CN112826327B - 用于饮水机的补水方法、装置、存储介质及处理器 - Google Patents

用于饮水机的补水方法、装置、存储介质及处理器 Download PDF

Info

Publication number
CN112826327B
CN112826327B CN202011631281.2A CN202011631281A CN112826327B CN 112826327 B CN112826327 B CN 112826327B CN 202011631281 A CN202011631281 A CN 202011631281A CN 112826327 B CN112826327 B CN 112826327B
Authority
CN
China
Prior art keywords
water
real
time
voltage
water pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011631281.2A
Other languages
English (en)
Other versions
CN112826327A (zh
Inventor
陈蔚
盛广
全永兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Shunde Midea Water Dispenser Manufacturing Co Ltd
Original Assignee
Foshan Shunde Midea Water Dispenser Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Shunde Midea Water Dispenser Manufacturing Co Ltd filed Critical Foshan Shunde Midea Water Dispenser Manufacturing Co Ltd
Priority to CN202011631281.2A priority Critical patent/CN112826327B/zh
Publication of CN112826327A publication Critical patent/CN112826327A/zh
Application granted granted Critical
Publication of CN112826327B publication Critical patent/CN112826327B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/52Alarm-clock-controlled mechanisms for coffee- or tea-making apparatus ; Timers for coffee- or tea-making apparatus; Electronic control devices for coffee- or tea-making apparatus
    • A47J31/525Alarm-clock-controlled mechanisms for coffee- or tea-making apparatus ; Timers for coffee- or tea-making apparatus; Electronic control devices for coffee- or tea-making apparatus the electronic control being based on monitoring of specific process parameters
    • A47J31/5255Alarm-clock-controlled mechanisms for coffee- or tea-making apparatus ; Timers for coffee- or tea-making apparatus; Electronic control devices for coffee- or tea-making apparatus the electronic control being based on monitoring of specific process parameters of flow rate
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/46Dispensing spouts, pumps, drain valves or like liquid transporting devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Devices For Dispensing Beverages (AREA)

Abstract

本发明实施例提供一种用于饮水机的补水方法、装置、处理器、存储介质及计算机程序。方法包括:获取水泵的实际出水量;根据实际出水量确定饮水机的累计出水量;在确定累计出水量达到预设出水量的情况下,发送补水信号至净水器,以使净水器对水箱进行补水。

