EP2356317B1 - Moteur à piston rotatif, unité avec système de commande et procédé pour le fonctionnement synchronisé d'un moteur à piston rotatif - Google Patents

Moteur à piston rotatif, unité avec système de commande et procédé pour le fonctionnement synchronisé d'un moteur à piston rotatif Download PDF

Info

Publication number
EP2356317B1
EP2356317B1 EP09799490.9A EP09799490A EP2356317B1 EP 2356317 B1 EP2356317 B1 EP 2356317B1 EP 09799490 A EP09799490 A EP 09799490A EP 2356317 B1 EP2356317 B1 EP 2356317B1
Authority
EP
European Patent Office
Prior art keywords
piston
cylinder
rotary piston
counter
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09799490.9A
Other languages
German (de)
English (en)
Other versions
EP2356317A2 (fr
Inventor
Waldemar Seidler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2356317A2 publication Critical patent/EP2356317A2/fr
Application granted granted Critical
Publication of EP2356317B1 publication Critical patent/EP2356317B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/356Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F01C1/3562Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/02Arrangements for drive of co-operating members, e.g. for rotary piston and casing of toothed-gearing type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/04Arrangements for drive of co-operating members, e.g. for rotary piston and casing of cam-and-follower type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/02Control of, monitoring of, or safety arrangements for, machines or engines specially adapted for several machines or engines connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/02Methods of operating

