EP2362711A1 - Fehlererkennung von LEDs - Google Patents

Fehlererkennung von LEDs Download PDF

Info

Publication number
EP2362711A1
EP2362711A1 EP10154657A EP10154657A EP2362711A1 EP 2362711 A1 EP2362711 A1 EP 2362711A1 EP 10154657 A EP10154657 A EP 10154657A EP 10154657 A EP10154657 A EP 10154657A EP 2362711 A1 EP2362711 A1 EP 2362711A1
Authority
EP
European Patent Office
Prior art keywords
leg
electrical circuit
comparator
voltage
leds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10154657A
Other languages
English (en)
French (fr)
Other versions
EP2362711B1 (de
Inventor
Heinz Telefont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Austria GmbH
Original Assignee
THALES RAIL SIGNALLING SOLUTIONS GmbH
Thales Rail Signalling Solutions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THALES RAIL SIGNALLING SOLUTIONS GmbH, Thales Rail Signalling Solutions GmbH filed Critical THALES RAIL SIGNALLING SOLUTIONS GmbH
Priority to SI201030077T priority Critical patent/SI2362711T1/sl
Priority to EP10154657A priority patent/EP2362711B1/de
Publication of EP2362711A1 publication Critical patent/EP2362711A1/de
Application granted granted Critical
Publication of EP2362711B1 publication Critical patent/EP2362711B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/52Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits in a parallel array of LEDs

