EP2356317B1 - Rotary piston engine, unit with control system and method for the cycle-controlled operation of a rotary piston engine - Google Patents
Rotary piston engine, unit with control system and method for the cycle-controlled operation of a rotary piston engine Download PDFInfo
- Publication number
- EP2356317B1 EP2356317B1 EP09799490.9A EP09799490A EP2356317B1 EP 2356317 B1 EP2356317 B1 EP 2356317B1 EP 09799490 A EP09799490 A EP 09799490A EP 2356317 B1 EP2356317 B1 EP 2356317B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- piston
- cylinder
- rotary piston
- counter
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 14
- 239000000446 fuel Substances 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 18
- 230000033001 locomotion Effects 0.000 claims description 16
- 230000007246 mechanism Effects 0.000 claims description 16
- 238000003860 storage Methods 0.000 claims description 16
- 238000004880 explosion Methods 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 230000001154 acute effect Effects 0.000 claims description 2
- 230000000712 assembly Effects 0.000 claims description 2
- 238000000429 assembly Methods 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 230000004913 activation Effects 0.000 claims 2
- 230000001360 synchronised effect Effects 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000012530 fluid Substances 0.000 claims 1
- 238000005086 pumping Methods 0.000 claims 1
- 239000002826 coolant Substances 0.000 description 10
- 238000002485 combustion reaction Methods 0.000 description 9
- 238000007789 sealing Methods 0.000 description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000003546 flue gas Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C11/00—Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
- F01C11/002—Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/30—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F01C1/34—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
- F01C1/344—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/30—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F01C1/34—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
- F01C1/356—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
- F01C1/3562—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C17/00—Arrangements for drive of co-operating members, e.g. for rotary piston and casing
- F01C17/02—Arrangements for drive of co-operating members, e.g. for rotary piston and casing of toothed-gearing type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C17/00—Arrangements for drive of co-operating members, e.g. for rotary piston and casing
- F01C17/04—Arrangements for drive of co-operating members, e.g. for rotary piston and casing of cam-and-follower type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C20/00—Control of, monitoring of, or safety arrangements for, machines or engines
- F01C20/02—Control of, monitoring of, or safety arrangements for, machines or engines specially adapted for several machines or engines connected in series or in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B53/00—Internal-combustion aspects of rotary-piston or oscillating-piston engines
- F02B53/02—Methods of operating
Definitions
- the invention relates to a rotary engine, an arrangement of a control system and a rotary piston engine and a method for the clock-controlled operation of a rotary piston engine.
- rotary-piston engines have the property that all rotating components of the engine move in circular paths around a single point.
- a rotary piston engine assembly comprising at least one counter and rotary piston is known, in which the counter-piston is pressed by means of a drive mechanism comprising a spring and an associated rod system directly to the rotary piston in order to achieve the required sealing of the combustion chamber.
- a drive mechanism comprising a spring and an associated rod system directly to the rotary piston in order to achieve the required sealing of the combustion chamber.
- the present invention based on the object to provide a rotary piston engine with the simplest possible structure and an arrangement of a control system and such a rotary engine and method for the clock-controlled operation of the rotary piston engine, which ensures high efficiency.
- the object is achieved by a rotary engine according to claim 1, an arrangement of a control system and a rotary engine according to claim 13and a method according to claim 17 and 19.
- the rotary piston engine consists of a motor housing with a housing interior with inlet and outlet, in which a cylindrical rotor is received in a predetermined direction of rotation rotatable about a rotation axis in a concentric to the axis of rotation cylindrical running surface with the lateral surface of the rotor and lateral webs includes at least one annular in cross-section cylinder, and in which at least one rotary piston is arranged on the lateral surface of the rotor.
- At least one counter-piston is at least partially accommodated in the motor housing and at least the at least one counter-piston in the motor housing or the at least one rotary piston is movably mounted on the rotor, wherein each counter-piston is assigned at least one inlet with inlet valve and at least one outlet.
- the at least one outlet is hereby arranged in the direction of rotation immediately before the opposing piston and the at least one inlet in the direction of rotation at the latter, wherein the at least one counter-piston is driven by the rotor via a mechanical control system.
- the at least one counter-piston is driven by the rotor via the mechanical control system in such a way that the counter-piston follows the contour of the rotary piston projecting from the rotor in contactlessly with a minimum distance, while the rotor is advantageously designed in one piece.
- at least two cylinders are provided, wherein in each case a cylinder is formed by the one-piece rotor and a part of the motor housing.
- the rotary piston and the protruding into the cylinder Part of the counter-piston are approximately identical in shape and the at least one rotary piston and the at least one counter-piston is approximately trapezoidal.
- the rotary piston and the part of the opposing piston protruding into the cylinder in certain rotary piston positions are approximately identical in form and arranged in the engine such that the remaining space between the rotary piston and the opposed piston is minimized immediately before passing through the rotary piston through the region of the opposing piston.
- the rotary engine has at least two cylinders, wherein the first cylinder is designed as a pressure cylinder for compressing air and the other cylinder as a working cylinder.
- the pressure cylinder leads compressed air to an accumulator device which has at least two pressure or ignition chambers.
- a fuel-air mixture is generated and caused to explode, wherein the pressure resulting from the explosion via a connecting channel between the pressure and ignition chambers and working cylinder is supplied to the same and generates a rotational movement by the pressure in the working cylinder becomes.
- an arrangement of a control system and a rotary engine wherein the preferably mechanical control system for controlling at least one guided in a Jacobkolbengephaseouseabrough counter-piston of a rotary piston engine is provided, via which the counter-piston is lifted out of the cylinder such that the deck - or side surfaces of the counter-piston protruding from the rotor contour of the rotary piston in its passage contactless with a distance less than 0.5mm, follow, wherein the rotary piston and projecting into the cylinder part of the counter-piston are approximately identical in shape and the at least one rotary piston and the at least an opposing piston are approximately trapezoidal in shape.
- a method for the clock-controlled operation of a rotary piston engine consisting of a motor housing with a housing interior.
- the essential aspect of this method is the fact that by rotating the rotary piston, starting from the counter-piston in the direction of rotation via the inlet into the first cylinder chamber, a fuel-air mixture is sucked in and at the same time the exhaust gas located in the second cylinder chamber from the Vortakt is discharged through the outlet and that during the passage of the rotary piston of the counter-piston is lifted synchronously to the rotary piston from the cylinder and returned to the passage back into the cylinder, in such a way that the radial movement of the counter-piston follows almost exactly the shape of the rotary piston, so that the passage of at least a rotary piston through the region of the at least one counter-piston takes place without contact with a minimum distance.
- Another object of the invention is an alternative method for the clock-controlled operation of a rotary piston engine consisting of at least one pressure cylinder and a working cylinder, each comprising at least one motor housing with a housing interior.
- the essential aspect of the alternative method is to suck in and compress air via the impression cylinder, supply the compressed air to an accumulator device and form fuel-air mixture in the accumulator device of the compressed air, and then supply the fuel in the accumulator device Air mixture is ignited, wherein the resulting by the explosion pressure is supplied to the working cylinder.
- the pressure storage device is provided separately from the pressure and working cylinder, which has at least two pressure or ignition chambers in which alternately the fuel-air mixture is made to explode.
- FIG. 1 shows a perspective view of a tubular, one-piece rotor 3 with preferably two on the outer surface 3.1 of the rotor 3 firmly screwed rotary pistons 4, 4 'and one with these rotary pistons 4, 4' cooperating opposed pistons 7, 7 'of a rotary piston engine 1 according to the invention.
- a rotary piston engine 1 for a better illustration of the construction and the interaction of said components of the rotary piston engine 1 according to the invention, these are shown without the motor housing 2, which surrounds them, preferably multi-part design.
- the rotor 3 is in this case arranged concentrically to the axis of rotation RA and rotatably mounted in the motor housing 2 in a predetermined rotational direction DR.
- Both the two rotary pistons 4, 4 'and the opposed pistons 7, 7' are offset by 180 ° from each other and arranged concentrically about the axis of rotation RA.
- the rotary pistons 4, 4 'or the opposing pistons 7, 7' are located symmetrically with respect to the axis of rotation RA. This reduces the imbalance of the rotor 3 and a low-vibration running of the rotary piston engine 1 is ensured.
- FIG. 2 and FIG. 2.1 show at least a portion of the motor housing 2 in a perspective overall or sectional view, said part of the motor housing 2 together with the rotor 3 rotatably mounted therein forms a preferably annular in cross-section cylinder 5.
- a plurality of identical parts of the motor housing 2 may be arranged in series.
- the part of the motor housing 2 comprises a circular in cross-section, stepped housing interior 2.1 with a cylindrical, concentric with the axis of rotation RA arranged tread 6 with lateral, circumferential ridges 5.3, which project radially inwardly over the tread 6, so that gradations arise.
- the webs 5.3 in turn have at least one side surface 5.3.1 and 5.3.2 an upper side, wherein the side surface 5.3.1 is approximately perpendicular to the tread 6 and the top 5.3.2 is formed circular and concentric with the axis of rotation RA.
- the part of the motor housing 2 has for receiving and guiding a Opposite piston 7, 7 'at least one opposed piston housing section 12 with a piston guide channel 12.1.
- the piston guide channel 12.1 is designed for the radial guidance of the counter-piston 7, 7 'in the counter-piston housing section 12.
- FIG. 3 shows a section through the rotary piston engine 1 according to the invention along a plane perpendicular to the axis of rotation RA cutting plane, namely an end view of the arranged in the motor housing 2 rotor 3 with rotary piston 4 and piston 7, which are accommodated in a piston guide channel 12.1 of the piston housing section 12.
- the in FIG. 1 shown rotor 3 is provided to form two annular in cross-section cylinder 5, that is, a series arrangement of two in FIG. 2 shown parts of the motor housing 2, which, as in Figure 3.1 shown connected to each other at the end face and connected to each other liquid-tight, preferably screwed, are, so that the respective running surfaces 6 come to lie concentrically to the axis of rotation RA.
- the rotor 3 is integrally formed and mounted concentrically in the two housing inner spaces 2.1 rotatable about the axis of rotation RA. This results in the housing interior 2.1 each have an annular in cross-section cylinder 5, which is limited in the radial direction by the lateral surface 3.1 of the rotor 3, the tread 6 and in the direction parallel to the rotation axis RA through the mutually facing side surfaces 5.3.1 of the webs 5.3.
- each rotary piston 4, 4 ' is provided per cylinder 5, which is moved on a path running concentrically about the axis of rotation RA.
- the rotary piston 4, 4 ' is running contactless with its free end complied with by the lateral surface 3.1, preferably with a minimum distance on the cylindrical running surface 6.
- the rotary piston 4, 4' closes by means of seals the cylinder 5 both to the tread 6 and to the rotor 3 and to the side surfaces 5.3.1 of the webs 5.3 liquid and / or airtight, ie the height of the rotary piston 4, 4 'corresponds approximately to the distance between the lateral surface 3.1 of the rotor 3 and the running surface 6 of the motor housing 2 and the depth of the rotary piston 4, 4 ' corresponds approximately to the distance of the opposite side surfaces 5.3.1 two webs 5.3 a cylinder. 5
- At least one inlet 2.2 and at least one outlet 2.3 are assigned to the opposing piston housing section 12 provided for receiving the opposing piston 7, 7 ', wherein the at least one outlet 2.3 in the direction of rotation DR immediately before the opposing piston 7, 7' and the at least one inlet 2.2 thereto are arranged.