Definitions

  • the invention relates to a rotary engine, an arrangement of a control system and a rotary piston engine and a method for the clock-controlled operation of a rotary piston engine.
  • rotary-piston engines have the property that all rotating components of the engine move in circular paths around a single point.
  • a rotary piston engine assembly comprising at least one counter and rotary piston is known, in which the counter-piston is pressed by means of a drive mechanism comprising a spring and an associated rod system directly to the rotary piston in order to achieve the required sealing of the combustion chamber.
  • a drive mechanism comprising a spring and an associated rod system directly to the rotary piston in order to achieve the required sealing of the combustion chamber.
  • the present invention based on the object to provide a rotary piston engine with the simplest possible structure and an arrangement of a control system and such a rotary engine and method for the clock-controlled operation of the rotary piston engine, which ensures high efficiency.
  • the object is achieved by a rotary engine according to claim 1, an arrangement of a control system and a rotary engine according to claim 13and a method according to claim 17 and 19.
  • the rotary piston engine consists of a motor housing with a housing interior with inlet and outlet, in which a cylindrical rotor is received in a predetermined direction of rotation rotatable about a rotation axis in a concentric to the axis of rotation cylindrical running surface with the lateral surface of the rotor and lateral webs includes at least one annular in cross-section cylinder, and in which at least one rotary piston is arranged on the lateral surface of the rotor.
  • At least one counter-piston is at least partially accommodated in the motor housing and at least the at least one counter-piston in the motor housing or the at least one rotary piston is movably mounted on the rotor, wherein each counter-piston is assigned at least one inlet with inlet valve and at least one outlet.
  • the at least one outlet is hereby arranged in the direction of rotation immediately before the opposing piston and the at least one inlet in the direction of rotation at the latter, wherein the at least one counter-piston is driven by the rotor via a mechanical control system.
  • the at least one counter-piston is driven by the rotor via the mechanical control system in such a way that the counter-piston follows the contour of the rotary piston projecting from the rotor in contactlessly with a minimum distance, while the rotor is advantageously designed in one piece.
  • at least two cylinders are provided, wherein in each case a cylinder is formed by the one-piece rotor and a part of the motor housing.
  • the rotary piston and the protruding into the cylinder Part of the counter-piston are approximately identical in shape and the at least one rotary piston and the at least one counter-piston is approximately trapezoidal.
  • the rotary piston and the part of the opposing piston protruding into the cylinder in certain rotary piston positions are approximately identical in form and arranged in the engine such that the remaining space between the rotary piston and the opposed piston is minimized immediately before passing through the rotary piston through the region of the opposing piston.
  • the rotary engine has at least two cylinders, wherein the first cylinder is designed as a pressure cylinder for compressing air and the other cylinder as a working cylinder.
  • the pressure cylinder leads compressed air to an accumulator device which has at least two pressure or ignition chambers.
  • a fuel-air mixture is generated and caused to explode, wherein the pressure resulting from the explosion via a connecting channel between the pressure and ignition chambers and working cylinder is supplied to the same and generates a rotational movement by the pressure in the working cylinder becomes.
  • an arrangement of a control system and a rotary engine wherein the preferably mechanical control system for controlling at least one guided in a Jacobkolbengephaseouseabrough counter-piston of a rotary piston engine is provided, via which the counter-piston is lifted out of the cylinder such that the deck - or side surfaces of the counter-piston protruding from the rotor contour of the rotary piston in its passage contactless with a distance less than 0.5mm, follow, wherein the rotary piston and projecting into the cylinder part of the counter-piston are approximately identical in shape and the at least one rotary piston and the at least an opposing piston are approximately trapezoidal in shape.
  • a method for the clock-controlled operation of a rotary piston engine consisting of a motor housing with a housing interior.
  • the essential aspect of this method is the fact that by rotating the rotary piston, starting from the counter-piston in the direction of rotation via the inlet into the first cylinder chamber, a fuel-air mixture is sucked in and at the same time the exhaust gas located in the second cylinder chamber from the Vortakt is discharged through the outlet and that during the passage of the rotary piston of the counter-piston is lifted synchronously to the rotary piston from the cylinder and returned to the passage back into the cylinder, in such a way that the radial movement of the counter-piston follows almost exactly the shape of the rotary piston, so that the passage of at least a rotary piston through the region of the at least one counter-piston takes place without contact with a minimum distance.
  • Another object of the invention is an alternative method for the clock-controlled operation of a rotary piston engine consisting of at least one pressure cylinder and a working cylinder, each comprising at least one motor housing with a housing interior.
  • the essential aspect of the alternative method is to suck in and compress air via the impression cylinder, supply the compressed air to an accumulator device and form fuel-air mixture in the accumulator device of the compressed air, and then supply the fuel in the accumulator device Air mixture is ignited, wherein the resulting by the explosion pressure is supplied to the working cylinder.
  • the pressure storage device is provided separately from the pressure and working cylinder, which has at least two pressure or ignition chambers in which alternately the fuel-air mixture is made to explode.
  • FIG. 1 shows a perspective view of a tubular, one-piece rotor 3 with preferably two on the outer surface 3.1 of the rotor 3 firmly screwed rotary pistons 4, 4 'and one with these rotary pistons 4, 4' cooperating opposed pistons 7, 7 'of a rotary piston engine 1 according to the invention.
  • a rotary piston engine 1 for a better illustration of the construction and the interaction of said components of the rotary piston engine 1 according to the invention, these are shown without the motor housing 2, which surrounds them, preferably multi-part design.
  • the rotor 3 is in this case arranged concentrically to the axis of rotation RA and rotatably mounted in the motor housing 2 in a predetermined rotational direction DR.
