Regler nach Anspruch 14, dadurch gekennzeichnet, dass der Regler Mittel zur Messung von Gradienten von Temperaturverläufen aufweist.
  16. Verwendung des Regelverfahrens nach einem der Ansprüche 1 bis 13 und/oder eines Reglers nach einem der Ansprüche 14 oder 15 zur Regelung eines Brauchwasser-Durchlauferhitzers oder zur Kesselregelung oder zur Heizkreisregelung.
EP02023855A 2001-11-07 2002-10-24 Regelverfahren und Regler zur Regelung eines Brenners Expired - Lifetime EP1310736B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10154198 2001-11-07
DE10154198A DE10154198A1 (de) 2001-11-07 2001-11-07 Vorrichtung und Verfahren zur Regelung von Thermen

Publications (3)

Publication Number Publication Date
EP1310736A2 EP1310736A2 (de) 2003-05-14
EP1310736A3 EP1310736A3 (de) 2004-05-19
EP1310736B1 true EP1310736B1 (de) 2006-08-02

Family

ID=7704623

Family Applications (2)

Application Number Title Priority Date Filing Date
EP02023855A Expired - Lifetime EP1310736B1 (de) 2001-11-07 2002-10-24 Regelverfahren und Regler zur Regelung eines Brenners
EP02023856A Expired - Lifetime EP1310746B1 (de) 2001-11-07 2002-10-24 Vorrichtung und Verfahren zur Regelung von Thermen

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP02023856A Expired - Lifetime EP1310746B1 (de) 2001-11-07 2002-10-24 Vorrichtung und Verfahren zur Regelung von Thermen

Country Status (3)

Country Link
EP (2) EP1310736B1 (de)
AT (1) ATE335169T1 (de)
DE (3) DE10154198A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0413304D0 (en) * 2004-06-15 2004-07-14 Taran Systems Ltd Heating control system
IT1393216B1 (it) * 2009-03-05 2012-04-11 Eberle Dispositivo per il miglioramento del bilancio energetico, particolarmente per caldaie per riscaldamento.
DE102019123030A1 (de) 2019-08-28 2021-03-04 Viessmann Werke Gmbh & Co Kg Verfahren zum Betrieb eines Heizgeräts
DE102021108035A1 (de) 2021-03-30 2022-10-06 Stiebel Eltron Gmbh & Co. Kg Warmwassergerät und Verfahren zum Steuern des Warmwassergerätes
CN114251831B (zh) * 2021-08-24 2023-04-11 佛山市顺德区美的饮水机制造有限公司 即热式加热装置及其调控方法和装置、用水设备和介质
WO2023235393A1 (en) * 2022-06-01 2023-12-07 Laars Heating Systems Company System and method for determining heat transfer capacity of an indirect water heater

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH667516A5 (de) * 1984-05-29 1988-10-14 Vaillant Gmbh 2-punkt-regelverfahren fuer eine waermequelle.
JPS61149761A (ja) * 1984-12-24 1986-07-08 Matsushita Electric Ind Co Ltd ガス瞬間給湯器
NL8503345A (nl) * 1985-12-04 1987-07-01 Nefit Nv Inrichting voor het sturen van een warmwatervoorziening.
IT1188694B (it) * 1986-05-23 1988-01-20 Nuovo Pignone Ind Meccaniche & Sistema di regolazione della temperatura dell'acqua sanitaria in caldaie murali istantanee miste a gas
CH682185A5 (de) * 1991-07-17 1993-07-30 Landis & Gyr Business Support
GB2265027A (en) * 1992-03-12 1993-09-15 Worcester Heat Systems Ltd Controlling operation of a gas boiler
DE4305870C2 (de) * 1993-02-25 1997-07-03 Sandler Energietechnik Brauchwasser-Temperaturregelung
DE4438881A1 (de) * 1994-10-31 1996-05-02 Buderus Heiztechnik Gmbh Verfahren zum bedarfsangepaßten Betreiben einer Heizungsanlage
DE19512025C2 (de) * 1995-03-31 1999-01-28 Stiebel Eltron Gmbh & Co Kg Gasheizgerät
DE19804565C2 (de) * 1998-02-05 2000-01-27 Christoph Kummerer Selbstlernendes Regelverfahren
DE19841256C2 (de) * 1998-09-09 2000-10-26 Viessmann Werke Kg Verfahren und Vorrichtung zur Erwärmung bzw. Abkühlung eines Fluids in einem Wärmeaustauscher bzw. Kälteaustauscher und Regelung hierfür
DE19844856C1 (de) * 1998-09-30 2000-05-18 Honeywell Bv Warmwasser-Heizgerät