Definitions

  • the invention relates to an electrical circuit for powering a plurality of LEDs, with a function for indicating an LED failure.
  • LEDs Light emitting diodes
  • SVS Light emitting diodes
  • LEDs are widely used in railway signalling and traffic signalling. LEDs are appreciated for their high efficiency and high reliability here. However, long term use may lead a failure of an LED. A corrupted LED should be replaced quickly, in order to avoid an impairment of the railway or traffic signalling device in which it is used.
  • the known electrical circuits are dedicated to a particular arrangement of LEDs, namely a single LED array, what limits - at a given operating voltage ⁇ the number of LEDs which can be monitored. Further, the known electrical circuits are relatively complex.
  • a method for supervising an electrical contact is also known from EP 1 453 072 B1 .
  • an electrical circuit as introduced in the beginning, characterized in that the electrical circuit comprises N legs connected in parallel, with N ⁇ 2, and with each leg comprising several LEDs and a leg resistor connected in series with the LEDs, wherein the leg resistors of the legs have basically the same resistance, and wherein the resistance of each leg is basically the same during normal operation, that the legs are connected to a common shunt resistor, that the electrical circuit comprises an amplifier unit amplifying a voltage at the shunt resistor with an amplification factor AF into an amplified voltage, that the electrical circuit comprises a comparator unit for each leg, wherein the comparator units each comprise a comparator which compares the voltage at the respective leg resistor with the amplified voltage, and that the outputs of the comparator units are connected at a common signal output unit.
  • the LEDs are distributed over a plurality of N legs, allowing a larger number of monitored (and powered) LEDs at a given operating voltage.
  • the legs may also be referred to as strings.
  • the current through each leg is indicated as a leg voltage.
  • Each leg voltage is compared with an internal reference voltage, namely an amplified voltage originating from an amplifier unit connected to a common shunt resistor of the legs, by means of a comparator unit.
  • This change of condition is registered at the common signal output unit, to which all comparator unit outputs are connected.
  • the invention makes use of the shift of (relative) currents between the legs connected in parallel upon an LED failure. Such a shift will occur no matter what the failure type is (short-circuit or highly resistive connection).
  • the uniform legs are monitored by the uniform leg resistors and uniform comparator units, what leads to uniform comparator unit output signals during normal operation. In case of an LED failure, then the shift of the relative currents leads to dissenting comparator unit output signals, which is used as a failure indication at the common signal output unit.
  • the signal output unit typically provides a binary signal, with one state indicating no LED failure, and one state indicating that at least one LED is corrupted. If necessary, the signal output unit may include a logic device. The signal output unit may be operated with a separate voltage source as compared to the voltage source powering the LEDs in order to have a potential-free signal output.
  • the inventive electrical circuit is particularly suited for small LED currents, such as LED currents of 10 mA or less. Typically, all LEDs of a leg are connected in series.
  • the invention may be applied in railway security applications, in particular in railway signals, and in traffic signals.
  • the amplification factor AF is chosen such that during normal operation, the voltage at the leg resistors and the amplified voltage deviate slightly.
  • the deviation of the voltages establishes a failure detection threshold.
  • the deviation is typically about 10% or less.
  • the deviation is chosen small enough such that the voltage shifts at the leg resistors and the shunt resistor in case of the failure of a single LED results in a voltage shift larger than the threshold at at least one of the comparators.
  • the deviation is chosen high enough such that small differences in the resistance of the leg resistors or (more generally) the normally functioning legs (e.g. due to fabrication tolerances), and thus small differences in the voltages at the leg resistors, do not result in a switched comparator.
  • the comparator units are designed such that
  • the comparators are of open collector output type. This is a simple way to provide an earth potential in the switched condition.
  • the comparators are of push pull output type, and the outputs of the comparators are connected to the basis or gate of a comparator unit transistor.
  • the earth potential can be provided by the comparator unit transistor in a conductive state.
  • the common signal output unit comprises an optocoupler.
  • the optocoupler allows a separation of the potentials of the LED power supply and at a signal output of the signal output unit ("potential-free" LED failure indication).
  • an LED input of the optocoupler is connected to a voltage supply and to the outputs of the comparator units, and that a signal output of the signal output unit is connected both to a voltage supply and to a transistor input of the optocoupler.
  • the outputs of the comparator unit may, in the LED failure case, ground the voltage supply at the optocoupler's LED input and thus depower the optocoupler's LED, so that the optocoupler transistor becomes resistive. Accordingly, the signal output is powered by the connected voltage supply (which is not grounded via the optocoupler's transistor). Thus, a potential-free signal at the signal output can be provided in the failure case.
  • each leg comprises the same number of LEDs, with the same type of LEDs in all legs, and with the LEDs of each leg arranged in series.
  • This design is simple results in a very similar behaviour of the legs, simplifying the identification of LED failures.
  • the number N of legs ranges from 2 to 6, and the number of LEDs in a leg ranges from 4 to 24.
  • the relative shift of currents between the legs upon an LED failure is, in general, higher for less legs and higher for less LEDs per leg.
  • the LED failures can still be well distinguished from fabrication tolerances, and thus the invention works particularly fine.
  • the resistance RS of the shunt resistor is 1/N times the resistance RL of a leg resistor, and the amplification factor AF is slightly below or slightly above 2.
  • This design can easily be adapted for an arbitrary number of legs, without significant calculation efforts.
  • the relatively low resistance of the shunt resistor as compared to the resistance of the leg resistor causes relatively high shifts in the currents of the legs in case of an LED failure.
  • the electrical circuit comprises at least two shunt subcircuits, wherein each shunt subcircuit comprises
  • Fig. 1 illustrates a first embodiment of an inventive electrical circuit 1.
  • the electrical circuit 1 comprises a main voltage supply 2 providing an operating voltage (see check mark A).
  • the voltage supply 2 powers via a series resistor RV two legs 3, 4, each comprising an array of (here) six LEDs and a leg resistor R1, R2 (see check mark B for the voltage supplied to the legs 3, 4). All LEDs are of the same type here, and the two leg resistors R1, R2 have the same resistance RL, such that the current I is divided equally between the two legs 3, 4 into currents J, K.
  • the two currents J, K are led into a common shunt resistor R3 (with resistance RS), which is connected with earth.
  • RS is 1/2*RL.
  • an amplification factor AF here slightly below 2
  • comparator units 6, 7 (here comprising only a comparator 6a, 7a, also marked with IC1 and IC2, with an open collector output each), the voltages ("leg voltages") at the leg resistors R1, R2 (see check marks C, D) are compared with the amplified voltage (see check mark E) of the amplification unit 5. Since the amplification factor AF is slightly below 2, the voltage at check marks C, D (i.e. at the non-inverting inputs of the comparators 6a, 7a) is slightly larger than at check mark E (i.e. at the inverting inputs of the comparators 6a, 7a) during normal operation. This deviation (or defined comparator offset voltage) represents a switching threshold for the failure detection in the electrical circuit 1.
  • an LED input 8 (see check mark F) of an optocoupler OK1 is powered by a voltage supply V1 via a series resistor R6.
  • the optocoupler OK1 has a bright LED then, and the transistor of the optocoupler OK1 is conductive.
  • the voltage of a voltage supply V2 supplied via a resistor R7 at a signal output 9 is grounded via the transistor input 11, and the signal output 9 (see check mark G) of the signal output unit 10 is at a "low" signal.
  • any one of the comparator units 6, 7 may switch the failure indication signal at signal output 9 to "low” by connecting its output 6b, 7b to earth, thus realizing inherently an “or” logic.
  • Figs. 2a , 2b and 2c illustrate simulated measurement protocols of currents I, J, K and voltages at check marks A, B, C, D, E, F G of the electrical circuit 1 of Fig. 1 for the three situations described above, i.e. normal operation, a short circuited LED in leg 3, and a highly resistive LED (1 MOhm) in leg 3.
  • the operating voltage at voltage supply 2 was ramped over in total 400 ms (see right hand axis).
  • the scale/division-factor of the different channels A - G (along the upward axis) in the figures are A: 40V, B: 30V, I: 200mA, J: 200mA, K: 200mA, C: 5V; D: 5V, E: 5V, F: 5V, G: 20V.
  • the current and voltage values at the 250ms-point are also included in the figures.
  • the voltage at check point F stays basically at earth potential, and the failure indication signal at G stays high. This is because the voltage at D (1.67V at the 250ms-point) has dropped below the voltage at E (2.15V at the 250ms-point), and the corresponding comparator unit 7 grounds the voltage at F.
  • the voltage at check point F stays basically at earth potential, and the failure indication signal at G stays high also in case of an LED becoming highly resistive in leg 3 ( Fig. 2c ). In this case, however, the voltage at C (0.84V at the 250ms-point) drops below the voltage at E (1.60V at the 250ms-point), and the corresponding comparator unit 6 grounds the voltage at F.
  • Fig. 3 illustrates a second embodiment of an inventive electrical circuit 1, similar to the one shown in Fig. 1 . Therefore, only the differences are explained.
  • the comparator unit 6 (and analogue comparator unit 7, not explained in detail) comprises a comparator 6a of push-pull output type with a supply voltage +VC/-VC of +15V/-15V.
  • the comparator output is connected to the base of a comparator unit transistor 13 of npn type, the emitter of which is connected to earth.
  • the connection includes a diode 14 and a current limiting resistor R7, limiting the base-emitter voltage (here) to about -0.6V.
  • Fig. 4 illustrates a third embodiment of an inventive electrical circuit 1 (only the differences of which as compared to Fig. 1 are explained) which grants the possibility to monitor an in principle unlimited number of LEDs.
  • each shunt subcircuit 15, 16 is connected to the same signal output unit 10.
  • the failure detection is realized as described in Fig. 1 .
  • currents within each of (here) two legs are compared to a current across a shunt resistor after an amplification, and comparator units 6, 7, 17, 18 switch their outputs 6b, 7b, 17b, 18b to earth potential in case of a detected failure.
  • the comparator units 6, 7, 17, 18 have a comparator 6a, 7a, 17a, 18a of push pull output type, and are connected to a comparator unit transistor 13 each, here of N-MOSFET type.