- a Zündvoriquessö réelle 2.4 may be provided for receiving an ignition device in the motor housing 2, wherein this preferably comes to rest in the direction of rotation DR on the at least one counter-piston 7, 7 'following 120 ° -Sector.
- the at least one inlet 2.2 is provided within a 90 ° sector downstream of the counter-piston 7, 7 'in the direction of rotation DR, preferably directly following the counter-piston 7, 7'.
- the rotary pistons 4, 4 'and the part of the counter-piston 7, 7' protruding into the cylinder 5 are approximately identical in shape.
- the rotary piston 4, 4 ' consists of a base surface 4.1 adjoining the lateral surface 3.1 of the rotor 3, a contact surface 4.2 adjoining the running surface 6 with minimal distance and two side surfaces 4.3, 4.4 connecting the base surface 4.1 and the cover surface 4.2.
- the side surfaces 4.3, 4.4 and the base 4.1 include an acute angle.
- the counter-piston 7, 7 ' has due to its approximate uniformity of shape to the rotary piston 4, 4' a top surface 7.1 and two side surfaces 7.2, 7.3, wherein the enclosed by the side surfaces 7.2, 7.3 and the top surface 7.1 angles are each obtuse. This leads both in the case of the counter-piston 7, 7 'and the rotary piston 4, 4' to an approximately trapezoidal cross-section.
- the counter-piston 7, 7 ' Upon rotation of the rotor 3 in the direction of rotation DR, the counter-piston 7, 7 'is lifted out of the cylinder 5 in such a way that a non-contact passage of the rotary piston 4, 4' takes place in the fastening region of the counter-piston 7, 7 '.
- the counter-piston 7, 7 ' is lifted out of the cylinder 5 such that the cover 7.1 or
- At least the side surface 4.3, 4.4 of the rotary piston 4, 4 'approaching through the rotation can be slightly convexly curved.
- the at least one side surface 7.2, 7.3 of the counter-piston 7, 7 ', which approaches the rotary piston 4, 4' by its movement be slightly concave. After passing through the rotary piston 4, 4 ', the opposing piston 7, 7' with its cover surface 7.1 nestles with a minimum distance against the lateral surface 3.1 of the rotor 3.
- Figure 4.1 is generated by the rotating in the direction of rotation DR rotary piston 4 in the first cylinder chamber 5.a a suction effect, so that air is sucked through the inlet 2.2.
- the second cylinder space 5.b decreases at the same time, which results in the exhaustion of a burned exhaust gas located in the second cylinder space 5.b via the outlet 2.3.
- the inlet valve is closed at the inlet 2.2, via the fuel supply 9 fuel into the cylinder chamber 5.a fed and brought the fuel-air mixture in the first cylinder chamber 5.a by means of the ignition device to the explosion (see Figure 4.2 ).
- the counter-piston 7 is raised approximately synchronously with the rotary piston 4 guided past the cylinder 5 and returned to the cylinder 5 after the passage (see FIGS. 4.4 to 4.6 ).
- the radial movement of the counter-piston 7 in this case follows almost exactly the shape of the rotary piston 4. This ensures that even when returning the counter-piston 7 into the cylinder 5, the distance between the rotary piston 4 and counter-piston 7 is minimal, with the result that the proportion At burned flue gas in the first cylinder chamber 5.a is also minimal.
- the rotary engine 1 may have a plurality of cylinders 5 arranged in series, with one cylinder per cylinder 5 in each case FIG. 2 illustrated portion of the motor housing 2 is provided and the cylindrical running surfaces 6 are each formed concentrically to the axis of rotation RA.
- a plurality of rotary pistons 4, 4 ' are provided depending on the desired number of cylinders, wherein the rotary pistons 4, 4' are offset from each other along the axis of rotation RA and at least one respective rotary piston 4, 4 'is received in a cylinder 5.
- each rotary piston 4, 4 ' In order to allow a low-vibration running of the motor, the juxtaposed rotary pistons 4, 4 'alternately rotated by 180 ° to each other on the rotor 3 are arranged.
- the ignition of the individual cylinders 5 can take place simultaneously or else offset in time.
- the rotary piston engine 1 comprises at least two cylinders 5, wherein one of the at least two cylinders 5 is designed as a pressure cylinder 5.1 for compressing air and the at least one further cylinder 5 as a working cylinder 5.2.
- Such a rotary engine 1 has separate from the pressure and working cylinders 5.1, 5.2 at least one pressure storage device 10, which includes at least a first and second pressure or ignition chamber 11.1, 11.2.
- FIG. 5 shows a schematic block diagram for explaining the operation of a rotary piston engine 1 with pressure and working cylinders 5.1, 5.2 and associated pressure storage device 10.
- the outlet 2.3 of the pressure cylinder 5.1 is connected via a connecting line 18 to the pressure storage device 10, wherein the connecting line 18 via a check valve 19 on Outlet 2.3 of the printing cylinder 5.1 is connected.
- the pressure storage device 10 in turn consists of at least a first and second pressure or ignition chamber 11.1, 11.2, which are each coupled via an associated first and second valve 20.1, 20.2 and a common valve 21 to the connecting line 18.
- the first and second pressure or ignition chambers 11.1, 11.2 have a first and second device for fuel supply 23.1, 23.2 in the first and second pressure or ignition chamber 11.1, 11.2 and in each case a first and second ignition device 24.1, 24.2. On the output side, the first and second pressure or ignition chamber 11.1, 11.2 each with a further valve 22.1, 22.2 coupled to the working cylinder 5.2.
- FIG. 5 the operation of the rotary piston engine 1 with additional pressure storage device 10 explained in more detail.
- the impression cylinder 5.1 and the cylinder 5.2 shown side by side.
- the position of the rotary pistons 4, 4 'and counter-piston 7, 7' in the pressure cylinder 5.1 and in the working cylinder 5.2 are each offset by 180 ° to each other.
- the rotor 3 is set in rotary motion by a starter, not shown, known from the prior art, wherein in the pressure cylinder 5.1 through the inlet 2.2 air is sucked into the first cylinder chamber 5.a of the pressure cylinder 5.1.
- the volume in the second cylinder space 5.b of the pressure cylinder 5.1 is compressed and fed via the outlet 2.3 through the connecting line 18 to the pressure storage device 10.
- the common valve 21 opens and the pressure can reach the respectively downstream first and second pressure or ignition chambers 11.1, 11.2 when the first or second valve 20.1, 20.2 is opened. Subsequently, the first or second valve 20.1, 20.2 is closed again.
- the first and second valves 20.1, 20.2 are alternately opened, namely each valve 20.1, 20.2 once every two revolutions, so that every other revolution of the first and second valve 20.1, 20.2 associated first and second pressure or Ignition chamber 11.1, 11.2 is pressurized.
- the rotary piston 4 is in the working cylinder 5.2 seen in the direction of rotation DR after the counter-piston 7, said counter-piston 7 is closed, i. with its top surface 7.1 is minimally spaced from the lateral surface 3.1 of the rotor 3.
- the resulting in the pressure or ignition chamber 11.1, 11.2 by the explosion pressure is supplied via the connecting channel 25 to the working cylinder 5.2, via its inlet 2.2.
- a force in the direction of rotation DR is exerted on the rotary piston 4 in the working cylinder 5.2.
- the starter can be switched off. Due to the one-piece design of the rotor 3 also learns the Rotary piston 4 'in the pressure cylinder 5.1 a force in the direction of rotation DR and also generates pressure, which is via the connecting line 18 and an open first and second valve 20.1, 20.2, that of the first or second pressure or ignition chamber not used in the previous cycle 11.1, 11.2 is assigned, in ebendiese pressure or ignition chamber 11.1, 11.2 can spread.
- the processes described above are periodically recurring, wherein the period of the processes of the rotational speed of the rotor 3 is dependent.
- the fuel-air mixture is alternately brought into explosion in one of the first and second pressure or ignition chambers 11.1, 11.2, so that in one of the two pressure or ignition chamber 11.1, 11.2 only every second revolution of the rotor. 3 an explosion occurred.
- the fuel-air mixture can interact with each other for a longer period of time, resulting in better mixing and thus higher efficiency or efficiency the combustion of the rotary piston engine 1 pulls.
- such a structured rotary piston engine 1 with gasoline, diesel or gas is operable.
- FIGS. 6 and 7 show in each case the rotor 3 with attached to the lateral surface 3.1 rotary pistons 4, 4 'and sealing rings 17, in a three-dimensional sectional view and a perspective overall view, with the front sides of the rotor 3 preferably circular cover 8 are flanged with paddle wheel-like recesses 8.1.
- a shaft 27 is attached, along the axis of rotation RA of the rotor. 3 protrudes, wherein the axis of rotation RA coincides with the wavelength axis.
- the shafts 27 serve, on the one hand, for the rotatable mounting of the rotor 3 in the motor housing 2 and, on the other hand, for the dissipation of the kinetic energy transmitted to the rotor 3 by the combustion, for example by means of toothed wheels, belts or chains.
- movable assemblies such as inlet valve 13, opposed piston 7, 7 ', etc. driven.
- lids 8 and a tube 26 arranged inside the rotor serves to create a volume-reduced cooling space adjacent to the heat produced by the combustion, namely the first rotor chamber 28 in order to flow through it with a liquid or viscous medium and thus to cool the rotary engine 1. For this reason, the connection of the cover 8 with the rotor 3 and the connection of the tube 26 with just these lids 8 is made liquid-tight.
- the second rotor chamber 29 is sealed off from the first rotor chamber 28 and does not come into contact with the cooling medium.
- a cooling medium located in the motor housing 2 in front of the cover 8 is supplied with the bores 8.2 on rotation of the rotor 3 via the blade wheel-like recesses 8.1 and introduced into the first rotor chamber 28 through these bores 8.2.
- the second cover 8 operates in opposite action, ie creates a suction effect on the located in the first rotor chamber 28 cooling medium and conveys the cooling medium through the holes 8.2 and blade-like recesses 8.1 out of the first rotor chamber 28 out.
- the holes 8.2 are inserted obliquely into the cover 8, so that the introduction of the cooling medium is simplified by the blade-like recesses 8.1 through the holes 8.2 in the first rotor chamber 28.
- the mounted on the lateral surface 3.1 of the rotor 3 rotary pistons 4, 4 ' also have cooling channels, said cooling channels have a connection to the first rotor chamber 28, for example via provided with an internal bore screws, for fastening the rotary piston 4, 4' on the rotor 3 are provided.
- the cooling medium flowing through the first rotor chamber 28 can thus also flow through the rotary pistons 4, 4 'and ensure cooling of the latter, the replacement of the cooling medium being actively supported by the centrifugal force.
- the cooling medium emerging through the suction effect on the opposite cover 8 can flow back to the first cover 8 via return channels integrated in the motor housing 2.
- the motor housing 2 which is acted upon by the combustion process with heat, effectively cooled.