  • Both the two rotary pistons 4, 4 'and the opposed pistons 7, 7' are offset by 180 ° from each other and arranged concentrically about the axis of rotation RA.
  • the rotary pistons 4, 4 'or the opposing pistons 7, 7' are located symmetrically with respect to the axis of rotation RA. This reduces the imbalance of the rotor 3 and a low-vibration running of the rotary piston engine 1 is ensured.
  • FIG. 2 and FIG. 2.1 show at least a portion of the motor housing 2 in a perspective overall or sectional view, said part of the motor housing 2 together with the rotor 3 rotatably mounted therein forms a preferably annular in cross-section cylinder 5.
  • a plurality of identical parts of the motor housing 2 may be arranged in series.
  • the part of the motor housing 2 comprises a circular in cross-section, stepped housing interior 2.1 with a cylindrical, concentric with the axis of rotation RA arranged tread 6 with lateral, circumferential ridges 5.3, which project radially inwardly over the tread 6, so that gradations arise.
  • the webs 5.3 in turn have at least one side surface 5.3.1 and 5.3.2 an upper side, wherein the side surface 5.3.1 is approximately perpendicular to the tread 6 and the top 5.3.2 is formed circular and concentric with the axis of rotation RA.
  • the part of the motor housing 2 has for receiving and guiding a Opposite piston 7, 7 'at least one opposed piston housing section 12 with a piston guide channel 12.1.
  • the piston guide channel 12.1 is designed for the radial guidance of the counter-piston 7, 7 'in the counter-piston housing section 12.
  • FIG. 3 shows a section through the rotary piston engine 1 according to the invention along a plane perpendicular to the axis of rotation RA cutting plane, namely an end view of the arranged in the motor housing 2 rotor 3 with rotary piston 4 and piston 7, which are accommodated in a piston guide channel 12.1 of the piston housing section 12.
  • the in FIG. 1 shown rotor 3 is provided to form two annular in cross-section cylinder 5, that is, a series arrangement of two in FIG. 2 shown parts of the motor housing 2, which, as in Figure 3.1 shown connected to each other at the end face and connected to each other liquid-tight, preferably screwed, are, so that the respective running surfaces 6 come to lie concentrically to the axis of rotation RA.
  • the rotor 3 is integrally formed and mounted concentrically in the two housing inner spaces 2.1 rotatable about the axis of rotation RA. This results in the housing interior 2.1 each have an annular in cross-section cylinder 5, which is limited in the radial direction by the lateral surface 3.1 of the rotor 3, the tread 6 and in the direction parallel to the rotation axis RA through the mutually facing side surfaces 5.3.1 of the webs 5.3.
  • each rotary piston 4, 4 ' is provided per cylinder 5, which is moved on a path running concentrically about the axis of rotation RA.
  • the rotary piston 4, 4 ' is running contactless with its free end complied with by the lateral surface 3.1, preferably with a minimum distance on the cylindrical running surface 6.
  • the rotary piston 4, 4' closes by means of seals the cylinder 5 both to the tread 6 and to the rotor 3 and to the side surfaces 5.3.1 of the webs 5.3 liquid and / or airtight, ie the height of the rotary piston 4, 4 'corresponds approximately to the distance between the lateral surface 3.1 of the rotor 3 and the running surface 6 of the motor housing 2 and the depth of the rotary piston 4, 4 ' corresponds approximately to the distance of the opposite side surfaces 5.3.1 two webs 5.3 a cylinder. 5
  • At least one inlet 2.2 and at least one outlet 2.3 are assigned to the opposing piston housing section 12 provided for receiving the opposing piston 7, 7 ', wherein the at least one outlet 2.3 in the direction of rotation DR immediately before the opposing piston 7, 7' and the at least one inlet 2.2 thereto are arranged.
  • a Zündvoriquessö réelle 2.4 may be provided for receiving an ignition device in the motor housing 2, wherein this preferably comes to rest in the direction of rotation DR on the at least one counter-piston 7, 7 'following 120 ° -Sector.
  • the at least one inlet 2.2 is provided within a 90 ° sector downstream of the counter-piston 7, 7 'in the direction of rotation DR, preferably directly following the counter-piston 7, 7'.
  • the rotary pistons 4, 4 'and the part of the counter-piston 7, 7' protruding into the cylinder 5 are approximately identical in shape.
  • the rotary piston 4, 4 ' consists of a base surface 4.1 adjoining the lateral surface 3.1 of the rotor 3, a contact surface 4.2 adjoining the running surface 6 with minimal distance and two side surfaces 4.3, 4.4 connecting the base surface 4.1 and the cover surface 4.2.
  • the side surfaces 4.3, 4.4 and the base 4.1 include an acute angle.
  • the counter-piston 7, 7 ' has due to its approximate uniformity of shape to the rotary piston 4, 4' a top surface 7.1 and two side surfaces 7.2, 7.3, wherein the enclosed by the side surfaces 7.2, 7.3 and the top surface 7.1 angles are each obtuse. This leads both in the case of the counter-piston 7, 7 'and the rotary piston 4, 4' to an approximately trapezoidal cross-section.
  • the counter-piston 7, 7 ' Upon rotation of the rotor 3 in the direction of rotation DR, the counter-piston 7, 7 'is lifted out of the cylinder 5 in such a way that a non-contact passage of the rotary piston 4, 4' takes place in the fastening region of the counter-piston 7, 7 '.
  • the counter-piston 7, 7 ' is lifted out of the cylinder 5 such that the cover 7.1 or
  • At least the side surface 4.3, 4.4 of the rotary piston 4, 4 'approaching through the rotation can be slightly convexly curved.
  • the at least one side surface 7.2, 7.3 of the counter-piston 7, 7 ', which approaches the rotary piston 4, 4' by its movement be slightly concave. After passing through the rotary piston 4, 4 ', the opposing piston 7, 7' with its cover surface 7.1 nestles with a minimum distance against the lateral surface 3.1 of the rotor 3.
  • Figure 4.1 is generated by the rotating in the direction of rotation DR rotary piston 4 in the first cylinder chamber 5.a a suction effect, so that air is sucked through the inlet 2.2.
  • the second cylinder space 5.b decreases at the same time, which results in the exhaustion of a burned exhaust gas located in the second cylinder space 5.b via the outlet 2.3.
  • the inlet valve is closed at the inlet 2.2, via the fuel supply 9 fuel into the cylinder chamber 5.a fed and brought the fuel-air mixture in the first cylinder chamber 5.a by means of the ignition device to the explosion (see Figure 4.2 ).
  • the counter-piston 7 is raised approximately synchronously with the rotary piston 4 guided past the cylinder 5 and returned to the cylinder 5 after the passage (see FIGS. 4.4 to 4.6 ).
  • the radial movement of the counter-piston 7 in this case follows almost exactly the shape of the rotary piston 4. This ensures that even when returning the counter-piston 7 into the cylinder 5, the distance between the rotary piston 4 and counter-piston 7 is minimal, with the result that the proportion At burned flue gas in the first cylinder chamber 5.a is also minimal.