Description

用于饮水机的补水方法、装置、存储介质及处理器
技术领域
本发明涉及净水器技术领域,具体地涉及一种用于饮水机的补水方法、装置、存储介质、处理器及计算机程序。
背景技术
即热型管线机往往需要搭净水器使用,但目前市面上的净水器的开关主要有高压开关和干簧管两种控制方式。由于高压开关需要管路及阀等器件具有比较可靠的承压能力,成本较高,越来越多的净水器使用的是干簧管的出水方案。而使用干簧管的净水器由于通过水龙头的开关动作来启动制水,无法为管线机自动补水,导致无法直接匹配使用。
为了解决这个问题,本申请提出一种利用物联网无线通讯的功能,实现管线机和净水器的同步精准补水问题,不再受限于净水器是否使用高压开关。通过本文所提的方法,净水器也可以省去进水电磁阀和低位浮子的成本。
发明内容
本发明实施例的目的是提供一种用于饮水机的补水方法、装置、存储介质、处理器及计算机程序。
为了实现上述目的,本发明第一方面提供一种用于饮水机的补水方法,包括:获取水泵的实际出水量;根据实际出水量确定饮水机的累计出水量;在确定累计出水量达到预设出水量的情况下,发送补水信号至净水器,以使净水器对水箱进行补水。
在本发明的实施例中,在净水器的补水量达到预设出水量的情况下,发送停止信号至净水器,以使净水器停止制水,在净水器对水箱进行补水之后,将累计出水量清零。其中预设出水量为预设比例系数与水箱的体积的乘积。
在本发明的实施例中,获取水泵的实际出水量的方法包括:确定实时电压对应的实时流量;根据多个实时电压与多个实时流量之间的关系构建水泵的电压与实时流量之间的关系;根据关系更新水泵的预设关系,以对水泵的实际出水量进行校准。
在本发明的实施例中,饮水机还包括即热管,确定实时电压对应的实时流量包括:获取即热管的实时温度、即热管内水的水温、即热管的进水温度以及即热管的热阻;根据即热管的容积、即热管的实时温度、即热管内水的水温、进水温度、即热管的热阻、即热管的功率、水的密度以及水的比热容确定水泵的实时流量。
在本发明的实施例中,在确定水泵的实时电压符合预设条件的情况下,根据以下计算公式(1)确定水泵的实时流量,其中,水泵的电压符合预设条件是指水泵的电压处于出厂的预设流量曲线的电压范围内:
Figure GDA0003820915030000021
其中,Tw为即热管内水的水温,t为时间,F(t)为水泵的实时流量,V为即热管的容积,Ti为第i秒即热管的进水温度,T为即热管的实时温度,Rv为即热管的热阻,P为即热管的功率,ρ为水的密度,Cw为水的比热容。
在本发明的实施例中,根据以下计算公式(2)确定即热管的功率:
Figure GDA0003820915030000022
其中,U为实时的电网电压,R(T)为即热管的发热电阻,表示即热管在不同发热温度T时所对应的电阻,u为驱动值,umax为u的最大值。
在本发明的实施例中,根据以下计算公式(3)确定即热管的发热电阻:
R(T)=ρ0(1+αT)L/S (3)
其中,ρ0为即热管的冷态电阻,T为即热管的实时温度,α为电阻温度系数,L为发热长度,S为发热电阻的截面积。
在本发明的实施例中,饮水机还包括即热管,确定实时电压对应的实时流量包括:根据关系确定与实时电压相邻的两个电压分别对应的实时流量;根据相邻的两个电压及与两个电压值分别对应的实时流量确定实时电压对应的实时流量。
在本发明的实施例中,在确定水泵的电压不符合预设条件的情况下,根据以下计算公式(4)确定水泵的实时流量,其中,水泵的电压不符合预设条件是指水泵的电压不处于出厂的预设流量曲线的电压范围内:
Figure GDA0003820915030000031
其中,F(t)为水泵的实时流量,U0和U1为与水泵的实时电压相邻的两个电压,F0是水泵的电压为U0时水泵的流量,F1是水泵的电压为U1时水泵的流量。
在本发明的实施例中,根据实际出水量确定饮水机的累计出水量包括:根据实际出水量确定水泵的实际总出水量;根据实际总出水量确定饮水机的累计出水量;根据以下计算公式(5)确定预设时间段内水泵的实际总出水量:
Figure GDA0003820915030000032
其中,F0是水泵的电压为U0时水泵的流量,F1是水泵的电压为U1时水泵的流量,U0和U1分别对应不同的电压,Fwater为水泵的实际总出水量。
本发明第二方面提供一种处理器,被配置成执行上述的用于饮水机的补水方法。
本发明第三方面提供一种用于饮水机的补水装置,装置被配置成执行上述的用于饮水机的补水方法。
本发明第四方面提供一种饮水机,饮水机包括水泵,用于为饮水机输送水;水箱,用于存储净化器输送的水;以及包括用于饮水机的补水装置,且上述装置被配置成执行用于饮水机的补水方法
本发明第五方面提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令在被处理器执行时使得处理器被配置成执行上述的用于饮水机的补水方法。
本发明第六方面提供一种计算机程序产品,包括计算机程序,该计算机程序在被处理器执行时实现上述的用于饮水机的补水方法。
通过上述技术方案,可以实现净饮水及时为管线机的水箱进行精准的补水,使净水器不再受限于是否使用高压开关,而且通过本申请的技术方案,净水器也可以省去进水电磁阀和低位浮子的成本。
本发明实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对本发明实施例的限制。在附图中:
图1示意性示出了根据本发明实施例的用于饮水机的补水方法的应用环境示意图;
图2示意性示出了根据本发明实施例的用于饮水机的补水方法的流程示意图;
图3示意性示出了根据本发明实施例的水泵在不同电压下的流量曲线图;