- cooling circuit In order to avoid overheating of the cooling medium, a well-known from the prior art cooling device is introduced into the cooling circuit, which extracts heat, for example, by a greatly enlarged effective cooling surface of the cooling medium. In addition, this heat can be used for other purposes, such as for heating the fuel or for heating the interior of motor vehicles.
- each counter-piston 7, 7 'of the rotary piston engine 1 a control unit 40, 40' assigned, which are driven by rotating shafts 41, with these Waves 41 each at least one cam 42 and at least one, preferably two cam shells 43 are mechanically connected.
- the shaft 41 is driven by a mechanical operative connection from the rotor 3 and thus sets both cam 42 and cam shells 43 in rotation.
- each cam 42 shown in the installed state and cam shells 43 are in FIG. 8 respectively.
- the cam 42 has a substantially circular outer contour 42.1 with a bulge 42.2, wherein the cam 42 is scanned continuously on its outer surface by a bolt 44, that is, the bolt 44 follows the shape of the cam 42.
- the bulge 42.2 here is asymmetrical and has a flat or a steep flank.
- cam shell 43 has a front side milling on, this milled direction predetermines a circumferential path for a bolt 45 and this way, except for a radially outwardly projecting bulge region 50, is approximately circular.
- the width of the milled recess of the cam shell 43 is matched to the diameter of the bolt 45, so that it is made to fit in the milled recess.
- the bolt 45 is guided between two uniform camshells 43, wherein the front-side milled recesses of the cam shells 43 and the cam shells 43 are mutually congruent and spaced from each other.
- FIG. 10.1 represents the initial situation in which the first and second spring unit 46, 47 are relaxed.
- Figure 10.2 is the bolt 45 in the direction of rotation before passing through the bulge portion 50 of the cam shells 43.
- the bolt 44 is raised by the flat edge of the bulge 42.2 of the cam 42 before this pass, so that the second Spring unit 47 is biased.
- the force exerted by the second spring unit 47 on the lever mechanism 48 force still leads to no lifting out of the opposed piston 7, since the outer contour 43.2 of the cam shell 43 effectively prevents this.
- the second spring unit 47 is further biased ( FIG. 10.3 ).
- the bolt 44 After the entry of the bolt 45 into the bulge region 50, the bolt 44 passes through the sharply falling flank of the bulge 42. 2 of the cam 42 (FIG. Figure 10.5 ). As a result, the second spring unit 47 relaxes. At the end of the bulge region 50, the bolt 45 is guided out of the bulge region 50 by the spring unit 46 which is preloaded during lifting, and thus the opposing piston 7, 7 'is returned to the cylinder 5 via the lever mechanism 48 (FIG. Figure 10.6 ).
- the interaction of the cam 42 with the cam shell 43 ensures a gentle material overcoming areas of greater slope, especially when entering the bulge region 50, in which the counter-piston 7, 7 'must be quickly lifted from the cylinder 5 to the shape of the rotary piston. 4 4 'to follow with minimal distance.
- the lever mechanism 48 has a gear ratio generated by different lever arm lengths, which converts a small stroke movement caused by the cam shell 43 into an enlarged stroke movement on the opposing piston 7, 7 '.
- Figures 12 and 13 show the rotary engine 1 according to the invention in a front and rear view. In FIG. 12 the valve control is omitted for better illustration.
- FIG. 12 shows the drive of the control unit 40, 40 'for opposed pistons 7, 7' via a bevel gear mechanism.
- a fixed to the shaft 27 first bevel gear 60 drives second bevel gears 61 which are articulated at first ends of connecting shafts 64, wherein longitudinal axes of these connecting shafts 64 are perpendicular to the axis of rotation RA.
- At the second ends of the connecting shafts 64 are mounted third bevel gears 62 which mesh with fourth bevel gears 63 which are connected to and drive the shafts 41.
- the shafts 41 are set in a rotational movement by the rotation of the rotor 3, wherein the axes of the shafts 41 are approximately parallel to the axis of rotation RA and spaced therefrom.
- the direction of rotation of the shafts 41 is the direction of rotation DR of the shaft 27 opposite.
- the gear ratio can be suitably selected, in particular the preferred gear ratio 1: 1, ie one revolution of the rotor 3 leads to a rotation of the shafts 41st
- FIG. 13 shows the control of the intake valves 13 by a toothed belt drive toothed belt.
- the drive takes place on the opposite side of the bevel gear mechanism of the rotary piston engine 1.
- a gear 51 is fixed in the two other gears 52 engage.
- pulleys are mounted frontally, which drive a toothed belt 54.
- this toothed belt 54 further pulleys 53 are driven, which drive the intake valves 13 via shafts 55 and cams 56.
- the gear ratio between the rotational speed of the rotor 3 and the rotational speed of the shaft 55 must be suitably selected.
- the speed ratio between the shaft 27 and shaft 55 is also 1: 1.
- FIGS. 14.1, 14.2 and FIGS. 15.1, 15.2 each show a rotary engine 1 according to the invention in a front and rear view in the assembled state.
- Both rotary piston engines 1 have, for example, two cylinders 5, wherein the two cylinders 5 of the rotary piston engine 1 in the FIGS. 14.1, 14.2 a combustion process takes place.
- the rotary engine 1 in FIGS. 15.1, 15.2 has in contrast to a pressure cylinder 5.1 and a working cylinder 5.2 and an accumulator device 10 and is therefore also suitable for the combustion of diesel fuel.
- the rotary engine 1 for example, to drive machines, motor vehicles o.ä. serve.
- the shaft 27 is coupled via a mechanical operative connection with the drive mechanism of a machine or a motor vehicle, wherein the mechanical operative connection can be made directly or indirectly via a transmission with fixed or variable ratio.
- the motor can be made mostly of aluminum, in particular all housing parts, the rotor 3 and the lid. 8
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reciprocating Pumps (AREA)
- Hydraulic Motors (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Valve Device For Special Equipments (AREA)
Description
Die Erfindung betrifft einen Drehkolbenmotor, eine Anordnung aus einem Steuerungssystem und einem Drehkolbenmotor und ein Verfahren zum taktgesteuerten Betreiben eines Drehkolbenmotors.The invention relates to a rotary engine, an arrangement of a control system and a rotary piston engine and a method for the clock-controlled operation of a rotary piston engine.
Aus dem Stand der Technik sind Motoren mit rotierenden Kolben in unterschiedlichsten Bauformen bekannt. Drehkolbenmotoren besitzen im Gegensatz zu Rotationskolbenmotoren die Eigenschaft, dass sich alle rotierenden Bauteile des Motors in Kreisbahnen um einen einzigen Punkt bewegen.From the prior art motors with rotating pistons in a variety of designs are known. In contrast to rotary-piston engines, rotary-piston engines have the property that all rotating components of the engine move in circular paths around a single point.
Im Gegensatz zu Verbrennungsmotoren mit Hubzylindern, die eine durch Explosion eines Treibstoff-Luft-Gemischs entstehende Hubbewegung mittels einer Kurbelwelle in eine Drehbewegung umsetzen, wird bei Drehkolbenmotoren direkt eine Drehbewegung erzeugt. Aus diesem Grund zeichnen sich diese Motoren durch ein besseres Hubraum-Leistungs-Verhältnis im Vergleich zu Hubkolbenmotoren aus.In contrast to combustion engines with lifting cylinders, which convert a resulting from explosion of a fuel-air mixture lifting movement by means of a crankshaft in a rotary motion, rotary motion is generated directly in rotary engines. For this reason, these engines are characterized by a better displacement-power ratio compared to reciprocating engines.
Jedoch treten insbesondere bei Rotationskolbenmotoren verschiedenartige Probleme auf, die bisher eine größere Marktdurchdringung derselben verhindert haben. Dies sind insbesondere Abdichtungsprobleme im Inneren des Brennraums sowie hohe Fertigungskosten aufgrund eines komplizierten mechanischen Motoraufbaus.However, various problems arise especially in rotary engines, which have previously prevented greater market penetration of the same. These are in particular sealing problems inside the combustion chamber and high manufacturing costs due to a complicated mechanical engine structure.
Aus der
Ausgehend vom dargelegten Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zu Grunde, einen Drehkolbenmotor mit möglichst einfachem Aufbau und eine Anordnung aus einem Steuersystem und einem derartigen Drehkolbenmotor sowie Verfahren zum taktgesteuerten Betrieb des Drehkolbenmotors anzugeben, welches einen hohen Wirkungsgrad gewährleistet.Based on the stated prior art, the present invention based on the object to provide a rotary piston engine with the simplest possible structure and an arrangement of a control system and such a rotary engine and method for the clock-controlled operation of the rotary piston engine, which ensures high efficiency.
Die Aufgabe wird erfindungsgemäß durch einen Drehkolbenmotor gemäß Patentanspruch 1, einer Anordnung aus einem Steuerungssystem und einem Drehkolbenmotor gemäß Patentanspruch 13und einem Verfahren gemäß Patentanspruch 17 und 19 gelöst.The object is achieved by a rotary engine according to
Der wesentliche Aspekt des erfindungsgemäßen Drehkolbens ist darin zu sehen, dass der Drehkolbenmotor aus einem Motorgehäuse mit einem Gehäuseinnenraum mit Einlass und Auslass besteht, in dem in vorgegebener Drehrichtung drehbar um eine Rotationssachse ein zylinderförmiger Rotor in einer konzentrisch zur Rotationssachse verlaufenden zylinderförmigen Lauffläche aufgenommen ist, die mit der Mantelfläche des Rotors und seitlichen Stegen zumindest einen im Querschnitt kreisringförmigen Zylinder einschließt, und bei dem auf der Mantelfläche des Rotors zumindest ein Drehkolben angeordnet ist. Ferner ist im Motorgehäuse wenigstens ein Gegenkolben zumindest teilweise aufgenommen und wenigstens der wenigstens eine Gegenkolben im Motorgehäuse oder der zumindest eine Drehkolben am Rotor beweglich gelagert, wobei jedem Gegenkolben zumindest ein Einlass mit Einlassventil und zumindest ein Auslass zugeordnet sind. Der zumindest eine Auslass ist hierbei in Drehrichtung unmittelbar vor dem Gegenkolben und der zumindest eine Einlass in Drehrichtung an diesen anschließend angeordnet, wobei der wenigstens eine Gegenkolben über ein mechanisches Steuerungssystem vom Rotor angetrieben wird. Besonders vorteilhaft ist der wenigstens eine Gegenkolben über das mechanische Steuerungssystem vom Rotor derart angetrieben ist, dass der Gegenkolben der vom Rotor abstehenden Kontur des Drehkolbens bei dessen Durchlauf berührungslos mit minimalem Abstand folgt, wobei der Rotor vorteilhaft einstückig ausgebildet ist. Ferner sind zumindest zwei Zylinder vorgesehen, wobei jeweils ein Zylinder durch den einstückigen Rotor und einem Teil des Motorgehäuses gebildet ist. Der Drehkolben und der in den Zylinder hineinragende Teil des Gegenkolbens sind näherungsweise formgleich und der zumindest eine Drehkolben und der zumindest eine Gegenkolben näherungsweise trapezförmig ausgebildet.The essential aspect of the rotary piston according to the invention is to be seen in that the rotary piston engine consists of a motor housing with a housing interior with inlet and outlet, in which a cylindrical rotor is received in a predetermined direction of rotation rotatable about a rotation axis in a concentric to the axis of rotation cylindrical running surface with the lateral surface of the rotor and lateral webs includes at least one annular in cross-section cylinder, and in which at least one rotary piston is arranged on the lateral surface of the rotor. Furthermore, at least one counter-piston is at least partially accommodated in the motor housing and at least the at least one counter-piston in the motor housing or the at least one rotary piston is movably mounted on the rotor, wherein each counter-piston is assigned at least one inlet with inlet valve and at least one outlet. The at least one outlet is hereby arranged in the direction of rotation immediately before the opposing piston and the at least one inlet in the direction of rotation at the latter, wherein the at least one counter-piston is driven by the rotor via a mechanical control system. It is particularly advantageous that the at least one counter-piston is driven by the rotor via the mechanical control system in such a way that the counter-piston follows the contour of the rotary piston projecting from the rotor in contactlessly with a minimum distance, while the rotor is advantageously designed in one piece. Further, at least two cylinders are provided, wherein in each case a cylinder is formed by the one-piece rotor and a part of the motor housing. The rotary piston and the protruding into the cylinder Part of the counter-piston are approximately identical in shape and the at least one rotary piston and the at least one counter-piston is approximately trapezoidal.