  • the rotary engine 1 may have a plurality of cylinders 5 arranged in series, with one cylinder per cylinder 5 in each case FIG. 2 illustrated portion of the motor housing 2 is provided and the cylindrical running surfaces 6 are each formed concentrically to the axis of rotation RA.
  • a plurality of rotary pistons 4, 4 ' are provided depending on the desired number of cylinders, wherein the rotary pistons 4, 4' are offset from each other along the axis of rotation RA and at least one respective rotary piston 4, 4 'is received in a cylinder 5.
  • each rotary piston 4, 4 ' In order to allow a low-vibration running of the motor, the juxtaposed rotary pistons 4, 4 'alternately rotated by 180 ° to each other on the rotor 3 are arranged.
  • the ignition of the individual cylinders 5 can take place simultaneously or else offset in time.
  • the rotary piston engine 1 comprises at least two cylinders 5, wherein one of the at least two cylinders 5 is designed as a pressure cylinder 5.1 for compressing air and the at least one further cylinder 5 as a working cylinder 5.2.
  • Such a rotary engine 1 has separate from the pressure and working cylinders 5.1, 5.2 at least one pressure storage device 10, which includes at least a first and second pressure or ignition chamber 11.1, 11.2.
  • FIG. 5 shows a schematic block diagram for explaining the operation of a rotary piston engine 1 with pressure and working cylinders 5.1, 5.2 and associated pressure storage device 10.
  • the outlet 2.3 of the pressure cylinder 5.1 is connected via a connecting line 18 to the pressure storage device 10, wherein the connecting line 18 via a check valve 19 on Outlet 2.3 of the printing cylinder 5.1 is connected.
  • the pressure storage device 10 in turn consists of at least a first and second pressure or ignition chamber 11.1, 11.2, which are each coupled via an associated first and second valve 20.1, 20.2 and a common valve 21 to the connecting line 18.
  • the first and second pressure or ignition chambers 11.1, 11.2 have a first and second device for fuel supply 23.1, 23.2 in the first and second pressure or ignition chamber 11.1, 11.2 and in each case a first and second ignition device 24.1, 24.2. On the output side, the first and second pressure or ignition chamber 11.1, 11.2 each with a further valve 22.1, 22.2 coupled to the working cylinder 5.2.
  • FIG. 5 the operation of the rotary piston engine 1 with additional pressure storage device 10 explained in more detail.
  • the impression cylinder 5.1 and the cylinder 5.2 shown side by side.
  • the position of the rotary pistons 4, 4 'and counter-piston 7, 7' in the pressure cylinder 5.1 and in the working cylinder 5.2 are each offset by 180 ° to each other.
  • the rotor 3 is set in rotary motion by a starter, not shown, known from the prior art, wherein in the pressure cylinder 5.1 through the inlet 2.2 air is sucked into the first cylinder chamber 5.a of the pressure cylinder 5.1.
  • the volume in the second cylinder space 5.b of the pressure cylinder 5.1 is compressed and fed via the outlet 2.3 through the connecting line 18 to the pressure storage device 10.
  • the common valve 21 opens and the pressure can reach the respectively downstream first and second pressure or ignition chambers 11.1, 11.2 when the first or second valve 20.1, 20.2 is opened. Subsequently, the first or second valve 20.1, 20.2 is closed again.
  • the first and second valves 20.1, 20.2 are alternately opened, namely each valve 20.1, 20.2 once every two revolutions, so that every other revolution of the first and second valve 20.1, 20.2 associated first and second pressure or Ignition chamber 11.1, 11.2 is pressurized.
  • the rotary piston 4 is in the working cylinder 5.2 seen in the direction of rotation DR after the counter-piston 7, said counter-piston 7 is closed, i. with its top surface 7.1 is minimally spaced from the lateral surface 3.1 of the rotor 3.
  • the resulting in the pressure or ignition chamber 11.1, 11.2 by the explosion pressure is supplied via the connecting channel 25 to the working cylinder 5.2, via its inlet 2.2.
  • a force in the direction of rotation DR is exerted on the rotary piston 4 in the working cylinder 5.2.
  • the starter can be switched off. Due to the one-piece design of the rotor 3 also learns the Rotary piston 4 'in the pressure cylinder 5.1 a force in the direction of rotation DR and also generates pressure, which is via the connecting line 18 and an open first and second valve 20.1, 20.2, that of the first or second pressure or ignition chamber not used in the previous cycle 11.1, 11.2 is assigned, in ebendiese pressure or ignition chamber 11.1, 11.2 can spread.
  • the processes described above are periodically recurring, wherein the period of the processes of the rotational speed of the rotor 3 is dependent.
  • the fuel-air mixture is alternately brought into explosion in one of the first and second pressure or ignition chambers 11.1, 11.2, so that in one of the two pressure or ignition chamber 11.1, 11.2 only every second revolution of the rotor. 3 an explosion occurred.
  • the fuel-air mixture can interact with each other for a longer period of time, resulting in better mixing and thus higher efficiency or efficiency the combustion of the rotary piston engine 1 pulls.
  • such a structured rotary piston engine 1 with gasoline, diesel or gas is operable.
  • FIGS. 6 and 7 show in each case the rotor 3 with attached to the lateral surface 3.1 rotary pistons 4, 4 'and sealing rings 17, in a three-dimensional sectional view and a perspective overall view, with the front sides of the rotor 3 preferably circular cover 8 are flanged with paddle wheel-like recesses 8.1.
  • a shaft 27 is attached, along the axis of rotation RA of the rotor. 3 protrudes, wherein the axis of rotation RA coincides with the wavelength axis.
  • the shafts 27 serve, on the one hand, for the rotatable mounting of the rotor 3 in the motor housing 2 and, on the other hand, for the dissipation of the kinetic energy transmitted to the rotor 3 by the combustion, for example by means of toothed wheels, belts or chains.
  • movable assemblies such as inlet valve 13, opposed piston 7, 7 ', etc. driven.
  • lids 8 and a tube 26 arranged inside the rotor serves to create a volume-reduced cooling space adjacent to the heat produced by the combustion, namely the first rotor chamber 28 in order to flow through it with a liquid or viscous medium and thus to cool the rotary engine 1. For this reason, the connection of the cover 8 with the rotor 3 and the connection of the tube 26 with just these lids 8 is made liquid-tight.
  • the second rotor chamber 29 is sealed off from the first rotor chamber 28 and does not come into contact with the cooling medium.
  • a cooling medium located in the motor housing 2 in front of the cover 8 is supplied with the bores 8.2 on rotation of the rotor 3 via the blade wheel-like recesses 8.1 and introduced into the first rotor chamber 28 through these bores 8.2.
  • the second cover 8 operates in opposite action, ie creates a suction effect on the located in the first rotor chamber 28 cooling medium and conveys the cooling medium through the holes 8.2 and blade-like recesses 8.1 out of the first rotor chamber 28 out.