图4示意性示出了根据本发明实施例的饮水机的结构框图;
图5示意性示出了根据本发明实施例的饮水机结构示意图;
图6示意性示出了根据本发明实施例的计算机设备的内部结构图。
具体实施方式
以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。
本申请提供的用于饮水机的补水方法,可以应用于如图1所示的应用环境中。其中,饮水机101包含有处理器102。处理器通过获取水泵的实际出水量,再根据实际出水量确定饮水机的累计出水量,并在确定累计出水量达到预设出水量的情况下,发送补水信号至净水器,以使净水器对水箱进行补水。
图2示意性示出了根据本发明实施例的用于饮水机的补水方法的流程示意图。如图2所示,在本发明一实施例中,提供了一种用于饮水机的补水方法,包括以下步骤:
步骤201,获取水泵的实际出水量。
饮水机内包括水泵,实际出水量是指通过获取水泵的当前时间的出水量所得到的数据。
步骤202,根据实际出水量确定饮水机的累计出水量。
净水器上有无线接收模块,接收到信号后,对饮水机的水箱补水,当饮水机的高位浮子检测到水满时,饮水机发送停水信号给净水器,净水器收到后停止制水,记录此时的出水量为累计出水量。其中高位浮子为饮水机内部的检测部件。此后,当用户每一次使用都累积用户的接水量
步骤203,在确定累计出水量达到预设出水量的情况下,发送补水信号至净水器,以使净水器对水箱进行补水。
当出水量累积达到预先设定的出水量时,为了保证水量的精准计算,管线机发送补水信号给净水器进行补水,每次补水清零累计出水量,然后再重复循环补水过程。
在一个实施例中,在净水器的补水量达到预设出水量的情况下,发送停止信号至净水器,以使净水器停止制水。在净水器对水箱进行补水之后,将累计出水量清零,其中预设出水量为预设比例系数与水箱的体积的乘积。
在一个实施例中,获取水泵的实时电压;确定实时电压对应的实时流量;根据多个实时电压与多个实时流量之间的关系构建水泵的电压与实时流量之间的关系;根据关系更新水泵的预设关系,以确定水泵的实际出水量。
在一个实施例中,饮水机还包括即热管,确定实时电压对应的实时流量包括:获取即热管的实时温度、即热管内水的水温、即热管的进水温度以及即热管的热阻;根据即热管的容积、即热管的实时温度、即热管内水的水温、进水温度、即热管的热阻、即热管的功率、水的密度以及水的比热容确定水泵的实时流量。
在实际应用中,即热管的功率有制造偏差,而且随着电网电压波动而变化。因此上式中功率存在一定偏差。另一方面,同一型号的不同水泵在相同驱动电压下其流速也不尽相同,理论上设计的即热管功率和流量往往并不能保证出水温度满足条件。而通过获取即热管的实时温度、即热管内水的水温、即热管的进水温度以及即热管的热阻等参数,便可以控制即热管功率即得到理论上的出水温度。
在一个实施例中,当水泵的实时电压符合预设条件的情况下,可以用水流量与电压的函数关系确定出对应的实时流量。
在一个实施例中,在确定水泵的实时电压符合预设条件的情况下,根据以下计算公式(1)确定水泵的实时流量,其中,水泵的电压符合预设条件是指水泵的电压处于出厂的预设流量曲线的电压范围内:
Figure GDA0003820915030000061
其中,Tw为即热管内水的水温,t为时间,F(t)为水泵的实时流量,V为即热管的容积,Ti为第i秒即热管的进水温度,Th为即热管的实时温度,Rv为即热管的热阻,P为即热管的功率,ρ为水的密度,Cw为水的比热容。
在一个实施例中,饮水机还包括即热管,确定实时电压对应的实时流量包括:获取即热管的实时温度、即热管内水的水温、即热管的进水温度以及即热管的热阻;根据即热管的容积、即热管的实时温度、即热管内水的水温、进水温度、即热管的热阻、即热管的功率、水的密度以及水的比热容确定水泵的实时流量,当水泵的实时电压符合预设条件的情况下,可以用水流量与电压的函数关系确定出对应的实时流量,在确定水泵的实时电压符合预设条件的情况下,根据以下计算公式(1)确定水泵的实时流量,其中,水泵的电压符合预设条件是指水泵的电压处于出厂的预设流量曲线的电压范围内:
Figure GDA0003820915030000071
其中,Tw为即热管内水的水温,t为时间,F(t)为水泵的实时流量,V为即热管的容积,Ti为第i秒即热管的进水温度,Th为即热管的实时温度,Rv为即热管的热阻,P为即热管的功率,ρ为水的密度,Cw为水的比热容。
具体地,根据当前即热管的温度,当前的水温,进水温度,就可以推算出下一时刻的水温,通过公式1便可以达到自学习的效果。
在一个实施例中,如图3所示,在满足一定的条件的时候,就可以使用公式1计算出水泵的实时流量,即可根据水泵的实时流量与电压的函数关系确定出对应的实时电压,即可得到曲线2,再根据水泵的实时电压,可以绘制出水泵在不同电压下的流量曲线;
在一个实施例中,如图3所示,其中曲线1为出厂预设的流量曲线,曲线2为经过计算公式所得水泵的实际流量曲线,当饮水机每一次出温水的过程中,便重复遍历计算新的曲线2替代原有的曲线,实现水泵流量的自校准。
在一个实施例中,根据以下计算公式(2)确定即热管的功率:
Figure GDA0003820915030000072
其中,U为实时的电网电压,R(T)为即热管的发热电阻,表示即热管在不同发热温度T时所对应的电阻,u为驱动值,umax为u的最大值。确定集热管功率参数可以为浮动的取值范围。