In einer vorteilhaften Ausführungsform sind der Drehkolben und der in bestimmten Drehkolbenstellungen in den Zylinder hineinragende Teil des Gegenkolbens näherungsweise formgleich und derart im Motor angeordnet, dass der verbleibende Raum zwischen Drehkolben und Gegenkolben unmittelbar vor dem Durchlaufen des Drehkolbens durch den Bereich des Gegenkolbens minimiert wird.In an advantageous embodiment, the rotary piston and the part of the opposing piston protruding into the cylinder in certain rotary piston positions are approximately identical in form and arranged in the engine such that the remaining space between the rotary piston and the opposed piston is minimized immediately before passing through the rotary piston through the region of the opposing piston.
In einer besonders bevorzugten Ausführungsform weist der Drehkolbenmotor zumindest zwei Zylinder auf, wobei der erste Zylinder als Druckzylinder zur Komprimierung von Luft und der weitere Zylinder als Arbeitszylinder ausgebildet ist. Der Druckzylinder führt einer Druckspeichervorrichtung, die zumindest zwei Druck- bzw. Zündkammern aufweist, komprimierte Luft zu. In den Druck- bzw. Zündkammern wird ein Treibstoff-Luft-Gemisch erzeugt und zur Explosion gebracht, wobei der durch die Explosion entstehende Druck über einen Verbindungskanal zwischen Druck- bzw. Zündkammern und Arbeitszylinder demselben zugeführt wird und durch den Druck im Arbeitszylinder eine Drehbewegung erzeugt wird.In a particularly preferred embodiment, the rotary engine has at least two cylinders, wherein the first cylinder is designed as a pressure cylinder for compressing air and the other cylinder as a working cylinder. The pressure cylinder leads compressed air to an accumulator device which has at least two pressure or ignition chambers. In the pressure and ignition chambers, a fuel-air mixture is generated and caused to explode, wherein the pressure resulting from the explosion via a connecting channel between the pressure and ignition chambers and working cylinder is supplied to the same and generates a rotational movement by the pressure in the working cylinder becomes.
Gemäß einen weiteren Aspekt der Erfindung ist eine Anordnung aus einem Steuerungssystem und einem Drehkolbenmotor vorgesehen, wobei das vorzugsweise mechanisches Steuerungssystem zur Ansteuerung zumindest eines in einem Gegenkolbengehäuseabschnitt geführten Gegenkolbens eines Drehkolbenmotors vorgesehen ist, über das der Gegenkolben derart aus dem Zylinder gehoben wird, dass die Deck- bzw. Seitenflächen des Gegenkolbens der vom Rotor abstehenden Kontur des Drehkolbens bei dessen Durchlauf berührungslos mit einem Abstand kleiner 0,5mm, folgen, wobei der Drehkolben und der in den Zylinder hineinragende Teil des Gegenkolbens näherungsweise formgleich sind und der zumindest eine Drehkolben und der zumindest eine Gegenkolben näherungsweise trapezförmig ausgebildet sind.According to a further aspect of the invention, an arrangement of a control system and a rotary engine is provided, wherein the preferably mechanical control system for controlling at least one guided in a Gegenkolbengehäuseabschnitt counter-piston of a rotary piston engine is provided, via which the counter-piston is lifted out of the cylinder such that the deck - or side surfaces of the counter-piston protruding from the rotor contour of the rotary piston in its passage contactless with a distance less than 0.5mm, follow, wherein the rotary piston and projecting into the cylinder part of the counter-piston are approximately identical in shape and the at least one rotary piston and the at least an opposing piston are approximately trapezoidal in shape.
Auch bildet den Gegenstand der Erfindung ein Verfahren zum taktgesteuerten Betreiben eines Drehkolbenmotors bestehend aus einem Motorgehäuse mit einem Gehäuseinnenraum. Der wesentliche Aspekt dieses Verfahrens ist darin zu sehen, dass durch Drehen des Drehkolbens ausgehend vom Gegenkolben in Drehrichtung über den Einlass in den ersten Zylinderraum ein Treibstoff-Luft-Gemisch angesaugt wird und gleichzeitig das im zweiten Zylinderraum vom Vortakt befindliche Abgas über den Auslass ausgestoßen wird und dass beim Durchlauf des Drehkolbens der Gegenkolben synchron zum Drehkolben aus dem Zylinder gehoben und nach dem Durchlauf wieder in den Zylinder zurückgeführt wird, und zwar derart, dass die radiale Bewegung des Gegenkolbens nahezu exakt der Form des Drehkolbens folgt, so dass der Durchlauf des zumindest einen Drehkolbens durch den Bereich des zumindest einen Gegenkolbens berührungslos mit minimalen Abstand erfolgt.Also forms the subject of the invention, a method for the clock-controlled operation of a rotary piston engine consisting of a motor housing with a housing interior. The essential aspect of this method is the fact that by rotating the rotary piston, starting from the counter-piston in the direction of rotation via the inlet into the first cylinder chamber, a fuel-air mixture is sucked in and at the same time the exhaust gas located in the second cylinder chamber from the Vortakt is discharged through the outlet and that during the passage of the rotary piston of the counter-piston is lifted synchronously to the rotary piston from the cylinder and returned to the passage back into the cylinder, in such a way that the radial movement of the counter-piston follows almost exactly the shape of the rotary piston, so that the passage of at least a rotary piston through the region of the at least one counter-piston takes place without contact with a minimum distance.
Weiterer Gegenstand der Erfindung ist ein alternatives Verfahren zum taktgesteuerten Betreiben eines Drehkolbenmotors bestehend aus zumindest einen Druckzylinder und einem Arbeitszylinder, die jeweils zumindest einem Motorgehäuse mit einem Gehäuseinnenraum umfassen. Der wesentliche Aspekt des alternativen Verfahrens ist darin zusehen, dass über den Druckzylinder Luft angesaugt und komprimiert wird, die komprimierte Luft einer Druckspeichervorrichtung und zur Bildung eines Treibstoff-Luft-Gemisches in der Druckspeichervorrichtung der komprimierten Luft Treibstoff zugeführt wird und anschließend in der Druckspeichervorrichtung das Treibstoff-Luft-Gemisch gezündet wird, wobei der durch die Explosion entstehende Druck dem Arbeitszylinder zugeführt wird. Hierbei ist die Druckspeichervorrichtung getrennt von Druck- und Arbeitszylinder vorgesehen, die zumindest zwei Druck- bzw. Zündkammern aufweist, in denen abwechselnd das Treibstoff-Luft-Gemisch zur Explosion gebracht wird.Another object of the invention is an alternative method for the clock-controlled operation of a rotary piston engine consisting of at least one pressure cylinder and a working cylinder, each comprising at least one motor housing with a housing interior. The essential aspect of the alternative method is to suck in and compress air via the impression cylinder, supply the compressed air to an accumulator device and form fuel-air mixture in the accumulator device of the compressed air, and then supply the fuel in the accumulator device Air mixture is ignited, wherein the resulting by the explosion pressure is supplied to the working cylinder. Here, the pressure storage device is provided separately from the pressure and working cylinder, which has at least two pressure or ignition chambers in which alternately the fuel-air mixture is made to explode.
Weitere vorteilhafte Ausbildungen der Erfindungsgegenstände sind den abhängigen Ansprüchen zu entnehmen. Zudem ergeben sich Weiterbildungen, Vorteile und Anwendungsmöglichkeiten der Erfindung auch aus der nachfolgenden Beschreibung von Ausführungsbeispielen und aus den Figuren. Dabei sind alle beschriebenen und/oder bildlich dargestellten Merkmale für sich oder in beliebiger Kombination grundsätzlich Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Ansprüchen oder deren Rückbeziehung. Auch wird der Inhalt der Ansprüche zu einem Bestandteil der Beschreibung gemacht.Further advantageous embodiments of the subject invention can be found in the dependent claims. In addition, developments, advantages and possible applications of the invention also result from the following description of embodiments and from the figures. All described and / or illustrated features are alone or in any combination in principle subject of the invention, regardless of their summary in the claims or their dependency. Also, the content of the claims is made an integral part of the description.
Nachfolgend wird die Erfindung anhand von mehreren Ausführungsbeispielen und mehreren Figuren näher beschrieben. Es zeigen:
- Fig. 1
- beispielhaft eine perspektivische Ansicht eines einstückigen Rotors des Drehkolbenmotors mit jeweils zwei gegenüberliegenden Drehkolben und Gegenkolben;
- Fig. 2
- beispielhaft eine perspektivische Ansicht eines Motorgehäuseteils;
- Fig. 2.1
- beispielhaft eine perspektivische Schnittdarstellung eines Motorgehäuseteils gemäß
Fig. 2 ; - Fig. 3
- beispielhaft eine stirnseitige Draufsicht auf den im Motorgehäuseteil gemäß
Fig. 2 aufgenommenen, einstückigen Rotor mit Drehkolben und Gegenkolben; - Fig. 3.1
- beispielhaft eine perspektivische Ansicht von zwei aneinander gefügten Motorgehäuseteilen mit eingeschobenem Rotor
- Fig. 4.1 bis 4.6
- beispielhaft sechs stirnseitige Draufsichten gemäß
jeweils bei unterschiedlichen Drehpositionen des Rotors im Motorgehäuse;Figur 2 - Fig. 5
- beispielhaft eine schematische Blockzeichnung des Drehkolbenmotors mit Druck- und Arbeitszylinder und einer Druckspeichervorrichtung;
- Fig. 6
- beispielhaft eine dreidimensionale Schnittdarstellung des Rotor mit an dessen Mantelfläche befestigten Drehkolben und Dichtringen;
- Fig. 7
- beispielhaft eine dreidimensionalen Ansicht des Rotors mit an der Mantelfläche befestigten Drehkolben und Dichtringen gemäß
Fig. 6 ; - Fig. 8
- beispielhaft eine dreidimensionale Darstellung einer Nocke;
- Fig. 9
- beispielhaft eine dreidimensionale Darstellung einer Nockenschale;
- Fig. 10.1 bis 10.6
- beispielhaft sechs Teildarstellungen unterschiedlicher Drehzustände der zusammenwirkenden Nocke und Nockenschale;
- Fig. 11
- beispielhaft eine dreidimensionale Darstellung einer Steuerungseinheit zur Ansteuerung des Gegenkolbens;
- Fig. 12
- beispielhaft eine perspektivische Darstellung eines Kegelzahnradantriebsmechanismus zum Antrieb des Gegenkolbens über die Steuerungseinheit und
- Fig. 13
- beispielhaft eine perspektivische Darstellung der Ansteuerung der Einlassventile durch einen Zahnrad-Zahnriemen-Antrieb.