  • the holes 8.2 are inserted obliquely into the cover 8, so that the introduction of the cooling medium is simplified by the blade-like recesses 8.1 through the holes 8.2 in the first rotor chamber 28.
  • the mounted on the lateral surface 3.1 of the rotor 3 rotary pistons 4, 4 ' also have cooling channels, said cooling channels have a connection to the first rotor chamber 28, for example via provided with an internal bore screws, for fastening the rotary piston 4, 4' on the rotor 3 are provided.
  • the cooling medium flowing through the first rotor chamber 28 can thus also flow through the rotary pistons 4, 4 'and ensure cooling of the latter, the replacement of the cooling medium being actively supported by the centrifugal force.
  • the cooling medium emerging through the suction effect on the opposite cover 8 can flow back to the first cover 8 via return channels integrated in the motor housing 2.
  • the motor housing 2 which is acted upon by the combustion process with heat, effectively cooled.
  • cooling circuit In order to avoid overheating of the cooling medium, a well-known from the prior art cooling device is introduced into the cooling circuit, which extracts heat, for example, by a greatly enlarged effective cooling surface of the cooling medium. In addition, this heat can be used for other purposes, such as for heating the fuel or for heating the interior of motor vehicles.
  • each counter-piston 7, 7 'of the rotary piston engine 1 a control unit 40, 40' assigned, which are driven by rotating shafts 41, with these Waves 41 each at least one cam 42 and at least one, preferably two cam shells 43 are mechanically connected.
  • the shaft 41 is driven by a mechanical operative connection from the rotor 3 and thus sets both cam 42 and cam shells 43 in rotation.
  • each cam 42 shown in the installed state and cam shells 43 are in FIG. 8 respectively.
  • the cam 42 has a substantially circular outer contour 42.1 with a bulge 42.2, wherein the cam 42 is scanned continuously on its outer surface by a bolt 44, that is, the bolt 44 follows the shape of the cam 42.
  • the bulge 42.2 here is asymmetrical and has a flat or a steep flank.
  • cam shell 43 has a front side milling on, this milled direction predetermines a circumferential path for a bolt 45 and this way, except for a radially outwardly projecting bulge region 50, is approximately circular.
  • the width of the milled recess of the cam shell 43 is matched to the diameter of the bolt 45, so that it is made to fit in the milled recess.
  • the bolt 45 is guided between two uniform camshells 43, wherein the front-side milled recesses of the cam shells 43 and the cam shells 43 are mutually congruent and spaced from each other.
  • FIG. 10.1 represents the initial situation in which the first and second spring unit 46, 47 are relaxed.
  • Figure 10.2 is the bolt 45 in the direction of rotation before passing through the bulge portion 50 of the cam shells 43.
  • the bolt 44 is raised by the flat edge of the bulge 42.2 of the cam 42 before this pass, so that the second Spring unit 47 is biased.
  • the force exerted by the second spring unit 47 on the lever mechanism 48 force still leads to no lifting out of the opposed piston 7, since the outer contour 43.2 of the cam shell 43 effectively prevents this.
  • the second spring unit 47 is further biased ( FIG. 10.3 ).
  • the bolt 44 After the entry of the bolt 45 into the bulge region 50, the bolt 44 passes through the sharply falling flank of the bulge 42. 2 of the cam 42 (FIG. Figure 10.5 ). As a result, the second spring unit 47 relaxes. At the end of the bulge region 50, the bolt 45 is guided out of the bulge region 50 by the spring unit 46 which is preloaded during lifting, and thus the opposing piston 7, 7 'is returned to the cylinder 5 via the lever mechanism 48 (FIG. Figure 10.6 ).
  • the interaction of the cam 42 with the cam shell 43 ensures a gentle material overcoming areas of greater slope, especially when entering the bulge region 50, in which the counter-piston 7, 7 'must be quickly lifted from the cylinder 5 to the shape of the rotary piston. 4 4 'to follow with minimal distance.
  • the lever mechanism 48 has a gear ratio generated by different lever arm lengths, which converts a small stroke movement caused by the cam shell 43 into an enlarged stroke movement on the opposing piston 7, 7 '.
  • Figures 12 and 13 show the rotary engine 1 according to the invention in a front and rear view. In FIG. 12 the valve control is omitted for better illustration.
  • FIG. 12 shows the drive of the control unit 40, 40 'for opposed pistons 7, 7' via a bevel gear mechanism.
  • a fixed to the shaft 27 first bevel gear 60 drives second bevel gears 61 which are articulated at first ends of connecting shafts 64, wherein longitudinal axes of these connecting shafts 64 are perpendicular to the axis of rotation RA.
  • At the second ends of the connecting shafts 64 are mounted third bevel gears 62 which mesh with fourth bevel gears 63 which are connected to and drive the shafts 41.
  • the shafts 41 are set in a rotational movement by the rotation of the rotor 3, wherein the axes of the shafts 41 are approximately parallel to the axis of rotation RA and spaced therefrom.
  • the direction of rotation of the shafts 41 is the direction of rotation DR of the shaft 27 opposite.
  • the gear ratio can be suitably selected, in particular the preferred gear ratio 1: 1, ie one revolution of the rotor 3 leads to a rotation of the shafts 41st
  • FIG. 13 shows the control of the intake valves 13 by a toothed belt drive toothed belt.
  • the drive takes place on the opposite side of the bevel gear mechanism of the rotary piston engine 1.
  • a gear 51 is fixed in the two other gears 52 engage.
  • pulleys are mounted frontally, which drive a toothed belt 54.
  • this toothed belt 54 further pulleys 53 are driven, which drive the intake valves 13 via shafts 55 and cams 56.
  • the gear ratio between the rotational speed of the rotor 3 and the rotational speed of the shaft 55 must be suitably selected.
  • the speed ratio between the shaft 27 and shaft 55 is also 1: 1.
  • FIGS. 14.1, 14.2 and FIGS. 15.1, 15.2 each show a rotary engine 1 according to the invention in a front and rear view in the assembled state.
  • Both rotary piston engines 1 have, for example, two cylinders 5, wherein the two cylinders 5 of the rotary piston engine 1 in the FIGS. 14.1, 14.2 a combustion process takes place.
  • the rotary engine 1 in FIGS. 15.1, 15.2 has in contrast to a pressure cylinder 5.1 and a working cylinder 5.2 and an accumulator device 10 and is therefore also suitable for the combustion of diesel fuel.
  • the rotary engine 1 for example, to drive machines, motor vehicles o.ä. serve.
  • the shaft 27 is coupled via a mechanical operative connection with the drive mechanism of a machine or a motor vehicle, wherein the mechanical operative connection can be made directly or indirectly via a transmission with fixed or variable ratio.
  • the motor can be made mostly of aluminum, in particular all housing parts, the rotor 3 and the lid. 8