在一个实施例中,饮水机还包括即热管,确定实时电压对应的实时流量包括:获取即热管的实时温度、即热管内水的水温、即热管的进水温度以及即热管的热阻;根据即热管的容积、即热管的实时温度、即热管内水的水温、进水温度、即热管的热阻、即热管的功率、水的密度以及水的比热容确定水泵的实时流量,当水泵的实时电压符合预设条件的情况下,可以用水流量与电压的函数关系确定出对应的实时流量,在确定水泵的实时电压符合预设条件的情况下,根据以下计算公式(1)确定水泵的实时流量,其中,水泵的电压符合预设条件是指水泵的电压处于出厂的预设流量曲线的电压范围内:
Figure GDA0003820915030000081
其中,Tw为即热管内水的水温,t为时间,F(t)为水泵的实时流量,V为即热管的容积,Ti为第i秒即热管的进水温度,Th为即热管的实时温度,Rv为即热管的热阻,P为即热管的功率,ρ为水的密度,Cw为水的比热容。具体地,根据当前即热管的温度,当前的水温,进水温度,就可以推算出下一时刻的水温,通过公式1便可以达到自学习的效果。如图3所示,在满足一定的条件的时候,就可以使用公式1计算出水泵的实时流量,即可根据水泵的实时流量与电压的函数关系确定出对应的实时电压,即可得到曲线2,再根据水泵的实时电压,可以绘制出水泵在不同电压下的流量曲线;其中曲线1为出厂预设的流量曲线,曲线2为经过计算公式所得水泵的实际流量曲线,当饮水机每一次出温水的过程中,便重复遍历计算新的曲线2替代原有的曲线,实现水泵流量的自校准。根据以下计算公式(2)确定即热管的功率:
Figure GDA0003820915030000082
其中,U为实时的电网电压,R(T)为即热管的发热电阻,表示即热管在不同发热温度T时所对应的电阻,u为驱动值,umax为u的最大值。确定集热管功率参数可以为浮动的取值范围。
即热管在制造时因为制造原因会产生偏差,而且随着电网电压波动而变化。功率也存在一定偏差。另一方面,同一型号的不同水泵在相同驱动电压下其流速也不尽相同,理论上设计的即热管功率和流量往往并不能保证出水温度满足条件,此时所绘制的曲线1与曲线2便可以直观的将二者之间的差距表示出来。
在一个实施例中,在确定水泵的实时电压符合预设条件的情况下,根据以下计算公式(1)确定水泵的实时流量,其中,水泵的电压符合预设条件是指水泵的电压处于出厂的预设流量曲线的电压范围内:
Figure GDA0003820915030000091
其中,Tw为即热管内水的水温,t为时间,F(t)为水泵的实时流量,V为即热管的容积,Ti为第i秒即热管的进水温度,Th为即热管的实时温度,Rv为即热管的热阻,P为即热管的功率,ρ为所的密度,Cw为水的比热容。根据以下计算公式(2)确定即热管的功率:
Figure GDA0003820915030000092
其中,U为实时的电网电压,R(T)为即热管的发热电阻,表示即热管在不同发热温度T时所对应的电阻,u为驱动值,umax为u的最大值。
在一个实施例中,确定集热管功率参数可以为浮动的取值范围。具体地,驱动值的取值范围可以取0至60。
在一个实施例中,根据以下计算公式(3)确定即热管的发热电阻:
R(T)=ρ0(1+αT)L/S (3)
其中,ρ0为即热管的冷态电阻,T为即热管的实时温度,α为电阻温度系数,L为发热长度,S为发热电阻的截面积。
在一个实施例中,饮水机还包括即热管,确定实时电压对应的实时流量包括:根据关系确定与实时电压相邻的两个电压分别对应的实时流量;根据相邻的两个电压及与两个电压值分别对应的实时流量确定实时电压对应的实时流量。
在一个实施例中,在确定水泵的电压不符合预设条件的情况下,根据计算公式确定水泵的实时流量。
在一个实施例中,在确定水泵的电压不符合预设条件的情况下,根据计算公式确定水泵的实时流量,具体地根据公式(4)确定水泵的实时流量,其中,水泵的电压不符合预设条件是指水泵的电压不处于出厂的预设流量曲线的电压范围内:
Figure GDA0003820915030000101
其中,F(t)为水泵的实时流量,U0和U1为与水泵的实时电压相邻的两个电压,F0是水泵的电压为U0时水泵的流量,F1是水泵的电压为U1时水泵的流量。
在一个实施例中,根据实际出水量确定饮水机的累计出水量包括:根据实际出水量确定水泵的实际总出水量;根据实际总出水量确定饮水机的累计出水量;根据以下计算公式(5)确定预设时间段内水泵的实际总出水量:
Figure GDA0003820915030000102
其中,F0是水泵的电压为U0时水泵的流量,F1是水泵的电压为U1时水泵的流量,U0和U1分别对应不同的电压,Fwater为水泵的实际总出水量。
在一个实施例中,提供了一种用于饮水机的补水方法的装置,用于饮水机的补水方法的装置包括处理器和存储器,装置内模块等均作为程序单元存储在存储器中,由处理器执行存储在存储器中的上述程序模块中实现相应的功能。
处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来实现对饮水机的补水。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
在一个实施例中,如图4所示,提供了一种用饮水机400,包括:
水泵401,用于为饮水机输送水。
水箱402,用于存储净化器输送的水。
用于饮水机的补水装置403。
在一个实施例中,用于饮水机的补水装置403被配置成获取水泵的实际出水量;根据实际出水量确定饮水机的累计出水量;在确定累计出水量达到预设出水量的情况下,发送补水信号至净水器,以使净水器对水箱进行补水。
在一个实施例中,用于饮水机的补水装置403被配置成在净水器的补水量达到预设出水量的情况下,发送停止信号至净水器,以使净水器停止制水。
在一个实施例中,用于饮水机的补水装置403被配置成在净水器对水箱进行补水之后,将累计出水量清零。