- Fig. 14.1, 14.2
- beispielhaft eine Vorder- und Rückansicht eines erfindungsgemäßen Drehkolbenmotors in einer perspektivischen Gesamtdarstellung
- Fig. 15.1, 15.2
- beispielhaft eine Vorder- und Rückansicht eines erfindungsgemäßen Drehkolbenmotors mit Druckspeichereinrichtung in einer perspektivischen Gesamtdarstellung
- Fig. 1
- For example, a perspective view of a one-piece rotor of the rotary piston engine with two opposing rotary pistons and opposed pistons;
- Fig. 2
- an example of a perspective view of a motor housing part;
- Fig. 2.1
- by way of example a perspective sectional view of a motor housing part according to
Fig. 2 ; - Fig. 3
- by way of example a frontal plan view of the in the motor housing part according to
Fig. 2 accommodated, one-piece rotor with rotary piston and counter-piston; - Fig. 3.1
- an example of a perspective view of two mutually joined motor housing parts with inserted rotor
- Fig. 4.1 to 4.6
- exemplified six frontal plan views according to
FIG. 2 each at different rotational positions of the rotor in the motor housing; - Fig. 5
- by way of example a schematic block diagram of the rotary piston engine with pressure and working cylinder and a pressure storage device;
- Fig. 6
- Example, a three-dimensional sectional view of the rotor with attached to the lateral surface of the rotary piston and sealing rings;
- Fig. 7
- by way of example a three-dimensional view of the rotor with attached to the lateral surface of the rotary piston and sealing rings according to
Fig. 6 ; - Fig. 8
- an example of a three-dimensional representation of a cam;
- Fig. 9
- exemplified a three-dimensional representation of a cam shell;
- Fig. 10.1 to 10.6
- for example, six partial representations of different rotational states of the cooperating cam and cam shell;
- Fig. 11
- for example, a three-dimensional representation of a control unit for controlling the counter-piston;
- Fig. 12
- by way of example a perspective view of a bevel gear drive mechanism for driving the counter-piston via the control unit and
- Fig. 13
- exemplified a perspective view of the control of the intake valves by a gear-toothed belt drive.
- Fig. 14.1, 14.2
- by way of example a front and rear view of a rotary piston engine according to the invention in a perspective overall view
- Fig. 15.1, 15.2
- by way of example a front and rear view of a rotary piston engine according to the invention with pressure storage device in a perspective overall view
Sowohl die beiden Drehkolben 4, 4' als auch die Gegenkolben 7, 7' sind um 180° zueinander versetzt sowie konzentrisch um die Rotationsachse RA angeordnet. Durch diesen Versatz liegen sich somit jeweils die Drehkolben 4, 4' bzw. die Gegenkolben 7, 7' symmetrisch zur Rotationsachse RA gegenüber. Dadurch reduziert sich die Unwucht des Rotors 3 und ein vibrationsarmer Lauf des Drehkolbenmotors 1 ist sichergestellt.Both the two
Der Teil des Motorgehäuses 2 umfasst einen im Querschnitt kreisförmigen, gestuft ausgebildeten Gehäuseinnenraum 2.1 mit einer zylinderförmigen, konzentrisch zur Rotationsachse RA angeordneten Lauffläche 6 mit seitlichen, umlaufenden Stegen 5.3, die über die Lauffläche 6 radial nach innen abstehen, so dass Abstufungen entstehen.The part of the
Die Stege 5.3 besitzen ihrerseits zumindest eine Seitenfläche 5.3.1 und eine Oberseite 5.3.2, wobei die Seitenfläche 5.3.1 näherungsweise senkrecht zur Lauffläche 6 verläuft und die Oberseite 5.3.2 kreisringförmig und konzentrisch zur Rotationsachse RA ausgebildet ist. Der Teil des Motorgehäuses 2 weist zur Aufnahme und Führung eines Gegenkolbens 7, 7' zumindest ein Gegenkolbengehäuseabschnitt 12 mit einem Kolbenführungskanal 12.1 auf. Hierbei ist Kolbenführungskanal 12.1 zur radialen Führung des Gegenkolbens 7, 7' im Gegenkolbengehäuseabschnitt 12 ausgebildet.The webs 5.3 in turn have at least one side surface 5.3.1 and 5.3.2 an upper side, wherein the side surface 5.3.1 is approximately perpendicular to the
Der Rotor 3 ist einstückig ausgebildet und konzentrisch in den beiden Gehäuseinnenräumen 2.1 drehbar um die Rotationsachse RA gelagert. Dadurch entsteht in den Gehäuseinnenräumen 2.1 jeweils ein im Querschnitt kreisringförmiger Zylinder 5, der in radialer Richtung durch die Mantelfläche 3.1 des Rotors 3, die Lauffläche 6 und in Richtung parallel zur Rotationsachse RA durch die zueinander gerichteten Seitenflächen 5.3.1 der Stege 5.3 begrenzt wird.The
In einer bevorzugten Ausführungsform ist jeweils ein Drehkolben 4, 4' pro Zylinder 5 vorgesehen, der auf einer konzentrisch um die Rotationsachse RA verlaufenden Bahn bewegt wird. Hierbei läuft der Drehkolben 4, 4' mit seinem von der Mantelfläche 3.1 beanstandetem freien Ende kontaktlos, und zwar vorzugsweise mit minimalem Abstand an der zylinderförmigen Lauffläche 6. Der Drehkolben 4, 4' schließt mittels Dichtungen den Zylinder 5 sowohl zur Lauffläche 6 und zum Rotor 3 als auch zu den Seitenflächen 5.3.1 der Stege 5.3 flüssigkeits- und/oder luftdicht ab, d.h. die Höhe des Drehkolbens 4, 4' entspricht näherungsweise dem Abstand zwischen der Mantelfläche 3.1 des Rotors 3 und der Lauffläche 6 des Motorgehäuses 2 und die Tiefe des Drehkolbens 4, 4' entspricht näherungsweise dem Abstand der gegenüberliegenden Seitenflächen 5.3.1 zweier Stege 5.3 eines Zylinders 5.In a preferred embodiment, in each case one
Dem zur Aufnahme des Gegenkolbens 7, 7' vorgesehenen Gegenkolbengehäuseabschnitt 12 sind zumindest ein Einlass 2.2 und zumindest ein Auslass 2.3 zugeordnet, wobei der zumindest eine Auslass 2.3 in Drehrichtung DR unmittelbar vor dem Gegenkolben 7, 7' und der zumindest eine Einlass 2.2 an diesen anschließend angeordnet sind. Weiterhin kann im Motorgehäuse 2 eine Zündvorrichtungsöffnung 2.4 zur Aufnahme einer Zündvorrichtung vorgesehen sein, wobei diese vorzugsweise im auf den zumindest einen Gegenkolben 7, 7' folgenden 120°-Sektor in Drehrichtung DR zu liegen kommt. In einer bevorzugten Ausführungsform ist der zumindest eine Einlass 2.2 innerhalb eines 90°-Sektors nach dem Gegenkolben 7, 7' in Drehrichtung DR vorgesehen, vorzugsweise unmittelbar auf den Gegenkolben 7, 7' folgend.At least one inlet 2.2 and at least one outlet 2.3 are assigned to the opposing
In einer bevorzugten Ausführungsform sind der Drehkolben 4, 4' und der in den Zylinder 5 hineinragende Teil des Gegenkolbens 7, 7' näherungsweise formgleich. Der Drehkolben 4, 4' besteht aus einer an der Mantelfläche 3.1 des Rotors 3 anschließenden Grundfläche 4.1, einer berührungslos mit minimalem Abstand an die Lauffläche 6 anschließenden Deckfläche 4.2 sowie zwei, die Grundfläche 4.1 bzw. die Deckfläche 4.2 verbindenden Seitenflächen 4.3, 4.4. Vorzugsweise schließen die Seitenflächen 4.3, 4.4 und die Grundfläche 4.1 einen spitzen Winkel ein. Der Gegenkolben 7, 7' besitzt aufgrund seiner näherungsweisen Formgleichheit zum Drehkolben 4, 4' eine Deckfläche 7.1 und zwei Seitenflächen 7.2, 7.3, wobei die durch die Seitenflächen 7.2, 7.3 und die Deckfläche 7.1 eingeschlossenen Winkel jeweils stumpfwinklig sind. Dies führt sowohl im Falle des Gegenkolbens 7, 7' als auch beim Drehkolben 4, 4' zu einem annähernd trapezförmigen Querschnitt.In a preferred embodiment, the
Bei Drehung des Rotors 3 in Drehrichtung DR wird der Gegenkolben 7, 7' derart aus dem Zylinder 5 gehoben, dass ein berührungsloser Durchlauf des Drehkolbens 4, 4' im Befestigungsbereich des Gegenkolbens 7, 7' erfolgt. Vorzugsweise wird der Gegenkolben 7, 7' derart aus dem Zylinder 5 gehoben, dass die Deck- 7.1 bzw.Upon rotation of the
Seitenflächen 7.2, 7.3 des Gegenkolbens 7, 7' der vom Rotor 3 abstehenden Kontur des Drehkolbens 4, 4' bei dessen Durchlauf berührungslos und mit minimalem Abstand, vorzugsweise einem Abstand kleiner 0,5mm, folgen.Side surfaces 7.2, 7.3 of the
Zur zusätzlichen Verringerung des Abstands kann in einer vorteilhaften Ausführungsform zumindest die sich durch die Drehung nähernde Seitenfläche 4.3, 4.4 des Drehkolbens 4, 4' leicht konvex gewölbt sein. Zudem kann optional die zumindest eine Seitenfläche 7.2, 7.3 des Gegenkolbens 7, 7', der sich der Drehkolben 4, 4' durch seine Bewegung nähert, leicht konkav gewölbt sein. Nach dem Durchlauf des Drehkolbens 4, 4' schmiegt sich der Gegenkolben 7, 7' mit seiner Deckfläche 7.1 mit minimalem Abstand an die Mantelfläche 3.1 des Rotors 3 an. Für den Fall eines geschlossenen Gegenkolbens 7, 7', d.h. dass die Deckfläche 7.1 minimal zur Mantelfläche 3.1 des Rotors 3 beabstandet ist, unterteilt der Drehkolben 4, 4' den kreisringförmigen Zylinder 5 zusammen mit dem Gegenkolbens 7, 7' in zwei Zylinderräume 5.a, 5.b, wobei sowohl Drehkolben 4, 4' als auch Gegenkolben 7, 7' derart ausgebildet sind, dass die Abtrennung mittels am Drehkolben 4, 4' und am Gegenkolben 7, 7' vorgesehenen Dichtungen vorzugsweise flüssigkeits- und/oder luftdicht erfolgt. Für die Abdichtung des Zylinders 5 an der Mantelfläche 3.1 des Rotors 3 sind an dieser angebrachte Dichtringe 17 (siehe
Anhand der
In
Durch die Explosion des Treibstoff-Luft-Gemisches wird bei geschlossenem Gegenkolben 7 auf den Drehkolben 4 eine Kraft in Drehrichtung DR ausgeübt und eine Rotation des Rotors 3 in Drehrichtung DR bewirkt. Unmittelbar vor Berühren des Gegenkolbens 7, 7' durch den Drehkolben 4 ist das Volumen im verbleibenden zweiten Zylinderraum 5.b minimal, d.h. das verbrannte Rauchgas vom Vortakt wurde nahezu vollständig durch den Auslass 2.3 gedrückt (siehe