Landscapes

  • Led Devices (AREA)
EP10154657A 2010-02-25 2010-02-25 Fehlererkennung von LEDs Active EP2362711B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201030077T SI2362711T1 (sl) 2010-02-25 2010-02-25 Prepoznavanje izpada led-ov
EP10154657A EP2362711B1 (de) 2010-02-25 2010-02-25 Fehlererkennung von LEDs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10154657A EP2362711B1 (de) 2010-02-25 2010-02-25 Fehlererkennung von LEDs

Publications (2)

Publication Number Publication Date
EP2362711A1 true EP2362711A1 (de) 2011-08-31
EP2362711B1 EP2362711B1 (de) 2012-07-18

Family

ID=42244362

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10154657A Active EP2362711B1 (de) 2010-02-25 2010-02-25 Fehlererkennung von LEDs

Country Status (2)

Country Link
EP (1) EP2362711B1 (de)
SI (1) SI2362711T1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330935A (zh) * 2011-09-26 2012-01-25 汪华 铁路信号专用点式led光源灯和点灯光源电路
CN104267719A (zh) * 2014-10-20 2015-01-07 上海光联照明有限公司 总线制led显示系统逐点故障侦测方法及其应用
EP3125648A1 (de) * 2015-07-31 2017-02-01 Siemens Aktiengesellschaft Leuchtdioden-steuerungsschaltung für einen signalgeber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19929430A1 (de) * 1999-06-26 2001-01-11 Abb Daimler Benz Transp Leuchtdioden-Schlußleuchte
DE10131824A1 (de) * 2001-06-30 2003-02-20 Hella Kg Hueck & Co Schaltungseinrichtung für die Ausfallerkennung von Leuchtdioden in einem Kraftfahrzeug
EP1286571A2 (de) * 2001-05-02 2003-02-26 Garufo GmbH Elektronisch abgesicherte Stromversorgung für Schaltungsgruppen und Anzeigevorrichtung für eine sich änderende Information
FR2845559A1 (fr) * 2002-10-08 2004-04-09 Koito Mfg Co Ltd Circuit d'allumage pour lampe de vehicule a diode photoemissive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19929430A1 (de) * 1999-06-26 2001-01-11 Abb Daimler Benz Transp Leuchtdioden-Schlußleuchte
EP1286571A2 (de) * 2001-05-02 2003-02-26 Garufo GmbH Elektronisch abgesicherte Stromversorgung für Schaltungsgruppen und Anzeigevorrichtung für eine sich änderende Information
DE10131824A1 (de) * 2001-06-30 2003-02-20 Hella Kg Hueck & Co Schaltungseinrichtung für die Ausfallerkennung von Leuchtdioden in einem Kraftfahrzeug
FR2845559A1 (fr) * 2002-10-08 2004-04-09 Koito Mfg Co Ltd Circuit d'allumage pour lampe de vehicule a diode photoemissive