在一个实施例中,用于饮水机的补水装置403被配置成预设出水量为预设比例系数与水箱的体积的乘积。
在一个实施例中,用于饮水机的补水装置403被配置成获取水泵的实时电压;确定实时电压对应的实时流量;根据多个实时电压与多个实时流量之间的关系构建水泵的电压与实时流量之间的关系;根据关系更新水泵的预设关系,以对水泵的实际出水量进行校准。
在一个实施例中,用于饮水机的补水装置403还被配置成获取即热管的实时温度、即热管内水的水温、即热管的进水温度以及即热管的热阻;根据即热管的容积、即热管的实时温度、即热管内水的水温、进水温度、即热管的热阻、即热管的功率、水的密度以及水的比热容确定水泵的实时流量。
在一个实施例中,用于饮水机的补水装置403还被配置成根据以下计算公式(1)确定水泵的实时流量,其中,水泵的电压符合预设条件是指水泵的电压处于出厂的预设流量曲线的电压范围内:
Figure GDA0003820915030000121
其中,Tw为即热管内水的水温,t为时间,F(t)为水泵的实时流量,V为即热管的容积,Ti为第i秒即热管的进水温度,Th为即热管的实时温度,Rv为即热管的热阻,P为即热管的功率,ρ为水的密度,Cw为水的比热容。根据以下计算公式(2)确定即热管的功率:
Figure GDA0003820915030000122
其中,U为实时的电网电压,R(T)为即热管的发热电阻,表示即热管在不同发热温度T时所对应的电阻,u为驱动值,umax为u的最大值,u的取值范围为0至60。根据以下计算公式(3)确定即热管的发热电阻:
R(T)=ρ0(1+αT)L/S (3)
其中,ρ0为即热管的冷态电阻,T为即热管的实时温度,α为电阻温度系数,L为发热长度,S为发热电阻的截面积。
在一个实施例中,用于饮水机的补水装置403还被配置成根据关系确定与实时电压相邻的两个电压分别对应的实时流量;根据相邻的两个电压及与两个电压值分别对应的实时流量确定实时电压对应的实时流量。
在一个实施例中,用于饮水机的补水装置403还被配置成在确定水泵的电压不符合预设条件的情况下,根据以下计算公式(4)确定水泵的实时流量,其中,水泵的电压不符合预设条件是指水泵的电压不处于出厂的预设流量曲线的电压范围内:
Figure GDA0003820915030000123
其中,F(t)为水泵的实时流量,U0和U1为与水泵的实时电压相邻的两个电压,F0是水泵的电压为U0时水泵的流量,F1是水泵的电压为U1时水泵的流量。
在一个实施例中,用于饮水机的补水装置403还被配置成根据实际出水量确定饮水机的累计出水量包括:根据实际出水量确定水泵的实际总出水量;根据实际总出水量确定饮水机的累计出水量;根据以下计算公式(5)确定预设时间段内水泵的实际总出水量:
Figure GDA0003820915030000131
其中,F0是水泵的电压为U0时水泵的流量,F1是水泵的电压为U1时水泵的流量,U0和U1分别对应不同的电压,Fwater为水泵的实际总出水量。
在一个实施例中,如图5所示,水箱中储存的用水通过进水口导向水泵,水泵将水箱中的水输送至出水口。在出水阀前经过带有即热管的加热模块,通过加热模块对饮用水的温度进行处理,通过用户操作出水阀控制水流量,从而实现用户用水的需求。
本发明实施例提供了一种存储介质,其上存储有程序,该程序被处理器执行时实现上述用于饮水机的补水方法。
本发明实施例提供了一种处理器,处理器用于运行程序,其中,程序运行时执行上述用于饮水机的补水方法。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图6所示。该计算机设备包括通过系统总线连接的处理器A01、网络接口A02、存储器(图中未示出)和数据库(图中未示出)。其中,该计算机设备的处理器A01用于提供计算和控制能力。该计算机设备的存储器包括内存储器A03和非易失性存储介质A04。该非易失性存储介质A04存储有操作系统B01、计算机程序B02和数据库(图中未示出)。该内存储器A03为非易失性存储介质A04中的操作系统B01和计算机程序B02的运行提供环境。该计算机设备的数据库用于存储xxx数据。该计算机设备的网络接口A02用于与外部的终端通过网络连接通信。该计算机程序B02被处理器A01执行时以实现一种用于饮水机的补水方法。
本领域技术人员可以理解,图6中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
本发明实施例提供了一种设备,设备包括处理器、存储器及存储在存储器上并可在处理器上运行的程序,处理器执行程序时实现以下步骤:获取水泵的实际出水量;根据实际出水量确定饮水机的累计出水量;在确定累计出水量达到预设出水量的情况下,发送补水信号至净水器,以使净水器对水箱进行补水。
在一个实施例中,在净水器的补水量达到预设出水量的情况下,发送停止信号至净水器,以使净水器停止制水。在净水器对水箱进行补水之后,将累计出水量清零,预设出水量为预设比例系数与水箱的体积的乘积。
在一个实施例中,获取水泵的实际出水量的方法包括:获取水泵的实时电压;确定实时电压对应的实时流量;根据多个实时电压与多个实时流量之间的关系构建水泵的电压与实时流量之间的关系;根据关系更新水泵的预设关系,以对水泵的实际出水量进行校准。
在一个实施例中,饮水机还包括即热管,确定实时电压对应的实时流量包括:获取即热管的实时温度、即热管内水的水温、即热管的进水温度以及即热管的热阻;根据即热管的容积、即热管的实时温度、即热管内水的水温、进水温度、即热管的热阻、即热管的功率、水的密度以及水的比热容确定水泵的实时流量。