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Hydraulic Motors (AREA)
  • Valve Device For Special Equipments (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Claims (19)

  1. Moteur à piston rotatif constitué d'un carter de moteur (2) avec un espace intérieur de carter (2.1) comportant au moins une admission (2.2) et au moins un échappement (2.3), dans lequel dans la direction de rotation prescrite (DR) rotativement autour d'un axe de rotation (RA) un rotor de forme cylindrique (3) est renfermé dans une surface de roulement (6) de forme cylindrique s'étendant concentriquement à l'axe de rotation (RA), qui définit avec la surface de gaine (3.1) du rotor (3) et des gradins latéraux (5.3) au moins un cylindre (5) de section transversale en forme de cercle annuaire, dans lequel sur la surface de gaine (3.1) du rotor (3) au moins un piston rotatif (4, 4') est disposé, dans lequel au moins un contre piston (7, 7') est renfermé au moins partiellement dans le carter de moteur (2), au moins un contre piston (7, 7') est positionné de manière mobile dans le carter de moteur (2) ou au moins un piston rotatif (4, 4') est positionné de manière mobile sur le rotor 3) et chaque contre piston (7, 7') est coordonné à au moins une admission (2.3) avec une soupape d'admission (13) et au moins un échappement (2.3), dans lequel au moins un échappement (2.3) est disposé dans la direction de rotation (DR) directement avant le contre piston (7, 7') et en se rattachant à celui-ci au moins une admission (2.2) est disposée dans la direction de rotation (DR), dans lequel au moins un contre piston (7, 7') est entraîné par l'intermédiaire d'un système de commande mécanique du rotor (3), caractérisé en ce que au moins un contre piston (7, 7') est entraîné par l'intermédiaire d'un système de commande mécanique du rotor (3) de telle sorte que le contre piston (7, 7') suive le contour du piston rotatif (4, 4') dépassant en saillie du rotor (3) lors de son passage sans contact avec un écart minimal, en ce que le rotor (3) est conçu en un seul tenant et au moins deux cylindres (5) sont prévus, dans lequel respectivement un cylindre (5) est formé par le rotor en un seul tenant (3) et une partie du carter de moteur (2), en ce que le piston rotatif (4, 4') et la partie du contre piston (7, 7') dépassant à l'intérieur du cylindre (5) sont de forme approximativement identique et en ce que au moins un piston rotatif (4, 4') et au moins un contre piston (7, 7') sont conçus approximativement en forme trapézoïdale.
  2. Moteur à piston rotatif selon la revendication 1, caractérisé en ce que au moins une admission (2.2) est disposée à l'intérieur d'un secteur de 90° se rattachant au contre piston (7, 7') directement après le contre piston (7, 7') et/ou en ce que le contre piston (7, 7') ou le piston rotatif (4, 4') sont mobiles radialement par rapport à la surface de roulement (6) de forme cylindrique.
  3. Moteur à piston rotatif selon la revendication 1, caractérisé en ce que au moins un piston rotatif (4, 4') est relié solidement avec le rotor (3) et présente une surface de base (4.1) se rattachant au rotor (3), une surface de couvercle (4.2) se rattachant à la surface de roulement (6) ainsi que deux surfaces latérales (4.3, 4.4) reliant la surface de base (4.1) resp. la surface de couvercle (4.2), dans lequel respectivement une surface latérale (4.3, 4.4) définit avec la surface de base (4.1) un angle aigu et/ou en ce que au moins un contre piston (7, 7') présente une surface de couvercle (7.1) se rattachant au rotor (3) et deux surfaces latérales (7.2, 7.3) se rattachant à la surface de couvercle, dans lequel l'angle défini par respectivement une surface latérale (7.2, 7.3) et la surface de couvercle (7.1) est à angle obtus.
  4. Moteur à piston rotatif selon une des revendications précédentes, caractérisé en ce que au moins un contre piston (7, 7') forme à des positions déterminées du piston rotatif (4, 4') dans l'espace délimité entre la surface de gaine (3.1) du rotor (3), la surface de roulement cylindrique (6) et les gradins (5.3) une isolation approximativement étanche.
  5. Moteur à piston rotatif selon la revendication 3 ou 4, caractérisé en ce que au moins une surface latérale (4.3, 4.4) est incurvée en forme convexe, dans lequel les surfaces latérales (7.2, 7.3) d'au moins un contre piston (7,7') sont incurvées en forme concave.
  6. Moteur à piston rotatif selon une des revendications précédentes, caractérisé en ce que au moins deux cylindres (5) et sur le rotor en un seul tenant (3) au moins deux pistons rotatifs (4, 4') sont prévus, dans lequel les pistons rotatifs (4, 4') sont décalés l'un par rapport à l'autre le long de l'axe de rotation (RA), au moins respectivement un piston rotatif (4, 4') est renfermé dans un cylindre (5) et les cylindres (5) présentent un axe de symétrie commun, qui se situe dans l'axe de rotation (Ra), dans lequel au moins deux pistons rotatifs (4, 4') situés côte à côté sont disposés en étant tournés à 180° l'un par rapport à l'autre.
  7. Moteur à piston rotatif selon la revendication 6, caractérisé en ce que au moins deux cylindres situés côte à côté présentent respectivement un piston rotatif (4, 4') et au moins respectivement in contre piston (7, 7'), dans lequel tant les pistons rotatifs (4, 4') que les contre pistons (7, 7') sont décalés l'un par rapport à l'autre le long de l'axe de rotation (RA) et tournés à 180° l'un par rapport à l'autre.
  8. Moteur à piston rotatif selon une des revendications précédentes, caractérisé en ce que dans le carter de moteur (2) est prévu un dispositif d'allumage agissant dans au moins un cylindre (5), et notamment dans le secteur de 120° suivant au moins un contre piston (7, 7') dans la direction de rotation du rotor (3).
  9. Moteur à piston rotatif selon la revendication 6, caractérisé en ce que au moins deux cylindres (5) sont prévus, dans lequel un d'au moins deux cylindres (5) est conçu comme un cylindre de pression (5.1) pour compresser l'air et au moins un autre cylindre (5) est conçu comme un cylindre de travail (5.2).
  10. Moteur à piston rotatif selon la revendication 9, caractérisé en ce que séparément du cylindre de pression (5.1) et de travail (5.2) au moins un dispositif accumulateur de pression (10) est prévu, qui présente au moins deux chambres de pression, resp. d'allumage (11.1, 11.2), dans lequel le cylindre de pression (5.1) alimente de l'air en alternance à partir d'au moins deux chambres de pression, resp. d'allumage (11.1, 11.2).