Also Published As

Publication number Publication date
DE50202701D1 (de) 2005-05-12
EP1310746B1 (de) 2005-04-06
ATE335169T1 (de) 2006-08-15
EP1310746A1 (de) 2003-05-14
EP1310736A3 (de) 2004-05-19
EP1310736A2 (de) 2003-05-14
DE10154198A1 (de) 2003-05-15
DE50207704D1 (de) 2006-09-14

Similar Documents

Publication Publication Date Title
DE3415542C2 (de)
EP1166694B1 (de) Dampfgargerät mit Vorheizung
EP1310736B1 (de) Regelverfahren und Regler zur Regelung eines Brenners
EP2372259B1 (de) Verfahren zur Erwärmung von Wasser nach dem Durchlaufprinzip und Wassererwärmungssystem
DE3716798A1 (de) System zur temperaturregelung von warmwasser in wandaufgehaengten mischgas-durchlauferhitzereinheiten
EP2372260B1 (de) Verfahren zur Erwärmung von Wasser nach dem Durchlaufprinzip und Wassererwärmungssystem
AT403415B (de) Wasserheizanlage mit einem von einem brenner beaufschlagten primärwärmetauscher
EP0017018B1 (de) Temperaturregler
EP2090836A2 (de) Schichtladespeichersystem und Verfahren zum Betreiben eines Schichtladespeichersystems
DE2846753C2 (de) Verfahren und Einrichtung zum Ein- und Ausschalten einer Umwälzpumpe einer Heizungsanlage
CH682345A5 (en) Controlling heating of rooms for economy
DE4221715A1 (de) Verfahren zur regelung eines heizkessels mit einem nicht modulierenden brenner und vorrichtung zur durchfuehrung des verfahrens
DE102005040792B3 (de) Selbstlernender Temperaturregler
DE10154196A1 (de) Regelverfahren und Regler zur Regelung eines Brenners
AT411632B (de) Verfahren zum regeln der entnahmetemperatur von brauchwasser
EP0556736A1 (de) Verfahren zur Steuerung eines Kessels
DE3838005C2 (de)
DE2529858C2 (de) Verfahren und Vorrichtung zum Regeln einer Wärmeübertragungsanlage
EP0642069B1 (de) Regeleinrichtung
EP3800403B1 (de) Verfahren zum betreiben einer heizvorrichtung, heizvorrichtung
EP1450111B1 (de) Verfahren zur Bestimmung eines Wärmebedarfs und Heizeinrichtung zur Durchführung des Verfahrens
AT403414B (de) Verfahren zur kesselrücklauftemperatur-regelung
DE10066125B4 (de) Verfahren und Vorichtung zur Aufbereitung einer Ansteuergröße eines Stellantriebs
AT397854B (de) Verfahren zur steuerung eines kessels
DE3702080A1 (de) Verfahren zum steuern der umschaltung eines waermeaufnehmenden verbrauchers zwischen einer brennstoff- oder strombeheizten waermequelle und einer waermepumpe und einrichtung zur durchfuehrung des verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 23N 5/02 A

Ipc: 7F 24D 19/10 B

Ipc: 7F 23N 1/08 B

Ipc: 7F 24H 9/20 B

17P Request for examination filed

Effective date: 20041118

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS SCHWEIZ AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060802

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060802

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060802

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060802

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060802

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50207704

Country of ref document: DE

Date of ref document: 20060914

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061113

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070102

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070503

BERE Be: lapsed

Owner name: SIEMENS SCHWEIZ A.G.

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060802

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060802

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: SIEMENS SCHWEIZ AG;FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20211011

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211109

Year of fee payment: 20

Ref country code: AT

Payment date: 20210907

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211022

Year of fee payment: 20

Ref country code: FR

Payment date: 20211020

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211220

Year of fee payment: 20

Ref country code: CH

Payment date: 20220117

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50207704

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20221023

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20221023

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 335169

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20221023