在一个实施例中,在确定水泵的实时电压符合预设条件的情况下,根据以下计算公式(1)确定水泵的实时流量,其中,水泵的电压符合预设条件是指水泵的电压处于出厂的预设流量曲线的电压范围内:
Figure GDA0003820915030000151
其中,Tw为即热管内水的水温,t为时间,F(t)为水泵的实时流量,V为即热管的容积,Ti为第i秒即热管的进水温度,T为即热管的实时温度,Rv为即热管的热阻,P为即热管的功率,ρ为水的密度,Cw为水的比热容。
在一个实施例中,根据以下计算公式(2)确定即热管的功率:
Figure GDA0003820915030000152
其中,U为实时的电网电压,R(T)为即热管的发热电阻,表示即热管在不同发热温度T时所对应的电阻,u为驱动值,umax为u的最大值。
在一个实施例中,根据以下计算公式(3)确定即热管的发热电阻:
R(T)=ρ0(1+αT)L/S (3)
其中,ρ0为即热管的冷态电阻,T为即热管的实时温度,α为电阻温度系数,L为发热长度,S为发热电阻的截面积。
在一个实施例中,饮水机还包括即热管,确定实时电压对应的实时流量包括:根据关系确定与实时电压相邻的两个电压分别对应的实时流量;根据相邻的两个电压及与两个电压值分别对应的实时流量确定实时电压对应的实时流量。
在一个实施例中,在确定水泵的电压不符合预设条件的情况下,根据以下计算公式(4)确定水泵的实时流量,其中,水泵的电压不符合预设条件是指水泵的电压不处于出厂的预设流量曲线的电压范围内:
Figure GDA0003820915030000153
其中,F(t)为水泵的实时流量,U0和U1为与水泵的实时电压相邻的两个电压,F0是水泵的电压为U0时水泵的流量,F1是水泵的电压为U1时水泵的流量。
在一个实施例中,根据实际出水量确定饮水机的累计出水量包括:根据实际出水量确定水泵的实际总出水量;根据实际总出水量确定饮水机的累计出水量;根据以下计算公式(5)确定预设时间段内水泵的实际总出水量:
Figure GDA0003820915030000161
其中,F0是水泵的电压为U0时水泵的流量,F1是水泵的电压为U1时水泵的流量,U0和U1分别对应不同的电压,Fwater为水泵的实际总出水量
本申请还提供了一种计算机程序产品,当在数据处理设备上执行时,适于执行初始化有如下方法步骤的程序:获取水泵的实际出水量;根据实际出水量确定饮水机的累计出水量;在确定累计出水量达到预设出水量的情况下,发送补水信号至净水器,以使净水器对水箱进行补水。
在一个实施例中,在净水器的补水量达到预设出水量的情况下,发送停止信号至净水器,以使净水器停止制水。在净水器对水箱进行补水之后,将累计出水量清零,预设出水量为预设比例系数与水箱的体积的乘积。
在一个实施例中,获取水泵的实际出水量的方法包括:获取水泵的实时电压;确定实时电压对应的实时流量;根据多个实时电压与多个实时流量之间的关系构建水泵的电压与实时流量之间的关系;根据关系更新水泵的预设关系,以对水泵的实际出水量进行校准。
在一个实施例中,饮水机还包括即热管,确定实时电压对应的实时流量包括:获取即热管的实时温度、即热管内水的水温、即热管的进水温度以及即热管的热阻;根据即热管的容积、即热管的实时温度、即热管内水的水温、进水温度、即热管的热阻、即热管的功率、水的密度以及水的比热容确定水泵的实时流量。
在一个实施例中,在确定水泵的实时电压符合预设条件的情况下,根据以下计算公式(1)确定水泵的实时流量,其中,水泵的电压符合预设条件是指水泵的电压处于出厂的预设流量曲线的电压范围内:
Figure GDA0003820915030000171
其中,Tw为即热管内水的水温,t为时间,F(t)为水泵的实时流量,V为即热管的容积,Ti为第i秒即热管的进水温度,T为即热管的实时温度,Rv为即热管的热阻,P为即热管的功率,ρ为水的密度,Cw为水的比热容。
在一个实施例中,根据以下计算公式(2)确定即热管的功率:
Figure GDA0003820915030000172
其中,U为实时的电网电压,R(T)为即热管的发热电阻,表示即热管在不同发热温度T时所对应的电阻,u为驱动值,umax为u的最大值。
在一个实施例中,根据以下计算公式(3)确定即热管的发热电阻:
R(T)=ρ0(1+αT)L/S (3)
其中,ρ0为即热管的冷态电阻,T为即热管的实时温度,α为电阻温度系数,L为发热长度,S为发热电阻的截面积。
在一个实施例中,饮水机还包括即热管,确定实时电压对应的实时流量包括:根据关系确定与实时电压相邻的两个电压分别对应的实时流量;根据相邻的两个电压及与两个电压值分别对应的实时流量确定实时电压对应的实时流量。
在一个实施例中,在确定水泵的电压不符合预设条件的情况下,根据以下计算公式(4)确定水泵的实时流量,其中,水泵的电压不符合预设条件是指水泵的电压不处于出厂的预设流量曲线的电压范围内:
Figure GDA0003820915030000173
其中,F(t)为水泵的实时流量,U0和U1为与水泵的实时电压相邻的两个电压,F0是水泵的电压为U0时水泵的流量,F1是水泵的电压为U1时水泵的流量。
在一个实施例中,根据实际出水量确定饮水机的累计出水量包括:根据实际出水量确定水泵的实际总出水量;根据实际总出水量确定饮水机的累计出水量;根据以下计算公式(5)确定预设时间段内水泵的实际总出水量:
Figure GDA0003820915030000181
其中,F0是水泵的电压为U0时水泵的流量,F1是水泵的电压为U1时水泵的流量,U0和U1分别对应不同的电压,Fwater为水泵的实际总出水量
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (14)