  11. Moteur à piston rotatif selon la revendication 10, caractérisé en ce que des dispositifs adéquats sont prévus sur les au moins deux chambres de pression, resp. d'allumage (11.1, 11.2), qui à des positions déterminées d'au moins un piston rotatif (4, 4') alimentent en alternance dans une des au moins deux chambre de pression, resp. d'allumage (11.1, 11.2) du carburant liquide et/ou gazeux et allument ce dernier le cas échéant, dans lequel un canal de liaison (25) pouvant être obturé par d'autres soupapes (22.1, 22.2) est prévu entre au moins deux chambres de pression, resp. d'allumage (11.1, 11.2) et le cylindre de travail (5.2), qui dévie dans le cylindre de travail (5.2) la pression générée par l'explosion du mélange air-carburant dans une chambre de pression, resp. d'allumage (11).
  12. Moteur à piston rotatif selon une des revendications précédentes, caractérisé en ce que sur les deux côtés frontaux du rotor (3) des couvercles (8) avec des cavités (8.1) et alésages (8.2) de type roue à aube sont prévues, qui exercent une action de pompage four refroidir un milieu liquide ou visqueux servant au refroidissement et transportent le milieu à travers des canaux prévus dans toutes les zones à refroidir du moteur à piston rotatif (1).
  13. Dispositif composé d'un système de commande et d'un moteur à piston rotatif (1) selon une des revendications précédentes, dans lequel le système de commande est conçu pour commander au moins un contre piston (7, 7') du moteur à piston rotatif (1) guidé dans une portion de carter de contre piston (12), caractérisé en ce que le contre piston (7, 7') est soulevé hors du cylindre (5) de telle sorte que les surface de couvercle (7.1), resp. latérales (7.2, 7.3) du contre piston (7, 7') suivent le contour dépassant en saillie du rotor (3) du piston rotatif (4, 4') lors de son passage sans contact avec un écart plus petit que 0,5 mm, dans lequel le piston rotatif (4, 4') et la partie du contre piston (7, 7') passant dans le cylindre (5) sont de forme approximativement identique et au moins un piston rotatif (4, 4') et au moins un contre piston (7, 7') sont conçus en forme approximativement trapézoïdale.
  14. Dispositif selon la revendication 13, caractérisé en ce que la commande du contre piston (7, 7') est réalisée exclusivement par des modules mécaniques et/ou en ce que le contre piston (7, 7') est soulevé hors du cylindre (5) par l'action d'au moins une coque de came (43) et au moins une came (42) sur un mécanisme de levage (48) relié au contre piston (7, 7').
  15. Dispositif selon la revendication 14, caractérisé en ce que au moins une coque de came (43) agit directement, au moins une came (42) par l'intermédiaire d'au moins un dispositif de ressort (47) agit indirectement par l'intermédiaire d'un mécanisme de levage commun (48) sur le contre piston (7, 7') et/ou en ce que exclusivement le contour intérieur resp. extérieur (43.1, 43.2) de la coque de came (43) détermine le mouvement de levage du contre piston (7, 7') et/ou en ce que au moins une came (42) assiste le mouvement de levage du contre piston (7, 7') déterminé par au moins une coque de came (43), et notamment à des emplacements de plus grande élévation du contour intérieur (43.1) d'au moins une coque de came (43).
  16. Dispositif selon la revendication 14 ou 15, caractérisé en ce que le mécanisme de levage (48) agrandit le mouvement de levage produit par au moins une coque de came (43) au moyen d'un rapport de translation.
  17. Procédé de fonctionnement synchronisé d'un moteur à piston rotatif (1) selon une des revendications 1 à 12, dans lequel pour diviser le cylindre (5) à coupe transversale en forme d'anneau circulaire en un premier et un deuxième espace de cylindre (5.a, 5.b) le contre piston (7, 7') est inséré radialement dans le cylindre (5), dans lequel lors de la rotation du piston rotatif (4, 4') à partir du contre piston (7, 7') dans la direction de rotation (DR) par l'intermédiaire de l'admission (2.3) dans le premier espace de cylindre (5.a) un mélange air-carburant est aspiré et simultanément le gaz d'échappement se trouvant dans le deuxième espace de cylindre (5.b) par le pré-cycle est éjecté par l'intermédiaire de l'échappement (2.3) et en ce que lors du passage du piston rotatif (4, 4') le contre piston (7, 7') est soulevé hors du cylindre (5, 5') de manière synchrone au piston rotatif (4, 4') et après le passage est réintroduit dans le cylindre (5), et notamment de telle sorte que le mouvement radial du contre piston (7, 7') suive approximativement exactement la forme du piston rotatif (4, 4'), de sorte que le passage d'au moins un piston rotatif (4, 4') à travers la zone d'au moins un contre piston (7, 7') ait lieu sans contact avec un écart minimal.
  18. Procédé selon la revendication 17, caractérisé en ce qu'après que l'angle de rotation prescrit a été atteint le mélange air-carburant se trouvant dans le premier espace de cylindre (5.a) est amen en explosion par un dispositif d'allumage.
  19. Procédé de fonctionnement synchronisé d'un moteur à piston rotatif (1) selon une des revendications 1 à 12 composé d'au moins un cylindre de pression (5.1) et un cylindre de travail (5.2), dans lequel l'air est aspiré et compressé par l'intermédiaire du cylindre de pression (5.1), dans lequel l'air compressé est alimenté dans un dispositif accumulateur de pression (10), dans lequel pour former un mélange air-carburant du dispositif accumulateur de pression (10) du carburant est alimenté dans l'air compressé et ensuite dans le dispositif accumulateur de pression (10) le mélange air-carburant est allumé et dans lequel la pression générée par l'explosion est alimentée dans le cylindre de travail (5.2), dans lequel le dispositif accumulateur de pression (10) est prévu séparément du cylindre de pression (5.1) et de travail (5.2), qui présente au moins deux chambres de pression resp. d'allumage (11.1, 11.2), dans lesquelles an alternance le mélange air-carburant est amené en explosion.
EP09799490.9A 2008-11-04 2009-11-02 Moteur à piston rotatif, unité avec système de commande et procédé pour le fonctionnement synchronisé d'un moteur à piston rotatif Active EP2356317B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810055753 DE102008055753A1 (de) 2008-11-04 2008-11-04 Drehkolbenmotor sowie Steuerungssystem zur Ansteuerung eines Gegenkolbens
PCT/DE2009/001529 WO2010051794A2 (fr) 2008-11-04 2009-11-02 Moteur à piston rotatif, système de commande pour commander un contre-piston ainsi que procédé pour le fonctionnement piloté par horloge d'un moteur à piston rotatif