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330935A (zh) * 2011-09-26 2012-01-25 汪华 铁路信号专用点式led光源灯和点灯光源电路
CN102330935B (zh) * 2011-09-26 2013-06-05 汪华 铁路信号专用点式led光源灯和点灯光源电路
CN104267719A (zh) * 2014-10-20 2015-01-07 上海光联照明有限公司 总线制led显示系统逐点故障侦测方法及其应用
CN104267719B (zh) * 2014-10-20 2016-11-30 上海光联照明有限公司 总线制led显示系统逐点故障侦测方法及其应用
EP3125648A1 (de) * 2015-07-31 2017-02-01 Siemens Aktiengesellschaft Leuchtdioden-steuerungsschaltung für einen signalgeber

Also Published As

Publication number Publication date
EP2362711B1 (de) 2012-07-18
SI2362711T1 (sl) 2013-01-31

Similar Documents

Publication Publication Date Title
US6225912B1 (en) Light-emitting diode array
DK2145508T3 (en) LED UDFALDSDETEKTERINGSKREDSLØB
CN104583787A (zh) 用于诊断电路装置的设备
KR20110084731A (ko) 다수의 광원을 구비한 백라이트 유닛, 이의 구동 방법 및 광원 이상 검출 방법
CN103348775A (zh) 识别led串中的故障的方法
US20150355289A1 (en) Electronic device
JP2007042533A (ja) 照明装置とそれに使用する照明ヘッド
EP2362711B1 (de) Fehlererkennung von LEDs
US8896319B2 (en) Light emitting device control circuit and short detection circuit thereof
CN104078919A (zh) Led灯具及其电子断路器
KR101671087B1 (ko) 시퀀서 아날로그 출력 유닛
US20120194076A1 (en) Lighting control device
CN109845403B (zh) 特别是用于车辆的led照明装置
CN103427813B (zh) 用于驱动半导体开关的驱动器电路
JP2011171547A (ja) 発光ダイオードの故障検出回路
JP2008029132A (ja) 電源装置の保護回路
CN105848393A (zh) 故障检测设备及方法
JP2006349466A (ja) 温度検出装置
JP7445894B2 (ja) 漏電検出装置
US11079409B2 (en) Assembly with at least two redundant analog input units for a measurement current
CN109921622A (zh) 实现被配置成用于防止火花的电源的电路和系统
JP2008098495A (ja) Led故障検出装置
US7880629B2 (en) Power supply device
JPH11160370A (ja) 異常電圧検出回路
JPH01503003A (ja) 複数の電池からなる電池パックの監視表示装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20111018

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 33/08 20060101AFI20120105BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 567323

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120815

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010002210

Country of ref document: DE

Effective date: 20120913

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010002210

Country of ref document: DE

Representative=s name: KOHLER SCHMID MOEBUS PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: THALES AUSTRIA GMBH

Free format text: THALES RAIL SIGNALLING SOLUTIONS GMBH#SCHEYDGASSE 41#1210 VIENNA (AT) -TRANSFER TO- THALES AUSTRIA GMBH#SCHEYDGASSE 41#1210 WIEN (AT)

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: THALES AUSTRIA GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RIEDERER HASLER AND PARTNER PATENTANWAELTE AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120718

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010002210

Country of ref document: DE

Representative=s name: KOHLER SCHMID MOEBUS PATENTANWAELTE PARTNERSCH, DE

Effective date: 20121016

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010002210

Country of ref document: DE

Owner name: THALES AUSTRIA GMBH, AT

Free format text: FORMER OWNER: THALES RAIL SIGNALLING SOLUTIONS GMBH, 1210 WIEN, AT

Effective date: 20121016

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010002210

Country of ref document: DE

Representative=s name: KOHLER SCHMID MOEBUS PATENTANWAELTE, DE

Effective date: 20121016

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121118

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121018

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 567323

Country of ref document: AT

Kind code of ref document: T

Owner name: THALES AUSTRIA GMBH, AT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121019

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121119

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: THALES AUSTRIA GMBH, AT

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

26N No opposition filed

Effective date: 20130419

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E015637

Country of ref document: HU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010002210

Country of ref document: DE

Effective date: 20130419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121029

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602010002210

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240125

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240205

Year of fee payment: 15

Ref country code: DE

Payment date: 20240116

Year of fee payment: 15

Ref country code: CZ

Payment date: 20240214

Year of fee payment: 15

Ref country code: BG

Payment date: 20240130

Year of fee payment: 15

Ref country code: CH

Payment date: 20240301

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20240116

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240123

Year of fee payment: 15