1.一种用于饮水机的补水方法,其特征在于,所述饮水机包括水泵和水箱,所述饮水机与净水器通信,所述补水方法包括:
获取所述水泵的实际出水量;
根据所述实际出水量确定所述饮水机的累计出水量;
在确定所述累计出水量达到预设出水量的情况下,发送补水信号至所述净水器,以使所述净水器对所述水箱进行补水;
所述获取所述水泵的实际出水量包括:
获取所述水泵的实时电压;
确定所述实时电压对应的实时流量;
根据多个所述实时电压与多个实时流量之间的关系构建所述水泵的电压与实时流量之间的关系;
根据所述关系更新所述水泵的预设关系,以确定所述水泵的实际出水量;
所述饮水机还包括即热管,所述确定所述实时电压对应的实时流量包括:
获取所述即热管的实时温度、所述即热管内水的水温、所述即热管的进水温度以及所述即热管的热阻;
根据所述即热管的容积、所述即热管的实时温度、所述即热管内水的水温、所述进水温度、所述即热管的热阻、所述即热管的功率、所述水的密度以及所述水的比热容确定所述水泵的实时流量;
所述根据所述实际出水量确定所述饮水机的累计出水量包括:
根据所述实际出水量确定所述水泵的实际总出水量;
根据所述实际总出水量确定所述饮水机的累计出水量。
2.根据权利要求1所述的补水方法,其特征在于,还包括:
在所述净水器的补水量达到所述预设出水量的情况下,发送停止信号至所述净水器,以使所述净水器停止制水。
3.根据权利要求1所述的用于饮水机的补水方法,其特征在于,还包括:在所述净水器对所述水箱进行补水之后,将所述累计出水量清零。
4.根据权利要求1所述的用于饮水机的补水方法,其特征在于,所述预设出水量为预设比例系数与所述水箱的体积的乘积。
5.根据权利要求1所述的用于饮水机的补水方法,其特征在于,在确定所述水泵的实时电压符合预设条件的情况下,根据以下计算公式(1)确定所述水泵的实时流量,其中,所述水泵的电压符合预设条件是指所述水泵的电压处于出厂的预设流量曲线的电压范围内:
Figure FDA0003820915020000021
其中,所述Tw为所述即热管内水的水温,所述t为时间,所述F(t)为水泵的实时流量,所述V为所述即热管的容积,所述Ti为第i秒所述即热管的进水温度,所述T为所述即热管的实时温度,所述Rv为所述即热管的热阻,所述P为所述即热管的功率,所述ρ为所述水的密度,所述Cw为所述水的比热容。
6.根据权利要求5所述的用于饮水机的补水方法,其特征在于,根据以下计算公式(2)确定所述即热管的功率:
Figure FDA0003820915020000022
其中,所述U为实时的电网电压,所述R(T)为所述即热管的发热电阻,表示所述即热管在不同发热温度T时所对应的电阻,u为驱动值,umax为所述u的最大值。
7.根据权利要求6所述的用于饮水机的补水方法,其特征在于,根据以下计算公式(3)确定所述即热管的发热电阻:
R(T)=ρ0(1+αT)L/S (3)
其中,所述ρ0为即热管的冷态电阻,所述T为所述即热管的实时温度,α为电阻温度系数,L为发热长度,S为发热电阻的截面积。
8.根据权利要求1所述的用于饮水机的补水方法,其特征在于,所述饮水机还包括即热管,所述确定所述实时电压对应的实时流量包括:
根据所述关系确定与所述实时电压相邻的两个电压分别对应的实时流量;
根据所述相邻的两个电压及与所述两个电压值分别对应的实时流量确定所述实时电压对应的实时流量。
9.根据权利要求1所述的用于饮水机的补水方法,其特征在于,在确定所述水泵的电压不符合预设条件的情况下,根据以下计算公式(4)确定所述水泵的实时流量,其中,所述水泵的电压不符合预设条件是指所述水泵的电压不处于出厂的预设流量曲线的电压范围内:
Figure FDA0003820915020000031
其中,F(t)为水泵的实时流量,所述U0和U1为与所述水泵的实时电压相邻的两个电压,所述F0是所述水泵的电压为U0时水泵的流量,所述F1是所述水泵的电压为U1时水泵的流量,所述Ut为所述水泵的实时电压。
10.根据权利要求1所述的用于饮水机的补水方法,其特征在于,根据以下计算公式(5)确定预设时间段内所述水泵的实际总出水量:
Figure FDA0003820915020000041
其中,所述F0是所述水泵的电压为U0时水泵的流量,所述F1是所述水泵的电压为U1时水泵的流量,所述U0和U1分别对应不同的电压,所述Fwater为所述水泵的实际总出水量,所述F(t)为水泵的实时流量,所述Ut为所述水泵的实时电压,所述t0为时间。
11.一种处理器,其特征在于,被配置成执行根据权利要求1至10中任意一项所述的用于饮水机的补水方法。
12.一种用于饮水机的补水装置,其特征在于,包括根据权利要求11所述的处理器。
13.一种饮水机,其特征在于,所述饮水机被配置成与净水器通信连接,所述饮水机包括:
水泵,用于为所述饮水机输送水;
水箱,用于存储所述净水器输送的水;以及
根据权利要求12所述的用于饮水机的补水装置。
14.一种机器可读存储介质,该机器可读存储介质上存储有指令,其特征在于,该指令在被处理器执行时使得所述处理器被配置成执行根据权利要求1至10中任一项所述的用于饮水机的补水方法。
CN202011631281.2A 2020-12-31 2020-12-31 用于饮水机的补水方法、装置、存储介质及处理器 Active CN112826327B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011631281.2A CN112826327B (zh) 2020-12-31 2020-12-31 用于饮水机的补水方法、装置、存储介质及处理器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011631281.2A CN112826327B (zh) 2020-12-31 2020-12-31 用于饮水机的补水方法、装置、存储介质及处理器