Wie in
In einer bevorzugten Ausführungsform weist der erfindungsgemäße Drehkolbenmotor 1 zumindest zwei Zylinder 5 auf, wobei einer der zumindest zwei Zylinder 5 als Druckzylinder 5.1 zur Komprimierung von Luft und der zumindest eine weitere Zylinder 5 als Arbeitszylinder 5.2 ausgebildet ist. Ein derartiger Drehkolbenmotor 1 weist getrennt von Druck- und Arbeitszylinder 5.1, 5.2 zumindest eine Druckspeichervorrichtung 10 auf, die zumindest eine erste und zweite Druck- bzw. Zündkammer 11.1, 11.2 beinhaltet.In a preferred embodiment, the
Im Folgenden wird anhand von
Nach Zuführung von Treibstoff in die erste bzw. zweite Druck- bzw. Zündkammer 11.1, 11.2 über eine erste bzw. zweite Treibstoffzuführung 23.1, 23.2 wird das Treibstoff-Luft-Gemisch innerhalb der ersten bzw. zweiten Druck- bzw. Zündkammer 11.1, 11.2 über die jeweilige erste oder zweite Zündvorrichtung 24.1, 24.2 gezündet und gleichzeitig das zu dieser Druck- bzw. Zündkammer 11.1, 11.2 gehörige erste bzw. zweite weitere Ventil 22.1, 22.2 geöffnet. Zu diesem Zeitpunkt befindet sich der Drehkolben 4 im Arbeitszylinder 5.2 in Drehrichtung DR gesehen nach dem Gegenkolben 7, wobei dieser Gegenkolben 7 geschlossen ist, d.h. mit seiner Deckfläche 7.1 von der Mantelfläche 3.1 des Rotors 3 minimal beabstandet ist.After supplying fuel into the first and second pressure or ignition chamber 11.1, 11.2 via a first and second fuel supply 23.1, 23.2, the fuel-air mixture within the first and second pressure or ignition chamber 11.1, 11.2 on the respective first or second ignition device 24.1, 24.2 ignited and at the same time the first or second additional valve 22.1, 22.2 belonging to this pressure or ignition chamber 11.1, 11.2 is opened. At this time, the
Der in der Druck- bzw. Zündkammer 11.1, 11.2 durch die Explosion entstehende Druck wird über den Verbindungskanal 25 dem Arbeitszylinder 5.2 zugeführt, und zwar über dessen Einlass 2.2. Hierdurch wird auf den Drehkolben 4 im Arbeitszylinder 5.2 eine Kraft in Drehrichtung DR ausgeübt. Zu diesem Zeitpunkt kann der Anlasser abgeschaltet werden. Durch die einstückige Ausbildung des Rotors 3 erfährt auch der Drehkolben 4' im Druckzylinder 5.1 eine Kraft in Drehrichtung DR und erzeugt weiterhin Druck, der sich über die Verbindungsleitung 18 und ein geöffnetes erstes bzw. zweites Ventil 20.1, 20.2, das der im vorherigen Takt nicht benutzten ersten bzw. zweiten Druck- bzw. Zündkammer 11.1, 11.2 zugeordnet ist, in ebendiese Druck- bzw. Zündkammer 11.1, 11.2 ausbreiten kann. Nach dem Durchlaufen der beiden Drehkolben 4, 4' durch den Bereich der Gegenkolbens 7, 7' kann in einer der ersten bzw. zweiten Druck- bzw. Zündkammer 11.1, 11.2 durch Zuführung von Treibstoff und der anschließenden Zündung durch die erste bzw. zweite Zündvorrichtung 24.1, 24.2 das Treibstoff-Luft-Gemisch erneut zur Explosion gebracht werden. Im zweiten Zylinderteilraum 5.b des Arbeitszylinders 5.2 befindet sich zu diesem Zeitpunkt das aus dem vorherigen Takt entstandene, verbrannte Rauchgas, welches durch die Drehung des Drehkolbens 4 durch den Auslass 2.3 des Arbeitszylinders 5.2 ausgestoßen wird.The resulting in the pressure or ignition chamber 11.1, 11.2 by the explosion pressure is supplied via the connecting
Die zuvor beschriebenen Abläufe sind periodisch wiederkehrend, wobei die Periode der Abläufe von der Drehzahl des Rotors 3 abhängig ist. Zudem wird abwechselnd in einer der ersten bzw. zweiten Druck- bzw. Zündkammern 11.1, 11.2 das Treibstoff-Luft-Gemisch zur Explosion gebracht, so dass sich in einer der beiden Druck- bzw. Zündkammer 11.1, 11.2 nur jede zweite Umdrehung des Rotors 3 eine Explosion ereignet. Durch die Trennung des Arbeitszylinders 5.2 von der Druckspeichervorrichtung 10 und die Verwendung von zwei Druck- bzw. Zündkammern 11.1, 11.2 kann das Treibstoff-Luft-Gemisch einen längeren Zeitraum miteinander in Interaktion treten, was eine bessere Durchmischung und dadurch eine höhere Effektivität bzw. Effizienz der Verbrennung des Drehkolbenmotors 1 nach sich zieht. Zudem ist ein derart aufgebauter Drehkolbenmotors 1 mit Benzin, Diesel oder Gas betreibbar.The processes described above are periodically recurring, wherein the period of the processes of the rotational speed of the
Die
Im Inneren des Rotors 3 ist ein konzentrisch zur Rotationsachse RA verlaufendes Rohr 26 aufgenommen. Dieses Rohr 26 wird durch die an beiden Stirnseiten des Rotors 3 aufgeschraubten Deckel 8, und zwar in darin vorgesehenen Nuten 8.3, in seiner Position gehalten, wobei die Stirnseiten des Rotors 3 hierzu in den Nuten 8.3 aufgenommen werden. Durch Einfügen des Rohres 26 in den Rotor 3 ergibt sich im Innenraum des Rotors 3 eine Aufteilung in zwei Rotorkammern 28, 29, wobei die erste Rotorkammer 28 zwischen der Rotorinnenseite und der äußeren Mantelfläche des Rohres 26 gebildet ist und die zweite Rotorkammer 29 durch die innere Mantelfläche des Rohres 26 eingeschlossen ist. Sowohl die erste Rotorkammer 28 als auch die zweite Rotorkammer 29 sind seitlich durch die beiden Deckel 8 begrenzt. Die Konstruktion aus Deckeln 8 und eines im Rotorinneren angeordneten Rohrs 26 dient der Schaffung eines im Volumen reduzierten, in der Nähe der durch die Verbrennung entstehenden Wärme anschließenden Kühlraumes, und zwar der ersten Rotorkammer 28, um diese mit einem flüssigen oder zähflüssigem Medium zu durchströmen und damit den Drehkolbenmotor 1 zu kühlen. Aus diesem Grund ist die Verbindung der Deckel 8 mit dem Rotor 3 sowie die Verbindung des Rohres 26 mit eben diesen Deckeln 8 flüssigkeitsdicht ausgeführt. Die zweite Rotorkammer 29 ist gegenüber der ersten Rotorkammer 28 abgedichtet und kommt mit dem Kühlmedium nicht in Berührung.Inside the
Ein im Motorgehäuse 2 vor dem Deckel 8 befindliches Kühlmedium wird bei Drehung des Rotors 3 über die schaufelradartigen Ausnehmungen 8.1 den Bohrungen 8.2 zugeführt und durch diese Bohrungen 8.2 in die erste Rotorkammer 28 eingeleitet. Der zweite Deckel 8 arbeitet in entgegengesetzter Wirkungsweise, d.h. erzeugt eine Sogwirkung auf das in der ersten Rotorkammer 28 befindliche Kühlmedium und befördert das Kühlmedium durch die Bohrungen 8.2 und schaufelartigen Ausnehmungen 8.1 aus der ersten Rotorkammer 28 heraus. Vorzugsweise sind die Bohrungen 8.2 schräg in den Deckel 8 eingebracht, so dass die Einleitung des Kühlmediums von den schaufelartigen Ausnehmungen 8.1 durch die Bohrungen 8.2 in die ersten Rotorkammer 28 vereinfacht wird. Die an der Mantelfläche 3.1 des Rotors 3 angebrachten Drehkolben 4, 4' besitzen ebenfalls Kühlkanäle, wobei diese Kühlkanäle eine Verbindung zur ersten Rotorkammer 28 aufweisen, und zwar beispielsweise über mit einer Innenbohrung versehene Schrauben, die zur Befestigung des Drehkolbens 4, 4' am Rotor 3 vorgesehen sind. Das die erste Rotorkammer 28 durchströmende Kühlmedium kann damit auch durch die Drehkolben 4, 4' fließen und eine Kühlung dieser gewährleisten, wobei der Austausch des Kühlmediums durch die Fliehkraft aktiv unterstützt wird. Das durch die Sogwirkung am gegenüberliegenden Deckel 8 austretende Kühlmedium kann über im Motorgehäuse 2 integrierte Rückflusskanäle zum ersten Deckel 8 zurückfließen. Damit wird auch das Motorgehäuse 2, das durch den Verbrennungsprozess mit Wärme beaufschlagt wird, effektiv gekühlt. Um eine Überhitzung des Kühlmediums zu vermeiden, ist in den Kühlkreislauf eine aus dem Stand der Technik hinlänglich bekannte Kühleinrichtung eingebracht, die beispielsweise durch eine stark vergrößerte wirksame Kühlfläche dem Kühlmedium Wärme entzieht. Zudem kann diese Wärme auch für andere Zwecke, beispielsweise zur Erwärmung des Kraftstoffs oder zum Beheizen des Innenraums bei Kraftfahrzeugen genutzt werden.A cooling medium located in the
Im Folgenden wird anhand der
Mittels des Steuerungssystems wird die zuvor beschriebene radiale Bewegung des Gegenkolbens 7, 7' derart gesteuert, dass beim Durchlauf eines Drehkolbens 4, 4' durch den Gegenkolbengehäuseabschnitt 12 der Gegenkolben 7, 7' derart aus dem Zylinder 5 gehoben wird, dass bei minimalem Abstand zueinander eine Berührung des Drehkolbens 4, 4' und des Gegenkolbens 7, 7' vermieden wird. Dazu ist jedem Gegenkolben 7, 7' des Drehkolbenmotors 1 eine Steuerungseinheit 40, 40' zugewiesen, die durch rotierende Wellen 41 angetrieben werden, wobei mit diesen Wellen 41 jeweils zumindest eine Nocke 42 und zumindest eine, vorzugsweise zwei Nockenschalen 43 mechanisch verbunden sind. Die Welle 41 wird über eine mechanische Wirkverbindung vom Rotor 3 angetrieben und setzt damit sowohl Nocken 42 als auch Nockenschalen 43 in Rotation.By means of the control system, the above-described radial movement of the
Die in den
Die in
Bei Rotation der Welle 41 und damit der Nockenschalen 43 in
In den sechs Teildarstellungen 10.1 - 10.6 sind unterschiedliche Drehzustände der Nocke 42 bzw. Nockenschale 43 gezeigt, wobei die relative Stellung der Nocke 42 zur Nockenschale 43 jeweils unverändert ist. In den
In
Nach dem Eintreten des Bolzens 45 in den Auswölbungsbereich 50 durchläuft der Bolzen 44 die stark abfallende Flanke der Auswölbung 42.2 der Nocke 42 (
Der Drehkolbenmotor 1 kann beispielsweise zum Antrieb von Maschinen, Kraftfahrzeugen o.ä. dienen. Dazu wird die Welle 27 über eine mechanische Wirkverbindung mit der Antriebsmechanik einer Maschine bzw. eines Kraftfahrzeuges gekoppelt, wobei die mechanische Wirkverbindung direkt oder indirekt über ein Getriebe mit fester oder variabler Übersetzung erfolgen kann. Als Materialien zur Fertigung des Motors können alle im Motorenbau gängigen Materialien Verwendung finden. Der Motor kann größtenteils aus Aluminium gefertigt sein, insbesondere alle Gehäuseteile, der Rotor 3 sowie die Deckel 8.The
- 11
- DrehkolbenmotorRotary engine
- 22
- Motorgehäusemotor housing
- 2.12.1
- GehäuseinnenraumHousing interior
- 2.22.2
- Einlassinlet
- 2.32.3
- Auslassoutlet
- 2.42.4
- ZündungsvorrichtungsöffnungIgnition device opening
- 33
- Rotorrotor
- 3.13.1
- Mantelfläche des RotorsLateral surface of the rotor
- 4, 4'4, 4 '
- Drehkolbenrotary pistons
- 4.14.1
- Grundfläche des DrehkolbensBase of the rotary piston
- 4.24.2
- Deckfläche des DrehkolbensTop surface of the rotary piston
- 4.3, 4.44.3, 4.4
- Seitenfläche des DrehkolbensSide surface of the rotary piston
- 55
- Zylindercylinder
- 5.a5.a
- erster Zylinderraumfirst cylinder space
- 5.b5.b
- zweiter Zylinderraumsecond cylinder space
- 5.15.1
- Druckzylinderpressure cylinder
- 5.25.2
- Arbeitszylinderworking cylinder
- 5.35.3
- Stegweb
- 5.3.15.3.1
- Seitenfläche des StegsSide surface of the bridge
- 5.3.25.3.2
- Oberseite des StegsTop of the dock
- 66
- Laufflächetread
- 7, 7'7, 7 '
- Gegenkolbenopposed piston
- 7.17.1
- Deckfläche des GegenkolbensTop surface of the opposing piston
- 7.2, 7.37.2, 7.3
- Seitenfläche des GegenkolbensSide surface of the opposing piston
- 88th
- Deckelcover
- 8.18.1
- schaufelradartige Ausnehmungblade-like recess
- 8.28.2
- Bohrungdrilling
- 8.38.3
- Nutgroove
- 99
- Treibstoffzuführungfuel supply
- 1010
- DruckspeichervorrichtungPressure storage device
- 11.111.1
- erste Druck- bzw. Zündkammerfirst pressure or ignition chamber
- 11.211.2
- zweite Druck- bzw. Zündkammersecond pressure or ignition chamber
- 1212
- GegenkolbengehäuseabschnittOpposed piston housing section
- 12.112.1
- KolbenführungskanalPiston guide channel
- 1313
- Einlassventilintake valve
- 1717
- Dichtringseal
- 1818
- Verbindungsleitungconnecting line
- 1919
- Rückschlagventilcheck valve
- 20.1, 20.220.1, 20.2
- erstes und zweites Ventilfirst and second valve
- 2121
- gemeinsames Ventilcommon valve
- 22.1, 22.222.1, 22.2
- weitere Ventilemore valves
- 23.1, 23.223.1, 23.2
- Treibstoffzuführungfuel supply
- 24.1, 24.224.1, 24.2
- erste und zweite Zündvorrichtungfirst and second ignition device
- 2525
- Verbindungskanalconnecting channel
- 2626
- Rohrpipe
- 2727
- Wellewave
- 2828
- Erste RotorkammerFirst rotor chamber
- 2929
- Zweite RotorkammerSecond rotor chamber
- 40, 40'40, 40 '
- Steuerungseinheitcontrol unit
- 4141
- Wellewave
- 4242
- Nockecam
- 42.142.1
- kreisförmige Außenkontur der Nockecircular outer contour of the cam
- 42.242.2
- Auswölbung der NockeBulge of the cam
- 4343
- Nockenschalecam shell
- 43.143.1
- Innenkontur der NockenschaleInner contour of the cam shell
- 43.243.2
- Außenkontur der NockenschaleOuter contour of the cam shell
- 4444
- Bolzenbolt
- 4545
- Bolzenbolt
- 4646
- Erste FedereinheitFirst spring unit
- 4747
- Zweite FedereinheitSecond spring unit
- 4848
- Hebelmechanismuslever mechanism
- 4949
- Bügelhanger
- 5050
- AuswölbungsbereichAuswölbungsbereich
- 5151
- Zahnradgear
- 5252
- Zahnrad mit stirnseitigem RiemenradGear with front pulley
- 5353
- Riemenradpulley
- 5454
- Zahnriementoothed belt
- 5555
- Wellewave
- 5656
- Nockecam
- 6060
- Erstes KegelzahnradFirst bevel gear
- 6161
- Zweites KegelzahnradSecond bevel gear
- 6262
- Drittes KegelzahnradThird bevel gear
- 6363
- Viertes KegelzahnradFourth bevel gear
- 6464
- Verbindungswelleconnecting shaft
- RARA
- Rotationsachseaxis of rotation
- DRDR
- Drehrichtungdirection of rotation
Claims (19)
- A rotary piston engine consisting of an engine housing (2) with a housing interior (2.1) with at least one inlet (2.2) and at least one outlet (2.3), in which in a specified rotation direction (DR) rotatably about a rotation axis (RA) a cylindrical rotor (3) is received in a cylindrical running surface (6) running concentrically to the rotation axis (RA), which running surface encloses with the lateral surface (3.1) of the rotor (3) and lateral webs (5.3) at least one cylinder (5) which has the shape of a circular ring in cross-section, in which at least one rotary piston (4, 4') is arranged on the lateral surface (3.1) of the rotor (3), wherein at least one counter piston (7, 7') is received at least partially in the engine housing (2), at least the at least one counter piston (7, 7') is movably mounted in the engine housing (2) or the at least one rotary piston (4, 4') is movably mounted on the rotor (3), and at least one inlet (2.3) with inlet valve (13) and at least one outlet (2.3) are associated with each counter piston (7, 7' , in which the at least one outlet (2.3) is arranged in rotation direction (DR) immediately in front of the counter piston (7, 7') and following the latter the at least one inlet (2.2) is arranged in rotation direction (DR), wherein the at least one counter piston (7, 7') is driven via a mechanical control system by the rotor (3), characterized in that the at least one counter piston (7, 7') is driven via the mechanical control system by the rotor (3) such that the counter piston (7, 7') follows the contour of the rotary piston (4, 4'), projecting from the rotor (3), in a contactless manner during its passage with minimal distance, that the rotor (3) is constructed in one piece and at least two cylinders (5) are provided, wherein respectively a cylinder (5) is formed by the single-piece rotor (3) and a part of the engine housing (2), that the rotary piston (4, 4') and the part of the counter piston (7, 7') projecting into the cylinder (5) are approximately identical in shape, and that the at least one rotary piston (4, 4') and the at least one counter piston (7, 7') are constructed approximately in a trapezoidal shape.
- The rotary piston engine according to Claim 1, characterized in that the at least one inlet (2.2) is arranged within a 90° sector in connection with the counter piston (7, 7') directly after the counter piston (7, 7'), and/or that the counter piston (7, 7') or the rotary piston (4, 4') are movable radially to the cylindrical running surface (6).
- The rotary piston engine according to Claim 1, characterized in that the at least one rotary piston (4, 4') is securely connected to the rotor (3) and has a base surface (4.1) adjoining the rotor (3), a cover surface (4.2) adjoining the running surface (6), and two lateral surfaces (4.3, 4.4) connecting the base surface (4.1) or respectively the cover surface (4.2), wherein respectively one lateral surface (4.3, 4.4) forms with the base surface (4.1) an acute angle and/or that the at least one counter piston (7, 7') has a cover surface (7.1) adjoining the rotor (3) and two lateral surfaces (7.2, 7.3) adjoining the cover surface, wherein the angles formed respectively by a lateral surface (7.2, 7.3) and the cover surface (7.1) are obtuse.
- The rotary piston engine according to one of the preceding claims, characterized in that the at least one counter piston (7, 7') forms an almost tight separation in particular positions of the rotary piston (4, 4') in the space delimited between the lateral surface (3.1) of the rotor (3), the cylindrical running surface (6) and the webs (5.3).
- The rotary piston engine according to Claim 3 or 4, characterized in that at least one lateral surface (4.3, 4.4) is curved in a convex manner, wherein the lateral surfaces (7.2, 7.3) of the at least one counter piston (7, 7') are curved in a concave manner.
- The rotary piston engine according to one of the preceding claims, characterized in that at least two cylinders (5) and on the one-piece rotor (3) at least two rotary pistons (4, 4') are provided, wherein the rotary pistons (4, 4') are offset to one another along the rotation axis (RA), at least in each case one rotary piston (4, 4') is received in a cylinder (5) and the cylinders (5) have a common symmetry axis, which lies in the rotation axis (RA), wherein the at least two rotary pistons (4, 4') lying adjacent to one another are arranged rotated through 180° to one another.
- The rotary piston engine according to Claim 6, characterized in that at least two cylinders lying adjacent to one another have at least in each case one rotary piston (4, 4') and at least in each case one counter piston (7, 7'), wherein both the rotary pistons (4, 4') and also the counter pistons (7, 7') are offset to one another along the rotation axis (RA) and are rotated through 180° to one another.
- The rotary piston engine according to one of the preceding claims, characterized in that in the engine housing (2) an ignition device, acting in the at least one cylinder (5), is provided, at namely in the 120° sector following the at least one counter piston (7, 7') in rotation direction of the rotor (3).
- The rotary piston engine according to Claim 6, characterized in that at least two cylinders (5) are provided, wherein one of the at least two cylinders (5) is constructed as a pressure cylinder (5.1) for the compressing of air and the at least one further cylinder (5) is constructed as a working cylinder (5.2).
- The rotary piston engine according to Claim 9, characterized in that separate from pressure cylinder (5.1) and working cylinder (5.2) at least one pressure storage device (10) is provided, which has at least two pressure- or respectively ignition chambers (11.1, 11.2), wherein the pressure cylinder (5.1) supplies air alternately to one of the at least two pressure- or respectively ignition chambers (11.1, 11.2).
- The rotary piston engine according to Claim 10, characterized in that suitable arrangements are provided at the at least two pressure- or respectively ignition chambers (11.1, 11.2), which at particular positions of the at least one rotary piston (4, 4') supply liquid and/or gaseous fuel alternately to one of the at least two pressure- or respectively ignition chambers (11.1, 11.2), and ignite this if applicable, wherein a connecting duct (25), closable by further valves (22.1, 22.2), is provided between the at least two pressure- or respectively ignition chambers (11.1, 11.2) and the working cylinder (5.2), which diverts into the working cylinder (5.2) the pressure occurring in a pressure- or respectively ignition chamber (11) by explosion of the fuel/air mixture.
- The rotary piston engine according to one of the preceding claims, characterized in that at the two end faces of the rotor (3) covers (8) with impeller-like recesses (8.1) and bores (8.2) are provided, which exert a pumping effect on a liquid or viscous fluid, serving for cooling, and transport the medium through provided ducts into all regions of the rotary piston engine (1) which are to be cooled.
- An arrangement of a control system and of a rotary piston engine (1) according to one of the preceding claims, wherein the control system is constructed for the activation at least of one counter piston (7, 7'), guided in a counter piston housing section (12), of the rotary piston engine (1), characterized in that the counter piston (7, 7') is lifted out from the cylinder (5) such that the cover- (7.1) or respectively lateral (7.2, 7.3) surfaces of the counter piston (7, 7') follow the contour, projecting from the rotor (3), of the rotary piston (4, 4') on its passage in a contactless manner with a distance less than 0.5 mm, wherein the rotary piston (4, 4') and the part of the counter piston (7, 7') projecting into the cylinder (5), are approximately identical in shape and the at least one rotary piston (4, 4') and the at least one counter piston (7, 7') are constructed approximately in a trapezoidal shape.
- The arrangement according to Claim 13, characterized in that the activation of the counter piston (7, 7') is realized exclusively through mechanical assemblies and/or that the counter piston (7, 7') is lifted out from the cylinder (5) by the action at least of one cam bowl (43) and at least one cam (42) on a lever mechanism (48) connected to the counter piston (7, 7').
- The arrangement according to Claim 14, characterized in that the at least one cam bowl (43) acts directly, the at least one cam (42) acts via at least one spring arrangement (47) indirectly via a common lever mechanism (48) on the counter piston (7, 7') and/or that exclusively the inner or respectively outer contour (43.1, 43.2) of the cam bowl (43) determines the stroke movement of the counter piston (7, 7') and/or that the at least one cam (42) supports the stroke movement of the counter piston (7, 7') determined by the at least one cam bowl (43), and namely at locations of great incline of the inner contour (43.1) of the at least one cam bowl (43).
- The arrangement according to Claim 14 or 15, characterized in that the lever mechanism (48) increases the stroke movement, generated by the at least one cam bowl (43), by means of a transmission ratio.
- A method for the synchronous operation of a rotary piston engine (1) according to one of Claims 1 to 12, in which for division of the cylinder (5), which has the shape of a circular ring in cross-section, into a first and a second cylinder chamber (5.a, 5.b), the counter piston (7, 7') is introduced radially into the cylinder (5), in which by rotating of the rotary piston (4, 4') starting from the counter piston (7, 7') in rotation direction (DR) via the inlet (2.3) into the first cylinder chamber (5.a) a fuel/air mixture is drawn in and at the same time the exhaust gas, situated in the second cylinder chamber (5.b) from the pre-cycle is ejected via the outlet (2.3) and that during the passage of the rotary piston (4, 4') the counter piston (7, 7') is lifted synchronously to the rotary piston (4, 4') out from the cylinder (5, 5'), and after the passage is directed back into the cylinder (5) again, and namely such that the radial movement of the counter piston (7, 7) follows almost exactly the shape of the rotary piston (4, 4'), so that the passage of the at least one rotary piston (4, 4') through the region of the at least one counter piston (7, 7') takes place in a contactless manner with minimal distance.
- The method according to Claim 17, characterized in that after reaching a predetermined rotation angle, the fuel/air mixture situated in the first cylinder chamber (5.a) is brought to explosion by an ignition device.
- The method for the synchronous operating of a rotary piston engine (1) according to one of Claims 1 to 12, consisting of at least one pressure cylinder (5.1) and a working cylinder (5.2), in which air is drawn in and compressed via the pressure cylinder (5.1), in which the compressed air is delivered to a pressure storage device (10), in which for the formation of a fuel/air mixture in the pressure storage device (10) fuel is delivered to the compressed air and subsequently in the pressure storage device (10) the fuel/air mixture is ignited and in which the pressure occurring through the explosion is delivered to the working cylinder (5.2), wherein the pressure storage device (10) is provided separate from pressure cylinder (5.1) and working cylinder (5.2), which has at least two pressure or respectively ignition chambers (11.1, 11.2), in which the fuel/air mixture is alternately brought to explosion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200810055753 DE102008055753A1 (en) | 2008-11-04 | 2008-11-04 | Rotary piston engine and control system for controlling a counter-piston |
PCT/DE2009/001529 WO2010051794A2 (en) | 2008-11-04 | 2009-11-02 | Rotary piston engine, control system for actuating a counter piston and method for the cycle-controlled operation of a rotary piston engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2356317A2 EP2356317A2 (en) | 2011-08-17 |
EP2356317B1 true EP2356317B1 (en) | 2017-03-29 |
Family
ID=42096336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09799490.9A Active EP2356317B1 (en) | 2008-11-04 | 2009-11-02 | Rotary piston engine, unit with control system and method for the cycle-controlled operation of a rotary piston engine |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2356317B1 (en) |
DE (1) | DE102008055753A1 (en) |
WO (1) | WO2010051794A2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113027760B (en) * | 2021-03-25 | 2022-08-16 | 北京旋环科技有限公司 | Shaft type fixed piston for air compressor and air compressor with same |
CN116677493B (en) * | 2023-08-02 | 2023-09-26 | 成都工业学院 | Circumferential rotor engine |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB151124A (en) * | 1919-07-10 | 1920-09-23 | Alfred Leighton Whittell | Improvements in rotary engines |
DE371106C (en) * | 1921-09-09 | 1923-03-10 | Johannes Thiel | Rotating piston engine |
US1949225A (en) * | 1927-05-12 | 1934-02-27 | Willem P Van Lammeren | Rotary internal combustion engine |
GB377380A (en) * | 1931-06-15 | 1932-07-28 | Guido Cimino | An improved internal combustion rotary engine |
DE732521C (en) * | 1940-02-06 | 1943-03-04 | Severin Breschendorf | Rotary piston machine, in particular internal combustion engine |
FR942093A (en) * | 1940-09-19 | 1949-01-28 | Rotary piston motor or generator, full cycle and reversible | |
US2550849A (en) * | 1948-11-12 | 1951-05-01 | Octavius J Morris | Rotary engine |
DE1108705B (en) * | 1959-09-15 | 1961-06-15 | Sami Tolgay Dipl Ing | Power machine with rotating piston |
DE2016845A1 (en) * | 1970-04-09 | 1971-10-21 | Umlauf, Norbert, 5800 Hagen | Rotary piston internal combustion engine with abutment |
GB2182722B (en) * | 1984-02-06 | 1988-05-25 | George Basil Tsakiroglou | Rotary internal combustion reversible one-stroke engine |
US5138994A (en) * | 1987-03-25 | 1992-08-18 | Laszlo Maday | Supercharged rotary piston engine |
-
2008
- 2008-11-04 DE DE200810055753 patent/DE102008055753A1/en not_active Withdrawn
-
2009
- 2009-11-02 EP EP09799490.9A patent/EP2356317B1/en active Active
- 2009-11-02 WO PCT/DE2009/001529 patent/WO2010051794A2/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2010051794A2 (en) | 2010-05-14 |
WO2010051794A4 (en) | 2011-04-21 |
WO2010051794A9 (en) | 2011-06-03 |
EP2356317A2 (en) | 2011-08-17 |
DE102008055753A1 (en) | 2010-05-12 |
WO2010051794A3 (en) | 2011-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69520956T2 (en) | axial piston | |
DE68903984T2 (en) | Piston machine with rotating cylinder block. | |
DE69906486T2 (en) | ROTATION MACHINE | |
DE102008050014B4 (en) | A rotary internal combustion engine | |
WO2017063751A1 (en) | Internal combustion engine with double crank drive and variable compression ratio | |
DE102016103615B3 (en) | Motor-compressor unit | |
DE60117980T2 (en) | FOREIGN IGNITION ROTARY INTERNAL COMBUSTION ENGINE | |
EP2356317B1 (en) | Rotary piston engine, unit with control system and method for the cycle-controlled operation of a rotary piston engine | |
DE69409256T2 (en) | ROTATING MACHINE | |
DE69406799T2 (en) | MACHINE | |
DE2339958A1 (en) | MACHINE TO OPERATE AS A COMBUSTION ENGINE, COMPRESSOR, PUMP OR PRESSURE-CONTROLLED MOTOR | |
EP2205832B1 (en) | Piston engine | |
DE102009052960B4 (en) | Free-piston internal combustion engine | |
WO2012052518A1 (en) | Constant-volume internal combustion engine | |
EP1034356B1 (en) | Device for conveying a medium or propulsion through a medium | |
DE202015005275U1 (en) | Rotary engine | |
DE4437740A1 (en) | Rotary motor for producing high turning moment from low numbers of revolutions | |
DE102010006466A1 (en) | Rotary engine | |
DE19953168A1 (en) | Rotary lobe machine | |
DE1576240A1 (en) | Device for use as a motor, in particular hydraulic motor, internal combustion engine, pump and the like. | |
DE102009060762A1 (en) | Piston engine, particularly reciprocating piston engine, has three connecting rods mounted in crank case and engine output shaft, which is connected with connecting rods over planetary gear | |
DE102020124450A1 (en) | rotary engine | |
WO2005083233A1 (en) | Rotary piston machine | |
DE102008055939B3 (en) | Internal-combustion engine i.e. reciprocating piston engine, for use in motor vehicle, has piston with elliptically formed opening, which is aligned right-angled to motion direction in cylinder, and output shaft clamping down opening | |
DE4401285A1 (en) | Internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110511 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20141010 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20161214 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 879961 Country of ref document: AT Kind code of ref document: T Effective date: 20170415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009013826 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MICHELI AND CIE SA, CH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170630 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170629 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170731 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170729 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009013826 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180103 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171102 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231123 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231124 Year of fee payment: 15 Ref country code: FR Payment date: 20231120 Year of fee payment: 15 Ref country code: DE Payment date: 20231130 Year of fee payment: 15 Ref country code: CH Payment date: 20231202 Year of fee payment: 15 Ref country code: AT Payment date: 20231121 Year of fee payment: 15 |