Publications (2)

Publication Number Publication Date
EP2356317A2 EP2356317A2 (fr) 2011-08-17
EP2356317B1 true EP2356317B1 (fr) 2017-03-29

Family

ID=42096336

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09799490.9A Active EP2356317B1 (fr) 2008-11-04 2009-11-02 Moteur à piston rotatif, unité avec système de commande et procédé pour le fonctionnement synchronisé d'un moteur à piston rotatif

Country Status (3)

Country Link
EP (1) EP2356317B1 (fr)
DE (1) DE102008055753A1 (fr)
WO (1) WO2010051794A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113027760B (zh) * 2021-03-25 2022-08-16 北京旋环科技有限公司 一种用于空气压缩机的轴式固定活塞及其空气压缩机
CN116677493B (zh) * 2023-08-02 2023-09-26 成都工业学院 一种圆周转子发动机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB151124A (en) * 1919-07-10 1920-09-23 Alfred Leighton Whittell Improvements in rotary engines
DE371106C (de) * 1921-09-09 1923-03-10 Johannes Thiel Motor mit kreisendem Kolben
US1949225A (en) * 1927-05-12 1934-02-27 Willem P Van Lammeren Rotary internal combustion engine
GB377380A (en) * 1931-06-15 1932-07-28 Guido Cimino An improved internal combustion rotary engine
DE732521C (de) * 1940-02-06 1943-03-04 Severin Breschendorf Drehkolbenmaschine, insbesondere Brennkraftmaschine
FR942093A (fr) * 1940-09-19 1949-01-28 Moteur ou générateur à piston rotatif, à cycle complet et réversible
US2550849A (en) * 1948-11-12 1951-05-01 Octavius J Morris Rotary engine
DE1108705B (de) * 1959-09-15 1961-06-15 Sami Tolgay Dipl Ing Kraftmaschine mit rotierendem Kolben
DE2016845A1 (de) * 1970-04-09 1971-10-21 Umlauf, Norbert, 5800 Hagen Drehkolben Brennkraftmaschine mit Widerlager
DE3490653T1 (fr) * 1984-02-06 1987-03-12
US5138994A (en) * 1987-03-25 1992-08-18 Laszlo Maday Supercharged rotary piston engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102008055753A1 (de) 2010-05-12
EP2356317A2 (fr) 2011-08-17
WO2010051794A3 (fr) 2011-03-10
WO2010051794A9 (fr) 2011-06-03
WO2010051794A4 (fr) 2011-04-21
WO2010051794A2 (fr) 2010-05-14

Similar Documents

Publication Publication Date Title
DE69520956T2 (de) Axialkolbenmaschine
DE68903984T2 (de) Kolbenmaschine mit rotierendem Zylinderblock.
DE102005010775B3 (de) Schwenkkolbenmaschine
DE69906486T2 (de) Rotationsmaschine
DE102008050014B4 (de) Kreiskolbenverbrennungsmotor
WO2017063751A1 (fr) Moteur à combustion interne à double manivelle et à compression variable
DE102016103615B3 (de) Motor-Verdichter-Einheit
DE60117980T2 (de) Fremdgezündete rotierende brennkraftmaschine
EP2356317B1 (fr) Moteur à piston rotatif, unité avec système de commande et procédé pour le fonctionnement synchronisé d'un moteur à piston rotatif
DE69409256T2 (de) Rotierende maschine
DE69406799T2 (de) Maschine
DE2339958A1 (de) Maschine fuer den betrieb als verbrennungsmotor, verdichter, pumpe oder druckmittelbetaetigter motor
EP2205832B1 (fr) Machine à pistons
DE102009052960B4 (de) Freikolben-Brennkraftmaschine
WO2012052518A1 (fr) Moteur à combustion à volume constant
EP1034356B1 (fr) Dispositif pour le transport d'un milieu ou pour l'entrainement a travers un milieu
DE202015005275U1 (de) Kreiskolbenmotor
DE4437740A1 (de) Umlaufmotor
DE102010006466A1 (de) Rotationskolbenmotor
DE19953168A1 (de) Drehkolbenmaschine
DE102009060762A1 (de) Kolbenmaschine
DE102020124450A1 (de) Rotationskolbenmotor
WO2005083233A1 (fr) Machine à piston rotatif
DE102008055939B3 (de) Brennkraftmaschine
DE4401285A1 (de) Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110511

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141010

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20161214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 879961

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013826

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170630

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013826

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180103

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171102

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 15

Ref country code: FR

Payment date: 20231120

Year of fee payment: 15

Ref country code: DE

Payment date: 20231130

Year of fee payment: 15

Ref country code: CH

Payment date: 20231202

Year of fee payment: 15

Ref country code: AT

Payment date: 20231121

Year of fee payment: 15