Publications (2)

Publication Number Publication Date
CN112826327A CN112826327A (zh) 2021-05-25
CN112826327B true CN112826327B (zh) 2022-11-18

Family

ID=75924905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011631281.2A Active CN112826327B (zh) 2020-12-31 2020-12-31 用于饮水机的补水方法、装置、存储介质及处理器

Country Status (1)

Country Link
CN (1) CN112826327B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116294184A (zh) * 2021-08-24 2023-06-23 佛山市顺德区美的饮水机制造有限公司 即热装置及其控制方法和控制装置、水处理装置和介质
CN114451786B (zh) * 2022-02-15 2023-09-05 佛山市顺德区美的饮水机制造有限公司 水处理装置的控制方法和装置、存储介质和水处理装置
CN117519341A (zh) * 2022-04-29 2024-02-06 佛山市顺德区美的饮水机制造有限公司 即热饮水机及其出水曲线校正方法与装置、存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1847740A (zh) * 2005-04-15 2006-10-18 叶建荣 电热饮水器热水温度与热水量控制方法与装置
DE102011079542B3 (de) * 2011-07-21 2013-01-03 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zur Ermittlung des Durchflusses in Heißgetränkemaschinen
CN204301301U (zh) * 2014-11-27 2015-04-29 广东芬尼克兹节能设备有限公司 热泵直热型开水器
CN104563219A (zh) * 2014-12-24 2015-04-29 卧龙电气集团股份有限公司 一种无外部传感器的供水控制方法
WO2016187855A1 (zh) * 2015-05-28 2016-12-01 深圳市赛亿科技开发有限公司 一种智能饮水机及其控制方法
CN207891066U (zh) * 2017-12-29 2018-09-21 安徽唯雅诺净水科技有限公司 一种净水器
CN208425952U (zh) * 2017-12-29 2019-01-25 佛山市顺德区美的饮水机制造有限公司 水路组件和饮水装置
CN110507197A (zh) * 2019-09-20 2019-11-29 珠海格力电器股份有限公司 一种净饮机的控制方法、装置、存储介质和净饮机
CN209932435U (zh) * 2018-12-21 2020-01-14 上海水护盾健康科技有限公司 一种精准控温控量的饮水机
CN111713978A (zh) * 2020-05-21 2020-09-29 浙江沁园水处理科技有限公司 一种调温饮水机及其定量取水方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010013139A1 (de) * 2010-03-27 2011-09-29 Robert Bosch Gmbh Verfahren zur Erwärmung von Wasser nach dem Durchlaufprinzip und Wassererwärmungssystem
CN206518459U (zh) * 2016-11-17 2017-09-26 中国科学院广州能源研究所 一种双温储能式智能饮水装置
CN111374551A (zh) * 2018-12-28 2020-07-07 珠海格力电器股份有限公司 饮水机供水控制方法、供水方法、供水控制系统、饮水机

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1847740A (zh) * 2005-04-15 2006-10-18 叶建荣 电热饮水器热水温度与热水量控制方法与装置
DE102011079542B3 (de) * 2011-07-21 2013-01-03 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zur Ermittlung des Durchflusses in Heißgetränkemaschinen
EP2548483A1 (de) * 2011-07-21 2013-01-23 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zur Ermittlung des Durchflusses in Heißgetränkemaschinen
CN204301301U (zh) * 2014-11-27 2015-04-29 广东芬尼克兹节能设备有限公司 热泵直热型开水器
CN104563219A (zh) * 2014-12-24 2015-04-29 卧龙电气集团股份有限公司 一种无外部传感器的供水控制方法
WO2016187855A1 (zh) * 2015-05-28 2016-12-01 深圳市赛亿科技开发有限公司 一种智能饮水机及其控制方法
CN207891066U (zh) * 2017-12-29 2018-09-21 安徽唯雅诺净水科技有限公司 一种净水器
CN208425952U (zh) * 2017-12-29 2019-01-25 佛山市顺德区美的饮水机制造有限公司 水路组件和饮水装置
CN209932435U (zh) * 2018-12-21 2020-01-14 上海水护盾健康科技有限公司 一种精准控温控量的饮水机
CN110507197A (zh) * 2019-09-20 2019-11-29 珠海格力电器股份有限公司 一种净饮机的控制方法、装置、存储介质和净饮机
CN111713978A (zh) * 2020-05-21 2020-09-29 浙江沁园水处理科技有限公司 一种调温饮水机及其定量取水方法

Also Published As

Publication number Publication date
CN112826327A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
CN112826327B (zh) 用于饮水机的补水方法、装置、存储介质及处理器
CN113157023B (zh) 用于饮水机的控制方法、装置、存储介质及处理器
US8655497B2 (en) System and method for regulating electrical and thermal energy generated by co/trigeneration energy system in multi-source energy plant
CN108104208B (zh) 用于控制蓄水池供水泵装置的方法及蓄水池供水泵装置
EP3891437B1 (en) Controlling of a thermal energy distribution system
US11874014B2 (en) Method and controller for controlling a reversible heat pump assembly
Gupta et al. Leakage reduction in water distribution system using efficient pressure management techniques. Case study: Nagpur, India
CN113154638B (zh) 用于控制空调防凝露的方法及装置、空调器
CN112315313A (zh) 用于饮水设备的方法、处理器、装置及存储介质
Ahonen et al. Energy efficiency optimizing speed control method for reservoir pumping applications
US11262090B2 (en) Humidifier with automatic drain interval determination
CN113250271B (zh) 一种设备控制方法、装置、供水系统和存储介质
WO2019204943A1 (en) Building energy system
CN116007200A (zh) 用于锅炉的控制方法、装置、存储介质、处理器及系统
JP7418420B2 (ja) 熱エネルギー分配システムおよびその制御方法
JP6513498B2 (ja) 給湯システム
CN116167188B (zh) 循环水节能的数据处理方法及系统
WO2021089370A1 (en) Method and control unit for controlling a control valve controlling a flow of heat transfer fluid into a thermal energy extraction unit
CN108763607B (zh) 一种有机朗肯循环系统工质充注量的预估方法
JP2018159526A (ja) 給湯システム
CN108884835A (zh) 用于控制天气依赖发电机所产生的电力的供应的方法和系统
GB2125533A (en) Solar energy collection system
CN117378930A (zh) 饮水设备及补水控制方法、装置、计算机设备和存储介质
CN117069045A (zh) 一种智能控制出油量的加油设备控制装置
JP6290546B2 (ja) 弁制御装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant